Present limits and Future Storage Ring Synchrotron Sources

P. Elleaume, ESRF

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 1/56

I dedicate this presentation to the memory of Jean-Louis Laclare

JL Laclare lead the construction of the ESRF and its initial operation (1986-1996).

"His vision and dynamism had a great impact on the ESRF and on the European Synchrotron Sources."

Synchrotron Radiation in the World

- ~ 50 Facilities in operation
- ~ 10 Facilities under construction or major upgrade
- ~ 14 Projects ...

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 3/56

http://srs.dl.ac.uk/SRWORLD/index.html http://www-ssrl.slac.stanford.edu/sr_sources.html

Contents

- State of the Art
- New Facities
 - Upgrade of existing rings
 - Intermediate-energy rings
 - Ambitious studies

3rd Generation Synchrotron Sources in Operation

Name	Energy [GeV]	Perim. [m]	Current [mA]	Emittance [nm]	Straights	Lattice	Full En. Inj.	Injector
SPRING-8	8	1436	100	5.6	48	DBA	Y	Booster
APS	7	1060	100	3.5	40	DBA	Y	Booster
ESRF	6	844	200	3.8	32	DBA	Y	Booster
PLS	2.5	281	180	12	12	TBA	Y	LINAC
ANKA	2.5	240	110	70	8	DBA	N	Microtron .5 GeV
SLS	2.4	240	400	5	12	TBA	Y	Booster
ELETTRA	2-2.4	260	320	7	12	DBA	N	LINAC 1 GeV
Nano-Hana	2	102	300	70	8	DBA	N	Booster 0.5 GeV
ALS	1.9	197	400	6.8	12	TBA	N	Booster 1.5 GeV
BESSY-II	1.7-1.9	240	270	5.2	16	DBA	Y	Booster

Dedicated synchrotron sources put into operation after 1990, by decreasing order of electron energy

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 5/56

Main figures of merit of synchrotron light sources

• Undulator Average Spectral Brilliance (Brightness)

Ring Current Limitations

- Heatload on the vacuum chambers, absorbers and beamlines :
 - ESRF, 200 mA : 4m undulator at gap of 5 mm => 20 kW and 2 kW/mm2 on the main beamline shutter
 - Absorbers are designed according to very conservative limit. Still room for improvement
 - The first Crystal/Grating/Mirror in the beamline is a major concern
- Coupled bunch instabilities (CBI) driven by Higher Order Modes (HOM) of the radio frequency cavities.
 - Longitudinal oscillations
 - Increase energy spread
 - Transverse oscillations
 - Increase effective emittance

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 7/56

Stabilizing Coupled Bunch Instabilities

- Precise temperature control of the RF cavities
- Harmonic cavities
 - Max II,SLS, ELETTRA, BESSY
 - Bunch Lenghtening
 - Increase the lifetime
- Superconducting RF cavities
 - SRRC, CLS, SOLEIL, DIAMOND,...
- Special HOM Damped cavities
 - SPEAR-III
- Feedback

Room Temperature HOM Damped Cavities

Emittance Optimization

- Brilliance
- Lattice

$$B \simeq \frac{F}{\varepsilon_x \varepsilon_z}$$

$$\varepsilon_x \propto \frac{E^2}{N_{cell}^3}$$
, $\varepsilon_z \approx \kappa \varepsilon_x$, $\kappa \sim 0.1 - 1\%$

$$\varepsilon \approx \frac{\lambda}{4\pi} \propto \frac{1}{E^2}$$

• Touschek Lifetime

$$\frac{1}{\tau} \approx \frac{I_b}{E^2 \sqrt{\varepsilon_x \varepsilon_z}} f\left(\frac{\Delta p}{p}\right)$$

- Remarks
 - Brilliance is made at the cost of lifetime
 - Medium and high energy rings need the smallest horizontal emittance
 - Many medium ring increase the vertical emittance for lifetime
 - Topping-up and/or harmonic cavities alleviate the lifetime problem

Sources of Beam instability

- Displacement of the ring vacuum chambers and beam position monitors during energy ramping and/or current decay
 - Full energy injector
 - Topping-up
- Tunnel & Experimental Hall Temperature variations
 - Must be stabilised to +/- 0.1 deg C
- Ground motion amplified at the resonance frequency of the quadrupole girders and its supports
 - Avoid low frequency resonance modes (All recent light sources).
 - Use visco-elastic dampers on the girders (APS, ESRF).
 - Position Feedback

Beam Stability at ESRF

Insertion Devices

- High Brilliance => preference of undulators rather than wigglers
 - ESRF (6 GeV) : 60 Und. / 8 Wig.
 - SOLEIL (2.9 GeV) : 17 Und. / 1 Wig.
- Undulators must produce high photon energies :
 - High harmonics from undulators with small phase errors
 - Reduce the magnetic gap to the ultimate
 - Push the technology
 - In-vacuum undulator
 - Superconducting undulators

Limits in magnetic gap

- Aperture required for injection + chamber thickness
- Gas scattering lifetime (low and medium energy rings)
 - Need low vacuum pressure along the whole ring circumference
 - stainless steel chamber with antechamber and localized absorbers and pumping(SLS)
 - NEG coating of the quadrupole chambers (SOLEIL)
- Demagnetisation of NdFeB under exposure to electron beam which must be replaced by Sm₂Co₁₇.
- Assuming optimised Lattice functions, gap ~ $L^{\frac{1}{2}}$

Narrow Aperture Undulator Vacuum Chambers

APS type Chamber Int/ext gap = 5-7 mm, L =2.5 m ST707 NEG strips Activation @ 350-450°C P. Den Hartog, et al., PAC 2001 E. Trakhtenberg, et al., PAC 2003

In-Vacuum Undulators

Magnetic gap 3.3 mm (NSLS) for 0.4 m length
Magnetic gap 5-6 mm (SPRING-8/ESRF) for 2-5 m length
To be massively used by the new generation of light sources (SLS, SOLEIL, Diamond,...)

- The technology is mature and commercially available

SPring-8 In-Vacuum Undulator

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 19/56

Apple II Variable Polarization Undulator

Why so popular :

- High linear/helical magnetic field
- Generating any polarization (linear, elliptical,..)

Interact with the beam

- Lifetime, closed orbit, coupling,...
- Many degrees of freedom to correct
- Need careful field measurement & shimming

Contents

- State of the Art
- New Facities
 - Upgrade of existing rings
 - Intermediate-energy rings
 - Ambitious Studies

Light Sources undergoing Major Upgrades

• In Development

- ELETTRA (Full Energy Booster, Current)

- In Project Stage
 - ALS
 - APS

. . .

– PETRA

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 22/56

ALS Upgrade

- Upgrade Booster for full energy injection and topping-up
- Increase the average current from $270 \Rightarrow 750 \text{ mA}$
- Reduce the gap of Insertion Devices from 14 to 5 mm and generalize the use of Apple II Undulators, in-vacuum undulators and possibly superconducting undulators
- Increase the number of undulator beamlines using chicaned straight.
- ALS will gain competitiveness with respect to new up-to-date medium energy light sources at a modest cost

Petra III Upgrade

Realize the benefit of Damping Wigglers

 $\frac{\text{Damping wigglers}}{\cdot \text{B} = 1.5 \text{ T}}$

- $\cdot \lambda = 0.25 \text{ m}$
- h = 0.025 m
- $L_{tot} = 80 m (4 x 20m)$

 $\varepsilon_{x}: 4 \rightarrow 1 \text{ nmrad}$

Two Benefits from Damping Wigglers :

- -Lower emittance
- -Higher ring current

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 25/56

From K. Balewski, 10th ESLS Workshop, PSI, Nov 2002

Contents

- State of the Art
- New Facities
 - Upgrade of existing rings
 - Intermediate-energy rings
 - Ambitious Studies

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 27/56

New Sources

Name	Energy	Perim.	Current	Emittance	N.Straight	Lattice	Scheduled
	[GeV]	[m]	[mA]	[nm]			Commissioning
SPEAR3	3	240	500	18	18	DBA	2003
CLS	2.9	171	500	18	12	DBA	2003
SOLEIL	2.85	354	500	(3.1)	16+8	DBA	2005
DIAMOND	3	560	300	(2.7)	24	DBA	2005
Aust. Synch.	3	216	200	8.6	14	DBA	2007
LLS*	2.5	252	250	8.5	12	TBA	
SSRF	3.5	396	300	4.8	20	DBA	
NSLS II	3	523	500	(1.5)	24	TBA	
MAX-IV	3	285	500	1.2	12	7 BA	
SESAME	2.5	120	400	27	16	DBA	
TLS-II	3	240	400	10	16	DBA	
CANDLE	3	224	350	8.4	16	DBA	
Indus-II	2.5	173	300	58	8	DBA	

* To be revised

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 28/56

Features of Intermediat Energy Light Sources

- Cost Effective
 - Will compete with the 6-8 GeV sources at reduced cost
- Use the latest Insertion Device technology to reach 12.8 keV (Protein Crystallography)
 - In-vacuum Undulators with gap of 4-5 mm on a high harmonic number
 - Superconducting multipole Wigglers
 - Possibly superconducting undulators
- Use full energy injector with topping-up
- Use a high current around 500 mA
- Avoid the HOM driven coupled bunch instability using :
 - Superconducting RF (CLS, DIAMOND, SOLEIL, NSLS-II)
 - Heavy HOM damped (SPEAR3)
 - Low Frequency RF (MAX-IV)

See : Shangai Symposium on Intermediate Energy Light Sources, Sept 2001 http://ssils.ssrc.ac.cn/

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 31/56

How to produce High Photon Energy from Low Electron Energy ?

• Answer :

Superconducting Magnet Technology

- Wavelength Shifter or Superbend
- Superconducting Multipole Wigglers
- Superconducting Undulators

Recent SuperBend and Wavelength Shifters

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 35/56

Superconducting Multipole Wigglers

	Year	Field [T]	Period [mm]	N. of Poles	Magnetic Gap [mm]	
	1996	5.5	288	5	18	
DELTA		2.75	144	10		
BESSY-HMI	2002	7	148	17	19	
ELETTRA	2002	3.5	64	49	16.5 🖌	
Max Lab	2002	3.5	61	48	12 🔍	

Short Period => Small gap => Cold or Semi-cold Bore

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 36/56

NbTi Superconducting Undulators (Anka-Accel)

SSLS Undulator from ACCEL

S.kubsky et al. Workshop on Superconducting Ids, ESRF June 30th, 2003

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 39/56

Nb₃Sn Superconducting Undulators (LBNL)

8

Brilliance of Superconducting Undulators on the ESRF

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 41/56

NSLS II

Energy : 3 GeV Circumference : 523 m Lattice : 24 x TBA Emittance : 1.5 nm Current : 0.5 A RF System : 500 Mhz SC

From B. Podobedov et al., PAC03

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 42/56

MAX -IV Project

Perimeter	285 m	285 m
Energy [GeV]	3	1.5
Current [A]	0.5	0.5
Emittance [nm]	1.2	0.3
N. of Straight	12	12
RF Frequency	100	100
[Mhz]	+500	+500
Lifetime [h]	22	23

-Two Rings in Tunnel for Hard and Soft X-ray -Heavy use of Combined Function Magnets

- -7 Bend Achromat
- -Full Energy Injector S-Band Linac
 - Ring Injector
 - SASE FEL
 - Multistage HGHG

From G. LeBlanc et al., PAC03, & M. Eriksson et al., SRI2003

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 44/56

Contents

- State of the Art
- New Facities
 - Upgrade of existing rings
 - Intermediate-energy rings
 - Ambitious Studies

Direction of Further Improvements

- Femtoslicing
- Ring current x 2-3
- Reduce the horizontal emittance

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 47/56

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 48/56

Challenges of Femtoslicing

- The fs pulses of X-rays are weak,
 - Spectral Flux in fs slice ~ 10^7 10^5 ph/s/.1%
 - Total Spectral Flux ~ 10^{15} 10^{13} ph/s/.1%
- The transverse profile in the tail of the central cone must be as steep as possible to discriminate the very weak pulse.
 - Requires many period undulator of high quality
 - Possible pollution by adjacent bending magnet radiation.
- Separation of the short X-ray pulse from the main one requires the combination of :
 - Angular or spatial filtering
 - Wavelength filtering
 - Time triggering
- Sufficient energy modulation calls for high power laser and low electron energy. All experimental investigations envisaged in the near future will be carried out on intermediate energy storage rings (1.9 – 2.4 GeV)
- The laser must have a high peak power and be tightly focused into the wiggler with perfect overlap with the electron beam.

Ultimate X-Ray Source (ESRF study)

Energy [GeV]	7		
Current [mA]	500		
Emittances [nm]	0.2 / 0.008		
Perimeter [km]	2		
Number of Cell	50		
Lattice type	4 Bend Achromat		
ID length [m]	7		
ID Power [kW]	55		
Brilliance @ 0.1 nm	$1.5 - 4 \ 10^{22}$		

Brilliance of the Ultimate X-Ray Source

From A. Ropert et al., EPAC-2000

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 51/56

Heat Load issue in the Ultimate X-Ray Source

undulators on ESRF, SPRING8 and USRLS							
	ESRF	SPRING-8	USRLS	USRLS			
Energy [GeV]	6	8	7	7			
Current [A]	0.2	0.1	0.5	0.5			
Und. Period. [mm]	34	32	33	20			
Und. Length [m]	5	25	7	7			
Und. Gap [mm]	11	12	11	6			
Power [kW]	13	38	53	55			
P. Cone [kW]	0.4	1.5	0.65	1.1			
$4\sigma_x * 4\sigma_z [mm^2]$	2 x 0 .5	3.8 x 0.5	1 x 0.8	2 x 0.8			
Flux @ 1 Å	2.0 x	9.0 x	6.5 x	1.7 x			
[ph/s/.1%]	10 ¹⁵	10^{15}	10^{15}	10^{16}			
Brilliance @ 1 Å	2.9 x	6.7 x	1.5 x	3.7 x			
[ph/s/.1%/mm ² /mr ²]	1020	1020	1022	1022			

Table 1: Comparison of power and brilliance from undulators on ESRF, SPRING8 and USRLS

Power in Central Cone is still acceptable

From A. Ropert et al., EPAC-2000

APS Upgrade Studies

7 GeV, Same circumference as the present APS, Ncell=40 4 Bending magnet/achromat with constant field dipoles Horiz Emittance ~ 0.3 nm

From L. Emery, M. Borland, PAC03

Future Storage Rings Synchrotron Sources, SRI2003, Aug 25-29, P. Elleaume 53/56

eXtreme Photon Source (APS)

7 GeV, Same circumference as the present APS, Ncell=40
Triple Bend Achromat with High Gradient in Dipole
Combined Function Magnets (dipole+quad+sext) made of Permanent Magnet
Horiz Emittance ~ 0.075 nm
Dynamic aperture without errors ~ 0.8 mm !
=> Classical injection schemes do not work !

From L. Emery, M. Borland, PAC03

Conclusions

- The highly successful Third Generation Light Sources (3GLS) based on storage rings have generated a tremendous advance in many domains of Science
- The 3GLS technology is mature and one cannot expect many orders of magnitude in improvements over the coming years. However technological improvements will continue world wide.
- In relation to SASE and ERL type sources, it is generally believed that :
 - 3GLS will not be replaced (but rather complemented) by the new type of SASE or ERL type sources really optimised for ultra-short pulses
 - The extremely high average brilliance, stability (position and intensity), tunability and flexibility will remain a unique feature of 3GLS for a long time
- Many more 3GLS will be built in the near future !