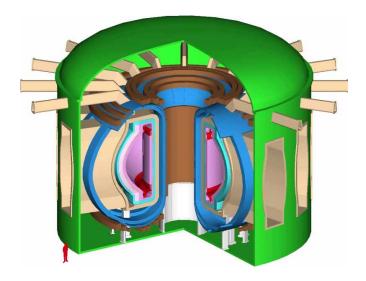
ARIES-RS/AT, FIRE and ITER Advanced Tokamak Regimes

Dale M. Meade for the National FIRE Study Team

Summary


May 1, 2003

http://fire.pppl.gov

A Decade of Studies has Identified the Requirements for Attractive Fusion Power

Fusion Power Plant ARIES-AT

Fusion Power 1,800 MW Plasma Volume 350 m³

Advanced Tokamak Features

- Self heated by fusion products (~90%)
- Smaller size
 - Improved confinement (reduced turbulence)
- High fusion power density for economics

$$-\sim p^2 \sim \beta^2 B^4 \quad (\beta_N > 4)$$

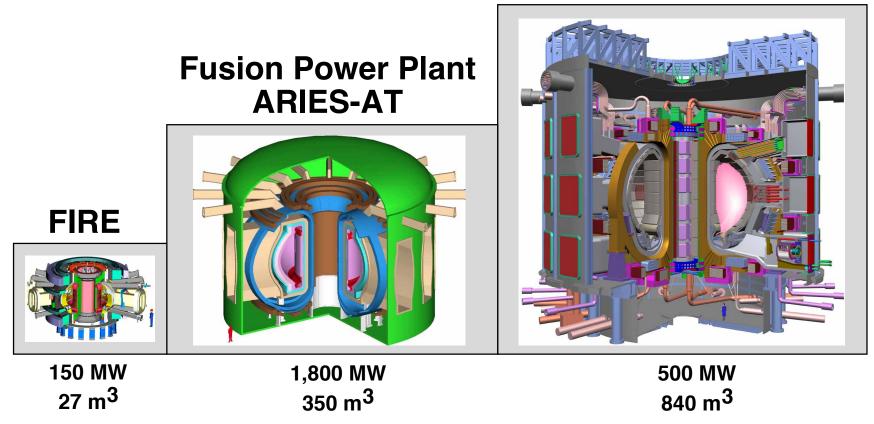
- · Efficient steady state operation
 - self generated confinement magnetic field (bootstrap current) (~90%)
- A burning plasma experiment needs the capability to explore advanced tokamak operation

FIRE will Emphasize Advanced Tokamak Goals

Burning Plasma Physics

Q	~ 10 as target, ignition not precluded
$f_{\alpha} = P_{\alpha}/P_{heat}$	~ 66% as target, up to 83% at $Q = 25$
TAE/EPM	stable at nominal point, able to access unstable

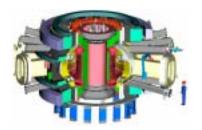
Advanced Toroidal Physics


$$\begin{split} f_{bs} &= I_{bs}/I_p & \sim 80\% \text{ (goal)} \\ \beta_N & \sim 4.0, \text{ n } = 1 \text{ wall stabilized} \end{split}$$

Quasi-stationary Burn Duration (use plasma time scales)

 $\begin{array}{ll} \mbox{Pressure profile evolution and burn control} &> 10 \ \tau_{\rm E} \\ \mbox{Alpha ash accumulation/pumping} &> several \ \tau_{\rm He} \\ \mbox{Plasma current profile evolution} &2 \ to \ 5 \ \tau_{\rm skin} \\ \mbox{Divertor pumping and heat removal} & several \ \tau_{\rm divertor} \end{array}$

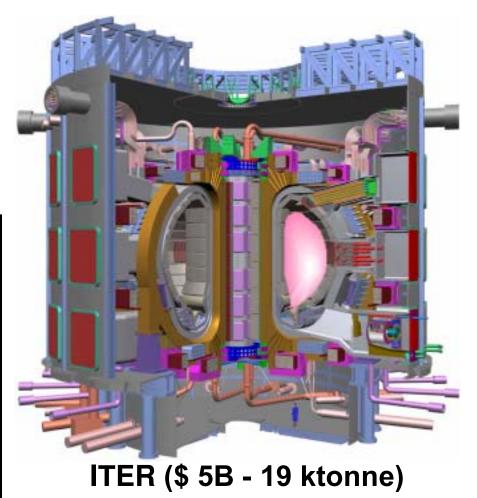
Steps to a Magnetic Fusion Power Plant


ITER

- A decade of studies has led to ARIES-AT as the vision for attractive fusion power.
- A burning plasma experiment is the next step in magnetic fusion research.
- FIRE and ITER are attractive options for a burning plasma experiment.

ITER and FIRE are Each Attractive Options (FESAC)

Primary Burning Plasma Experiments (same scale)

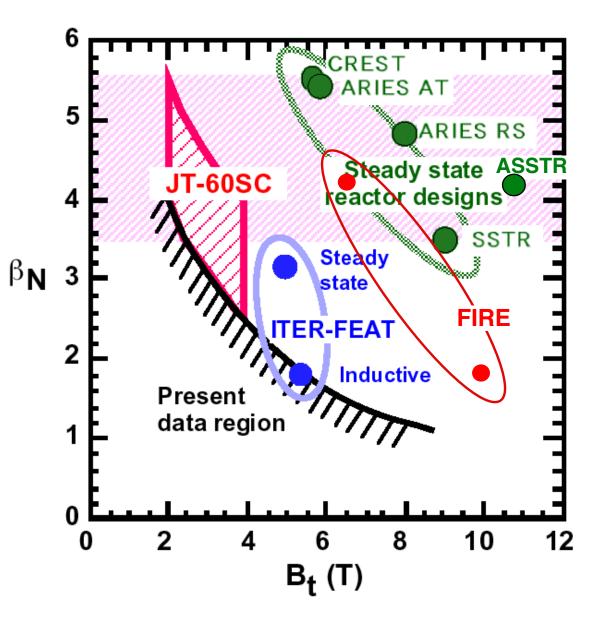

FIRE (\$ 1.2B - 1.4 ktonne)

Conventional Operation

Q ~ 10 @ 86% J(r) equilibration (FIRE and ITER)

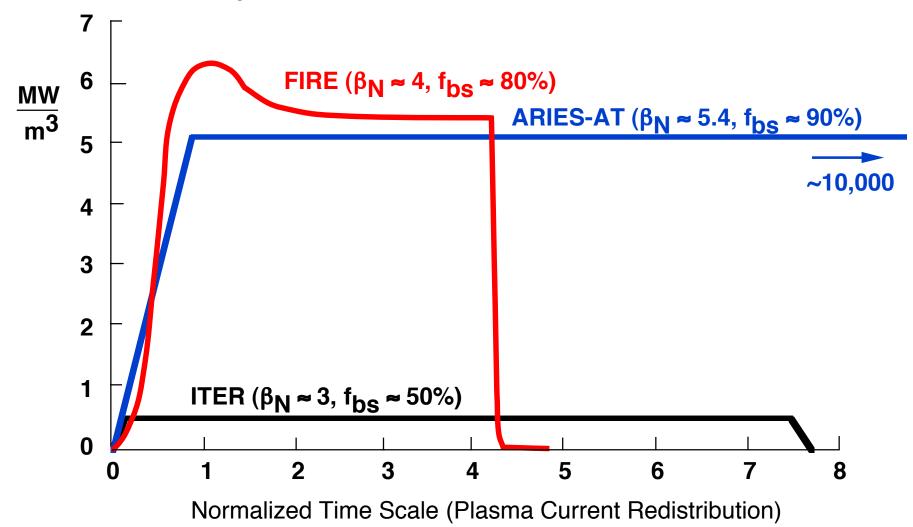
Advanced Operation

- Q ~ 5, f_{bs} ~ 80%, β_N ~ 4 @ 98% equil. (FIRE)
- Q ~ 5, f_{bs} ~ 50%, β_N ~ 3 @ 99.9% equil. (ITER)

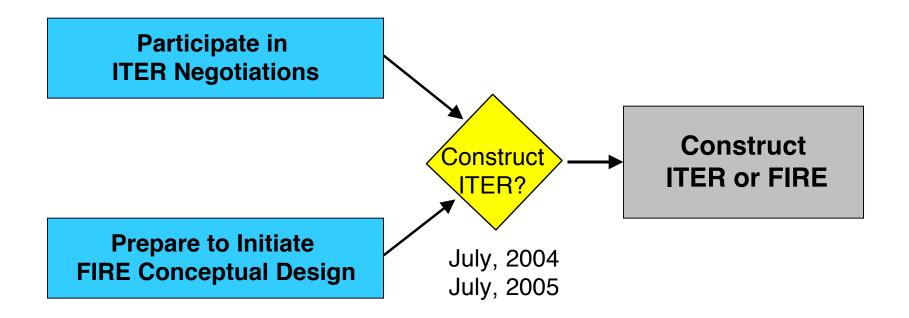

A strategy that allows for the possibility of either burning plasma option is appropriate. (FESAC)

FIRE Would Test Advanced Physics for ARIES-RS

	ITER	FIRE	ARIES-RS			
κ_x plasma elongation	1.85	2.0	2.0			
δ_x plasma triangularity	0.49	0.7	0.7			
Divertor Configuration	SN	DN	DN			
β_N , normalized beta, AT	~3	~4	4.8			
Bootstrap fraction, AT	50	80	88			
B (T)	5.3	10	8			
R (m)	6.2	2.14	5.5			
Fusion Core Mass, tonne	19,000	1,400	13,000			
Plasma Volume, m ²	840	27	350			
P _{fusion} (MW)	400 150		2170			
P _{fusion} /Vol (MW/m ³)	0.5 5.6		6.2			
Neut Wall loading (MW/m ²)	0.57	2.7	4			
P_{loss}/R_{x}	20	20	100			
Divertor Target material	C(W?)	W	W			
$Q = P_{fus}/P_{ext}$ Conventional	10	10	n.a.			
$Q = P_{fus}/P_{ext}$ Advanced Tok	5	5	27			
Burn Time						
seconds	400 - 3,000	20 - 40	20,000,000			
Current Profile Equilb,%	86 - 99.99	86 - 98	100			


FIRE can Access Regimes of Interest to Advanced Reactors

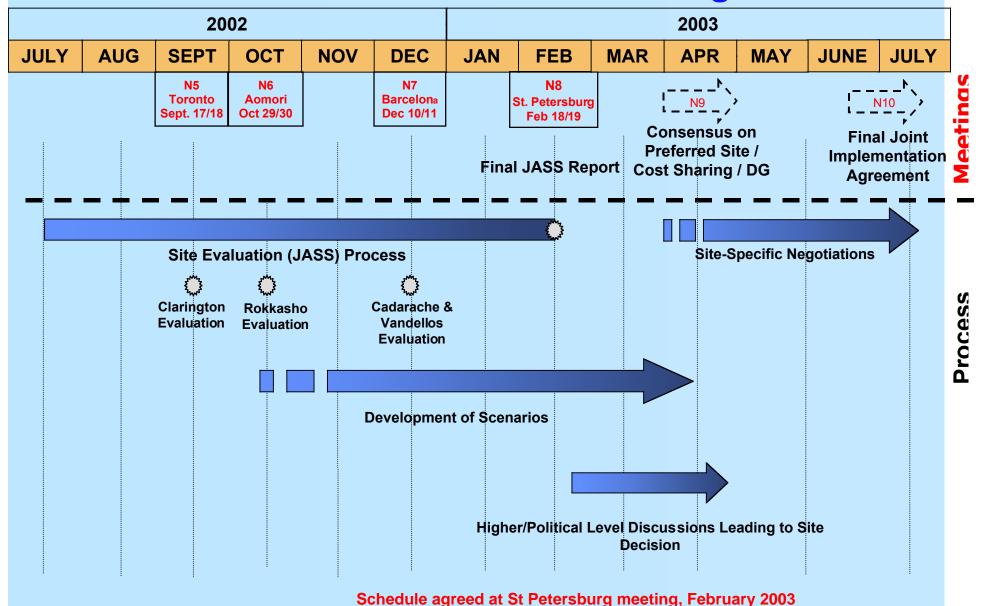
- Reactor studies ARIES in the US and CREST/SSTR in Japan have determined the requirements for an attractive fusion reactor.
- Present tokamak results are far from the attractive reactor regime.
- The present ITER-FEAT design **does not** access the attractive reactor regime.
- The present FIRE design **does** access the attractive reactor regime.



FIRE Could Explore Advanced Tokamak Regimes Close to ARIES-AT Parameters

Fusion Power Density

The U.S. FESAC Dual Path Strategy



ITER Negotiation Schedule, September 18, 2002

Activity Name	2001		2002											
	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Negotiation Meetings	•		•		$\langle \rangle$	•	•	•						•
	N1		N2		N3	N3	Ň	4			N	5		N6
Joint Implementing Agreement			Draft 1		Draft 2	Draft 2	Draf	t 3			Fi	inal	Initialle	ed 🔶 be
Related Instruments					Draft 1		Dra					nal	Initialle	ed 🔶
Implimenting Plan					Initial	Initial	Drat	ft			Fi	กลเ	Initialle	ed 🔶
Joint Assessment of Specific Sites							¢	Con:	sensus or	Preferre	d Site ┥			
Nomine e Director General							4	👂 Und	lerstan din	gReache	d ┥			
Procurement Sharing/Cost Allocation							4	Con	isensus R	eached		•		
		red = o	han ges fr	om plan a	agreed at N	J1								

ITER Schedule at the time of FESAC Recommendations on Burning Plasma Strategy

Timetable for Consensus on Site Preference and the JIA for Signature

