PITT-PM

Design and Feasibility Assessment for a Retrospective Epidemiological Study of Coal-Fired Power Plant Emissions in the Pittsburgh, Pennsylvania Region (DE-FC26-05NT42302)

Rick Bilonick Assistant Professor of Epidemiology University of Pittsburgh, GSPH

PITT-PM Research Team

- Rick Bilonick Epidemiology
- Dan Connell CONSOL Energy
- Kevin Crist Ohio University
- Larry Keller EOH
- Chris Myers EOH
- Juley Rycheck Epidemiology
- Sam Schlosberg ACHD
- Nancy Sussman EOH
- Evelyn Talbott Epidemiology
- Steve Winter CONSOL Energy
- Jeanne Zborowski Epidemiology

Study Objectives

- Time period: ~1999 to 2004
- Make an inventory of health outcome databases
- Make an inventory of air monitoring databases
- Source apportionment
- Exposure with identification of $PM_{2.5}$ composition (e.g. speciation)
- Effects modeling
- Evaluate time-series methods for modeling effects
- Feasibility assessment of design

Pittsburgh Metropolitan Region

Particulate pollution has been studied in Pittsburgh since the 1970's.

The following is a brief description of some of these studies.

Mazumdar S. and Sussman N. **Relationships of air pollution to health: results from the Pittsburgh study.** (Archives of Environmental Health. 38(1):17-24, 1983 Jan-Feb.)

Methods: Time series models of health effects were determined using the air quality data for sulfur dioxide (SO_2) and particulates (TSP) as measured by the COH from three monitoring stations located within Allegheny County. The analysis was limited to the investigation of same day effects.

Time and location: 1970s, Pittsburgh

Conclusion: Indicated a possible association between heart disease mortality/morbidity and same day particulate levels.

Schwartz J. **The distributed lag between air pollution and daily deaths.** (Epidemiology. 11(3):320-6, 2000 May.)

Methods: Applied distributed lag models for daily deaths for each of ten cities as a function of PM_{10} while controlling for temperature, humidity, barometric pressure, day of the week, and seasonal patterns.

Time and location: New Haven, Birmingham, Pittsburgh, Canton, Detroit, Chicago, Minneapolis, Colorado Springs, Spokane, and Seattle

Conclusion: Health effects of PM_{10} were spread over five days.

Chock D. P., Winkler S. L., Chen C.

A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania.

(J. of the Air & Waste Man. Association. 50(8):1481-500, 2000 Aug.)

Methods: Looked at the problem of multi-collinearity among pollutants (PM10, CO, O_3 , SO₂, NO₂, PM_{2.5}, coarse PM) and weather using seasonal and nonseasonal time series models of daily mortality for two age groups.

Time and location: 1989-1991, Pittsburgh

Conclusions: "The concern for the instability of the pollutant coefficients due to a small signal-to-noise ratio makes it impossible to ascertain credibly the relative associations of the fine- and coarse-particle modes with daily mortality."

Braga A. L., Zanobetti A., Schwartz J.Do respiratory epidemics confound the association between air pollution and daily deaths? (European Respiratory Journal. 16(4):723-8, 2000 Oct.)

Methods: Looked at potential for confounding of health effects of PM10 due to pneumonia epidemics.

Time and location: Chicago, Detroit, Minneapolis, Pittsburgh, Seattle

Conclusions: Effects due to pneumonia epidemics only account for a small downward change in the estimated effect of PM_{10} .

Maisonet M., Bush T. J., Correa A., Jaakkola J. J.
Relation between ambient air pollution and low birth weight in the Northeastern United States. (Environmental Health Perspectives. 109 Suppl 3:351-6, 2001 Jun.)

Methods: Looked at term low birth weight (LBW) and its relation to CO, PM_{10} , and SO₂. Average trimester exposure to ambient levels was estimated.

Time and locations: 1994-1996, Boston, Hartford, Philadelphia, Pittsburgh, Springfield, MA, Washington, DC.

Conclusions: Exposure to CO and SO_2 were associated with increased risk of term LBW. No indication of a positive association with PM_{10} .

Zanobetti A., Schwartz J.

Cardiovascular damage by airborne particles: are diabetics more susceptible? (Epidemiology. 13(5):588-92, 2002 Sep.)

Methods: Hierarchical model with Poisson regressions in each of four cities.

Time period and location: 1988-1994, Chicago, Detroit, Pittsburgh, Seattle

Conclusions: Diabetics have twice the risk of a PM_{10} -associated cardiovascular admission compared to non-diabetics. Persons 75 years of age and older had higher risk.

Dominici F., McDermott A., Zeger S. L., Samet J. M.Airborne particulate matter and mortality: timescale effects in fourUS cities. (American Journal of Epidemiology. 157(12):1055-65, 2003 Jun.)

Methods: Time series Poisson regression of daily mortality on Fourier decomposition of particulate air pollution time series to study time scale of effects.

Time period and location: 1987-1994, Pittsburgh, Minneapolis, Seattle, and Chicago

Conclusion: Larger relative rates of mortality for two-week to two-month time scale compared to 1-4 days. Particulate effect is more than just advancing death by a few days for frail individuals.

Schwerha J. J., Talbott E. O., Zborowski J. V., Mazumdar S., Arena V. C., He S., Keller L., et al. Allegheny County Air Pollution Study (ACAPS), Final Report (2003)

Methods: GAM (stringent convergent criteria) with LOESS and distributed lag hospital admissions time series models as a function of PM_{10} and SO_2 adjusting for weather and day-of week.

Time and location: 1995-2000, Allegheny County

Conclusion: 20 μ g/m3 (one IQR) increase in PM₁₀ was associated with a an elevated but n.s.s. change in hospital admissions while a 0.0068 ppm (one IQR) increase in SO₂ was associated with a s.s. increase.

Some Observations

- In observational studies, association does not necessarily imply causation.
- To the extent causation can be inferred, it can be attached either to types of particles or sources of particles.
- Monitoring site data by itself isn't enough for source determination so that either more information is needed and/or strong assumptions/modelling are needed.
- In addition to weather effects, there are many potential confounding factors.

More Observations

- Complex statistical modelling can sometimes be effectively used to adjust for some confounding factors.
- Exposure metrics are based on a variety of sources: single monitors, multiple monitors, personal monitors, etc.
- No extensive study of PM2.5 with or without speciation in the Pittsburgh area.

Designing the Retrospective Study

Connecting Inputs to Outputs

Connecting Inputs to Outputs

Connecting Inputs to Outputs

Other Complications

Trends over time exhibit autocorrelation between adjacent observations.

Strong seasonal trends have the same effect.

Even after trends are accounted for, autocorrelation usually remains.

To keep this from being too easy, we don't know which particles are from coal-fired plants!

Important Questions

Does enough speciated exposure data exist spatially? Temporally?

What are the sources of the responsible constituents?

Are there enough health outcomes to construct a study

capable of detecting

important health effects?

Important Questions

Are health effects due primarily to:

• mass of particles?

• particular subspecies?

• other co-pollutants?

Key Issue

Within the available data bases, is there sufficient

overlap between health effect data and

and exposure data for a retrospective analysis?

Assessment of Existing Morbidity and Mortality Databases

- Create inventory and assess quality and quantity of information
- Mortality, hospital admissions, emergency room visits, etc.
- Evaluate data for completeness and quality
- Develop a plan to construct appropriate databases

Health Outcomes and Fine Particulates

- Given the trends in improved treatments for disease, mortality alone is not a sensitive enough indicator to capture all potential effects of changes in air quality on health.
- Ideally, daily or even hourly medical information would be available to capture all health-related outcomes in the population potentially related to variations in $PM_{2.5}$ concentrations and/or its components.
- Information would include but not be limited to deaths, hospital admissions, emergency room visits, physicians' office visits, prescriptions, and medication use, all preferably in electronic format.

Mortality and Morbidity Databases

Mortality

Allegheny County Health Department (ACHD)

Pennsylvania Department of Health Statistics

Ohio Department of Health

West Virginia Department of Health

Mortality and Morbidity Databases

Morbidity

Daily Hospital Admissions

Pennsylvania Health Care Cost Containment Council Ohio Hospital Association

West Virginia Hospital Association

Emergency room visits

Medical Archival System (MARS) (UPMC)

Real-time Outbreak Disease Surveillance (RODS) Lab.

Individual Local and Regional Hospital Databases

Medicare billing information, the Scott-Levin pharmaceutical use database, UPMC Health Plan Pharmaceutical Database, and others

Exposure Data

- \bullet Create an inventory of speciated $\rm PM_{2.5}$ data, gaseous co-pollutants, and meteorological data available in the Pittsburgh region
- Create an inventory of archived filters for potential speciation
- Determine availability of data related to population density, traffic density, proximity to roadways, mileage of paved roads, etc. (GIS)
- Assess the quality and comparability
- Develop a plan for construction of an exposure database

Allegheny County Air Monitoring Sites

PM 2.5 Sites

	SO2	CO	NOx	03	H2S	Bnz	PM10	PM2.5	TSP	Pb	Dst	SO4	B(a)P	
PITTSBURGH	and	a ere				11.0	NAR N		1 DAY			-		Total
DOWNTOWN	1.1.1.1	С	122	and the second		1.000	12 2 0 2 C							1
FLAG PLAZA		С					C				1			2
HAZELWOOD	С						C							3
MANCHESTER			in the second	-		12	- entres		1. 10				Lanna	1
LAWRENCEVILLE			C	С				1						3
OTHER SITES											2			
NORTH PARK	Value	gen in	100	1.30	13.70	10 2	D'EISC	0100	12.10	DITE	UTQ.	1. 200	44.00	1
STOWE	С	0.00	1111	120	1 ST	600	C	1 Inc.	di at	a la l		010		3
NEVILLE		al al	ecertif	Na. Tra	in the	alv:	2 mail	mail	ing	312.44		0.00	0000	1
NEVILLE 2				-					-		1			1
AVALON*	С	1.5		12.50	C		CI	an Sheat	1	1			1	8
NATRONA 8					1		- service	Sector -		CI MINES				1
NATRONA 9	101	100		2) (MAG	010	20015	NO1	1-90	KOM	1		1997	1
SPRINGDALE	CHIC.	-uns	STAR.	1000		1.0		A tot	burne -	01/			da l	1
HARRISON			C	C			in and	201010			TP S			2
HARRISON 2		1												1
NORTH BRADDOCK			- resolution	000	10110	111.0	1	1	1.10				0,12	2
NORTH BRADDOCK 7											1			1
BRADDOCK	l bal	100	133 V.	1. Selle	0.31	15.00	CI	l a	1				1	7
FORWARD	-		1	-11 P	nell	Sinno.	1	1	ahud).	ia ni	11		Sec. 1	3
LIBERTY*	С				C	C	CI							7
GLASSPORT	С									1				1
GLASSPORT 4	100	1.01.1	1	1000	100000	108.00	C	Please Plan	n seine			1923		1
LINCOLN	1.4.9	10.01	ALL ALL				C	0.8080		0.001	-3.1	1000		1
CLAIRTON 4		1 6.5	121BI	1. 271	111 8	DIGIT	1		C TH			In an U	191	2
SOUTH FAYETTE*	C		aller	C	-		1		1 marsh					5
COLLIER					(and a		1		-					1
MOON		1962832	111-1-111	S COLO N	100.00	231-65			Contra la		1.1.1.1.1.1	1.000	1.11.11	2
Total:	6	2	2	3	2	1	17	12	2	2	8	2	4	

Grand Total = 63

[I]ntermittent monitors

SO2 = sulfur dioxide NOx = nitrogen oxides H2S = hydrogen sulfide

[C]ontinuous monitors

e CO = carbon monoxide des O3 = ozone Ilfide Bnz = benzene

PM10 =inhalable particulates(10u) PM2.5 = inhalable particulates(2.5u) TSP = total suspended particulates Pb = lead SO4 = sulfates Dst = dustfall B(a)P=benzo(a)pyrene Allegheny County Health Department Air Quality Monitoring Sites

ACHD Speciation

ACHD Speciation

Statistical Analysis and Effects Modeling

- Evaluate methods for exploratory data analysis and GIS modeling (roadway sources)
- Evaluate individual site information versus spatial/temporal averaging of emissions and explanatory variables
- Evaluate methods for apportioning emissions to sources
- Develop and evaluate statistical methods for modeling health effects as a function of source emissions while controlling for potential confounding explanatory factors

Identifying Sources

- Speciation
- Source profiles
- Chemical mass balance

Possible Methods

- Exploratory factor analysis
- Confirmatory factor analysis
- Bayesian factor analysis
- Regression and measurement error models
- Nested block bootstrapping

Connecting Health Outcomes to Changes in PM_{2.5}

• GAM

- GLM
- Time series methods (ARIMA, GARIMA, GLARMA)
- Explore, compare, and contrast these methods using simulation and available data for potential application to Pittsburgh data

Power Issues

We will investigate how the probability of detecting health effects can be enhanced by:

- using a large enough region size
- using a sufficiently long time period