Current Status of EBC Exposures in ORNL's Keiser Rigs

K.L. More and P.F. Tortorelli

Oak Ridge National Laboratory

Environmental Barrier Coating Workshop 2005

November 15, 2005

Distributed Energy Program Office of Energy Efficiency and Renewable Energy

UT-BATTELLE

Oak Ridge National Laboratory U. S. Department of Energy

To Effectively Protect A Substrate At High Water-Vapór Pressures, An EBC Must:

- ✓ Be *thermally stable* at 1100°C
- ✓ Have no *interactions/reactions* with underlying substrate
- ✓ Provide a *permeation barrier* to oxidizing species
- ✓ Be *volatilization-resistant* in H₂O-containing, high-velocity gas turbine environment

To Assess These Attributes For A Candidate EBC Composition, We Have Used Two Evaluation Modes

We Ran Exposures In Both Modes In Past Year, Emphasis On Volatilization Resistance

Keiser Rigs Are Used For Both Types Of Experiments

Schematic of Keiser Rig

To Assess These Attributes For A Candidate EBC Composition, We Have Used Two Evaluation Modes

Poor Permeation Barrier

Oxidant Permeates Rapidly Through Coating And Substantial Substrate Oxidation Is Observed

Elemental Imaging Clearly Indicated The Difference In Amount Of Si Oxidation Under Different Coatings

"Dual layer": Mullite/BSAS

"Mixed layer": (Mullite+BSAS)/BSAS

1500 h, 1200°C, 1.5 atm H₂O

Silica Thickness Data (Below EBC) Following Exposure Provides An Excellent Measure Of An EBCs Permeation Resistance

Volatilization In Combustion Environments Can Be Severe

- High oxidizing potential (H₂O pressure)
- High temperature
- High gas velocities

BSAS on SiC/SiC CFCC Combustor Liner ~14,000 h, 1.5 atm H₂O, 35 m/s, 1000-1200°C

GT2004-53863: theoretical basis
 GT2005-69064: experimental results (proof of principle)

It Is Based On Compensating For Low Gas-Flow Velocities In Our Rigs By Increasing H₂O Pressure

Mass flux of volatile species, $A_yO_{x+z}H_{2x}$

Potential for providing simplified, but effective initial screening of volatilization susceptibilities of certain candidate EBCs in water vapor (in addition to permeability, and thermal, interfacial stability)

Substantial Volatile Fluxes Can Be Obtained In This Manner

Initial Experimental Approach

- Bulk specimens
 - $-SiO_2$ (baseline)
 - $-\mathrm{CVD}\ \mathrm{SiC}$
 - $-BaO-AI_2O_3-SiO_2$ (BAS)
 - $-SrO-Al_2O_3-SiO_2$ (SAS)
 - $-BaO-SrO-Al_2O_3-SiO_2$ (BSAS)
- 1250°C, 18 atm H_2O , 500-h intervals
- Post-exposure evaluation
 - Mass changes
 - Microstructural analysis

Our Initial Experimental Results Qualitatively Confirmed Prediction

Phase Rearrangement May Be Prerequisite For Onset Of Net Mass Loss

Microstructural Analysis Revealed Phase Separation Of SiO₂-Rich Constituent After 500 h

BAS, 1250°C, 500 h, 18 atm H₂O

Mass-Loss Stage Would Be Consistent With Volatilization Of SiO₂-Rich Phase

If Phase Separation Sluggish Relative To Volatility, Rate Of Mass Loss Should Decrease With Time

Stand-Alone EBC Compositions And EBCs On Si-Based Substrates Are Currently Being Exposed

- Numerous Proprietary Compositions
- •SAS, BSAS on CFCC substrates

Bulk Silicates Prepared At ORNL By Steve Nunn Showed Good Volatilization Resistance

New Bulk BSAS Fell Within This Narrow Range Of Mass Change

But Other Bulk BSAS Behaved Somewhat Differently

But Other Bulk BSAS Behaved Somewhat Differently

This Type Of Exposure Provides Intermediate Step; Prototypic Tests Needed For Most Promising Mat'ls.

Summary

- Recent results indicate that we can differentiate volatilization resistance among various candidate EBCs by conducting experiments at very high water vapor pressures (order of 20 atm)
- Microstructural characterization is needed to rigorously evaluate compositional/structural changes during hightemperature exposures at high water-vapor pressures
- Gravimetric results are useful in comparing rates relative to pure silica and in directly relating environmentally induced structural and chemical changes in the ceramic to effects on volatilization susceptibility

Isolated Through-Thickness Cracks Clearly Provide Paths For Oxidant Ingress

2000 h, 1200°C, 1.5 atm H₂O

Processing Defects Obviously Play A Critical Role In EBC's Protective Ability

- Inherent resistance to permeation can be seriously compromised by extended defects
- Cracks do not provide any resistance to oxidant transport

 in most cases, volume of silica at roots of cracks similar in extent to what's expected for uncoated Si-bearing materials in high-pressure water vapor

Utility Of Approach Dependent On Stoichiometry Of Volatile Species

$$A_y O_z(s) + x H_2 O(g) = A_y O_{x+z} H_{2x}(g)$$

Flux: $v^{0.5} \cdot exp(-\Delta G/RT) \cdot P_{H_2O}^{x}/\sqrt{P_{tot}}$

Volatilization rate scales with water-vapor pressure to the x power:

Implications Of Dependence Of Volatilization Rate On x

- Experimental approach of increasing water-vapor pressure is more effective for solids that require more moles of water to form a mole of volatile product - for example, silica forming Si(OH)₄
- This factor must be considered when comparing results among different types of compositions

Consistent With Delay In Mass Loss, No Apparent Depletion Of Silica Was Observed After First 500 h

As-processed microstructure

SAS surface after 500 h

Consistent With Delay In Mass Loss, No Apparent Depletion Of Silica Was Observed After First 500 h

As-processed microstructure

BSAS surface after 500 h