IBIDS_Database

The microsomal ethanol oxidizing system mediates metabolic tolerance to ethanol in deermice lacking alcohol dehydrogenase.
      

Record Detail

Return to previous page
Save:
Title: The microsomal ethanol oxidizing system mediates metabolic tolerance to ethanol in deermice lacking alcohol dehydrogenase.
Author: Alderman, J : Kato, S : Lieber, C S
Citation: Arch-Biochem-Biophys. 1989 May 15; 271(1): 33-9
Abstract: Metabolic tolerance to ethanol has been attributed to enhanced mitochondrial reoxidation of reducing equivalents produced in the alcohol dehydrogenase (ADH) pathway or to non-ADH mechanisms. To resolve this issue, deermice lacking low Km hepatic ADH were fed for 2 weeks a liquid diet containing ethanol or isocaloric carbohydrate and hepatocytes were isolated. Ethanol (50 mM) oxidation increased (9.8 vs 4.5 nmol/min/10(6) cells in controls). To differentiate which of two non-ADH pathways (the microsomal ethanol oxidizing system (MEOS) or catalase) was responsible for the induction, four approaches were used. First, MEOS was assayed in hepatic microsomes and found to be increased (24.4 vs 6.8 nmol/min/mg protein in controls). Second, hepatocyte ethanol metabolism was measured after addition of the catalase inhibitor azide (0.1 mM) and found to be unchanged. By contrast, the competitive MEOS inhibitor, 1-butanol, depressed metabolism in a concentration-dependent manner. A third approach relied on measurement of isotope effects known to be different for MEOS and catalase. From the isotope effect values, MEOS was calculated to contribute 85% or more of total ethanol oxidation by cells from both ethanol-fed and control animals. A fourth approach involved in vivo pretreatment with pyrazole (300 mg/kg/day for 2 days), which reduced peroxidation by catalase to 13% of control values in liver homogenates while inducing MEOS activity to 152% of controls. Hepatocytes from pyrazole-treated deermice showed a 47% increase in ethanol metabolism, paralleling the MEOS induction and contrasting with the catalase suppression. These results indicate that since metabolic tolerance occurs in the absence of ADH, it is not necessarily ADH mediated, and further, that MEOS rather than catalase accounts for basal ethanol metabolism and its increase after chronic ethanol treatment.
Review References: None
Notes: None
Language: English
Publication Type: Journal-Article
Keywords: Alcohol Dehydrogenase deficiency : Ethanol metabolism : Microsomes, Liver enzymology
URL: http://www.apnet.com/www/journal/bb.htm