

Integration of the Advanced Dish Development System

Rich Diver Chuck Andraka Sandia National Laboratories

Solar Energy Technologies System Symposium Albuquerque, NM October 16, 2003

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dish/Stirling is the Original Solar Power Technology

- Dish-engine systems use heat engines to produce useful work
- Dish-engine systems were developed in the 1800s
- Dish/Stirling is inherently more efficient and lower cost than PV
- Dish/Stirling is inherently more complex than PV

Pasadena Ostrich Farm Circa. 1903

Dish/Stirling Characteristics

- Stirling engines use reciprocating pistons and heat exchangers to alternately compress, heat, expand, and cool a gaseous working fluid
 - Similar to automotive engines in manufacture and complexity
- Thermodynamic cycle similar to Carnot cycle
 - Engine brake efficiencies >40%
 - System net efficiency near 30%
- High pressure hydrogen or helium typically used in modern high-performance Stirling engines
 - High heat transfer rates tolerant to non-uniform flux distributions
 - High-pressure (20 MPa) hydrogen systems have many components in common with future solar hydrogen generation plants

CONCENTRATING SOLAR POWER Sun Laboratories, Albuquerque, NM National Renewable Energy Laboratory, Golden CO

Advanced Dish Development System Background

• The U.S. Department of Energy has supported the development of dish/engine technology for decades

- Advanco, SAIC, Cummins, Allied Signal, Boeing, SES

- Sandia and NREL have performed component R&D and provided technical support for contractor development activities
- Sandia's core competencies include concentrating solar power (CSP) and systems integration but Sandia had never integrated a CSP system
- The ADDS is the first CSP system ever integrated by Sandia

Advanced Dish Development System Background (cont.)

- D.O.E. interest in helping Native American tribes in 1998 provided an opportunity
- Sandia proposed developing small dish/Stirling systems to address Native American remote power applications
 - Did not compete with commercial development focused on utility applications
 - Provided a systems level test bed for advanced components and remote power technology
- 9-kWe system proposed based on WGAssociates and Solo technology
 - WGA inherited outstanding Cummins controls and had developed innovative concentrator structure design
 - Sandia/Paneltec mirrors looked promising and ideal for WGA structure
 - Excellent experience with SOLO 161 Stirling engine at Ft. Huachuca

Sun+Lab

Advanced Dish Development System Philosophy

- Work with American Indian tribes
 - Survey applications and visit sites
 - Water pumping identified as universal need
 - Better understand requirements by conducting training on our first prototype (Mod 1) grid-connected system
- Instill a "product" development mentality
 - Avoid expensive/complex solutions
 - Address all requirements in order of priority

Advanced Dish Development System Philosophy (cont.)

- Utilize proven components
 - WGA concentrator and controls had benefit of decades of development
 - SOLO 161 well developed and previously integrated with WGA controls at Ft. Huachuca
 - Excellent cooperation with WGA and Solo
- Start with established grid-connected power management for Mod 1 to get into reliability improvement as soon as possible
- Initiate unattended operation as soon as possible
 - Cost of failure less than attended operation
 - Find problems sooner

Advanced Dish Development System Requirements and Approaches

System Requirement	Approaches
Reliability and durability	Initiate design and operation of grid-connected system. Initiate automatic operation and internet access as soon as possible. Establish reliability tracking and improvement processes. Reduce stress on SOLO 161 PCU by switching to hydrogen working fluid.
	Reduce stress on SOLO 161 PCU by reducing concentrator area. Relentlessly pursue solutions to identified root causes.
Unattended automatic operation	Implementation of remote communications. Development of robust closed-loop tracking sensors and algorithms Development of low-cost sun sensor.
Stand-alone water-pump capability	Explore and rate power management options. Test selected power management approach using gas-fired generator set. Install and program engine crossover valve to facilitate PCU start up.

Advanced Dish Development System Requirements and Approaches (cont.)

System Requirement	Approaches
Safe and easy to use and maintain	Engineering staff required to participate in all aspects of O&M.
	Slew rate increased to 38 degrees per minute to reduce wait time.
	Dish kneels down for near ground level PCU access.
	Push button operation and automated safe slewing implemented.
	Mirror cleaning techniques for the field developed.
	Development of field maintenance repair tools and
	techniques.
	O&M Documentation.
Capable of being	Design universal foundations suitable for remote
installed in remote	locations.
locations	Develop self-erection hardware and approaches.
	Factory pre-assembly and pre-wiring where possible.
	Mirror alignment procedures developed for night and day alignment.
Low cost	Utilize most developed components available.
	Simplify component designs when possible.
	Increase system performance by switching to hydrogen working fluid.

CONCENTRATING SOLAR POWER

Advanced Dish Development System Remotification

- Water pumping selected for remote application
 - Universally of interest by Native American tribes
 - Large potential market
 - Avoids complex energy storage and power management issues (store water)
- Use of synchronous generator driving standard 10 hp threephase 480-volt submersible water pump motors at variable speeds was selected for power management
 - Automotive starter used for starting engine
 - Simple, low cost, and no inverters needed
- Second-generation (Mod 2), off-grid, stand-alone waterpumping system developed and testing initiated July 5, 2001

Advanced Dish Development System Mod 1 Net Daily Output Aug 1, 2001 – Mar 9, 2003

Net output includes all parasitics midnight to midnight.

Mod 1 operated 2628.9 hours and net system output was 17,133 kWh for 2002

Advanced Dish Development System

Mod 1 Net Daily Efficiency Aug 1, 2001 – Mar 9, 2003

Mod 1 Daily and Cumulative Availability Aug 1, 2001 – Mar 9, 2003

Availability = (net positive hours)/(hours weather conditions in specification) During 2002 Mod 1 availability was 91.4%

CONCENTRATING SOLAR POWER

Mod 1 Daily Net Output vs. Available Solar Aug 1, 2001 - Mar 9, 2003

Reliability Improvement on a Developmental System

- Reliability improvement is a continuous process
 - System design, fabrication, and installation represents about 10% of the development process
 - Different types of failures occur during the different stages of component and system life
 - Requires reacting to issues as they occur
- Reliability and other requirements are interrelated
 - Improving maintainability improves availability
 - Switching to hydrogen improved performance/cost and improved reliability

Advanced Dish Development System Our Approach to Reliability Improvement

- Accrue operational hours
 - Unattended operation yields more hours
 - More hours means more failures
 - Failures are our friend
- Document everything
 - Data acquisition system features automated documentation
 - Web based experimenters log book
 - SunLab Reliability Data Base
- Incidents are addressed
 - Establishing "root cause" is a top priority
 - Engineer participation in repairs to make sure evidence is not lost
 - Cost effective solutions sought

Reliability Improvement

- All incidents recorded in the SunLab Reliability Data Base
 - Mod 1 since Jan 6, 2000
 - Mod 2 since Feb 7, 2002
 - Mod 2-2 since Apr 22, 2003
- Incidents assigned a severity level
 - Level 1 can be responded to remotely
 - Level 2 through 4 require a site visit and are scored according to severity and cost of repair
- Early issues tended to be controls related

Advanced Dish Development System Reliability Improvement

- Initial reliability goals at beginning of project
 - 80% availability
 - 600 hour MTBF
- Reliability achieved
 - 91.4% avail. for Mod 1
 - 89.9% avail. for Mod 2
 - MTBF ~ 150 for level 1 and above
 - MTBF > 400 hours level 2 and above
- Reliability has stagnated recently with minimal funding

Reliability Improvement

- SunLab Reliability Tracking Data Base has limitations
 - Cumbersome to input data
 - Does not allow for tracking root causes
 - Designed for tracking reliability growth
- Systematic failure reporting and corrective action system (FRACAS) process needed
 - Track and prioritize issues and corrective actions
 - Need disciplined process
- Root cause analysis and correction is key
 - Need to understand underlying mechanisms
 - Utilize "Scientific Method" of developing and testing hypothesis
 - Practical solutions required

Sandia National Laboratories, Albuquerque, NM

National Renewable Energy Laboratory, Golden CO

Advanced Dish Development System Maintainability

- Maintainability and ease of use were issues highlighted by Ft. Huachuca and work with Native American Application Partners
 - Automotive-like Stirling engine and dish
- Concentrator design influenced by maintainability
 - 38 degree/min slew rate
 - Dish knells down below the horizon for PCU access
 - Safe slewing and enhanced user interfaces implemented
- Maintainability is critical for high availability

Concentrating solar power

Advanced Dish Development System Summary

- Integration of the ADDS has been a valuable experience
 - First opportunity for SNL to integrate a CSP system
 - Excellent way to identify key technology development needs
 - Working with Native American APs useful
 - Many insights and lessons learned
- ADDS potential is promising
 - Technology bought by Stirling Energy Systems
 - Sandia is supporting the development of the SES 25 kWe system
 - Ready for concerted cost reduction work
- Reliability improvement requires a long-term concerted effort

CONCENTRATING SOLAR POWER Sun + Lab Sandia National Laboratories, Albuquerque, NM National Renewable Energy Laboratory, Golden CO

Advanced Dish Development System

CONCENTRATING SOLAR POWER Sun Lab Sandia National Laboratories, Albuquerque, NM

National Renewable Energy Laboratory, Golden CO