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One of the processes that can generate surface runoff is rainfall excess, which is a process controlled at the
surface of the soil. This occurs when rainfall reaches the soil at a rate in excess of the soil’s ability to absorb,
which is called infiltrability. This dynamic property can in uniform soil be described by a rather well-developed
infiltration theory. Surface water flow toward a receiving channel may in geometrically simple conditions be
described by the kinematic or diffusive wave equations. The surface water is in continuous interaction with the
soil’s changing infiltrability. Both infiltration theory and surface flow equations are introduced here, and the
interactions and complexities arising from spatial variations are discussed. These processes are incorporated in
modern hydrologic response models, using numerical solutions as well as analytic solutions. The application of
this theory in hydrology, however, must be informed by scale considerations and the appropriate treatment of
natural complexities. Some scale limitations and some approximate methods for treating spatial soil variations
are illustrated in this article, with reference to relevant literature.

INTRODUCTION

Runoff generated from storm rainfall is largely deter-
mined by local interaction of the properties of the rain-
fall, ground cover, land use, and soil (see Chapter 117,
Land Use and Land Cover Effects on Runoff Pro-
cesses: Urban and Suburban Development, Volume 3
and Chapter 118, Land Use and Land Cover Effects
on Runoff Processes: Agricultural Effects, Volume 3).
While vegetation, above ground cover, and land use play a
critical role in the fate of rainfall, this article focuses on
the interactions between rainfall and surface soils. Here
we discuss the physical dynamics of those cases where
rainfall generates surface runoff at the point where it
falls. Infiltration excess occurs when the rainfall comes
at a rate higher than the rate at which the otherwise
unsaturated soil can absorb water. (Saturation excess, dis-
cussed below, occurs when the soil is saturated or filled
with water from a subsoil restriction, such as a shal-
low bedrock. This mechanism is not rainfall rate depen-
dent.) The runoff or surface water flow resulting from
infiltration limitation is called infiltration excess runoff,
and the (variable) limiting soil intake rate is called the
soil infiltrability. Infiltration excess runoff is often also

referred to as Hortonian runoff, after Robert Horton (Hor-
ton, 1933).

The infiltration and saturation excess–generating mech-
anisms are not mutually exclusive on a watershed, nor
even mutually exclusive at a point on a watershed. The
rainfall rate may exceed the infiltrability for some storms,
and for others the rain may come slowly until the sur-
face soil layer is saturated. Climate and geography will
determine which mechanism is dominant at a given loca-
tion and time. Figure 1 shows a world map with cli-
mate zones indicated. The predominance of relatively short
high intensity storms in most subhumid and semiarid
zones means that these areas are more prone to infiltra-
tion excess runoff. Conversely, saturation excess runoff is
more common in humid areas, usually characterized by
greater rainfall volumes but with lower intensities. Increas-
ingly, human activity (e.g. urbanization, compaction, etc.)
results in an overall decrease of soil infiltrability result-
ing in globally increasing areas of infiltration excess runoff
generation.

Infiltrability changes with many factors, some of which
are described quantitatively here. It can also change because
of changes in the soil with freezing, thawing, com-
paction, and tillage. An intense rain on cultivated soil
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Figure 1 World distribution of land classes, indicating land areas subject to rainfall excess runoff. The
largest grey areas correspond to semiarid and arid areas. A color version of this image is available at
http://www.mrw.interscience.wiley.com/ehs

can also create a surface crust or sealed layer. While
these processes have been studied and described else-
where, they are difficult to quantify outside local condi-
tions such as soil cover, and will be omitted from this
overview.

The timescale of infiltration and surface flow pro-
cesses is important, insofar as hydrologic analysis often
employs lumping in space and time to approximate the
behavior of hydrologic processes. Changes in soil water
and changes in runoff rates occur on the order of sec-
onds in some cases, and a timescale of a few min-
utes is necessary to capture the dynamics of surface
runoff. By contrast, the slow movement of water in an
aquifer (see Chapter 112, Subsurface Stormflow, Vol-
ume 3 and Chapter 149, Hydrodynamics of Groundwa-
ter, Volume 4) can be characterized by timescales on the
order of days or months. Thus, infiltration excess runoff is
one of the more dynamic or rapidly changing fluxes in the
hydrologic cycle, and as will be seen below, requires knowl-
edge of the temporal pattern of rainfall rates to characterize
it accurately.

Historical Notes

Robert Horton was one of the early proponents of the con-
cept that higher intensity rainfall rates on soils of finer
texture can exceed the intake rate of the soil and runoff
thus reaches upland channels by overland flow on the
soil surface. He also recognized the mechanism of stream-
flow generation by flow through the soil mantle. Recent

reanalysis of Horton’s data from his laboratory watershed
in upstate New York indicates, not surprisingly, that the
catchment included areas likely to produce a variety of
runoff mechanisms, including a small marshy area (Beven,
2004).

Horton termed the limiting soil surface intake rate the
“infiltration-capacity” (Horton, 1933). While he recog-
nized that the soil intake rate decayed in value through
a storm, he attributed the reduction to surface soil com-
paction, soil colloidal swelling, or inwashing of fines
from the surface (Horton, 1939). Horton made a rather
insightful analysis of the hydraulics of overland flow,
but his analyses generally used constant infiltration rates.
While he was aware of the prescient work of Green and
Ampt (1911), he did not believe it related to catchment
infiltration:

“The question naturally arises whether the infiltration-capacity
may not vary with the depth of penetration of soil-moisture
into a dry soil column. Thus far, the author has not found any
definite evidence of an appreciable variation in this respect.
The work of Green and Ampt has a bearing on this question
although their mathematical analysis of the process appears to
be faulty.” (Horton, 1936)

Horton further expressed his belief that the counter-
flow and compression of air negated the ideas of Green
and Ampt. Horton’s work is a good example of an
early appreciation of processes at work in the field,
but with a mistaken view of the relative magnitudes
involved.
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THE DYNAMICS OF INFILTRATION DURING
STORM RAINFALL

Unsaturated Soil Hydraulic Properties

Understanding the dynamics of infiltration and runoff
requires some understanding of the hydraulics of water in
unsaturated soil. Soil is a porous medium through which
water can flow even when there is air in the spaces between
soil grains. Water in unsaturated soil is at a lower pressure
than that of the air surrounding it, due to the capillary
pressure, which is a property of the interface between air
and water. This capillary pressure may be expressed as an
equivalent (negative) head of water, with the symbol ψ ,
and is the same force that causes water to rise in an open
capillary tube from a free source of water (see Chapter 73,
Soil Water Potential Measurement, Volume 2 for a more
thorough discussion).

The volumetric water content of a soil, for which the
symbol θ [L3 L−3] is used, varies between zero and the
soil porosity, which is the relative volume of the soil
not occupied by solid matter. Figure 2(a) illustrates how
the soil water pressure decreases dramatically (becomes
more negative) as the soil dries. This relation is often
referred to as the soil water retention relation. Figure 2(b)
illustrates by example how the soil water conductivity also
falls dramatically as the soil becomes drier. Hydraulic
conductivity, K , [L T−1] is defined as the rate of flow of
water in soil in response to a unit gradient of hydraulic
head. The expression for this is Darcy’s Law :

v = −K
dH

dz
(1)

where v is the rate of flow in units L T−1, H is hydraulic
head in terms of equivalent depth of water (L), and z is the
measure of distance (L). The hydraulic head, H , is made
up of capillary pressure head and gravitational potential:
H = ψ + z. Thus, in a homogeneous soil of uniform water
content, and thus uniform capillary pressure head (zero
capillary head gradient), water may flow downward due to
gravity alone. On the other hand, unsaturated flow normal to
the gravitational vector moves only in response to capillary
head gradients.

In unsaturated soils, as illustrated in Figure 2(b), K is a
function of capillary head, K(ψ), expressed as a relative
conductivity, kr, which is the ratio of K(ψ)/K(0). K(0)

is called saturated hydraulic conductivity, Ks. K can also
be treated as a function of water content, θ , through the
retention relation of Figure 2(a). During rainfall infiltration,
surface soil water content increases from the initial value,
θi. For large enough rainfall rates, the surface water can
reach field saturation. This is the water content at zero
capillary head, θs. Further discussion of soil capillary
properties can be found in article (see Chapter 74, Soil
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Figure 2 (a) example soil water retention curve, relating
water content to soil water potential, and (b) soil relative
conductivity relation for the same soil

Hydraulic Properties, Volume 2), in soil physics texts, or
in Smith (2002).

Physical Basis of Models for Infiltration Under

Rainfall

When a hypothetically unlimited supply of water initially
reaches the relatively dry soil surface, the wetting at the
surface creates extremely large hydraulic head gradients for
flow into the soil, and the rate of influx, v, is extremely high,
even though overall values of K may be low. As infiltration
of rainwater continues, the hydraulic head gradient for
absorption decreases, the surface value of K increases, and
the rate of infiltration is dramatically reduced. When the
capillary gradient at the surface ultimately approaches 0, the
only head gradient is gravity, and from equation (1) it can
be seen that the ultimate rate of infiltration will equal Ks.

Definitions
Hereafter, we will refer to the vertical infiltration rate at the
soil surface with the symbol f . The limiting value of f ,
given an unlimited supply of surface water, and ψ = 0, is
called the soil infiltrability, with the symbol fc. Both vary
continuously with time during rainfall as the rain intensity



1710 RAINFALL-RUNOFF PROCESSES

and soil water conditions change. The rainfall rate, varying
with time, is r(t). Before a brief presentation of the origin
of infiltration relations, we introduce the concept of soil
water diffusivity. This concept is analogous to diffusion
mathematics, where the flux of a quantity, such as heat,
is a function of the gradient of that quantity. In terms of
water in the soil, θ , one can use the relation illustrated in
Figure 2(a) with equation (1) to obtain

v = D(θ)
dθ

dz
+ K(θ) (2)

by using the definition of diffusivity, D:

D(θ) ≡ K(θ)
dψ

dθ
(3)

Approximations for the relation D(θ ) play an important
role in the successful derivation of infiltrability relationships
given below (Smith, 2002).

Soil Flow Dynamics and Infiltration

At the soil surface, when there is rain, the flow dynam-
ics can be described by combining equation (2) with an
expression for continuity of flow, representing the fact that
the inflow rate must equal the change in soil water storage
at the soil surface:

f = d

dt

∫ L

0
(θ − θi) dz (4)

where L is a depth below the advance of the wetting zone,
and θi is assumed uniform. In this expression, we assume
for relative simplicity that the initial water content is small
enough for the initial downward (gravitational) flux of water
to be negligible. Referring to the infiltrated water depth in
the wetted soil adjacent to the surface as I , equation (4) in
integral form is

I (t) =
∫ t

0
f dt =

∫ L

0
(θ − θi) dz (5)

This expression in combination with Darcy’s Law in the
form of equation (3) yields the infiltration integral, from
which at least two basic infiltration models come (see
Smith, 2002 for a derivation):

I (t) =
∫ θo

θi

(θ − θi)D

v(θ, t) − K(θ)
dθ (6)

From equation (6) and realistic assumptions about the
form of the highly nonlinear functions D(θ ) and K(θ ) (see
Parlange, et al., 1982; Smith, 2002), the expressions for
infiltrability are derived in terms of an important integral

property of soils, called the capillary length scale, or
capillary drive, G:

G = 1

Ks

∫ 0

−∞
K(ψ) dψ =

∫ 0

−∞
kr(ψ) dψ (7)

where Ks is the saturated hydraulic conductivity and kr is
the relative hydraulic conductivity shown in Figure 2(b).
This parameter is in effect the kr-weighted mean value of
soil capillary head. Another physically meaningful term that
arises in the integration of equation (6) is the initial water
content deficit, (θs − θi), hereafter referred to as �θi.

Relations for infiltrability in terms of G, Ks, and the
deficit, �θi, include that of Green and Ampt (1911):

fc = Ks(G�θi + I )

I
(8)

and Smith and Parlange (1978):

fc = Ks

[
1 − exp

( −I

G�θi

)]−1

(9)

The infiltrability relation (8) is derived on the basis of
the assumption of a K(ψ) relation that approaches a step
function, with K “jumping” from a negligible value to its
maximum at some value of ψ (or θ ) as the soil wets.
This behavior is most like that of a uniform sand or silt.
The relation of equation (9) is derived on the basis of the
assumption that K(ψ) rises exponentially as ψ increases
toward 0. While this does not match the actual measured
relation of most real soils, it is in most cases a better
approximation than equation (8) (Parlange et al., 1982).

Computational Forms for Infiltration Models

Notably, both equations (8) and (9) express infiltrability in
terms of I rather than time, t . While relations between fc, I ,
and time, t , can be mathematically derived, the relation of
fc to I is quite important in modeling infiltration during
a storm. When a storm is sufficiently intense to create
excess, the control on soil f changes from the rainfall to
the infiltrability at some point. This is termed the ponding
time. Owing to the highly nonlinear relation of D(θ), for
most soil hydraulic relations there is a near equality between
the infiltration relations fc(I ) under rainfall and that under
unlimited water supply at the surface (“sudden ponding”)
(Smith, 2002). This allows one to use equations (8) or (9)
to predict both the onset of ponding under rainfall, and
the decaying function of fc after that, when the soil exerts
control through infiltrability. Because the unifying variable
is I , this close approximation has been called the infiltrated
depth approximation (IDA) by Smith (2002). It was earlier
called the time condensation approximation by others (e.g.
Sivapalan and Milly, 1989). The principle does not however
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described by equations (8) or (9), showing how ponding
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actually relate to the condensation of time. It assumes that
the time at which the surface boundary condition changes
from rainfall to soil control occurs when the relation
between r and Ia matches that for fc(Ia), where Ia is the
accumulated infiltration due to rainfall. This is termed the
time of ponding, and subsequent variables with subscript
p (such as Ip) refer to the value of the variable at that
time. Figure 3 illustrates the fact that in the f(I) relation,
ponding at Ip may be approached by any number of patterns
of rainfall.

Nondimensional Forms

Different soils have a wide range of values of the hydraulic
parameters G, Ks, and the initial soil deficit �θi varies
between storms. The infiltration equations may be unified
and simplified by producing dimensionless forms, scaling
I by the value of G�θi, and scaling fc on Ks:

fc∗ = fc

Ks
I∗ = I

G�θi
(10)

These dimensionless forms were used in Figure 3. Equa-
tion (8), using these variables, is thereby simplified to

fc∗ = I∗ + 1

I∗
(11)

A dimensionless time may similarly be found:

t∗ = t

G�θK−1
s

(12)

and rainfall rate may be scaled as for infiltrability: r∗ =
r/Ks. Relations between time and either I∗ or fc∗ are
obtained by substituting the relation f∗ = dI∗/ dt∗ into
equations (8) or (9). The resulting expressions are implicit
in time, but explicit expressions have been presented by
Smith (2002), Paige et al. (2002), and Li et al. (1976), one
of which will be presented here.

Infiltrability as a Function of Time
Time-explicit expressions are useful after ponding has been
found using the IDA. The simplest approximate expression
for post-ponding fc∗(t∗) can be given as (Smith, 2002):

fc∗ = (1 − β) +
√

β2 + 1

2t
′
∗

(13)

where β is a weighting parameter. This expression describes
a relation intermediate between that of equations (8) and (9)
for values of β between 0.5 and 1. Figure 4 illustrates the
time-explicit equation (13) and time-fc relations for both
equations (8) and (9). The physics of infiltration requires
that at small times the functions must be asymptotic to the
line fc∗ = (t∗)−1/2, and at large times asymptotic to fc∗ = 1.
The variable t ′ is used to indicate that the time position of
this curve must be adjusted to describe fc after ponding
time, tp, (or ponding depth Ip) so that fc∗ = rp∗ at t ′∗ = tp∗,
where rp is the rainfall rate at which ponding occurs.
Using infiltrability expression, equation (9) for example,
and solving for I = Ip expressed as an integral of the
rainfall rate pattern, the ponding time is found using the
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IDA method:

Ip =
∫ tp

0
r(t) dt = G�θi ln

(
r∗

r∗ − 1

)
(14)

Clearly, the ponding time tp(r) can be determined
directly for a rainfall of constant rate, for which I = rt .
After ponding occurs, the infiltrability expression equa-
tions (8), (9), or (13) will estimate rainfall excess during the
period of time when surface available water, including the
rainfall and ponded water, equals or exceeds the infiltrabil-
ity. This leads to the consideration of the dynamic interac-
tion of infiltration and surface water flow, discussed below.

Irregular Rainfall and Recovery of Infiltrability

During Rainfall Hiatus

The above methodology is robust for an unlimited variation
in the pattern of rainfall, with the caveat that rainfall must
stay greater than Ks, that is, r∗ > 1. For the more general
case, there needs to be an accounting for redistribution of
water during breaks in rainfall (periods when r = 0), or
any time infiltrability exceeds the rainfall. Local conditions
can easily be simulated, given the soil hydraulic properties,
by solution of the nonlinear convection diffusion equation
(Richards’ equation; see Chapter 150, Unsaturated Zone
Flow Processes, Volume 4 and Chapter 66, Soil Water
Flow at Different Spatial Scales, Volume 2), but this
is not practical for most hydrological catchment models.
Some early methods for treating breaks in rainfall patterns
simply maintained a value of I through the hiatus (e.g.
Mls, 1980). Corradini et al. (1997) and Smith et al. (1999)
have proposed and demonstrated a method of intermediate
complexity requiring minimum parameterization of the soil
hydraulic properties, which simulates robustly the changes
in infiltrability and soil water deficit �θi for periods when
rainfall rates fall to any value less than Ks. This method
treats the wetting pulse in the soil as a distortable curve
with conserved similarity and net volume of water, with
Green–Ampt type assumptions on its distortion (changes
in depth and surface water content) under low (or negative)
surface flux values. The reader is directed to the above
references, or Smith (2002), for details.

Surface Water and Infiltration Interdependence

Early methods of treating infiltration excess involved sub-
tracting an infiltration pattern (often assumed constant) from
the rainfall pattern and then routing the remainder (“rain-
fall excess”) across the catchment toward a receiving stream
(Crawford and Linsley, 1966; HEC-1, 1990). Not only does
this ignore the interaction of rainrate and ponding time
described above, which was generally unknown, but it also
ignores the ability of the soil to continue to infiltrate what-
ever surface water exists after rainfall has fallen below the

infiltrability. The result was an inability to estimate ponding
time and an overestimation of the recession flow after runoff
production had ceased. Also important in the interactions
of surface water and infiltration is the microtopography
of the surface and the spatial variability of infiltrability.
Microtopography can confine the flowing water to some
fraction of the total area, and thus limit the opportunity for
infiltration losses during recessions. Significant spatial vari-
ability of infiltrability is known to vary on length scales as
small as decimeters. These topics will be explored in more
detail below.

RUNOFF DYNAMICS

The flow of the rainwater not infiltrated by the soil surface
(rainfall excess) is at the small (mm) scale, a complex
phenomenon with exact flow directions, unit discharges
(discharge per unit flow width), and depths varying widely
across the surface (Abrahams and Parsons, 1994; Fiedler
and Ramirez, 2000). Runoff is, however, treated at a larger
(m) scale as a free-surface hydraulic process. The physical
description involves some reasonable assumptions that yield
a useful and relatively accurate mathematical description of
the runoff from most natural surfaces. Figure 5 illustrates
diagrammatically the variables involved in the flow of water
along a simplified hillslope.

The Surface Water Flow Equations

The primary assumption is that flow is downslope and
locally can be approximated as one-dimensional. At larger
scales, it is clearly two-dimensional as the land surface con-
verges and diverges downslope, but even this may be treated
as stepwise one-dimensional. The flow is incompressible,
and the overall velocity is sufficiently low that the energy
is largely in the form of momentum. Thus, the equations
used are those that conserve momentum and mass. These
equations were first written by de Saint Venant (1871), and
are commonly referred to as the Saint Venant equations.
The two equations include the conservation of momentum

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= g(So − Sf) − u

A
(r − aff ) (15)

x

L

f

h

r(t)

Figure 5 Definition diagram for kinematic approximation
for runoff water dynamics
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and the conservation of mass

∂A

∂t
+ ∂Q

∂x
= (r − aff )w (16)

where

A is cross-sectional area of flow [L2]
af is fraction of surface covered by infiltrating water
Q is discharge per unit width [L2 T−1]
x is distance from upstream border [L]
t is time
u is flow velocity [L T−1]
h is mean depth of flow [L]
g is gravitational acceleration [L T−2]
So is mean bed slope
Sf is friction slope
w is width of flow [L].

The first terms in equation (15) represent changes in
momentum and potential energy, and the last term on the
right represents the change in momentum due to lateral
inflows. The infiltrating area fraction af is 1.0 when r > fc,
and is reduced on irregular surfaces during flow recession
when infiltration comes from surface water. The friction
slope represents the shear friction along the flow perimeter,
and is exemplified by the Chezy or Manning equation:

q = αhm =
√

Sf

n
h5/3 (17)

where q is unit discharge [L2 T−1], α and m are the
generalized friction relation parameters, and n is the Man-
ning friction factor. Equation (17) represents experimental
results from channels, in which hydraulic radius R replaces
h, but the power law relation also reflects considerable
experimental data from catchment experiments (e.g. Wu
et al., 1978; Abrahams and Parsons, 1994; Emmett, 1970).
The form of the friction slope relation is also applicable
to the Chezy friction law relationship (m = 3/2) (Eagle-
son, 1970). Note that h represents the mean depth or area
per unit width. The relationship described by equation (17)
simply states that the unit discharge is a function of a
modeled average depth (or storage) in the abstract sheet
flow representation of overland flow depicted in Figure 5.
It does not imply that overland sheet flow must occur on a
hillslope to represent the flow dynamics described in equa-
tions (15) through (17). While overland sheet flow has been
observed in field settings (e.g. Emmett, 1970), it is not typ-
ical as surface water flows usually converge to rivulets in
a relatively short distance due to natural microtopography
(Dunne, et al., 1991) (also see Chapter 11, Upscaling and
Downscaling – Dynamic Models, Volume 1). The appro-
priateness of the discharge-storage relationship implied by
equation (17) has been evaluated by several including Wu

et al. (1978), as well as by microscale numerical simulation
with a two-dimensional form of equations (15) and (16)
(Fiedler and Ramirez, 2000).

Simplified Forms
The Saint Venant equations are generally applicable to
channel and streamflow, but further simplifications are
appropriate for overland flow. Because flow is shallow,
it can be reasonably assumed that very little energy is
contained in the form of inertia, and an order of magnitude
analysis demonstrates that the addition of rainfall excess
adds negligible net momentum to the flow. With these
approximations, equation (15) can be reduced to

∂h

∂x
= So − Sf (18)

Equations (17) and (18) constitute the diffusive wave
equations (Morris and Woolhiser, 1980), which are appro-
priate for certain flow conditions characterized by shallow
slopes. A criterion for applicability is given by Morris and
Woolhiser (1980).

For larger values of surface slope So, the value of dh/ dx

becomes negligible compared with So, and equation (18)
reduces to Sf = So. In this case, the kinematic wave
equations are appropriate. The flow-depth relationship
in this case is a description of the relation of mean
effective depth and mean effective discharge, equation (17).
This relation plus the continuity of mass equation (16)
constitute the kinematic wave equations. Equation (16) with
equation (18) may be written in terms of h for unit width
of overland flow, rather than area A:

∂h

∂t
+ mαhm−1 ∂h

∂x
= r − aff (19)

Woolhiser and Liggett (1967) developed a kinematic
wave number, k = SoL/hoF

2, to measure the ability of
equation (19) to represent well the Saint Venant equations.
L is plane length, ho is normal depth for a given flow q,
and F is Froude number. Larger values of k indicate that
the kinematic wave equations are better approximations.
This analysis was further extended by Morris and Woolhiser
(1980) to consider a larger range of Froude numbers.

Solving the Kinematic Wave Equations

Equation (19) may be solved under certain assumptions by
use of the method of characteristics. This is a mathematical
approach to solve sets of partial differential equations by
transformation into sets of ordinary differential equations
(Lighthill and Whitham, 1955; Wooding, 1965). This article
is not an appropriate place to present the details of
this method, but it is instructive to look briefly at the
solution, as it describes the behavior of a surface water
runoff hydrograph.
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Characteristics are traces in the solution domain (in this
case the x, t plane) along which a partial differential
equation is reduced to an ordinary differential equation. The
characteristic equations corresponding to equation (19) are
as follows:

dx

dt
= αm

√
Soh

m−1 (20)

dh

dt
= r − aff (21)

Equation (20) describes the celerity or characteristic
velocity of the flow. In the characteristic method, equa-
tion (21) is valid along the line described in the (x, t) plane
by equation (20). In turn, the change in h described by
equation (21) changes the slope of the x, t characteristic.

Figure 6 illustrates some of the essential features of the
characteristics as runoff begins along a slope. This is a
very simplified schematic, but at some time after the start
of rainfall, runoff begins. The upstream characteristic starts
at x = 0, t = 0, and moves at an increasing rate downslope.
To the right of this characteristic, the flow is unsteady
and uniform. To the left, flow is steady and nonuniform.
When the upstream characteristic reaches the lower bound,
outflow becomes steady, and this is termed the time to
equilibrium. In this example, and for many rainfalls and
short runoff surfaces, this condition is not reached. After
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the surface is characterized by uniform unsteady flow

the end of rainfall, the characteristics exhibit decelerating
celerities as h(x) is reduced by infiltration, and at some
time the characteristic velocity and h fall to zero. The
locus of drying is shown on the schematic. Between the
end of rainfall and the end of runoff, the hydrograph
is in recession. For impervious surfaces where f = 0,
the recession is extended considerably, and the recession
characteristics are straight lines of differing slopes that
depend on h(x) at the time rainfall excess ends.

Computer models of runoff generally approach the solu-
tion of equation (19) with numerical methods, which can
treat the time variation of f directly if not analytically.
Several early numerical methods have been discussed by
Brakensiek et al. (1966), and the robust weighted implicit
method is described by Smith et al. (1995b). The character-
istic solution is used in this model to estimate the arrival of
the upstream characteristic at the first finite difference space
node to prevent small solution oscillations. A full discus-
sion of the merits and drawbacks of the various numerical
solution techniques is beyond the scope of this article.

SURFACE AND SOIL WATER INTERACTION

It is through the right-hand term in equation (19) that the
equations of surface water flow and the equation describing
surface water infiltration are linked. From the point of view
of the surface water calculations at any point, the input to
surface flow is always r − f , and becomes negative (a loss)
when the rainfall rate, r , falls below fc, as long as there
is free water on the surface. From the point of view of the
infiltration calculations after runoff begins, the reduction
of rainfall rate below fc is not noticed, and infiltration rate
continues at capacity fc, as long as this rate can be supplied
by surface water plus rainfall rate.

The solution characteristics during recession are also
shown schematically in Figure 6. The case of a “flat”
infiltrating surface and an impervious surface are two
extremes in the behavior of the flow recession. Intermediate
to these two is the case of a surface with microtopographic
features, either irregular – such as grassed hummocks, or
regular, such as furrowed paddocks. In this case, the area
available for infiltration during recession flow is a function
of the mean depth of surface water. The area is clearly zero
at h = 0, and at some rather large depth, hc, the entire area
may be covered with water. For 0 < h < hc, a fraction of
the area will be covered and the loss of water to infiltration
during recession will be limited accordingly.

Another case where microtopography plays an important
role in surface water interactions is the case of run-on.
This term refers to situations where water is generated by
rainfall excess at a location upslope or upstream of an area
with a higher infiltration capacity. Surface microtopography
and resulting flow convergence can limit the opportunity
for infiltration of the run-on water as the effective wetted
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perimeter is reduced. This in turn can affect the extent to
which run-on will advance across the irregular surface.
Woolhiser et al. (1996) studied, for example, the case
of run-on caused by a spatial trend in infiltration due
to variation in Ks, and showed that significant effects
on hydrographs are possible. Small-scale random spatial
variations are a somewhat different case.

Spatial Variability and its Effects on Runoff

Processes

Like most natural processes, infiltration excess and its
associated runoff are affected by the variability of nature.
Some natural processes lend themselves to treatment in
bulk, with processes characterized by parameters that
represent the sum effect of many smaller scale variations.
Runoff tends, however, to be a nonlinear process in
many locations, and it is often affected by natural spatial
variations at scales an order of magnitude less than the
scale of interest (see Chapter 3, Hydrologic Concepts of
Variability and Scale, Volume 1).

In applying the kinematic flow equations, microtopogra-
phy can be abstracted to a simple microchannel geometry
(Woolhiser, et al., 1996; Smith et al., 1995a). This can rep-
resent the ensemble result of extensive measurements of
variations in relief across the flow direction, such that a
composite geometry may represent the relative surface cov-
erage between mean depths of 0 and some maximum.

Small-scale variations in surface conditions or soil con-
ditions within a catchment can make it difficult to repre-
sent the catchment runoff processes by the mathematics
described above. The infiltration parameter Ks is a very
important one in estimating infiltration and runoff dynamics
for Hortonian runoff, and it has been found consistently to
exhibit random variation at small scales (cm to m) (Nielsen
et al., 1973). Several methods have been reported to deal
with the effect of this variation on the runoff for small
catchments (Smith and Hebbert, 1979; Sivapalan and Wood,
1986; Sharma et al., 1980; Smith and Goodrich, 2000).
In general, the difference between infiltration at a point
and the behavior of an ensemble of points is illustrated in
Figure 7. This graph uses scaled values as described by
equations (10) and (11). The local value of Ks is assumed,
on the basis of experimental evidence, to vary randomly
with a lognormal distribution. The effect of random vari-
ation is to blur the existence of a single time of ponding,
as shown, and further to alter the value of the large-time
asymptotic value of fc. The effect of variability on Ks is
largely confined to smaller values of rainfall rate; for r∗
values of 10 or more, where r∗ ≥ the highest infiltration
capacity, it is negligible. On the basis of the value of the
coefficient of variation of Ks [CV(Ks)], Smith and Goodrich
(2000) developed an ensemble infiltration model that uses
the same parameters as equations (8) or (9), but includes
the effect of CV(Ks) and rainfall rate.

Areal (ensemble) infiltrability: variable Ks
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Figure 7 Examples of infiltration patterns for areas
characterized by small-scale variability of Ks. Two rainfall
rates are shown, and the interaction of variability and
rainrate is illustrated

The effect of parameter variations in looking at larger-
scale hydrology is an important problem related to upscal-
ing in hydrology – simulating or predicting the perfor-
mance of an ensemble of catchments that make up a larger
catchment. Models of hydrology useful at one scale may not
be successful at the scale an order or more larger. While
the functional representation of small-scale Ks variations
improves the prediction of runoff, especially for storms
where the runoff is a small fraction of the rainfall, the
interactions of variability during runoff are more compli-
cated than the ensemble effect, due to run-on along the flow
path. Another method to treat this, at least in a research-
level model, distributes finite incremental variations in val-
ues of Ks randomly along the flow in a one-dimensional
simulation, or divides the catchment into parallel strips
of flow, each strip representing a portion of the random
distribution expected in the value of Ks (Woolhiser and
Goodrich, 1988).

Other characteristics of a catchment may also exhibit
significant spatial variability. The effects of variation in
slope and surface hydraulic roughness can be modeled at
appropriate scales by treating the flow path as a cascade
of smaller elements (Smith et al., 1995b; Goodrich et al.,
2002; see also www.tucson.ars.ag.gov/kineros). This
becomes impractical at very small or large scales; how-
ever, surface runoff becomes channelized into rills and
microchannels before the scale becomes too large to con-
sider such variations.

The scale of variation of runoff intensity is generally
larger than that of Ks, but its variation is equally as impor-
tant for treating infiltration excess on a catchment. Spatial
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variability of rainfall and its effects on runoff generation
on catchments scales of 1–100 km2 and greater have been
relatively widely studied (Balmer et al., 1984; Iwasa and
Sueishi, 1990; Niemczynowicz and Sevruk, 1991; Houser
et al., 2000; Syed et al., 2002), with those at smaller areal
scales typically geared toward urban storm runoff esti-
mation (Berne et al., 2004). Even in an urban setting,
the normal scale of rainfall measurements, including those
derived from radar, are often considerably larger than rain-
fall variations that are important for runoff generation. This
is particularly true where small intense runoff-producing
storm cells dominate runoff production. The USDA-ARS
Walnut Gulch Experimental Watershed (WGEW) in south-
east Arizona is such an area. In this experimental watershed,
Reich and Osborn (1982) concluded that for 5-min max-
imum storm depths recorded at rain gauges greater then
5 km apart were statistically independent. At a smaller scale
within the WGEW (∼5 hectare catchment area), Goodrich
et al. (1995) found rainfall gradients ranging from 0.28 to
2.48 mm/100 m with an average of 1.2 mm/100 m. These
gradients represent a 4 to 14% variation of the mean rainfall
depth over a 100-m distance but a much larger percentage
in terms of total depth of runoff over the catchment due to
the relatively low runoff to rainfall ratios that are common
in arid and semiarid regions. In a follow-on study, Faurès
et al. (1995) found that if distributed catchment model-
ing is to be conducted at the 5-hectare scale, knowledge
of the spatial rainfall variability on the same or smaller
scale is required. A single raingage with the standard uni-
form rainfall assumption can lead to large uncertainties in
runoff estimation.

Scale Issues and Models of Runoff

Finally, it is important to consider the timescales of the
processes of surface runoff. Surface water flows on natural
topography do not travel far before converging in some
manner into concentrated flow channels. Distributed surface
flows prior to some kind of channelization rarely exceed
100 m in length, except in special cases of low-sloped tilled
catchments (Dunne et al., 1991; Abrahams and Parsons,
1994). This limitation in spatial scale also imposes a
limitation in timescale. The timescale of variations and
the rate of flow across the surface means that rainfall
rate variations on the order of less than a minute can be
important parts of the dynamics of runoff. Surface runoff
cannot therefore be treated scientifically with information
on rainfall that consists only of the daily depth of rain. For
this lumped data approximation, the prediction of runoff
will contain enormous uncertainty.

Models of Hortonian runoff generally employ the solu-
tion of the kinematic or diffusive wave equations by numer-
ical methods. The wide variety of numerical solution is
too numerous to be described here. Readers are referred to
Singh (1995) for a good overview of numerical solution

techniques. Again, there are practical limits for the numer-
ical subdivision of the flow path, and these impose corre-
sponding limits on the timescales. Moreover, the values of
h that are involved in the solution are on the order of a few
millimeters, and the solution of equation (19) over values
of �x that are tens or even hundreds of meters or longer
are physically realistic treatments of shallow flow dynam-
ics, but are rather simply nonlinear storage models. While
some models have employed runoff elements at this scale,
a valid numerical model of surface runoff should be con-
fined to the length of flow expected before rills, channels,
and other cascading concentrated flow paths begin to domi-
nate the runoff hydraulics. If concentrated flows and rills do
not dominate the hydraulics, changes in slope and conver-
gence of flow can both be modeled by the use of cascading
one-dimensional surfaces with varying slopes and widths
(Woolhiser et al., 1990; Smith et al., 1995b).

SUMMARY

We have briefly shown how the theory of soil and surface
water hydraulics has led to a model of surface water
generation from rainfall for catchments on the scale of
hectares. However, this should not tempt us to believe
that a scientific knowledge of rainfall excess can easily
be applied to hydrologic problems in general. The models
are at best quasi-scientific insofar as nature’s ubiquitous
heterogeneities do not allow the hydrologist to make direct
measurements at any point of many of the important
parameters (e.g. surface roughness), or even determine
a real effective average of parameters by any remotely
sensed data. The theoretical basis of the processes described
above does allow some confidence in the robustness of
estimated parameters insofar as they are applicable to a
wide range of rainfall conditions, but direct measurement
of key properties, such as effective catchment values for
Ks, remains a difficult undertaking.

Remotely derived topographic data using LIDAR is of
sufficient accuracy and resolution that it can be used
to aid in estimation of some of the geometric parame-
ters (slopes and slope lengths, etc.) required for excess
rainfall-runoff modeling (Carter et al., 2001). Multispectral
remotely sensed data has been widely used to estimate land
use and ground cover, and if sufficient temporal resolution
exists, the variation of ground cover conditions can affect
hydraulic roughness and influence infiltration parameters.
Land use and land cover data, combined with textural-based
estimates of soil hydraulic properties can be used to pro-
vide crude initial estimates of needed parameters (Miller
et al., 2002; and see www.tucson.ars.ag.gov/agwa).
However, these estimates are often based on simple look-
up table relationships from incomplete field data relating
soils and cover to surface and soil hydraulic parameters.
This leaves hydrologic science with challenges for field data
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collection and realistic characterization of the variability of
important parameters for use in the mathematical models
of rainfall excess runoff described herein.
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