
Research Description 
We use theoretical and computational techniques to help solve biological and medical 
problems. The current research topics can be grouped into the following five categories: 
 
Protein structure and modeling We have a long-standing interest in the surface areas, 
volumes, cavities, stability and folding of protein structures. We served as one of three 
judges in the community-wide protein structure prediction experiment, CASP6, in 2004. 
Currently, we are exploring ways to utilize such structural information towards function 
determination. One way to gain functional information is to find a homologous protein 
for which such information is known.  To this end, we have shown that the sensitivity of 
homology detection can be improved significantly by using minimal (residue burial) 
structural information.[REFERENCE LINK TO NALIN’S PAPER IN PRESS] In order 
to use structural information to improve homology detection in this manner, one needs a 
large number of accurate structure-based sequence alignments. We found that the 
accuracy of the structure-based sequence alignments produced by many structure 
comparison programs were disappointingly poor.[REFERENCE LINK TO 
CHANGHOON’S PAPER IN PRESS]  We are currently working on ways to improve the 
accuracy of the structure-based sequence alignments. Since structurally similar proteins 
are likely to have a similar function, we are also studying the issues involved in the 
objective definition and automatic classification of protein structural 
domains.[REFERENCE LINKS TO TWO PAPERS WITH FRENCH 
COLLABORATION] We also work on obtaining structural models for a few specific 
protein molecules. 
 
Immunotoxin Immunotoxins are man-made molecules constructed by joining an 
anticancer antibody and a suitable toxin, in our case, the pseudomonas exotoxin A. In all 
molecules under current active consideration, the antibody part is truncated to only the 
antigen-binding Fv portion of the molecule and the toxin part is modified to delete its 
own receptor-binding domain. Ideally, these molecules will bind only to the target cancer 
cells and kill them. Dr. Pastan’s group in the Molecular Biology Section of our 
Laboratory has made many such molecules, each of which has a specific antibody for a 
particular cancer. Some of these have been tested in phase I clinical trials. In 
collaboration with this experimental group, we study the structural models of these 
molecules and attempt to find ways to improve their properties as an effective 
drug.[REFERENCE LINKS TO REITER ET AL. PROTEIN ENG. 1995; ONDA ET AL.  
J. IMMUNOL. 2006] We also construct mathematical models of immunotoxin delivery 
process in order to find ways to improve the efficacy of these agents. 
 
Gene discovery We analyze the genome and expressed sequence (mRNA and EST) 
databases to discover genes that are specifically expressed in a particular organ or tumor. 
The products of such genes can potentially be used as targets for delivery of antitumor 
agents, for anticancer vaccine development, and for tumor imaging. In collaboration with 
Pastan’s molecular biology group, we have found a number of such genes over the years, 
including PAGE4, XAGE, PATE, MRP8, TARP, PRAC2, POTE, CAPC, and NGEP. We 
also used these databases to discover novel fusion genes resulting from chromosomal 



rearrangements, which are frequently involved in carcinogenesis.[REFERENCE LINK 
TO HAHN ET AL. PNAS 2004] 
 
Comparative analysis of genes and genomes Comparison of human genes with their 
evolutionarily related homologs provides invaluable clues for the biological function of 
the proteins they encode. We collect, and attempt to construct the evolutionary history of, 
the homologs of the human genes identified by our Gene Discovery program. We found 
ANKRD26 during this process, which is an ancestral gene of the POTE family of 
genes.[REFERENCE LINK TO HAHN ET AL. GENE, 2006] ANKRD26 is in mouse, in 
contrast to the POTE genes which are primate-specific and absent in rodents. Pastan’s 
group found that homozygous mice that carry an altered form of this gene become 
grossly obese. We also performed systematic searches for human-specific mutations that 
occurred after the Homo-Pan divergence by comparison of the human, chimpanzee and a 
third, outgroup, genome sequences.[REFERENCE LINKS TO HAHN’S 3 PAPERS: 
BIOINFORMATICS, 2005; HUM. GENET. 2006; MOL. BIOL. EVOL. 2007] The 
human-specific genetic alterations should be responsible for the generation of human-
specific traits. 
 
Hydrophobicity We study the phenomenon of hydrophobicity by means of statistical 
thermodynamics.[REFERENCE LINKS TO MY PAPERS, PNAS 1991; 
BIOPOLYMERS, 1991; PROT. SCI. 1993; MADAN & LEE, BIOPHYS. CHEM. 1994; 
LEE & GRAZIANO, JACS 1996; GRAZIANO & LEE, JPCB 2005] The hydrophobic 
effect is believed to be one of the main forces that determine the structure, stability, and 
interaction of protein and other biologically important molecules. This research is done in 
collaboration with Prof. Giuseppe Graziano at Università del Sannio, Benevento, Italy. 
 
SUMMARY OF RESEARCH ACTIVITIES 
Following are more specific descriptions of the research activity in the past four years. 
 
PROJECT 1: PROTEIN STRUCTURE AND STRUCTURE MODELING 
 
We have been studying the three-dimensional structure of protein molecules since the 
first few crystal structures were determined. We were the first to quantitatively define the 
solvent accessible surface of a protein molecule and to find cavities inside a protein 
molecule (1). We continue to study protein structures and to explore the space of protein 
folds. We devise and improve the methods for comparing and classifying them and for 
relating structures to their amino acid sequences. We also attempt to obtain structural 
models for a few specific proteins of interest. 
 
Considering the sequence-structure relation first, finding the structure given a sequence is 
the protein structure prediction problem. Structure prediction presents a unique challenge 
to a computational physical chemist. In the past, our interest had been in ab initio 
prediction, in which one investigates how proteins fold on the basis of the first principles 
of physics and physical chemistry. However, it is the collective experience of the whole 
protein structure prediction community that ab initio techniques have yielded little 



success so far whereas the ‘knowledge-based’ techniques, which rely on finding similar 
structures in the structural database, have been quite successful. We evaluated different 
structure prediction methods by participating in the CASP (Critical Assessment of 
Structure Prediction,) experiment in 2004. CASP is a well-known, public series of 
biennial experiments designed to objectively evaluate the state of the art of the structure 
prediction science (http://predictioncenter.gc.ucdavis.edu/). In these experiments, 
predictors worldwide submit models of proteins before the structures are known, which 
are evaluated by independent assessors after their experimental structures become 
available. We participated in the 2004 CASP6 experiment as one of the three assessors. 
This work confirmed that the methods that worked best were knowledge-based and that 
the first principle prediction of protein structure is as yet an unsolved problem. In 
addition, we could identify the methods that performed best and which could profitably 
be used for the structure prediction/modeling of specific proteins of our interest. 
 
Another way to relate structure and sequence is to find sequences that will fit a structure. 
This is the reverse protein folding problem, but can be considered more generally as 
finding remotely homologous sequences using the structural knowledge of one member 
of the homologous family. Finding homologues is becoming increasingly more important 
because the most effective procedure for predicting the function of the product of a newly 
discovered gene is to find a homologous protein for which some functional information is 
available. Homology searches are also an essential step in establishing phylogenetic 
relations among different genes. Homology searches usually require using a tool such as 
BLAST (2) to identify sequence alignments with sufficiently high score. Obviously, the 
sensitivity and specificity of the search depends critically on the score matrix used. The 
score matrices commonly used today (3, 4) are based on amino acid substitution 
frequencies derived from sequence alignments alone; the structural information is not 
used even when such information is available for some of the homologous proteins. 
However, it is well known that amino acid substitution patterns depend heavily on the 
structural context. For example, an amino acid is most likely to be substituted by a non-
polar residue if it is buried in the protein structure, but by a polar residue if exposed to the 
solvent. When many homologous sequences can be found using a conventional score 
matrix, then a position-specific score matrix (PSSM or profile) can be set up, which 
implicitly includes structural information. The PSI-BLAST program (5), which builds 
and uses PSSM in iterative fashion, greatly extends the power of BLAST to find more 
homologous sequences. However, when many homologous sequences cannot be found by 
using the conventional score matrix, or when all sequences found are highly sequence-
similar, an effective profile cannot be constructed and PSI-BLAST loses its power. One 
may expect that sensitivity and specificity of the search would increase in such cases if 
the structural context effect were included directly in the amino acid substitution score 
matrix. We proved that such is indeed the case by developing the Context-Specific Score 
Matrices (CSSM) and demonstrating their power in finding more homologous sequences 
once the structure of one protein is known.  
 
In order to obtain an overview of all protein structures that exist, the structures must be 
compared to each other and classified. Many, including us, have recognized the 
importance of objective structure comparison/alignment and written computer programs 



for it. These programs are essential for detecting commonalities and differences among 
protein structures and for protein structure classification. They also produce structure-
based sequence alignments, which are used as the gold standard of sequence alignments. 
Unfortunately, there are many such programs and they do not produce identical results. 
We have investigated the accuracy of the structure-based sequence alignments that some 
of these programs produce against an expert-curated alignment database. We have also 
used some of these programs to investigate the nature of the space of protein folds and 
the effect of structure clustering algorithms on protein structure classification. 
 
We attempt to obtain structural models of the product of the genes that we newly 
discover and of other proteins of interest to other members of the laboratory. Structural 
models often provide information on possible function of the protein. Modeling exercises 
are useful to us also because they provide an opportunity to evaluate in real life situations 
the tools that we and others develop, e.g., tools for structure prediction, homology search, 
sequence alignment, and structure comparison, among others. 
 
Specific Research Aims 
 
Sub-project 1. To enhance the sensitivity and specificity of homology searches through 
the protein sequence database by using structural information. 
Sub-project 2. To evaluate structure and domain prediction methods by assessing their 
performance in the CASP6 experiment. 
Sub-project 3. To evaluate the accuracy of structure-based sequence alignments that 
different structure alignment programs produce and to design new algorithms that will 
improve the performance of the structure comparison programs. 
Sub-project 4. To explore the properties of the protein fold space by comparing 
automatically generated set of protein similarity/dissimilarity measures to expert-curated 
protein classification database. 
Sub-project 5. To obtain three-dimensional structural models of specific proteins. 
 
Accomplishments 
 
Sub-project 1. In order to obtain amino acid substitution matrices that use structural 
context, we first set up a structure-based sequence alignment database, called SHoPP, by 
running our own structure alignment program SHEBA (6) on all pairs of domains in the 
ASTRAL SCOP v1.59 (40% ID) protein domain database (7) and selecting pairs that 
were structurally aligned. Then we built the CSSM matrices from the amino acid 
substitution frequencies that are observed in the SHoPP database, one matrix for each of 
the 4 degrees of burial of the residue substituted. A sample of some of the matrix 
elements is shown in Figures 1A and 1B. It can be seen that these matrices are strikingly 
different from the commonly used BLOSUM62 matrix (3, 4). These matrices were 
implemented in BLAST and PSI-BLAST programs so that they can be used for routine 
homology searches and for building the PSSM (5), when the degree of burial information 
is available for the sequence of interest. The ROC curves of true versus false positive hits 
(Figure 1C) show that the BLAST and PSI-BLAST that use the CSSM clearly 
outperform those that use the traditional BLOSUM62 matrix. Dr. Nalin Goonesekere, 



who worked on this project while at NIH, is now at the University of Northern Iowa, 
where he calculated the PSSM profiles for all the chains in the protein structure database 
(PDB) (8) using the CSSM-PSI-BLAST. His preliminary studies indicate that one can 
associate many sequences (those in nearly 300 Pfam (9) DUF (Domain of Unknown 
Functions) families) to a PDB structure for the first time by using RPS-BLAST to search 
through this profile database. We are in the process of setting up a web server to let 
others have free access to this operation. A manuscript describing this work has been 
accepted for publication in the Proteins and is attached to this report. 
 
Figure 1. 

     
 (A) (B) 
(A) Leucine to other amino acid substitution scores in CSSM1 (black), CSSM4 (green), 
STRUCT (grey), and BLOSUM62 (orange) score matrices. CSSM1 and CSSM4 matrices 
are for substitution of residues in the buried (< 25% solvent accessible) and exposed (> 
75% solvent accessible) positions, respectively. STRUCT is the substitution score matrix 
built as the CSSM matrices from the same SHoPP database, but using pooled frequencies 
ignoring the solvent exposure. BLOSUM62 is a popular score matrix built from multiple 
sequence alignment data (3, 4). The substituting amino acids are sorted in ascending 
order of the CSSM1 score. It can be seen (a) that the values for the CSSM1 and CSSM4 
matrix elements often have opposite signs for substitution by the same amino acid types, 
(b) that the values for the STRUCT and BLOSUM62 tend to be in between the CSSM1 
and CSSM4 values, and (c) that STRUCT and BLOSUM62 values are similar, indicating 
that the difference we see between CSSM and BLOSUM62 is not primarily due to the 
database difference. (B) Similar to (A), but for the substitution of the arginine residue. 
Notice that the score pattern is similar between panels (A) and (B) for the CSSM 
matrices, but quite different for the STRUCT and BLOSUM62. 



(C) ROC50 curves computed from 
pooled results for a set of 92 
query sequences with ASTRAL-
SCOP v1.65 (50% seq. ID) as 
target database, using CSSM-
BLAST (solid circles), regular 
BLAST with BLOSUM62 (open 
circles), CSSM-PSI-BLAST 
(solid triangles) and a default 
version of PSI-BLAST using 
BLOSUM62 (open triangles). 
Hits to the same SCOP 
superfamily were considered true 
positives. Hits to different SCOP 
folds were considered false positives. (C) 
 
An effective homology search by sequence alignment also requires a good gap penalty 
function. We investigated the effect of structure in the frequency of the gaps that occur in 
the SHoPP database and found (a) that the frequency depended strongly on the secondary 
structural type of the residues flanking the gap, which was not surprising, and (b) that, 
when the frequencies were examined separately for each secondary structural type, the 
logarithm of the frequencies varied linearly with the gap length, but with a pronounced 
break in the slope at gap length of 3, which was unexpected (Figures 2A and 2B). We 
proposed a new gap penalty function on the basis of these observations. Use of such 
context-dependent gap penalties should produce a better alignment. This work has been 
published (10). 
 
Figure 2. 

 
 (A) (B) 
Probability distribution of gaps, by length, for data from the SHoPP Database. Gaps have 
been categorized by the secondary structure of the residues flanking the gap. 
(A) CC - Gaps within a coil; SC - Gaps at the edge of a strand; SS - Gaps within a strand. 
(B) HH - Gaps within a helix; HC - Gaps at the edge of a helix.  
 
Sub-project 2. In the 2004 CASP6 experiment, there were 63 target proteins of unknown 
structure. The three teams of assessors (B. Lee at NIH, R. Dunbrack at Fox Chase Cancer 



Center, Philadelphia, PA and A. Valencia at Centro Nacionale de Biotecnologia, 
Cantoblanco, Spain) visually examined each of these targets, after their structures became 
known, and parsed them into 90 domains. The domains were then classified (11) into 
New Fold (NF) targets, for which no similar structure existed in PDB, Fold Recognition 
(FR) targets, for which similar structures existed in PDB but they had either no detectable 
(FR/A) or barely detectable (FR/H) sequence similarity, and Comparative Modeling 
(CM) targets, for which existing sequence homology search programs can find a similar 
structure in PDB. We took the responsibility of evaluating models for the 9 NF targets 
and 8 of the 16 FR/A targets with low structural similarity to a known structure. There 
were over 7400 models for these 17 targets, which were submitted by 165 teams of 
researchers all over the world. We started evaluating them as soon as the true structures 
became available. Initially, the organizers of the CASP6 experiment automatically 
assigned a numerical score to each model by using the program LGA (12), which had 
been devised especially for detecting local and global similarities between a model and 
the experimental structures. We then visually inspected high scoring models for each 
target, the number of which varied from 20 to over 100 depending on the target. We also 
calculated average scores for each prediction group for the purpose of ranking them. We 
found that models that bore overall similarity to the true structure were submitted for 7 of 
the 8 FR/A targets, but only for 3 or 4 of the 9 NF targets. High scoring models were 
submitted by several different groups; the single group that was most successful was 
Baker’s group at the University of Washington, who submitted best models for 7 of the 
17 targets. We also found what others had found before us, that the most successful 
prediction methods work by copying existing structures well and that truly ab initio 
methods were not among the most successful (13). 
 
We also evaluated domain boundary predictions, which were introduced for the first time 
in the 2004 CASP6 experiment. Correctly predicting domain structure of a protein is 
obviously important for a successful structure prediction and also for protein engineering 
tasks wherein one wants to remove or replace a domain. For this purpose, we devised a 
new scoring scheme, called the Net Domain Overlap (NDO) scores, which is based on 
giving equal weight to the reward for correctly predicted residues (true positives) and 
penalty for the incorrectly predicted residues (false positives). In the past, domain 
predictions were measured by means of two or more different measures, typically 
including the difference in the number of predicted and actual domains and the number of 
residues between the predicted and actual domain boundaries. But true number of 
domains is sometimes not known because some part of the protein is missing in the 
crystal structure. It is also difficult to come up with a ranking of the predictions if more 
than one measure are used because they usually have different units and there is no 
guidance on how to scale or give a relative weight to one against the other. The new 
scoring function shows good correlations with both of these measures and can effectively 
replace them (14). The NDO scoring scheme was adopted by the CASP7 assessors as a 
part of the 2006 CASP7 domain prediction evaluation 
(http://predictioncenter.org/casp7/meeting/presentations/Presentations_assessors/CASP7_
DP_Tress.pdf). The NDO scores, or a suitably modified form of it, should be generally 
useful in comparing any two partitions (sets of clusters) of objects, like the domains 
(clusters of residues) in a protein structure, groups of protein structures in the protein fold 



universe, or phylogenetic clusters of genes. We used a modified version of NDO scores 
to assess the quality of antibody clusters based on competitive binding assays (see project 
3). Returning back to CASP6, we found that the predictors used many different strategies 
to predict the domain structure of a protein. Most one- or two-domain proteins were 
predicted quite accurately, but the predictors had difficulty when the number of domains 
was more than two or when domains were made of more than one non-contiguous 
segments (14). 
 
Sub-project 3. We used 7 easily available pair-wise structure alignment programs [CE 
(15), DaliLite (16), FAST (17), LOCK2 (18), MATRAS (19), SHEBA (6) and VAST 
(20, 21)] to structurally align a set of protein pairs prepared from NCBI’s Conserved 
Domain Database (CDD) (22). The alignments generated by these programs were then 
compared with the CDD alignments, which were expert-curated. The degree of 
agreement was measured by the fraction of correctly aligned residues, fcar(δ), where the 
alignment of a residue was considered ‘correct’ if it aligned to a residue that is within δ 
residues from the residue it is aligned to in the reference alignment. The fcar(0) values are 
useful for measuring absolute alignment accuracy, which is needed for example for 
obtaining accurate amino acid substitution profiles, while fcar(8) values measure the 
fraction of the structure recognized as being similar without insisting on high resolution 
accuracy, which are useful for applications such as structure recognition and 
classification. We found that 4 to 9% of the CD core residues on average were either not 
aligned or aligned with more than 8 residues of shift error and that an additional 6 to 14% 
of the conserved residues on average were misaligned by 1-8 residues, depending on the 
program and the dataset used (Figure 3A). The alignment accuracy depended on 
sequence similarity even though the programs aligned solely or primarily on the basis of 
the geometric structure (Figure 3B). Also, there was a large variation in the alignment 
accuracy depending on the protein pair and on the structure comparison programs (Figure 
3C). 
 
Figure 3. 

     
 (A) (B) 
(A) Average Fcar (CD family-wide average of fcar) as a function of the magnitude of the 
allowed shift error. CDD is a hierarchically arranged database of multiple alignments of 
conserved groups of protein domains. We culled two datasets from this database, the root 
and the terminal node sets. The root node set consists of alignment pairs in the top-most 



(most remotely homologous) groups in the CDD hierarchy whereas the terminal node set 
consists of pairs that are in the lowest group (most similar). The terminal and the root 
node sets are indicated by dotted lines with open symbols and solid lines with closed 
symbols, respectively. Program names are given in the alphabetical order. Note that the 
y-axis scale is from 0.5 to 1.0. 
(B) Sequence similarity (fraction of identical pairs) dependence of Fcar in the root node 
set. Alignments were grouped into sequence similarity bins of size 0.1 and then the 
alignments within each bin were grouped according to its CD name for averaging. The 
average Fcar values are shown with the scale on the left y-axis: open symbols, Fcar(8); 
closed symbols, Fcar(0). The x-axis shows the midpoint of each sequence similarity bin. 
Different methods are indicated by different colors using the same color scheme as in 
(A). The gray circles and lines show the alignment accuracy obtained by SSEARCH (23), 
which is a purely sequence alignment program, provided here for contrast. The figure 
shows that structure-based alignments are clearly better than pure sequence alignment 
when the sequence identity falls below about 50%. The histogram (grey bars) shows the 
number of superfamilies in each bin with the scale on the right y-axis. 
(C) The fraction of correctly aligned 
residues (fcar) of each alignment for each 
method. The superfamilies along the x-
axis are sorted in descending order of the 
size of the superfamily (number of 
alignment pairs in the superfamily). 
Boundaries of the large superfamilies 
(those with 50 or more alignment pairs) 
are marked by red vertical lines. The 
alignments in each superfamily are sorted 
in ascending order of fcar(0) , which are 
shown as black circles. The grey vertical 
lines cover the range between fcar(8) and 
fcar(0) for each alignment. The methods 
are given in alphabetical order. Note that 
the order of superfamilies along the x-
axis is preserved for all methods, but the 
order of the individual alignments within 
a superfamily is not since they are sorted 
by fcar(0) values, which are specific for 
each method. Superfamilies marked by 
the red boundary bars are, from left: 
cd00096, cd02156, cd01983, cd00900, 
cd00657, cd02019, cd03440, cd01292, cd02688, cd00314, cd00196, cd00650b,  (C) 
cd00650a, cd00768, cd02184, and cd00267. The bold-faced superfamilies are those for 
which the fcar(0) values are low (longest grey lines) for all methods. 
 
A manuscript describing this study is under review for publication in BMC 
Bioinformatics and is attached to this report. Our own structure alignment program, 



SHEBA, is not a particularly high performer according to this evaluation and must have 
adversely affected the quality of the SHoPP database that we used to set up the CSSM-
based profiles (see above). We will replace the SHoPP database and the profiles when we 
develop an improved structure alignment program. (See Current and Future Research.) 
 
Sub-project 4. We used two structure comparison programs, SHEBA (6) and VAST (20, 
21), to calculate all-against-all pair-wise similarity scores and compared them to the 
similarities implied by the manually curated SCOP Fold classification (24). We found 
that the agreement was poor; at 1% false positive rate, only 62%-75% of the pairs within 
the same SCOP folds were considered similar by the automatic programs. We could 
identify four major causes of such discrepancy between machine-calculated and human-
curated similarities: (a) the sub-structural feature that is considered to be the common 
core of a set of proteins by human experts can vary significantly and be judged to be 
different by automatic computer programs, (b) the common core of a SCOP Fold is too 
small a fraction of the total structure, which contains many other residues that are not 
structurally similar, (c) structures in different SCOP Folds may contain similar sub-
structures, which produce false positives, or (d) some SCOP Folds consist of variable 
number of repeating units and include proteins with greatly differing sizes. This work 
was a collaboration between our group, Dr. Munson’s group at CIT, and Drs. Garnier and 
Gibrat of the INRA, Jouy-en-Josas, France, and has been published (25). 
 
Modifying the structure comparison/classification methods will probably reduce some or 
most of these differences. But it is possible that some of these arise from the continuous 
and multi-dimensional, rather than discrete and one-dimensional, nature of the protein 
fold space. When protein structures vary continuously in more than one aspect, and 
similarity is decided by using a cutoff value, the similarity property is not necessarily 
transitive, i.e., if structures A and B are judged to be similar and B and C also, it does not 
necessarily follow that A and C will also be judged to be similar using the same cutoff 
value. On the other hand if the structures are classified into discrete folds, then 
transitivity is a necessary property, i.e. if A and B are in the same cluster and B and C 
also, then A and C are necessarily in the same cluster. In order to see how much of the 
discrepancy that we observed in above study is due to such effect of classification, we 
classified protein structures using the machine-calculated all-against-all pair-wise 
similarity scores. We investigated a great many different clustering procedures. We also 
used the concept of homogeneous clusters to bring out irreducible differences between 
machine and human-curated SCOP partitions. These efforts produced convincing 
evidence that the major portion of the discrepancy is due to the difference in the way that 
similarity is perceived by machine and human and not to the effect of clustering. This 
study was also a result of the collaboration of the same teams. A manuscript has been 
submitted for publication and is attached to this report. 
 
Sub-project 5. Using structure prediction and other bioinformatics tools, we were 
successful in obtaining some structural information for the protein products of all the 
genes that we discovered in the gene discovery project, including two (NGEP and CAPC) 
that we published in the past four years. (See the report on the Gene Discovery project.) 
 



RepA is the P1 plasmid-encoded protein that binds to the plasmid’s replication origin to 
initiate DNA replication (26). Its biological function is similar to that of RepE of the F 
plasmid, for which a crystal structure has been determined (27). The two proteins are 
related since both belong to the Pfam (28) Rep3 family but the sequence similarity is low 
and the BLASTP program does not find one from the other. We aligned RepA to RepE 
using two fold recognition programs, bioinbgu (29) and 3D-PSSM (30), and combined 
the alignment with the previously published multiple alignment of RepE and the initiator 
proteins of R6K, pSC101, pCU1, and pPS10 (27). The alignment was then manually 
adjusted to eliminate breaks or insertions in secondary structures compared with the x-ray 
structure of RepE. The final alignment was used to build a model of the monomer of 
RepA using the crystal structure of RepE as the template and the modeler program in the 
Insight II program package (Accelrys Software Inc, San Diego, CA, USA). Dr. 
Wickner’s group in this laboratory tested the model by introducing mutations in the two 
predicted DNA binding regions and verified that the mutants were indeed defective in P1 
DNA binding in the predicted manner (31). 
 
Current Research and Future Plans 
 
(1) Set-up and maintenance of the RPS-BLAST web server for profile search: We 
are currently in the process of setting up a web server to run the RPS-BLAST through the 
CSSM-based profiles that we calculated for each chain in PDB. We would like to finish 
this process and maintain the server so that we and others can make routine RPS_BLAST 
runs through the new profiles. We would also like to update the profiles periodically as 
the PDB gets updated and as new structure alignment algorithms are developed. This will 
be done in collaboration with Dr. Nalin Goonesekere of the University of Northern Iowa. 
 
(2) New structure comparison/alignment algorithm: We have seen the need for 
accurate structure-based sequence alignment in two occasions as described above, once 
for setting up accurate CSSM and second time to obtain accurate measures of structural 
similarity for structure classification. In the former case, fcar(0) should be high since 
accurate pair-wise alignment in the SHoPP database is essential. In the latter case, 
perhaps a fine alignment accuracy is not necessary, but the structure comparison program 
must still produce highly accurate measure of the degree of similarity, i.e. fcar(8) must be 
high for similar structures. Yet, we have seen that current structure alignment programs 
produce errors for about 5% of the conserved core residues on average as measured by 
fcar(8) and about 15% on average as measured by fcar(0). There are many individual 
cases wherein the fcar value dips below 80%. By carefully analyzing the results of 7 
different programs, we have also learned the strengths and weaknesses of each program 
and, in some cases, why they fail. 
 
SHEBA, like many other similar programs, works in two stages; first it finds an initial 
alignment, which is iteratively refined in the second stage. Errors and imperfections can 
occur in both of these stages. We addressed the problems that occur in the second stage 
first. This stage is a two-step cycle of optimal structure superposition for the given 
alignment followed by finding new alignment from the superposed structures. There is an 
elegant mathematical solution for obtaining optimal superposition when an alignment is 



given (32, 33) and there is no room for improvement in this step. On the other hand, 
finding the optimum sequence alignment from two superimposed structures is a non-
trivial problem and some of the inaccuracies of the structure-based sequence alignment 
arise from poor performance of this part of the structure alignment programs. Many 
programs, including SHEBA, use dynamic programming algorithm with a gap penalty for 
this purpose. Unfortunately, there is no guidance on proper gap penalties to use since 
gaps of all sizes, including a whole domain, occur in protein structures. SHEBA uses the 
gap penalty value of 0, which results in too many gaps and incorrect alignments 
especially in comparing two helical domains. We devised a new algorithm for this step, 
which works somewhat like the BLAST algorithm in that it finds short seed alignments, 
which are then extended and merged to obtain one consistent overall alignment. The new 
algorithm, which we call SE for Seed Extension, does not use gap penalty and 
significantly improves the alignment accuracy particularly when the matched residues are 
spatially apart (Figure 4A). For pairs of proteins with low sequence or structural 
homology, the SE algorithm produced correct alignments for up to 15% more residues 
than the next best scoring program that uses a dynamic programming algorithm. Another 
advantage is that its CPU usage grows linearly with the size of the protein (Figure 4B). 
Figures 4C and 4D show an example of the improved alignment. We expect that the SE 
algorithm will help improve the performance of not only SHEBA but all other programs 
that use the dynamic programming to produce the sequence alignment from a pair of 
superposed structures. This work is in progress. 
 
Figure 4. (A) Comparison of the average alignment accuracy of SE, CHIMERA, 
LSQMAN, and SIPPL in SHEBA. CHIMERA (http://www.cgl.ucsf.edu/chimera/) and 
LSQMAN (http://xray.bmc.uu.se/usf/lsqman_man.html) are two programs that we could 
easily obtain that will produce an optimal sequence alignment given a pair of superposed 
structures. SIPPL is the name of the dynamic programming algorithm used in SHEBA for 
obtaining the optimal alignment from two superposed structures. It is so named because it 
was adapted from the original algorithm by Sippl’s group (34). The 582 pairs of proteins 
collected from CDD were binned according to their RMSD based on CDD alignment and 
the average fraction of correctly aligned residues (fcar) of each program is shown. The 
number of pairs in each bin is 145, 260, 125, 43 and 9 for the RMSD ranges 0-1, 1-2, 2-3, 
3-4, and 4-5 A, respectively. 
(B) Comparison of CPU usage of SE and SIPPL routines in SHEBA. The CPU times to 
execute the SE algorithm and SIPPL routine in SHEBA were recorded.  The 582 
superimposed pairs are structurally similar according to CDD.  The numbers of residues 
of the larger domain in each pair are shown in tan-colored dots. 
 



        
 (A) (B) 
(C, D) Sequence alignments generated by SHEBA with SIPPL (C) and SE (D) routines 
for a pair of helical domains, 2FBW_Q (orange) and 1L0V_C(pink) in cd03493, after 
they were superimposed according to the CDD alignment. Pseudobonds in green indicate 
the residue pairs considered aligned by SHEBA with SIPPL (C) and with SE (D) 
routines. Unaligned regions do not have pseudobonds and are shown in lower case in the 
sequence alignments. The two proteins in the same CD family have three structurally 
homologous helices. However, the sequence alignment generated by SHEBA using 
dynamic programming (SIPPL) algorithm put many gaps in the second helix in the 
middle  (fcar = 50%).  SE does not apply gap penalty, yet generates accurate alignment 
without gaps (fcar = 100%). 



  SHEBA with Sippl (fcar = 50%) SE  (fcar = 100%) 
 

2FBW_Q TSERAVSALL LGLLPaA--Y lyp------- TSERAVSALL LGLLPAAYLy p--------- 
1L0V_C MLREGTAVPA VWFSI-EliF glfalkngpe MLREGTAVPA VWFSIELIFg lfalkngpea 
 
2FBW_Q --------Gp ----Avdy-- SlaA--AltL ---------- --GPAVDYSL AAALTLHGHW 
1L0V_C awagfvdfLq npviViinli T--LaaA--L wagfvdflqn pvIVIINLIT LAAALLHTKT 
 
2FBW_Q -HgH-WGlG- QVITDYvh-- ----GdtpI- GLGQVITDyv hgdtp----I KVANTGLYVL 
1L0V_C lH-TkTW-Fe LAPKAAniiv kdekM---Gp WFELAPKAan iivkdekmgP EPIIKSLWAV  
 
2FBW_Q KVANTGLYVL SaItftGlcy -- SAITFTGLCY 
1L0V_C EPIIKSLWAV T-Vva-Tivi lf TVVATIVILF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (C) (D) 
 
We would like to complement and complete this work by devising a new algorithm for 
finding the initial structural superposition more accurately with less failure. We are 
exploring the idea of using proper local structure hashing techniques, somewhat along the 
lines used by Alesker, Nussinov and Wolfson (35) and by Zhu and Weng (17), both for 
speed and for recognition and alignment of flexible structures. 
 
(3) New protein domain parsing algorithm: The problem of parsing a protein structure 
into domains automatically is still an unsolved problem. We need domains because 
domain structures are the essential basic units for properly exploring the fold space or the 
relations between and among different protein structures. In the CASP6 experiment, we 
observed that three different automatic domain parsing programs (11) did not always 
agree with each other or with my manual parsing from visual inspection (unpublished 
results). Manual procedure is obviously unsuitable for processing a large number of 
structures because it is slow and tends to be subjective. We would like to re-visit this 
problem with the aim of producing an automatic procedure that follows the principles I 
used when I parsed protein structures manually for CASP6. The main principles used 



then were (a) geometrical separation, (b) symmetry and (c) recurrence in other structures 
(11). The recurrence was used early by Holm and Sander (36), but the procedure was 
incorporated tightly into their PUU domain parsing procedure, which works like a protein 
unfolding simulator. My idea is to more directly follow the mental process that occurs 
when parsing the structures manually, except that whenever a decision needs to be made, 
it will be made not by subjective or ad hoc criteria but by statistical criteria established 
empirically from random cuts or by comparing unrelated structures. We plan to do this 
with Dr. Munson at CIT, who is a mathematician with expertise in statistics, and with 
Drs. Garnier and Gibrat of INRA, Jouy-en-Josas, France, who are experts in 
bioinformatics and algorithm development, respectively. 
 
(4) Detection of repeating units within a protein structure: Many protein structures 
contain repeating units. Some examples are TIM barrel folds which typically have 8 β/α 
units; β-propeller folds, which have 4 to 8 antiparallel beta-sheet units; and superhelical 
solenoid structures made of the leucine-rich, ankyrin, or HEAT/ARM repeats (see 
below). Detecting such structures is important for at least two reasons. First, it helps in 
domain parsing procedure. There is some inherent ambiguity in defining domains for 
these proteins because it is not clear if a domain should consist of a single repeating unit 
or the whole protein (14). Also, some TIM barrels, for example, have noticeable 
separation between some groups of repeating units so that an automatic domain parsing 
procedure often splits the structure into two domains, whereas visual inspection 
invariably assigns one domain for the whole barrel. Therefore, automatic domain parsing 
procedure will be enormously simplified if these structures are recognized and treated 
separately. Secondly, many of these proteins have interesting properties. For example, 
TIM barrels are enzymes with widely varying substrate specificity while superhelical 
solenoid structures are involved in protein-protein interactions. In order to study the 
structure-sequence-function relations specific to each of these structural types, it is 
essential to be able to collect as many structures and proteins of one type as possible in 
order to see the generalities of an observation and to make statistical inferences. 
 
Proteins with repeats are usually detected from observing repeating segments of sequence 
similarity within one protein sequence (37-39). However, sequence similarity between 
repeats is often low, in which case the protein is unrecognized and/or the repeats ill-
defined. If the structure is known, a more sensitive procedure will be to detect structural, 
rather than sequence, similarity. Such structural symmetry-detecting routine is also 
needed for the domain parsing problem since symmetry was one of the considerations 
during manual parsing (14). There are only two reports that we know of on detecting 
proteins with repeating units using full structural information (40, 41). Both are from the 
same group of investigators and both detect repeats by analyzing the N x N inter-residue 
distance matrix, where N is the number of residues in the protein. However, they reported 
that the sensitivity of the method varied from a high of 88.7% for the Leucine rich repeat 
structures to a low of only about 60% for the TIM barrels (41). I would like to try a 
related, but different method, which involves structure alignments of the structure 
centered at different residues and analyzing the results using autocorrelation function(s). 
The advantage is that the method uses full structural information, not just the interresidue 
distances, and that one can use the best, among many, structure alignment programs. 



 
(5) On-going protein structure modeling projects: We are currently working on two 
specific proteins: 
 
(a) Mesothelin is a gene discovered in Pastan’s laboratory and expressed in normal 
mesothelial cells and mesothelioma and ovarian and other cancers. An immunotoxin 
targeting this protein has been tested in phase I clinical trials. (See Dr. Pastan’s Site Visit 
Report.) Mesothelin is produced as a part of the 69 kD precursor protein, which has a 
signal peptide at the N-terminus and a glycosylphosphatidylinositol (GPI) anchor peptide 
at the C-terminus. The furin cleavage of this precursor protein yields two proteins, the N-
terminal megakaryocyte potentiating factor (MPF), which is secreted, and the C-terminal 
329-residue mesothelin, which remains anchored to the membrane through GPI (42, 43). 
The mucin MUC16, which is expressed in ovarian cancer cells, strongly and specifically 
binds mesothelin through its N-linked oligosaccharides and it has been suggested that this 
interaction may facilitate peritoneal metastasis of ovarian tumors (44, 45). We started 
studying the possible structures of mesothelin to see if any of them resembled 
oligosaccharide-binding lectins. The PSI-BLAST search with mesothelin and mesothelin 
precursor sequences yielded only two non-mesothelin hits, stereocilin and otoancorin, 
which had low sequence similarity with mesothelin. Both are inner ear proteins anchored 
on the surface of hair cells and involved in mechanoreception of sound waves (46, 47). 
But structural information is not available for either protein. Several secondary structure 
prediction programs [psipred (48), profsec (49), DSC (50) and five other programs] gave 
the similar prediction of a series of small helical segments separated by short turns. This 
means that mesothelin does not have the typical lectin fold, which is a group of entirely 
beta-sheet structures (51). Three fold recognition and template-free prediction/modeling 
programs [INHUB (52), 3D-PSSM (30) and I-TASSER (53)] predicted an ARM/HEAT 
repeat α−α superhelical structure consistent with the predicted secondary structure. We 
have built a three-dimensional structural model of mesothelin based on these predictions 
and using the modeling software in Insight II. We are currently in the process of checking 
the internal consistency of the model. If the model appears reasonable, as is likely at 
present, this will be the first time, as far as we know, that an α−α superhelical structure is 
suggested to bind oligosaccharide. 
 
We would of course love to build a model for the mesothelin-MUC16 complex. 
However, in the absence of the crystal structure of mesothelin or of the sugars of 
MUC16, it is unlikely that we will be able to build a useful model. We do, however, see a 
possible way to progress, by collaborating with the experimental group. One can mutate 
strategically placed residues on the surface of mesothelin, on the basis of the model, and 
see how the mutations affect the interaction with MUC16. One can obtain a fairly 
detailed model of the complex from a set of such mutation data, as we demonstrated 
some time ago with the galR repressosome in collaboration with Dr. Adhya of this 
laboratory (54). 
 
(b) The E. Coli Host Factor Q (HFQ) is a pleiotropic regulator and believed to be an 
RNA chaperon protein in E. coli (55). It has been reported (56) that this protein also has 
an ATPase activity. The crystal structures of the protein from two bacterial species are 



known (57, 58), but the ATP binding site is not obvious from these structures. We 
predicted the ATP binding site for this molecule. HFQ forms a ring of homo-hexamer. 
The structure is predominantly made of β-sheets, arranged in the shape of propeller 
blades, with one single helix per monomer. A well-known ATP-binding mode is through 
the Walker box, in which case the location of ATP is determined by its interaction with 
the P-loop, which usually connects a tip of a β-sheet with the N-terminal end of an α-
helix (59). The ATP in HFQ cannot be in such a location since the lone helix is at the N-
terminus of the protein and there is no P-loop. Dr. Adhya’s group in this laboratory 
determined that mutating the residue Y25 nearly abolished the ATP binding activity. Y25 
is on the face of the β-sheet, in the ‘distal’ side of the ring (60). It is known that ATP 
binds to a variety of protein structures, including a β-sheet (61). Therefore, we searched 
the structural database to see if there was an ATP binding protein in which the ATP is 
bound on the surface, rather than near the edge, of a β-sheet, and which also has a 
structure similar to that of HFQ around the Y25 residue. A search at the pdb site gave 213 
entries with ATP-protein complexes, which together contained 742 SCOP domains from 
81 different scop superfamilies.  Only 35 of these superfamilies consisted of ATP-
binding domains. When one randomly selected structure was examined from each of 
these 35 superfamilies using Insight II and the in-house graphics program GEMM, nine 
were found to have ATP on the face of a β-sheet. One of these was the d7at1b1 domain 
(SCOP d.58.2.1 family) of the B chain of 7at1 (aspartate carbamoyltransferase). When 
manually aligned using GEMM and Insight II, this domain superposed reasonably well 
with the HFQ monomer, although the two are clearly not homologous; 3 strands from one 
monomer and 2 strands from the adjacent monomer of HFQ align well with the β-sheet 
of d7at1b1 and a helix of d7at1b1 also superposes with the single helix of the HFQ 
monomer. The residue K94 of d7at1b1, which hydrogen bonds with ATP, aligns with 
K31 of hfq, which is near Y25 in the hexameric structure. The ATP molecule can be 
placed in the HFQ hexameric structure after only a small movement from its equivalent 
position in d7at1b1 when the two protein structures are superposed. After this position 
was found, we ran the binding site module calculation of Insight II. It gave two possible 
ATP binding sites, one around the rim of the central hole of the hexameric ring and 
another at the site we identified from the d7at1b1 structure. This work is nearly 
completed and ready to be written up. 
 
(6) Study of superhelical structures with repeat motif: Three of the cancer gene 
products we study, POTE, CAPC, and mesothelin, are predicted to have structures that 
are made of repeating units arranged in a superhelical manner: POTE with the ankyrin 
repeats (62), CAPC with the leucine-rich repeats (63), and mesothelin with the probable 
HEAT/ARM type repeats. These repeat structures occur frequently in all types of 
organisms and have been extensively studied (38, 64, 65). Most, if not all, of these 
structures are involved in protein-protein interactions (66). The defining characteristic of 
these structures is that each unit interacts only with its immediate neighbor repeating 
units, without longer range interactions. This gives the structure flexibility, which may be 
required in order to make good interaction with a variety of structures. As a result, the 
repeating units have similar structures but their relative position and orientation often 
vary so that overall shape can deviate noticeably from an ideal superhelical symmetry 
and from one structure to another. We would like to study how these structures interact 



with other proteins and small ligands, what type of residues in which structural context 
are involved in the complex formation, and how the conformation of these structures 
change upon such interactions. We will begin by collecting single and complex structures 
involving these superhelical structures and by classifying them. Sequence-specific 
features and conformational changes will be noted for each type. When needed, the 
changes in flexibility of the molecule upon mutation will be studied using conventional 
molecular dynamics programs. 
 
PROJECT 2: HYDROPHOBICITY 
 
Background 
 
The phenomenon of hydrophobicity refers to the low solubility of non-polar molecules in 
water and, hence, their tendency to group together and separate out from water. The 
hydrophobic effect is believed to be one of the main forces that determine the structure, 
stability, and interaction of protein and other biologically important molecules (67). 
Rather surprisingly, there is as yet no consensus on what causes this phenomenon and 
various other associated thermodynamic behaviors nor on the true magnitude of the 
hydrophobic effect. I study this phenomenon by means of the statistical thermodynamics. 
Some years ago, I proposed that the primary reason that a non-polar molecule avoids 
water is the small size, not the hydrogen bonding capability, of water molecules (68-70). 
This theory is now slowly being adopted (71, 72). I and my colleague, Dr. Giuseppe 
Graziano of University of Sannio, Italy, also modified Muller’s simple two-state model of 
water of hydration (73) to put it on a firmer statistical mechanical footing (74). This 
modified Muller’s model explains the large entropy and heat capacity changes upon 
hydration without assuming “iceberg”-like structure of water around the non-polar solute 
molecule. The model has since been used by other researchers (75) to study the 
hydrophobic hydration. My work in this area is now restricted to collaboration with Dr. 
Graziano, who is highly productive in this area on his own. 
 
Specific Research Aims 
 
My aim is to obtain molecular level understanding of various aspects of this complex 
phenomenon. 
 
Accomplishments 
 
In the past four years, Dr. Graziano and I produced two significant works: 
 
(1) We showed that the scaled particle theory can be used to explain the phenomenon of 
the entropy convergence (76). The phenomenon of entropy convergence refers to the fact 
that the entropies of hydration of different solute molecules, when plotted as a function of 
temperature, converge to the same or similar value at certain temperature, usually near 
the boiling point of water. I proved years ago that precise convergence will occur if the 
hydration entropy varied linearly with some property of the solute molecules, for 
example the surface area (77). The proof was based on the mathematical property of a 



bilinear function and had little to do with statistical mechanical physics of hydration. The 
current work is important because it proves that the same phenomenon can be explained 
from a statistical mechanical theory with no other assumptions. Since the equations from 
the statistical mechanical theory are not linear, the convergence is obtained from locally 
linear behavior and there is a significant de-focusing, or lack of precise convergence, as is 
the case for real experimental data. 
 
(2) We proved that the structure of water must decrease in the hydration shell in the 
modified Muller’s model (78). A big question in the hydrophobic phenomenon is the 
state of water in the hydration shell of a non-polar molecule. When a non-polar molecule 
is inserted in water, the entropy of the system decreases markedly. Since at room 
temperature, the enthalpy change is nearly zero, the large reduction in entropy is the 
reason that non-polar molecules do not dissolve in water. It has been traditional to 
suppose that this large negative change in entropy means that there is more structure 
formation in the hydration shell. However, I always considered this explanation to be 
erroneous since introduction of a non-polar molecule should disrupt, not enhance, the 
water structure. I found another, more plausible source of entropy reduction in the small 
size of water molecules. In the current work, Dr. Graziano and I mathematically proved 
that, within the framework of the modified Muller’s model, the water structure must 
break compared to the bulk if the heat capacity change were to decrease with temperature 
as observed experimentally. 
 
Current Research and Future Plans 
 
I am not currently working on any project on hydrophobicity. My future plan on this 
project is opportunistic. I will work on this topic if and when I find a significant solvable 
problem. 
 
PROJECT 3:  IMMUNOTOXIN AND GENE DISCOVERY  
 
Background 
 
Dr. Ira Pastan’s group is developing a novel type of anti-cancer agents called 
immunotoxin. These are man-made molecules made by fusing part of a bacterial toxin 
(pseudomonas exotoxin) to the Fv portion of mouse antibodies against cancer-specific 
targets. We collaborate with this group to provide molecular modeling and other 
computational support. There is also a need to find more specific targets in order to 
reduce the side effect and more targets in order to treat different types of cancer. We have 
set up a procedure for searching through the expressed sequence (EST and mRNA) 
databases to discover genes that appear to be expressed specifically in breast or prostate 
and in cancer cells, but not in other essential tissues. The products of such genes can be 
used as a new target for the immunotoxin or for cancer vaccine, diagnosis, and imaging. 
We periodically update databases used in this procedure and generate new list of 
candidate genes. All the studies on this project are in collaboration with Dr. Pastan’s 
group. 
 



Specific Research Aims 
 
Sub-project 1. To help find major epitopes of the immunotoxins. Pastan’s group 
generated 60 mouse monoclonal antibodies and quantitatively determined all-against-all 
pair-wise competition in binding to the immunotoxin. On the basis of this data, they 
could group the antibodies into 7 to 13 groups and interpreted the result as indicating that 
there are 7 to 13 major epitopes against which all the monoclonal antibodies respond 
(79). Our aim was to find a mathematical way of validating this interpretation. 
Sub-project 2. To discover genes that are expressed specifically in cancer and normal 
but non-essential tissues and to use bioinformatics techniques to gather as much 
information as possible on the possible function of the product.  
 
Accomplishments 
 
Sub-project 1. We devised a simple model for random competitive binding on the 
surface of the immunotoxin molecule and a new ROC (Receiver-Operator Characteristic) 
curve-based method to measure the quality of clustering of the antibodies. In this model 
we draw a roughly equal size footprint on the surface of the immunotoxin to represent an 
antibody binding to an epitope. A set of footprints are placed randomly on the surface and 
two antibodies are considered to compete if their corresponding footprints overlap. This 
model produces N x N competition matrix where N is the number of antibodies. Given a 
set of N x N competition data, one can optimally group the antibodies into a given 
number, C, of clusters. The quality of the clustering can be measured by the number of 
competing pairs within each cluster (true positives) and the number of competing pairs 
that belong to two different clusters (false positives). This is essentially the NDO scoring 
scheme that we used for protein domain parsing (see above), but simplified to these 
straightforward clusters. (Protein domain parsing is more complicated because of the 
need to handle linkers between domains and the segmented domains.) A ROC curve is 
obtained by plotting the fraction of true positives against that of false positives as the 
number of clusters, C, is varied from 1 to N. For a set of perfectly discrete epitopes, the 
ROC curve coincides with the y-axis for C = 1 to M, where M is the number of discrete 
epitopes, then it coincides with the y = 1 horizontal line from C = M to N. For a random 
selection of epitopes, the fraction of the true and false positives will be roughly equal and 
the ROC curve tracks the diagonal. We generated 10 sets of 60 random epitopes each, to 
which the 60 antibodies bind (and leave foot prints), and observed that their artificial 
competition data generate ROC curves that were much different from the ROC curve 
obtained from the real experimental competition data (Figure 5). The simple simulation 
data, therefore, supports the notion that the pattern of the experimentally observed 
competitive binding could not have been obtained if the antibodies bound to a random set 
of epitopes and that the pattern was indeed consistent with there being a discrete set of 
epitopes on the surface of the immunotoxins (80). 
 
Figure 5. ROC curves for the evaluation of the clustering of the epitopes of PE38. The 
experimental competition data among 60 mouse monoclonal antibodies are represented 
by black circles connected by red lines. Other data on the graph (grey circles and black 
squares) are for the artificial data generated from overlaps of model antibody footprints. 



These latter were 
generated by randomly 
selecting 60 residues from 
all exposed residues (grey 
circles with grey lines) or 
from those that had more 
than 90 A2 of exposed 
surface area (black squares 
with black lines) on the 
surface of PE38, drawing a 
circle around each to form 
the initial footprint, and 
then expanding it radially 
until the footprint included 
60 or more atoms. The 
elements of the 
competition matrix for this 
set of artificial epitopes were set to 1 if the corresponding pair of footprints overlap and 0 
if not. The datasets with the randomly selected exposed residues  (grey circles) were 
generated 10 times independently by repeating the same procedure. The grey circles with 
black lines indicate the average. Both the experimental and the artificial competition 
matrices were clustered using the Ward’s hierarchical clustering method for each given 
number of clusters. It is clear that randomly distributed epitopes generate ROC curves 
(grey circles) that lie close to the diagonal of the plot and which are clearly different from 
that of the experimental data. When the epitopes were selected randomly among a 
restricted set of highly exposed residues only, the ROC curve (black squares) more 
closely resembles the experimental curve. 
 
Sub-project 2. During this reporting period, we reported the discovery of four additional 
genes, PRAC2 (81), NGEP, POTE, and CAPC, which are specific to prostate and/or 
breast and various cancers. NGEP is a member of the TMEM16 family of proteins of 
unknown function and predicted to be an integral membrane protein, with 8 trans-
membrane domains (82, 83). The probable location of the protein on the cell surface and 
the high specificity of expression in prostate and prostate cancer make this a promising 
candidate for a new immunotoxin target. POTE is a primate-specific family of genes 
(84). There are 13 paralogs in humans, scattered across 8 chromosomes. All paralogs are 
in the pericentromeric region, except those on chromosome 2, which are in an old, 
degenerating pericentromeric region (85). Their expression pattern is restricted to the 
prostate, ovary, testis, embryonic stem cells and in many cancers (86). Since it contains 
ankyrin repeats, spectrin-like coiled coil region and actin in some paralogs, we expect it 
to be located at the cytoplasmic aspect of the membrane, connecting it to the cytoskeleton 
(84, 87). We also found an ancient gene, ANKRD26, which appears to be the ancestor of 
the POTE gene family (85) (Figure 6). The function of ANKRD26 is unknown, but it 
must be a critically important gene, since it is expressed at a low level in many different 
cell types and is present, and its sequence highly conserved, in organisms from sea urchin 
to man. Recently, Pastan’s group found that a disruption of this gene by a gene trap 



technique causes extreme obesity and increase in body size in homozygous mice. (See 
Dr. Pastan’s Site Visit Report.) CAPC is made of leucine-rich repeats, one putative 
transmembrane domain, and a short cytoplasmic tail at the C-terminus (63). It is 
expressed in breast, prostate, and salivary gland as well as in many cancers. Function is 
unknown. A phylogenetic analysis of CAPC orthologs from mammals shows that the 
putative cytoplasmic tail may be subject to rapid evolution. Interestingly, primates have 
what appears to be a primate-specific stretch of highly proline-rich sequence (Figure 7). 
 
Figure 6. 
 

 
Dot-plots show conserved genomic fragments (A) between POTE-8 and ANKRD26 and 
(B) between ANKRD30A and ANKRD26. The ruler is in kb units both at the top and at the 



left. Exons are marked as lines with numbers at the bottom and at the right. Duplicated 
segments are marked by a dotted box. 
(C) Schematic representation of the genomic organization of the exons of POTE and its 
related genes. Homologous exons of POTE-2γ, POTE-21, POTE-8, ANKRD26, and 
ANKRD30A are aligned along dotted lines. In the cases of POTE-2γ and ANKRD30A, the 
genomic region continues to the next line(s). The open reading frames are in gray. Black 
boxes are degenerated exons which are not represented in the mRNA sequences but exist 
in the corresponding genomic region. The horizontal lines are drawn between the exon 
boxes of each gene – their lengths do not indicate the lengths of the introns. 
 
Figure 7. Multiple alignment of CAPC protein sequences from mammalian species. The 
symbols above the sequences indicate the conservation level: *, :, and . for fully, highly, 
and moderately conserved sites, respectively. The LRRs and transmembrane domains in 
the middle portion of the sequences are highly conserved. The N-terminal signal peptide 
region and the C-terminal region after the transmembrane domain are less well 
conserved. Note the high proline content in the C-terminal region of the primate 
sequences. 

 
 
 
Current Research and Future Plans 
 
(1) Mathematical model of the immunotoxin delivery process: The toxin is potent; it 
has been estimated that just a few molecules inside the cell can kill the whole cell. 
However, the effective dose found to reduce the tumor size of mouse xenograph model 



corresponds to more than several hundred molecules per tumor cell. (See Dr. Pastan’s 
Site Visit Report.) We are working on making a mathematical model of the delivery 
process to provide a quantitative understanding of the process and to identify the sources 
of waste and to help determine the dosing method and other ways to make the delivery 
process more efficient.  
 
The mathematical model consists of a set of differential equations that represent the rates 
of various processes that include the translocation of the immunotoxin (IT) from blood 
vessel into the tumor tissue, diffusion through the intercellular space of the tumor tissue, 
non-specific decay and clearance from the tumor tissue, uptake by the tumor cells, 
endocytosis and transport through the cell interior into the cytoplasm, decay during this 
process, cell killing, and the tumor volume change (growth or shrinkage). We have built 
an initial model, determined a reasonable set of values for the many parameters of the 
model, and fairly accurately reproduced the experimentally observed tumor volume 
change upon IT administration on mouse xenograph tumor models. Unfortunately, the 
progress on this project has been slow beyond this initial stage because of a personnel 
change during this reporting period. I plan to pursue this project vigorously in the coming 
years. We will complete the mathematical modeling and provide precise accounting of 
the IT lost during the delivery process. In addition, new experimental data show that a 
significant concentration of shed antigen is present in the intercellular space of the tumor 
tissue. (See Dr. Pastan’s Site Visit Report.) This will substantially change the 
concentration of the IT actually delivered inside the tumor cell. We will modify our 
model to include the effect of the shed antigen. Once the model is built and tested, we 
will use and study the model to discover the bottleneck(s) in the delivery process and 
search for ways to remove the bottleneck(s). 
 
(2) Gene discovery: We will not attempt to discover more new genes for immunotoxin 
targets using the expressed sequence database, mainly because we now have a large 
number of genes to study. However, we will continue to collect information on the 
functional and structural features of the proteins encoded by these genes and work with 
the experimental group to design experiments that will shed light on the biological 
function of the gene. (See above for the structural modeling of mesothelin and the study 
of the structures with repeating units.) 
 
PROJECT 4: EXPLORATION OF THE HUMAN GENOME  
 
Background 
 
During our search for genes that are specific to prostate, breast, and cancer, we 
encountered transcript sequences that appear to have been derived from two distinct 
genes. Most of these are cloning artifacts, introduced by inadvertent joining of two 
different cDNA sequences. However, some of these must be from real chimeric genes, 
which are produced when two distinct genes are fused together by chromosomal 
aberrations known to occur in all cancer cells. If a method can be devised for identifying 
such transcripts, it would provide a window for a high resolution view of the fusion 



points of some of the chromosomal aberration events and possibly for identifying genes 
that are responsible for generation and/or maintenance of cancer. 
 
We have also found that some of the genes we discovered appear to be inactive only in 
humans because the translation is terminated by a premature stop codon. Since these are 
genes that suffered a recent mutation with a rather severe consequence in terms of the 
activity of the particular gene, they may give a clue to the development of some human-
specific traits and possibly to diseases that humans are prone to suffer. 
 
Human genome is made of three billion bases and difficult to explore. Above studies give 
us a handle for studying human genes in both the healthy and diseased states. 
 
Specific Research Aims 
 
Sub-project 1. To systematically identify active chimeric fusion genes produced by 
chromosomal aberrations. 
Sub-project 2. To find genes that have been inactivated or otherwise altered specifically 
in humans by frameshift, nonsense, and exon deletion mutations.  
 
Accomplishments 
 
Sub-project 1. We devised an algorithm that will distinguish chimeric transcripts that are 
derived from true fusion genes and those that are cloning artifacts. The algorithm is based 
on the principle that the fusion point for the cloning artifact will usually be in the middle 
of an exon whereas that from a real chimeric gene will be at an exon boundary since the 
chromosomal break is much more likely to happen in a long intron than in a relatively 
short exon. Searching through the mRNA and EST (Expressed Sequence Tag) databases 
systematically using this algorithm, and then screening further manually, we could 
identify 237 fusion cases in different tissue types that produced 314 transcript sequences 
(88). About a quarter (60) of these cases were known cases already described in the 
literature. The remainder represents new cases that have not been described before. An 
example is shown in Figure 8. A surprising finding is that 92 of the cases identified are 
from unmarked, presumably normal tissues. 
 
Figure 8. Schematic representation and RT-PCR detection of BCAS4/BCAS3 and 
IRA1/RGS17 fusions in MCF7 cells. The BCAS4/BCAS3 fusion (A) had been described in 
the literature; the IRA1/RGS17 fusion (B) was newly discovered in this study. Boxes 
represent the exons and broken lines the introns. Fusion events are indicated by the arcs. 
Arrows indicate the transcription start sites. Exons are numbered from the 5’ to the 3’ 
direction as they occur in the original gene. Two BCAS4/BCAS3 fusion transcripts, 
BU943989 and BU957509, have an additional exon between BCAS3 gene exons 23 and 
24, which is designated as 23a. Primers for the RT-PCR reaction are indicated (T530, 
T531, T532, and T533). ORFs are marked with grey boxes. (C) The fusion gene 
transcripts for the BCAS4/BCAS3 and the IRA1/RGS17 fusions were detected in MCF7 
cells. The β actin (ACTB) was used as the positive control. The product sizes of ACTB, 
BCAS4/BCAS3, and IRA1/RGS17 are 600, 328, and 367 bp, respectively. (D) Detection 



of the 3;6 translocation in MCF7 cells by FISH of metaphase chromosomes. A 
representative result of the FISH experiment is presented. The IRA1 gene (red) and the 
RGS17 gene (green) are on the chromosomes 3 and 6, respectively, each of which exists 
in two copies of sister chromatid pairs. In addition, one can see another sister chromatid 
pair which harbors both genes in the same chromosome (white arrow). 

D   
 
 
Sub-project 2. To detect human specific frameshift, nonsense, and exon deletion 
mutations, we compared the chimpanzee and human genome sequences to detect 
differences that could potentially arise from these different mutations, used one or more 
non-human, non-chimpanzee sequence as an outgroup to determine if the mutation 
occurred in the human lineage, and then manually verified the candidate cases. The 
number of genes that harbor the mutations, after a rather stringent manual selection, were 
9, 9, and 6, respectively, for the frameshift, nonsense, and exon deletion mutations (89-
91). In 7 of these 24 mutation cases, the gene appears to have been totally inactivated in 
the human lineage. Interestingly, 6 of the 9 nonsense mutations were polymorphic in 
human population, suggesting that the mutations occurred rather recently and have not 
yet been fixed in the entire human population. Some of the interesting cases found are: 
 
NPPA: The human-specific form has a nonsense mutation near the 3’-end of the coding 
sequence, which deletes the terminal two arginine residues in the protein product (90). 
The gene is polymorphic in human; 17% of the human chromosomes carry the original 
chimpanzee form. It has been reported that individuals homozygous for the ancestral 
form are associated with a significantly increased risk of ischemic stroke recurrence (92). 
 
MOXD2: The human-specific form lost two terminal exons, which include 3’ UTR and 
poly (A) signal as well as nearly a quarter of the 618 residue protein coding region, 
including the C-terminal GPI anchor residues (91). The gene bears a homology with 
dopamine beta hydroxylase (DBH), is highly conserved in animal species, and in mouse 
is highly expressed in medial olfactory epithelium. 
 



S100A15A: The human form lacks the first of the two coding exons in the chimpanzee 
gene, which includes the start codon (91). The S100 proteins are calcium-binding 
proteins. The mouse ortholog s100a15 was detected in differentiating cells of the hair 
follicles and cornified layer during skin maturation (93, 94). The gene has also been 
reported to be expressed in mammary gland and upregulated during mammary 
tumorigenesis (95). Humans have a functioning paralog, S100A7a, which is also known 
as S100A15 and wrongly considered as the human ortholog of mouse s100a15 (93, 94). 
The sequence of this paralog is sufficiently different from that of S100A15A that the 
functions of these two genes may have been distinct when the latter was functioning (91). 
 
Current Research and Future Plans 
 
We are currently looking for genes that harbor human-specific exon insertion mutations 
using a similar technique. 
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