
The ISIS

OPEN GENIE

Reference Manual

F A Akeroyd

R L Ashworth

S D Johnston

J M Martin

C M Moreton-Smith

D S Sivia

version 1.1

- i -

$FNQRZOHGJHPHQWV
As with any large work there are too many people who have had some influence or given us help
over the years to acknowledge everyone by name but without them Open GENIE would not be
as it is today and we would like to thank them.

Open GENIE does rely heavily on the ever growing pool of software that has been generously
made available at no charge to the scientific community and we would like especially to mention
and gratefully acknowledge the contribution of Tim Pearson whose PGPLOT graphics package
has become a de-facto standard within the scientific community and is used by Open GENIE,
also Steve Byrne who put his time into writing the GNU smalltalk interpreter on which Open
GENIE is based.

- ii -

&RQWHQWV
This manual describes Open GENIE in detail and is intended to provide detailed technical
backup for the experienced user. It is also available on line at
www.isis.rl.ac.uk/GENIEReferenceManual and in the Open GENIE distribution kit. This manual
is complementary to the Open GENIE User Manual which may be more suitable for someone
using or installing Open GENIE for the first time.

ACKNOWLEDGEMENTS ...I
CONTENTS ...II

CHAPTER 1 DATA ANALYSIS FUNCTIONS...1

High Level Analysis Procedures ..2
Low Level Analysis Procedures ...2

HIGH LEVEL ANALYSIS PROCEDURE REFERENCE..3
FOCUS() ...4

Focus..4
INTEGRATE()..7

Integrate...7
REBIN()..9

Rebin ..9
SUMSPEC()...11

Sumspec..11
UNITS()..12

Units...12
LOW LEVEL ANALYSIS PROCEDURE REFERENCE ..15
PEAKFIT() ..16

Peakfit ..16
Peakfit:Gauss ...17
Peakfit:Gexp...18
Peakfit:Loren ...18
Peakfit:Lexp ...19
Peakfit:Voigt ..19
Peakfit:Vexp ...20
Peakfit:Poly..20

PEAKGEN() ..22
Peakgen..22

CHAPTER 2 GRAPHICS COMMANDS ...25

High Level Commands ...25

- iii -

Primitive Commands..26
HIGH LEVEL GRAPHICS COMMAND REFERENCE..29
ALTER()...30

Alter/Status...30
Alter/Binning..31
Alter/Device ...31
Alter/Font ...31
Alter/Hardcopy...32
Alter/Linecolour ...32
Alter/Linetype...32
Alter/Linewidth...32
Alter/Markers ...33
Alter/Markersize...33
Alter/Plot..33
Alter/Plotcolour ...33
Alter/Size ..34
Alter/Textheight..34
Alter/Textcolour ...34

CURSOR() ..35
Cursor ..35

DISPLAY()..37
Display ...37

HARDCOPY()..40
LIMITS()...41

Limits..41
Limits/X ..41
Limits/Y ..42
Limits/No_auto...42

MULTIPLOT() ...43
Multiplot...43

PEAK() ...45
Peak..45

PLOT() ...46
Plot...46

TOGGLE() ..48
Toggle/Status..48
Toggle/LogX...49
Toggle/LogY...49
Toggle/Clear ..49
Toggle/Graticule ..49
Toggle/Header ...49
Toggle/RoundX...49
Toggle/RoundY...50
Toggle/Info ...50

ZOOM()..51
Zoom ..51

PRIMITIVE GRAPHICS COMMAND REFERENCE...53
DELETE() ...54

Delete ...54
PIC_ADD() ...55

Pic_add()..55
SELECT()..57

Select ..57
REDRAW() ...58

Redraw ...58
UNDRAW()...59

- iv -

Undraw ..59
DEVICE() ...60

Device/Open...60
Device/Clear ..61
Device/Close ..61
Device:Status()...61

PICTURE() ..62
Picture..62

WINDOW() ...63
Window()..63

WIN_AUTOSCALED() ...64
Win_Autoscaled ...64

WIN_MULTIPLOT()...66
Win_MultiPlot ..66

WIN_SCALED() ..68
Win_Scaled ..68

WIN_TWOD() ...70
Win_Twod ..70

WIN_UNSCALED()..72
Win_Unscaled ..72

NEW_ZOOM() ..73
New_Zoom ...73

GETCURSOR() ..74
Getcursor()...74

DRAW() ...75
Draw()..75

AXES()...76
Axes/Draw..76
Axes/Alter ...77

ERRORS()...80
Errors/Draw...80
Errors/Alter..81

GRAPH() ..83
Graph/Draw...83
Graph/Alter ..84

GRATICULE() ...85
Graticule/Draw ..85
Graticule/Alter ...86

HISTOGRAM() ..89
Histogram/Draw ..89
Histogram/Alter..90

LABELS() ...92
Labels/Draw...92
Labels/Alter..93

LINE() ..95
Line/Draw ..95
Line/Alter ...96

MARKERS()..97
Markers/Draw..97
Markers/Alter ...98

POLYGON() ..99
Polygon/Draw ..99
Polygon/Alter ...100

TEXT() ...101
Text/Draw...101
Text/Alter..102

- v -

TITLE() ..104
Title/Draw ..104
Title/Alter ...104

CELL() ...106
Cell/Draw...106
Cell/Alter..107

CELL_ARRAY() ..109
Cell_Array/Draw..109
Cell_Array/Alter...110

CELL_FUNCTION() ...112
Cell_function/Draw..112
Cell_function/Alter...114

CELL_WEDGE()..116
Cell_wedge/Draw...116
Cell_wedge/Alter..116

CONTOUR()..118
Contour/Draw ..118
Contour/Alter ...119

CONTOUR_ARRAY()...122
Contour_Array/Draw...122
Contour_Array/Alter ..123

CONTOUR_FUNCTION()..125
Contour_Function/Draw..125
Contour_Function/Alter...127

CONTOUR_LABEL()..129
Contour_Label/Draw ...129
Contour_Label/Alter ..130

MULTI_PLOT() ...132
Multi_Plot/Create ..132
Multi_plot/Spectra ...133
Multi_plot/Draw...134
Multi_plot/Alter..134

COLOUR() ..136
Colour:Rgb()..136
Colour:Hls()...136
Colour:Named() ...137

COLOURTABLE()..138
Colourtable:Create()..138
Colourtable/Delete...139

DEV() ..140
Dev ...140

OBJ() ...141
Obj..141

PIC() ..142
Pic ..142

PIC() ..143
Pic ..143

WIN()...144
Win ...144

CHAPTER 3 GENIE-V2 EMULATION AND DATA I/O ..145

GENIE-V2 EMULATION AND DATA I/O COMMAND REFERENCE..147
ASSIGN()..148

Assign...148
CFN() ...149

Cfn..149

- vi -

GROUPBINS() ...150
Groupbins ..150

JUMP() ...152
Jump/S..152
Jump/P ...152

KEEP() ...153
Keep ...153

S() ...154
S ...154

SCATMODE()..155
Scatmode ..155

SET()..156
Set/File ...156
Set/Disk ..156
Set/Dir ..157
Set/Inst..157
Set/Ext ..157

SETPAR() ...158
Setpar ...158

SHOW()..160
Show/Defaults ..160
Show/Par..160
Show/Data..161
Show/Const...161
Show/Proc ..161
Show/Type ..161
Show/Var..162

CHAPTER 4 I/O COMMANDS...163

I/O COMMAND REFERENCE...165
FILETYPE()...166

Filetype ..166
GET()...168

Get() ...168
LIST() ..170

List..170
List/In ...171
List/Out...171

NBLOCKS() ..172
Nblocks...172

PUT() ...173
Put ..173

ASCIIFILE() ..175
Asciifile/Open...176
Asciifile/Close ..176
Asciifile:Data()...176
Asciifile:Lines() ..177
Asciifile/Readfixed..178
Asciifile/Readfree ...179
Asciifile/Skip...180
Asciifile/Writefree ..180

MODULE() ...182
Module/Compile...182
Module/Load ..183
Module/Execute..184
Module/List ..184

- vii -

PRINT() ..185
Print(), Printn(), Printi(), Printin(), Printe(), Printen(), Printd(), Printdn(),...185

PRINTN()..186
Printn()...186

PRINTI() ...187
Printi()..187

PRINTIN()...188
Printin()..188

PRINTE() ..189
Printe() ...189

PRINTEN()..190
Printen() ...190

PRINTD()..191
Printd()...191

PRINTDN() ...192
Printdn()...192

INQUIRE() ..193
Inquire..193

READ_TERMINAL() ..194
Read_terminal() ...194

CHAPTER 5 SYNTAX ...195

Micro-syntax ..195
Single-line commands ..197
Multi-line commands..200

CHAPTER 6 STORAGE ..207

The variable pool ...207
Conventions..208
Variable types ..208

CHAPTER 7 ARRAY AND WORKSPACE HANDLING FUNCTIONS..217

ARRAY FUNCTION REFERENCE..219
BRACKET() ..220

Bracket ...220
CENTRE_BINS()..221

Centre_bins ..221
CUT()...222

Cut..222
DIMENSIONALITY()..223

Dimensionality ...223
DIMENSIONS() ...224

Dimensions...224
FILL() ..225

Fill..225
FIX() ..226

Fix ..226
MAX()..227

Max ..227
MIN()...228

Min ...228
REDIM()...229

Redim ...229
SUM() ..230

Sum...230
UNFIX() ...231

- viii -

Unfix...231
WORKSPACE FUNCTION REFERENCE ...233
FIELDS() ..234

Fields..234

CHAPTER 8 STRING HANDLING FUNCTIONS ...235

STRING HANDLING FUNCTION REFERENCE ...237
SUBSTRING()..238

Substring ..238
LOCATE()...239

Locate...239
LENGTH() ..240

Length ..240
AS_STRING()..241

As_string ..241
AS_VARIABLE() ...242

As_variable ..242

CHAPTER 9 MATHEMATICAL FUNCTIONS ...243

Trigonometric Functions..243
Transcendental Functions..243
Miscellaneous Functions..244

TRIGONOMETRIC FUNCTION REFERENCE...245
ARCCOS() ..246

Arccos()..246
ARCSIN() ...247

Arcsin()...247
ARCTAN() ..248

Arctan() ..248
COS() ...249

Cos()...249
SIN() ..250

Sin()..250
TAN()...251

Tan()...251
TRANSCENDENTAL FUNCTION REFERENCE ...253
EXP() ...254

Exp()...254
LN() ...255

Ln()...255
LOG()...256

Log()...256
MISCELLANEOUS FUNCTION REFERENCE ..257
ABS()...258

Abs()...258
SQRT() ...259

Sqrt() ..259

CHAPTER 10 GENERAL PROGRAMMING FUNCTIONS...261

GENERAL PROGRAMMING FUNCTION REFERENCE..263
ALIAS()..264

Alias ...264
AS_INTEGER() ...266

As_integer ..266
CALLED_AS_FUNCTION() ..267

Called_as_function ..267

- ix -

DEFINED() ...268
Defined...268

FREE() ...269
Free ..269

INQUIRE() ..270
Inquire..270

INTERACTIVE() ..271
Interactive ..271

IS_A() ..272
Is_a...272

NOW() ...273
Now ..273

READ_TERMINAL() ..274
Read_terminal() ...274

CHAPTER 11 SYSTEM DEPENDENT FUNCTIONS..275

SYSTEM DEPENDENT FUNCTION REFERENCE ..277
CD()...278

Cd...278
DIR()..279

Dir ..279
PWD() ..280

Pwd ..280
OS() ...281

Os ...281
SYSTEM()...282

System ..282

CHAPTER 12 MISCELLANEOUS COMMANDS..283

MISCELLANEOUS COMMAND REFERENCE ...285
COPYING() ...286

Copying() ...286
EXIT() ..287

Exit ...287
HELP() ...288

Help..288
LOAD() ..289

Load ...289
SAVE()...290

Save ..290
WARRANTY()...291

Warranty()..291

CHAPTER 13 DIAGNOSTICS AND DEBUGGING...293

DIAGNOSTICS AND DEBUGGING COMMAND REFERENCE...295
DEBUG() ..296

Debug...296
GRIPE()..297

Gripe ..297
INSPECT() ..298

Inspect ..298
VERSION() ...299

Version ...299

CHAPTER 14 EXTERNAL PROGRAMMING INTERFACES..301

Callout Interfaces...301

- x -

Callin Interfaces...301
MODULE SUBROUTINES CALLABLE FROM FORTRAN..302

FORTRAN Template ..302
Helper Functions..303

FORTRAN HELPER FUNCTION REFERENCE...305
Commands to Obtain Data from Open Genie ..305
Commands to return Data to Open Genie..306
Commands to Communicate With The User ..306

MODULE SUBROUTINES CALLABLE FROM C..307
C Template ...307
Helper Functions..308

C HELPER FUNCTION REFERENCE...311
Commands to Obtain Data from Open Genie ..311
Commands to return Data to Open Genie..312
Commands to Communiate With The User ..312

OPEN GENIE DATA ACCESS INTERFACE (NEW GET)...313
Basic Principles ...313
Data access routines descriptions..314

CHAPTER 15 WORKSPACE OPERATIONS ..317

TAXONOMY ...318
Steps for the Creation of New Workspace Types..318
Required Open GENIE workspace fields ...319

TEMPLATE ROUTINE REFERENCE ..322
Customising the templates..322
Workspace operations index ..322

UNARY OPERATIONS REFERENCE..325
WORKSPACE_ARCCOS()...326

Workspace_arccos ...326
WORKSPACE_ARCSIN()..327

Workspace_arcsin ..327
WORKSPACE_ARCTAN() ..328

Workspace_arctan ...328
WORKSPACE_COERCE()...329

Workspace_coerce ...329
WORKSPACE_COS() ...330

Workspace_cos...330
WORKSPACE_EXP() ...331

Workspace_exp ..331
WORKSPACE_LN() ...332

Workspace_ln...332
WORKSPACE_LOG()...333

Workspace_log...333
WORKSPACE_NEGATED() ..334

Workspace_negated ...334
WORKSPACE_NOT()...335

Workspace_not...335
WORKSPACE_SIN() ..336

Workspace_sin ...336
WORKSPACE_SQRT() ...337

Workspace_sqrt..337
WORKSPACE_TAN()...338

Workspace_tan...338
BINARY OPERATIONS REFERENCE...339
WORKSPACE_ADD() ..340

Workspace_add..340

- xi -

WORKSPACE_APPEND() ...341
Workspace_append ..341

WORKSPACE_DIVIDE() ..342
Workspace_divide ..342

WORKSPACE_RAISED_TO()..343
Workspace_raised_to...343

WORKSPACE_SUBTRACT()...344
Workspace_subtract...344

WORKSPACE_MODULO() ...345
Workspace_modulo..345

WORKSPACE_MULTIPLY() ...346
Workspace_multiply...346

WORKSPACE_AND() ..347
Workspace_and..347

WORKSPACE_EQUAL()...348
Workspace_equal ...348

WORKSPACE_GREATER_THAN()..349
Workspace_greater_than ...349

WORKSPACE_GREATER_THAN_OR_EQUAL()...350
Workspace_greater_than_or_equal...350

WORKSPACE_LESS_THAN() ...351
Workspace_less_than...351

WORKSPACE_LESS_THAN_OR_EQUAL() ..352
Workspace_less_than_or_equal...352

WORKSPACE_NOT_EQUAL() ..353
Workspace_not_equal ..353

WORKSPACE_OR()...354
Workspace_or ..354

CHAPTER 1 NEW DATA FORMATS ...355

CHAPTER 2 APPENDICES ..357

SUPPORTED DATA FILE FORMATS ...358
SUPPORTED GRAPHICS DEVICES..359

Display devices ..359
Hardcopy devices...359

SUPPORTED GRAPHICS ATTRIBUTES..360
Fonts ..360
Markers ..360
Linestyles..360
Colours...361

IMPLICIT DATA CONVERSIONS TABLE ..362
Key ...362

REGULAR EXPRESSIONS ..363
LIST OF FUNCTIONS ...365
LIST OF KEYWORDS...367

Boolean Expressions ..367
Procedures ...367
Loops..367
Selection...367

- xii -

Open GENIE Reference Manual Chapter 1

- 1 -

Chapter 1

Data Analysis Functions
Arguably the most important purpose of Open GENIE is as a tool for scientific data analysis. Not
just for preliminary data analysis, but as a framework which provides, or from which can be
called, all the tools necessary to perform a complete analysis of the data. The end result of an
Open GENIE analysis will be numbers and visualizations of those numbers (plots!) suitable for
interpretation with words in a final scientific report.

Currently, a large amount of data analysis is performed with a set of disparate FORTRAN
programs which have to support their own routines to access data, to drive a user interface and to
work with a variety of different graphics packages. Usually, it is not in the interest of the
scientists themselves (or of the resulting science) that this load is carried by those who are most
expert in the science. What is critical and is very much at the heart of the philosophy of Open
GENIE is that the scientist must have control over is how the data is processed.

It may be, that a scientist is willing to trust the Open GENIE peak fitting routines (written by an
acknowledged expert in the field), in this case, part of the analysis can be delegated to Open
GENIE. Alternatively, and probably more the case at the moment, the scientists will want to
continue to use their own analysis code for most things but can leave Open GENIE to provide
the user interface, graphics and file access.

How is all this currently achieved by open GENIE?

Firstly, Open GENIE provides a powerful mechanism for allowing a scientist do define a new
function which takes input from Open GENIE and returns output to Open GENIE transparently
but in the meantime calls a C or FORTRAN subroutine to do the work. This mechanism is
described fully in the Module Reference section of this manual and allows the code to run as if it
is a compiled part of Open GENIE; it is fast, and any crashes within the code are safely caught
by Open GENIE.

Secondly, Open GENIE provides routines which have been found to be useful in several
different areas of analysis. These too are hard coded in C/C++ or FORTRAN for efficiency, they
fall into two categories:

• High level analysis procedures - Routines which have some understanding of the aims of
the analysis and the physical meaning of the data.

Open GENIE Reference Manual Chapter 1

- 2 -

• Low level analysis procedures - More generic routines which can be used for a wide
variety of purposes and allow users to build their own high level routines.

The difference between these two categories is blurred, but the distinction we use here can be
described as follows:

High level procedures usually take an Open GENIE Workspace containing a fairly complex
grouping of experimental parameters and data (See Workspace operations for more details about
workspaces). These analysis functions tend to be fairly data specific and may call on several
lower level functions. An example is the Focus() command which focuses neutron scattering
spectra from a Time-of-Flight instrument.

On the other hand, the low level procedures generally take relatively few parameters and do not
take workspaces, an example here is the Peakfit() routine which can be used to fit a peak to any
data.

High Level Analysis Procedures
There are not yet many high level data analysis procedures. We have begun to add those which
appear to be fairly common amongst groups of neutron scattering users at the ISIS facility and
we will start to add these in earnest as the analysis needs become clear. If you have routines that
you feel should be included, please contact us at genie@isise.rl.ac.uk and we will look at how
best to integrate them for you, if you can supply them coded as a module, even better. The
current routines are:

Focus() Focus a range of spectra with given parameters

Integrate() Integrate one or more spectra

Peak() Interactive peak fitting of a workspace, see Graphics commands.

Rebin() Rebin a workspace given the specified binning scheme

Sumspec() Sum spectra in a given range from the specified file

Units() Convert the units of a Time of Flight workspace as specified

Low Level Analysis Procedures
The low level analysis procedures also include may Open GENIE basic operations, for example
multiplication of arrays as well as mathematical functions such as taking logs of a data array. All
we document here are those which have been written specially for data analysis and don’t fit in
one of the other groups.

Peakfit() Fits various peaks to data supplied in arrays

Peakgen() Generates peak data from an X-array and peak parameters

Open GENIE Reference Manual Chapter 1

- 3 -

+LJK�/HYHO�$QDO\VLV�3URFHGXUH�5HIHUHQFH

Open GENIE Reference Manual Chapter 1

- 4 -

Focus()
Focus a range of spectra with given parameters

FOCUS() spectra=Range or IntegerArray
[file=String] [detpars=Workspace]
[specpars=Workspace]

Focus a set of TOF spectra
correcting for detector efficiency.

[:D] Convert to D-spacing before
summing

[:Q]
Convert to momentum transfer
before summing

[:T] Sum in time of flight

[:VERBOSE] print out TOF parameters used in
conversions

example:
Focus a time of flight spectrum in D-spacing
get the TOF parameters from the raw data file
>> w = focus(1:17, "irs12838.raw")
Focus default file, every third period
>> assign 3045
>> refl = focus(3:90@3, _, mydet)

Note: Focussing is done in D-spacing by default.

Focus
This command provides for focussing groups of neutron time of flight spectra from detectors at
different scattering angles. This command, although written specifically for focussing multiple
banks of detectors consecutively, can be used for single scanning detectors data as long as the
data from consecutive runs has been stored as numbered spectra in a data format Open GENIE
understands, for example an old GENIE-V2 intermediate file (see Supported File Formats). If
the data has been stored in an Open GENIE intermediate file, the parameters can be stored in
workspace format, see the example below.

If the detector efficiency parameters and/or T-O-F parameters are available from some other
source, the Focus() command can be extended easily to read these parameters using the Alias()
command as in the following example.

Example
First alias the focus command so we can still get at it
alias "original_focus" "focus"
Now define a new FOCUS procedure which can
read the parameters from a convenient file.
PROCEDURE FOCUS
 PARAMETERS SPECTRA FILE=String

Open GENIE Reference Manual Chapter 1

- 5 -

 QUALIFIERS /D /Q /T
 RESULT res
 LOCAL Tofpars Detpars
 # read these from a convenient intermediate files, could also use
 # the Asciifile() procedures to read any ASCII file format
 Tofpars = get("PARS", "parms.in3")
 Detpars = get("EFF", "detpars.in3")
 IF Q; res = original_focus:q(spectra, file, detpars, tofpars); ENDIF
 IF D; res = original_focus:d(spectra, file, detpars, tofpars); ENDIF
 IF T; res = original_focus:t(spectra, file, detpars, tofpars); ENDIF
ENDPROCEDURE

The new focus command can be used transparently in place of the original command.

Parameters:

/Verbose

Print out parameters whilst focussing

/D, /Q, /T

Specify whether to focus in D-spacing, momentum transfer or by time.

Spectra (Range)

This parameter specifies the spectra to be focussed from the input file as a Range.

Open GENIE supports unique data types called Interval and Range. A Range or
Interval can be used to specify a range of indices respectively to access multi-
spectra data. For more information on specifying intervals, please see a
description of the Interval syntax.

For the most general ability to specify a group of arbitrary spectra an Integer array
of spectrum identifiers can be given as the the "Spectra" parameter.

File (String) [default = default input file]

The name of the input data file. This parameter will default to the default input
file set by the Set/File/Input command if it is not specified.

Detpars (Workspace) [default = no detector efficiency correction]

Parameters for correcting for detector efficiency. These are given in a workspace
with the following field names:

Field name Type Description

PRESSURE Real Gas pressure (atms)

GAS_SIGMA0 Real Gas cross section at lambda 0 (cm-2)

PATHLENGTH Real Gas path length (cm)

WAVELENGTH Real Characteristic wavelength (cm)

Open GENIE Reference Manual Chapter 1

- 6 -

WEIGHT Real Molecular weight of container atoms (g mol-1)

DENSITY Real Density of container (g cm-3)

THICKNESS Real Container wall thickness (cm)

WALL_SIGMA0 Real Wall cross section at LAM0 (cm-2)

TYPE String
Detector description, eg "He3 gas" - printed out during
focussing

Specpars (Workspace) [default = values from raw file]

Time of flight parameters. These are given in a workspace with the following
field names:

Field name Type Description

TWOTHETA Realarray Two theta scattering angles per spectrum (degrees)

EMODE
Integer or Integer
Array

mode 0=inelastic, 1=incident, 2=transmitted

EFIXED Real or Realarray Fixed energy value or values if EMODE=2

L1 Real or Realarray Primary flight path (m)

L2 Realarray Secondary flight paths (m)

The arrays need to be of size "nspec" where "nspec" is the total number of spectra
being focussed.

RESULT = (Restype)

The final focussed spectrum.

Open GENIE Reference Manual Chapter 1

- 7 -

Integrate()
Integrate one or more spectra

INTEGRATE() wksp=Workspace [xmin=Real]
[xmax=Real]

Integrate a workspace
(1d or 2d)

INTEGRATE() spectra=Interval or IntegerArray
[xmin=Real] [xmax=Real] [file=String]

Integrate spectra from a
file

example:
print the integrals of two spectra
>> printn integrate(1:2, "tfx00345.raw")
INTEGRATE: Integrating between 38000 and 78000
 Workspace []
 (
 error = [2341.4700 1027.1312] Array(2)
 sum = [5482585.0 1054968.0] Array(2)
)

Note: The sum is always in total counts

Integrate
The Integrate() command is used to perform integration of one or more spectra.

Parameters:

Wksp (Workspace)

A one or two dimensional workspace to integrate.

Spectra (Range)

This parameter specifies the spectra to be integrated from the input file as a
Range.

Open GENIE supports unique data types called Interval and Range, a Range or
Interval can be used to specify a range of indices respectively to access multi-
spectra data. For more information on specifying intervals, please see a
description of the Interval syntax.

For the most general ability to specify a group of arbitrary spectra an Integer array
of spectrum identifiers can be given as the the "Spectra" parameter.

Xmin, Xmax (Real) [default = spectra minimum & maximum respectively]

Optional interval over which to integrate. If the interval is not on a bin boundary,
the counts are automatically corrected proportionally to the amount of the bin
included.

Open GENIE Reference Manual Chapter 1

- 8 -

File (String)

Allows specification of a file from which to get the spectra when used with the
second form of the command. Otherwise, the input file is taken to be the file set
by the Set/File/Input command.

RESULT = (Workspace)

The result of the integrate command is returned as a workspace with two fields
(see example above). The "SUM" field contains either a single value or an array
of integrals. The "ERROR" field contains the propagated error on the result,
similarly, either a single value or an array of values.

Open GENIE Reference Manual Chapter 1

- 9 -

Rebin()
Rebin a workspace given the specified binning scheme.

REBIN
[/LIN]
[/LOG]

wksp=Workspace bound1=Real step1=Real
bound2=Real [step2=Real] [bound3=Real]
[step3=Real] [bound4=Real]

Rebin a workspace in
linear or logarithmic steps

REBIN wksp=Workspace xmin=Real xmax=Real Rebin over a range

REBIN wksp=Workspace xarray=Realarray Rebin to the given X
values.

example:
Read a spectrum and re-bin the same as an
already loaded vanadium workspace
>> w = s(1)
>> w = rebin(w, vanadium.x)

Note: You can combine rebins by concatenating the results with the & operator.

Rebin
The rebin command performs what can loosely be described as an interpolation from one
histogram into another histogram with the same integrated count, but with modified X-
boundaries. Some numerical precision is lost during a re-binning operation and there is usually a
degree of peak broadening so multiple re-binning is to be avoided.

The essential element in all the Rebin() command formats is to provide a new set of X-values for
the spectra being re-binned. The first format allows ranges of linear or logarithmic steps to be
specified explicitly. The second, simply acts to trim or expand a workspace to fit the given range,
often useful when a series of spectra with different offsets need combining. The final form
ensures the compatibility of two spectra by re-binning one spectrum to the X-values of the other.

Linear and logarithmic re-binning can be provided together by concatenating the different rebin
ranges with the "&" operator (an end-on join of two spectra, see workspace operations). For
example,

w = rebin:lin(s(1), 303.0, 1.0, 700.0) & rebin:log(s(1), 700.0, 0.01, 800.0)

(note that for an append to work, the ending value of the first range must be identical to the
starting value of the next range).

Parameters:

/Lin

Linear rebinning between the boundaries specified in steps given by the "Stepn"
parameters.

Open GENIE Reference Manual Chapter 1

- 10 -

/Log

Gives logarithmic bin widths. The bin widths are calculated such that for for any
given binning range

Xn+1 - Xn = Step * Xn

where Step is the step value chosen for the range. For example, given the
command

w = rebin:log(w, 10.0, 0.1, 15.0)

The bin boundaries generated will be [10, 11, 12.1, 13.31, 14.641, 15].

Wksp (Workspace)

The workspace to be re-binned

Boundn, Stepn (Real)

Lower bound and step value (Dn above). There must always be one more bound
specified than step value.

Xmin, Xmax (Real)

Interval over which to re-bin. If the interval is not on a bin boundary, the counts
are automatically corrected proportionally to the amount of the bin included. This
command leaves all complete bin boundaries within the range the same as before.
It is used for extending or contracting the X-range of the spectra in a data safe
way.

Xarray (Realarray)

An X-array to completely specify the desired new bin boundaries. This could be
an array from a comparable spectrum or it may be automatically generated by the
Fill() command as an arithmetic or geometric progression.

RESULT = (Restype)

The re-binned workspace. If the rebin command is used in the keyword form (i.e.
Rebin w ...), workspace will be destructively re-binned. In the functional form, the
input workspace will remain unaltered.

Open GENIE Reference Manual Chapter 1

- 11 -

Sumspec()
Sum spectra in a given range from the specified file. (See also Focus/T)

SUMSPEC [spectra=Range or IntegerArray]
[file=String]

Sum spectra in Time-of-Flight

Note: Obsolete command, use Focus:T()

Sumspec
See the Focus() command for a description of the parameters, this command is functionally
equivalent to Focus/T and is only kept for compatibility.

Open GENIE Reference Manual Chapter 1

- 12 -

Units()
Convert the units of a Time of Flight workspace as specified

UNITS() wksp=Workspace [xmin=Real]
[xmax=Real]

Convert workspace units

[/C] or
[/Channel]

 To Channel numbers (one way)

[/D] To D-Spacing (A)

[/E] To Energy (meV)

[/LAM] To Wavelength (A)

[/Q] To Momentum Transfer (A-1)

[/SQ] To (Momentum Transfer)2 (A-2)

[/T] To Time of Flight (us)

[/LA1]
To primary flight path wavelength
(A)

[/W] To energy transfer E1-E2 (meV)

[/WN] To energy transfer E1-E2 (cm-1)

[/TAU]
To reciprocal time-of-flight
(us/m)

example:
Read in a spectrum whilst converting to Wavelength
>> w = units:Lam(s(1))

Note: TOF Parameters must be set correctly in the workspace (or set Set/Par).

Units
The Units() command provides for units conversion of Time-of-Flight spectra. The conversions
usually rely on specific parameters being set correctly in the input workspace. These parameters
may be read in from the data file, or they may have to be set in the workspace before the Units()
command is carried out. To find the parameters see the section on workspace operations.

A good way of ensuring parameters are read correctly is to overload the S() command, see
Alias() and the example given for overriding the Focus() command.

Open GENIE Reference Manual Chapter 1

- 13 -

Parameters:

Wksp (Workspace)

The Time-of-Flight workspace to convert.

Xmin, Xmax (Real) [default = converted spectra minimum & maximum respectively]

Optional interval to select the section of the workspace to convert (specified in the
final units). For energy only, the default is -1000 to 5000meV.

RESULT = (Workspace)

The converted workspace. If the keyword syntax is used, the workspace will be
converted destructively (e.g. Units/C w).

Open GENIE Reference Manual Chapter 1

- 14 -

Open GENIE Reference Manual Chapter 1

- 15 -

/RZ�/HYHO�$QDO\VLV�3URFHGXUH�5HIHUHQFH

Open GENIE Reference Manual Chapter 1

- 16 -

Peakfit()
Fits various peaks to point mode data supplied in arrays.

PEAKFIT() x=Realarray y=Realarray
e=Realarray
[pars=Realarray]
[ipropt=IntegerArray]

Fits a selection of peaks to supplied data.

[:GAUSS] Gaussian

[:GEXP] Gaussian convolved with exponential

[:LOREN] Lorentzian

[:LEXP] Lorentzian convolved with exponential

[:VOIGT] Voigt

[:VEXP] Voigt convolved with exponential

[:POLY] Polynomial of a specified degree

example:
Read some data and fit a peak to it
remembering to convert from histogram
to point data.
>> w=s(1)
>> res = Peakfit:Lexp(centre_bins(w.x), w.y, w.e)

Note: Centre_bins() converts to point mode.

Peakfit
The peakfit command is designed to give full access to a good selection of peak fitting routines.
It is designed so that it can be used in conjunction with the Peakgen() command which allows a
regeneration of the fitted peak, usually to allow a graphical comparison of the goodness of the fit.

Parameters:

X, Y, E (Realarray)

One dimensional X, Y, and error data arrays of the same length. Note that a lot of
data in Open GENIE is in histogram format so it is important to ensure that the X-
array is converted before attempting to fit a peak. The Centre_bins() function is
provided for this purpose.

Pars (Realarray) [default = best guess line fit]

Optional input parameter that allows an initial guess or fixing of one or more of

Open GENIE Reference Manual Chapter 1

- 17 -

the peak parameters. This operates in conjunction with the corresponding values
in "Ipropt". The length of the pars array differs depending on the number of peak
parameters required for a particular fit (see below for descriptions of the
individual fitting routines).

Ipropt (Integerarray) [default = no initial estimates]

Controls the treatment of the corresponding parameter in "Pars". This array
consists of a set of integer flags.

0 = no initial estimate
1 = use parameter as a guess
2 = fix parameter value as given

By using these two parameter arrays, it is possible to completely control the
operation of the peak fitting routines, However, for simple fitting it is not
necessary to supply a "Pars" or "Ipropt" array.

RESULT = (Workspace)

The result of the Peakfit() command is returned as a workspace containing the
following fields:

Field name Type Description

Status value for goodness of fit:

< -1 Terrible

-1 Maybe OK

IGOOD Integer

>= 0 Good

PARS Realarray Best estimates of the parameters

SIGPAR Realarray 1-sigma error-bars for PARS (may be negative if IGOOD < 0)

Peakfit:Gauss
Estimates the parameters of a Gaussian-peak sitting on a straight-line background, given a
pertinent set of data:
 y(x) = Mx + C + A*gauss(X0,SIGMA) ,
where
 1 [- (x-X0)**2]
 gauss(X0,SIGMA) = ---------------- exp|--------------| .
 SIGMA*sqrt(2*pi) [2 * SIGMA**2]

Parameters:

Pars (Realarray)

Open GENIE Reference Manual Chapter 1

- 18 -

Pars[1] = M
Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = SIGMA

Peakfit:Gexp
Estimates the parameters of a peak, consisting of a Gaussian convolved with a sharp-edged
exponential, sitting on a straight-line background, given a pertinent set of data:
 y(x) = Mx + C + A*gsexp(X0,SIG,TAU) ,

where
 1 [- (x-X0)**2]
 gsexp(X0,SIG,TAU) = -------------- exp|-------------|
 SIG*sqrt(2*pi) [2 * SIG**2]

Convolved with
 { 0 if x/TAU < 0
 { .
 { exp(-x/TAU)/|TAU| if x/TAU > 0

Parameters:

Pars (Realarray)

Pars[1] = M
Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = SIG
Pars[6] = TAU

Peakfit:Loren
Estimates the parameters of a Lorentzian-peak, sitting on a straight-line background, given a
pertinent set of data:
 y(x) = Mx + C + A*lorentz(X0,GAMMA) ,

where
 GAMMA
 lorentz(X0,GAMMA) = --------------------------- .
 pi [(x-X0)**2 + GAMMA**2]

Parameters:

Pars (Realarray)

Pars[1] = M

Open GENIE Reference Manual Chapter 1

- 19 -

Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = GAMMA

Peakfit:Lexp
Estimates the parameters of a peak, consisting of a Lorentzian convolved with a sharp-edged
exponential, sitting on a straight-line background, given a pertinent set of data:
 y(x) = Mx + C + A*lzexp(X0,GAM,TAU) ,

where
 GAM
 lzexp(X0,GAM,TAU) = -------------------------
 pi [(x-X0)**2 + GAM**2]

Convolved with
 { 0 if x/TAU < 0
 { .
 { exp(-x/TAU)/|TAU| if x/TAU > 0

Parameters:

Pars (Realarray)

Pars[1] = M
Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = GAM
Pars[6] = TAU

Peakfit:Voigt
Estimates the parameters of a Voigt-peak sitting on a straight-line background, given a pertinent
set of data:
 y(x) = Mx + C + A*voigt(X0,SIG,GAM) ,

where
 1 [- (x-X0)**2]
 voigt(X0,SIG,GAM) = -------------- exp|-------------|
 SIG*sqrt(2*pi) [2 * SIG**2]

Convolved with
 GAM
 -------------------- .
 pi [x**2 + GAM**2]

Parameters:

Pars (Realarray)

Open GENIE Reference Manual Chapter 1

- 20 -

Pars[1] = M
Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = SIG
Pars[6] = GAM

Peakfit:Vexp
Estimates the parameters of a peak, consisting of a Voigt convolved with a sharp-edged
exponential, sitting on a straight-line background, given a pertinent set of data:
 y(x) = Mx + C + A*vtexp(X0,SIG,TAU) ,

where
 1 [- (x-X0)**2]
 voigt(X0,SIG,GAM) = -------------- exp|-------------|
 SIG*sqrt(2*pi) [2 * SIG**2]

Convolved with
 GAM
 -------------------- .
 pi [x**2 + GAM**2]

Convolved with
 { 0 if x/TAU < 0
 { .
 { exp(-x/TAU)/|TAU| if x/TAU > 0

Parameters:

Pars (Realarray)

Pars[1] = M
Pars[2] = C
Pars[3] = A
Pars[4] = X0
Pars[5] = SIG
Pars[6] = GAM
Pars[7] = TAU

Peakfit:Poly
Estimates the polynomial coefficients of a peak or background by attempting to fit an nth degree
polynomial, the degree of the polynomial fit is given by the number of parameters supplied to
pars, for this routine "Pars" is not optional.
 y(x) = p1 + p2*x + p3*x^2 + p4*x^3 + ...

For example
 >> pars = dimensions(3) # create an array

Open GENIE Reference Manual Chapter 1

- 21 -

 >> fill pars 0.0 # fill with 0.0
 >> fit = Peakfit:Poly(x, y, e, pars) # quadratic fit.

Parameters:

Pars (Realarray)

Pars[1] = p1
Pars[2] = p2
Pars[3] = p3
Pars[4] = p4
Pars[5] = p5
Pars[6] = p6

Open GENIE Reference Manual Chapter 1

- 22 -

Peakgen()
Generates peak data from an X-array and peak parameters.

PEAKGEN() x=Realarray
pars=Realarray

Fits a selection of peaks to supplied data.

[:GAUSS] Gaussian

[:GEXP] Gaussian convolved with exponential

[:LOREN] Lorentzian

[:LEXP] Lorentzian convolved with exponential

[:VOIGT] Voigt

[:VEXP] Voigt convolved with exponential

[:POLY] Polynomial

example:
Produce data to show goodness of a previous fit
res is the result from a previous peakfit() command.
>> y_fit = Peakgen:Lexp(centre_bins(w.x), res.pars)
>> y_goodness = w.y - y_fit # difference for plotting

Note: Centre_bins() reduces X-array length by one and picks bin centres.

Peakgen
The Peakgen() command is designed to be used in conjunction with the Peakfit() command, it
allows a regeneration of the fitted peak, usually to allow a graphical comparison of the goodness
of the fit.

Note that it is not essential to have done a Peakfit() command for the Peakgen() command to
work. By supplying an X-array and suitable parameters, any of the peak types may be generated.

Parameters:

X (Realarray)

One dimensional X array, usually the same X-array which was supplied to the
corresponding Peakfit() command.

Pars (Realarray)

The parameters defining the peak. See the Peakfit() command for a description of
the individual parameters for each type of peak.

Open GENIE Reference Manual Chapter 1

- 23 -

RESULT = (Realarray)

The result of the Peakgen() command is an array of Y-values, the same length as
the supplied X-array which if plotted will give the required peak.

Open GENIE Reference Manual Chapter 1

- 24 -

Open GENIE Reference Manual Chapter 2

- 25 -

Chapter 2

Graphics Commands
The graphics command section is divided into sections on Primitive commands and High Level
commands. The primitive commands provide the most flexibility and are suitable for writing
sophisticated programs in the GENIE command language (GCL). The high level commands are
provided to give a simple to use set of commands which can be used by a less experienced user
to get pictures of their data on the screen quickly and easily.

It is quite possible to mix both sorts of command once experience has been gained with the way
in which the Open GENIE graphics system operates.

High Level Commands
The High level graphics commands are listed below. These are based on similar commands used
in the original GENIE-V2 program although the command syntax and functionality are
enhanced.

Alter Alters graphics control parameters

Cursor Emulates Genie II cursor routine

Display Display a new workspace, or redisplay previous one

Hardcopy Saves a chosen picture into a file

Limits Sets graph limits for DISPLAY command

Multiplot Do a multiplot (Genie II style)

Peak Fit a peak shape to user data

Plot Overplots an existing graph (Genie II style)

Toggle Toggles graphics control parameters

Zoom Uses cursor to zoom in on a plot

A more general overview of the operation of these commands is available in the "User Notes"

Open GENIE Reference Manual Chapter 2

- 26 -

section of this manual

Primitive Commands
The primitive commands listed here give maximum control over the operation of the Open
GENIE graphics sub-system. As a result they are slightly less easy to use for the novice user. For
example, before any drawing primitives can be used, the Device() command must be used to
open a display device.

Examples of the use of many of these commands may be found in the GCL procedures in the
examples directory (usually /usr/local/genie/examples on UNIX or [OPENGENIE.EXAMPLES]
on VMS). Where possible, an example or two showing a possible use of the primitive command
is given as part of the reference section for that command.

For a basic introduction to the primitive graphics system, please see the advanced graphics user
note in the "User notes" section of this manual.

Note on Picture/Window/Index (PWI) references

The Open GENIE graphics sub-system supports two ways of referring to graphical
objects, direct references to the object itself (stored in a variable), and
Picture/Window/Index references which allow the location of graphical objects by the
picture, window and device within which they are drawn.

Direct references

All objects including pictures, windows, and individual graphics primitives can be
referred to by keeping a record of the object itself when it is created, for example

my_pict = picture()

The stored object "my_pict" in the example here is only useful for the graphics system
and is of a special type "GObject". Several of the graphics commands take GObjects
when it is necessary to identify a particular object, for example, when altering it.

Although they are not used in the rest of Open GENIE, graphical objects such as
"my_pict" can be identified or debugged using the normal Print() commands and tested
for equality using the "=" operator.

PWI references

Alternatively, an object may be "found" using its PWI reference and one of the object
locating functions Pic(), Win(), Dev() or Obj(). Each of these functions take one or more
integers which locate the objects within the hierarchy of the graphics system by numbers.
These numbers are based on the order in which the graphical objects were created. For
example, a reference such as Obj(2,3,4) is saying "the 4th object created in the 3rd
window created in the second picture created". For all of these functions, a value of 0
represents the current item (-1 for the last item of that type created). The result of all of
these locating functions is a Gobject type which can be used as described above.

The primitive graphics commands are listed alphabetically in their functional groups below.

Open GENIE Reference Manual Chapter 2

- 27 -

Control of graphics objects

Delete Deletes unwanted graphics objects from memory

Pic_add Copy graphical objects from picture to picture

Select Select a current device, window or picture

Redraw Redisplay previous pictures or objects

Undraw Undraw a primitive graphics operation.

Devices, Pictures and Windows

Device Selects and controls graphics devices

Picture Creates a Picture

Window Command for compatibility with older programs

Win_autoscaled Controls and creates autoscaled windows for plotting

Win_multiplot Controls and creates multi_plot windows for plotting

Win_scaled Controls and creates scaled windows for plotting

Win_twod Controls and creates twod windows for plotting

Win_unscaled Controls and creates unscaled windows for plotting

New_zoom Zooms in on a graphics device (experimental - very !!)

Graphics input

Getcursor Cursor routine for a window or a picture

Simple drawing and plotting

Draw Command for compatibility with older programs

Axes Displays axes on the graphics device

Errors Displays error-bars on a plot

Graph Plots a Graph on the graphics device

Graticule Displays a Graticule on the graphics device

Histogram Plots a histogram on the graphics device

Labels Displays x/y labels on the graphics device (combined with axes).

Line Displays a line on the graphics device

Open GENIE Reference Manual Chapter 2

- 28 -

Markers Displays markers on the graphics device

Polygon Displays a polygon on the graphics device

Text Displays some text on the graphics device

Title Displays a Title on the graphics device

Two-Dimensional plotting

Colour cell contouring

Cell Plots a cell on the graphics device

Cell_array Plots a cell_array from supplied arrays

Cell_function Plots a cell_function from supplied function

Cell_wedge Displays a cell_wedge on the graphics device

Contour plotting

Contour Plots a contour on the graphics device

Contour_array Plots a contour_array on the graphics device

Contour_function Plots a contour_function on the graphics device

Contour_label Labels the contours in the contour plot

Multiple plots

Multi_plot Controls multiplot creation and plotting

Utility Commands

Defining colours

Colour Allows user definition of individual colours

Colourtable Manipulate graphics colour tables

Locating objects

dev Gets a device object from its number

obj Gets a primitive object from its location

pic Gets a picture object from its number

win Gets a window object from its location

Open GENIE Reference Manual Chapter 2

- 29 -

+LJK�/HYHO�*UDSKLFV�&RPPDQG�5HIHUHQFH

Open GENIE Reference Manual Chapter 2

- 30 -

Alter()
Sets various defaults for the subsequent Display(), Plot() and Multiplot() commands. These
defaults only apply to high level commands and will not affect a primitive command like
Graph().

ALTER/STATUS Reports the values of all settings.

ALTER/BINNING p1=Integer
Sets bin grouping for plotting
with Display() and Plot()

ALTER/DEVICE p1=String Change default interactive device

ALTER/FONT p1=Font Set text font

ALTER/HARDCOPY p1=String Hardcopy device

ALTER/LINECOLOUR p1=Colour Axes/box colour

ALTER/LINETYPE p1=LineStyle Line style for line plots

ALTER/LINEWIDTH p1=Real Overall line thickness

ALTER/MARKERS p1=Marker Sets the marker plot symbol

ALTER/MARKERSIZE p1=Real
Size of markers on a
Display:Markers command

ALTER/PLOT
xmin=Real xmax=Real
ymin=Real ymax=Real

Change plot size

ALTER/PLOTCOLOUR p1=Colour Data plot colour

ALTER/SIZE p1=Real
X window display size (scale
factor)

ALTER/TEXTHEIGHT p1=Real Text height

ALTER/TEXTCOLOUR p1=Colour Label/title colour

example:
Change the axis colour to blue
>> Alter/linecolour $BLUE

Note: See also the Toggle() command for changing other plot parameters

Alter/Status
Shows the current values of any settings which may be changed using the Alter() command.

Open GENIE Reference Manual Chapter 2

- 31 -

Alter/Binning
This command alters the bin grouping value used by the Display() command when displaying a
histogram or bin-mode workspace. When the bin grouping value is set to a value greater than
one, the display command groups the data by averaging the values of n-bin groups starting from
the first bin in the histogram. This averaging can be viewed as a rudimentary form of smoothing
the data which is done on the fly, each time the display command is used. It is possible to apply
the same operation to a standard workspace permanently, see the Groupbins() command for
more information.

Parameters:

P1 (Integer)

Number of bins to group together, no grouping occurs if this value is set to 1.

Alter/Device
This command changes the device to which the output of the display command will be sent.

Parameters:

P1 (String)

This is the name of the supported graphics device to which to set the display.
Following the Alter/Device command all high level graphics commands will use
the selected device.

Alter/Font
This command changes the default font used by the Display() command. This will change the
font for all the text used in the display.

Parameters:

P1 (Font)

This is the name of a supported font to which to set the display. After an
Alter/Font command all high level graphics commands will use new font.

Open GENIE Reference Manual Chapter 2

- 32 -

Alter/Hardcopy
This command changes the default hardcopy device to which the output of display command is
sent when a Hardcopy() command is issued.

Parameters:

P1 (String)

This is the name of the supported graphics device that will be used to save a
hardcopy of the plot.

Alter/Linecolour
This command changes the default colour the Display() command uses for drawing the axes and
surrounding boxes.

Parameters:

P1 (Colour)

This is a colour variable returned by one of the colour functions or listed as one of
the supported colours.

Alter/Linetype
This command changes the default line type the Display() and Plot() commands use for drawing
line plots. Useful for separating plots on monochrome terminals.

Parameters:

P1 (LineStyle)

This is a line style listed as one of the supported linestyles.

Alter/Linewidth
This command changes the default line width used by the Display() and Plot() commands for
drawing line plots.

Parameters:

P1 (Real)

This is a real multiplier for the default line plot width of 1 unit. The width of the

Open GENIE Reference Manual Chapter 2

- 33 -

line may vary on different graphics devices.

Alter/Markers
This command changes the default marker used on a Marker plot.

Parameters:

P1 (Marker)

This is one of the available markers listed as one of the supported markers.

Alter/Markersize
This command changes the default marker size used by the Display() and Plot() commands for
drawing marker plots.

Parameters:

P1 (Real)

This is a real multiplier for the default marker size of 1 unit. The size of the
marker may vary on different graphics devices.

Alter/Plot
This command changes the area of the display device which will be taken up by a Display() or
Plot() command. The limits of the box are specified in device co-ordinates in the range 0.0-1.0
where the the values (0.0, 0.0) and (1.0, 1.0) represent the largest square available on the plotting
device. It may be possible to draw slightly outside this area for devices with rectangular aspect
ratios.

Parameters:

Xmin (Real), Xmax=(Real), Ymin=(Real), Ymax=(Real)

Normalised device co-ordinate values in the range 0.0 to 1.0. Xmin < Xmax,
Ymin < Ymax.

Alter/Plotcolour
This command changes the default colour the Display() command uses for drawing the data plot
(line, histogram or markers or errors).

Open GENIE Reference Manual Chapter 2

- 34 -

Parameters:

P1 (Colour)

This is a colour variable returned by one of the colour functions or listed as one of
the supported colours.

Alter/Size
Changes the size of the display device by a scaling factor. 1.0 is the default scaling factor.

Parameters:

P1 (Real)

Multiplier for the display device size.

Alter/Textheight
This command changes the default text height used by the Display() and Plot() commands.

Parameters:

P1 (Real)

This specifies the text height as a multiplier of 100th of the height of the display.
The default text height is 3.0 or 3 hundredths of the display height.

Alter/Textcolour
This command changes the default colour the Display() command uses for drawing text.

Parameters:

P1 (Colour)

This is a colour variable returned by one of the colour functions or listed as one of
the supported colours.

Open GENIE Reference Manual Chapter 2

- 35 -

Cursor()
Displays a cursor on the graphics screen to allow interactive annotation.

CURSOR [xval=Real]
[yval=Real]

Displays a cursor and waits for key press:

X-display X coordinate"
Y-display Y coordinate"
P-display both coordinates"
T-add text"
L- lower left corner of box"
U-draw box to upper right point"
E-exit

[/HORIZONTAL] Annotation text horizontal

[/VERTICAL] Annotation text vertical

example:
Display a cursor near the expected position
of a peak in world coordinates.
>> Cursor/Horizontal 10000.0 50.0

Cursor
This command is used mainly for annotating a plot whilst it is on the screen. An obvious use is
for tagging peaks with the data value in the X or Y direction at the point selected by the cursor.

The command enters a sub-system where only certain keystrokes are recognized. Annotation
operations as listed above can be carried out repeatedly until the E key is pressed to terminate the
command.

Parameters:

/Vertical [default]

Sets the default for any annotation text to be drawn vertically (from bottom to
top).

/Horizontal

Sets the default for any annotation text to be drawn horizontally, this is the default
if no qualifiers are given.

Xval, Yval (Real)

Optional starting values for the cursor position. If a peak is known to be
somewhere near the middle of the screen, for example, it can save unnecessary
cursor movement. The default position for the cursor to appear is at (0,0) in the

Open GENIE Reference Manual Chapter 2

- 36 -

current window.

Open GENIE Reference Manual Chapter 2

- 37 -

Display()
Display a graphical plot of spectra in a workspace.

DISPLAY [wksp=Workspace] [xmin=Real] [xmax=Real]
[ymin=Real] [ymax=Real] [linecolour=Colour]
[linewidth=Real] [textcolour=Colour]
[textheight=Real]

Display the
workspace within
the given range.

[/HISTOGRAM]
Display as a
histogram

[/LINE]
Display as a line
plot

[/MARKERS] Display as markers

[/ERRORS]
Display as error
bars

example:
Display a spectrum but change the title first
>> wm = s(10)
>> wm.title = "This is my Nobel plot!"
>> Display wm xmin=1.0e4 xmax=7.0e4

Note: Other display parameters may be altered using the Alter() and Toggle() commands.

Display
The display command is the high level command used to plot one or more spectra from a
workspace in a single operation. By default, the Display() command will assume that the plot is
to be done as a histogram. The plot will be automatically scaled and titled with other relevant
information from the workspace. Most features of the Display() command may be customized
either by using the command line parameters on Display() itself or by modifying characteristics
of the plot using the Alter(), Toggle() or Limits() commands.

Parameters:

/Histogram

This is the default for the Display() command when given bin-mode
(histogrammed) data. It will plot a spectrum making the assumption that it is a
valid histogram (i.e. binned data with one more X value than Y value). The data
values are represented by the height of the corresponding bin. Remember that
several commands can actually affect the height of bins unexpectedly by changing
the binning method and/or data. Examples of these are Alter/Binning and
Units/Channel.

Open GENIE Reference Manual Chapter 2

- 38 -

If point-mode data is supplied with the /Histogram qualifier an error will be
reported as it is not possible for Open GENIE to guess the assumptions you may
want to make about the conversion (an extra X value would have to be generated
by interpolation).

/Line

This is the default for the Display() command when given point-mode data. It will
plot a spectrum as if it is a numerically calculated function (i.e. with the same
number of X-values as Y-values) and join the points with a straight lines. If
histogram data is displayed with the /Line qualifier, the data will undergo a
transformation to take the bin centre positions as the X-values for the data points
(see the Centre_bins() function). There are situations where you may not wish this
behaviour to be the default (e.g. for logarithmic binning). Generally, it is safer to
transform the data yourself into point-mode and then use Display to plot it.

/Markers

This is identical to the /Line qualifier in operation except that instead of joining
the data points with lines, marker symbols are used instead. See Marker Types for
a list of available styles.

/Errors

This is identical to the /Line qualifier in operation except that instead of joining
the data points with lines, error bars are generated. These are centered on the data
points and have a size scaled from the values of the data error values contained
within the workspace E array.

Wksp (Workspace)

This gives the workspace to be plotted. As long as the workspace is a valid Open
GENIE workspace containing one or more spectra this command will produce a
display. In later version of Open GENIE this will also take multi-spectra
workspaces to produce multiplots (see Multiplot()).

For convenience, if the Display() command is used without a workspace being
specified, the last workspace to be plotted will be used.

Xmin, Xmax, Ymin, Ymax (Real)

These parameters can be used to set fixed limits for the display, for more details
see the Limits() command.

Linecolour (Colour)

This parameter changes the colour for drawing the axes and surrounding boxes,
see Alter() for details.

Linewidth (Real)

Open GENIE Reference Manual Chapter 2

- 39 -

This parameter changes the line width used for drawing line plots, see Alter() for
details.

Textcolour (colour)

This parameter changes the colour used for drawing text, see Alter() for details.

Textheight (Real)

This parameter changes the text height used for drawing text, see Alter() for
details.

Open GENIE Reference Manual Chapter 2

- 40 -

Hardcopy()
Makes a copy of picture on a hardcopy device.

HARDCOPY [filename=String]
[devtype=String]
[picture=Gobject]

Creates a hardcopy of a previously
drawn picture

example:
Save a postscript copy of the screen
>> Hardcopy
Save a copy of the last but one picture as
colour postscript (found with Redraw/Info)
>> Hardcopy filename="test.cps" picture=my_pict

The Hardcopy command allows a copy to be made of either the currently displayed window, or
an earlier picture.

The supported hardcopy devices on most machines include "PS" Postscript, "CPS" Colour
Postscript and "HPGL" HPGL driver for 7475A For full details of supported devices on each
machine type see Supported Graphics Devices.

The "filename" and "devtype" parameters also set the default for further calls to the Hardcopy
command so normally just typing Hardcopy is sufficient to make a hardcopy of the current
screen.

Parameters:

filename (String)

The name of a file into which to put the hardcopy, the default is "GENIE.PS".

devtype (String)

One of the supported hardcopy graphics devices.

picture (Gobject)

The picture to be copied. By default picture 0 is selected which is the last picture
to be created.

Open GENIE Reference Manual Chapter 2

- 41 -

Limits()
Sets axis limits for the Display() and Plot() commands.

LIMITS
[/DEFAULT]

Sets X and Y axes to
autoscale

LIMITS/X [xmin=Real] [xmax=Real] Sets X axis limits

LIMITS/Y [ymin=Real] [ymax=Real] Sets Y axis limits

LIMITS/NO_AUTO [xmin=Real] [xmax=Real]
[ymin=Real] [ymax=Real]

Sets X and Y axis limits

example:
Set the limits before doing a display
>> Limits/X xmin=10.0E4 xmax=50.0E4
>> Display s(1)

Note: If no data appears on a Display(), typing "Limits" may help find it!

Limits
The Limits() command is used to gain independent control over the scaling of the axes used in
the Display() and Plot() commands. Settings made using the command remain in effect until
another Limits() command is issued.

Parameters:

/Default

This qualifier enables automatic limit scaling for the Display() command. If for
some reason the data has disappeared off the plot, using Limits/Default will
ensure any data is plotted in the viewable area. This is the default qualifier so just
typing "Limits" will perform a Limits/Default.

Limits/X
Sets explicit X limits for the Display() and Plot() commands to adhere to. Note that the actual
setting of the limits will still be dependent on whether rounding is switched on for the X axis (see
Alter())

Parameters:

Xmin, Xmax (Real)

Open GENIE Reference Manual Chapter 2

- 42 -

Real values for the lower and upper bounds of the visible data region in data co-
ordinates.

Limits/Y
Sets explicit Y limits for the Display() and Plot() commands to adhere to. Note that the actual
setting of the limits will still be dependent on whether rounding is switched on for the Y axis (see
Alter())

Parameters:

Ymin, Ymax (Real)

Real values for the lower and upper bounds of the visible data region (in data co-
ordinates).

Limits/No_auto
Sets explicit X and Y limits for the Display() and Plot() commands to adhere to. Note that the
actual setting of the limits will still be dependent on whether rounding is switched on for either
or both axes (see Alter())

Parameters:

Xmin, Xmax, Ymin, Ymax (Real)

Real values for the lower and upper bounds of the visible data region in data co-
ordinates.

Open GENIE Reference Manual Chapter 2

- 43 -

Multiplot()
Plots multiple spectra on one set of axes using a hidden line removal

MULTIPLOT spectra=Interval or IntegerArray
[ygap=Real] [file=String] [linecolour=Colour]
[linetype=LineStyle] [linewidth=Real]
[textcolour=Colour] [textheight=Real]

plot the spectra
specified from a
file.

MULTIPLOT wa=WorkspaceArray
[ygap=Real] [file=String] [linecolour=Colour]
[linetype=LineStyle] [linewidth=Real]
[textcolour=Colour] [textheight=Real]

plot the spectra in
the workspace array.

example:
Do multiplots from a file
>> multiplot 1:20 file="mydata.raw" ygap=10.0
>> multiplot 1:300@3 # plot every third spectrum
Make and plot a workspace array
>> ww = Get:Array(1:20) >> multiplot wa=ww linecolour=$green

Note: multiplot from a file is more efficient in terms of memory

Multiplot
The multiplot command provides an easy to interpret display of multiple spectra on the same X-
axis. It is useful for comparing groups of spectra which although essentially similar may show a
trend across the group (e.g. a phonon effect with temperature). The command works by
producing a pseudo Y-axis where subsequent plots are placed at an artificial Y offset value
(ygap). Individual spectra are overplotted using hidden line removal. Currently, multiplot only
plots as a histogram, the binning is controlled with the Alter() command.

Parameters:

Spectra (Range)

When the Multiplot() command is used with this parameter specified, it is
assumed that the data source for the multiplot has already been specified as a
default input source, see Set/File, or is given with the "file" parameter to this
command.

Open GENIE also supports unique data types called Interval and Range, a Range
or Interval can be used to specify multiple indices or a range of indices
respectively to access multi-dimensional data. For more information on specifying
intervals, please see a description of the Interval syntax. For the most general
ability to specify a group of arbitrary spectra an Integer array of spectrum
identifiers can be given as the the "Spectra" parameter. The spectra will be plotted
in the order specified.

Open GENIE Reference Manual Chapter 2

- 44 -

Wa (WorkspaceArray)

If this form of the command is used, the data to be plotted is supplied in the form
of multiple spectra stored in a Workspace array. The spectra must all be binned
identically on the same X-axis for the multiplot command to be able to work.

Ygap (Real)

This parameter sets the spacing artificially added to separate the multiple spectra
on the Y-Axis. It is specified in the same coordinates as the data and is calculated
automatically by the Multiplot() command if it is not specified. The real Y height
of a point in any spectrum on a multiplot is given by yvalue = measured-height -
ygap * spectrum-number where spectrum-number is the nth spectrum in the order
of plotting.

file (String)

Specifies a data file other than the default set by Set/File.

Linecolour (Colour)

This parameter changes the colour for drawing the axes and surrounding boxes,
see Alter() for details.

Linetype (LineStyle)

This parameter changes the line style for drawing the axes and surrounding boxes,
see Alter() for details.

Linewidth (Real)

This parameter changes the line width used for drawing line plots, see Alter() for
details.

Textcolour (colour)

This parameter changes the colour used for drawing text, see Alter() for details.

Textheight (Real)

This parameter changes the text height used for drawing text, see Alter() for
details.

Open GENIE Reference Manual Chapter 2

- 45 -

Peak()
Performs interactive peak fitting

PEAK [w=Workspace] Fit peaks in a workspace

example:
Fit peaks from a genie intermediate file
>> fit = peak(get(3,"mydata.in3"))
>> printn fit

Note: See the Peakfit() and Peakgen() commands for more detail.

Peak
The peak command is a high level command built on the powerful Open GENIE peak fitting
primitive commands. It operates interactively to allow selection of the bounds of the peak and
the form of fit to use. Once fitted the peak parameters of the fit are displayed and made available
as a result so that they can be used later. For more control over the fitting process see the
Peakgen() and Peakfit() primitive commands.

Parameters:

W (Workspace)

Any valid single spectrum in a workspace.

RESULT = (Workspace)

The result of the Peak() command is a workspace containing the fitting
parameters used as well as a description of the type of fit and an algebraic
description of the function fitted.

Open GENIE Reference Manual Chapter 2

- 46 -

Plot()
Overplots an existing graph produced by Display()

PLOT [wksp=Workspace]
[binning=Integer]

Overplots with new data

[/HISTOGRAM] Plots as a histogram (default)

[/LINE] Plots as a line

[/MARKERS] Plots as markers

[/ERRORS] Plots as error bars

example:
Plot a vanadium spectrum on top of
the data as a comparison
>> Display s(5) xmin=20000.0
>> Plot/Line get("vanadium1","normal.in3")

Note: Plot does not allow any change of scaling.

Plot
The Plot() command is really an adjunct to the Display() command. It is used to plot just the data
plot of a spectrum such that it can be used to superimpose new data onto existing plots made
with the Display() command. The Plot() command itself has no ability to create axes or scale the
data.

Parameters:

/Histogram

This is the default as for the Display() command when given bin-mode
(histogrammed) data. It will plot a spectrum making the assumption that it is a
valid histogram (i.e. binned data with one more X value than Y value). The data
values are represented by the height of the corresponding bin. Remember that
several commands can actually affect the height of bins unexpectedly by changing
the binning method and/or data. Examples of these are Alter/Binning and
Units/Channel.

If point-mode data is supplied with the /Histogram qualifier an error will be
reported as it is not possible for Open GENIE to guess the assumptions you may
want to make about the conversion (an extra X value would have to be generated
by interpolation).

/Line

Open GENIE Reference Manual Chapter 2

- 47 -

This is the default for the Plot() command when given point-mode data. It will
plot a spectrum as if it is a numerically calculated function (i.e. with the same
number of X-values as Y-values) and join the points with a straight lines. If
histogram data is displayed with the /Line qualifier, the data will undergo a
transformation to take the bin centre positions as the X-values for the data points
(see the Centre_bins() function). There are situations where you may not wish this
behaviour to be the default (e.g. for logarithmic binning). Generally, it is safer to
transform the data yourself into point-mode and then use Display to plot it.

/Markers

This is identical to the /Line qualifier in operation except that instead of joining
the data points with lines, marker symbols are used. See Marker Types for a list of
available styles.

/Errors

This is identical to the /Line qualifier in operation except that instead of joining
the data points with lines, error bars are generated. These are centered on the data
points and have a size scaled from the values of the data error values contained
within the workspace E array.

Wksp (Workspace)

The workspace containing the data to overplot with.

Binning (Integer)

Binning for this plot only. See Alter/Binning for more details on binning. Note
that by binning differently with the Plot() command, data may appear quite
differently. This is because the implicit micro-averaging in the binning may
substantially reduce the height of sharp peaks or noise.

Open GENIE Reference Manual Chapter 2

- 48 -

Toggle()
Toggles between common settings, mainly graphics.

TOGGLE/STATUS Reports the values of all Toggled settings.

TOGGLE/LOGX X axis log/linear

TOGGLE/LOGY Y axis log/linear

TOGGLE/CLEAR Screen clearing between plots

TOGGLE/GRATICULE Toggle graticule off/on

TOGGLE/HEADER Header plotted on Display() command.

TOGGLE/RX X axis rounding off/on

TOGGLE/RY Y axis rounding off/on

TOGGLE/INFO Informational message printing on/off

[/ON] Toggles item on

[/OFF] Toggles item off

example:
Switch off informational messages and display
a data plot with no banner heading.
>> Toggle/info/off
>> Toggle/header
>> Display Spectrum(22)

Note: See the Alter() command for changing other graphics settings.

Toggle/Status
The Toggle command acts like an on/off switch for the settings described below. All the
toggle commands switch the setting to its opposite value unless /Off or /On is specified in
which case the value of the setting is forced on or off.

Parameters:

/On

Applies to all Toggle() commands and forces the value of the parameter to the On
state.

/Off

Applies to all Toggle() commands and forces the value of the parameter to the Off

Open GENIE Reference Manual Chapter 2

- 49 -

state.

Toggle/LogX
Set the default mode for plotting with the Display() and Plot() commands to plot logs of
the X data against a log X Axis. On startup, the X-Axis mode is linear.

Toggle/LogY
Set the default mode for plotting with the Display() and Plot() commands to plot logs of
the Y data against a log Y Axis. On startup, the Y-Axis mode is linear.

Toggle/Clear
Alters the behaviour of the Display() and Multiplot() commands to produce plots without
clearing the display device first. This can be used with the Alter/Plot command to put
multiple pictures on one display, see also the Graphics primitive window creation
commands. On startup, both the commands clear the display device by default.

Toggle/Graticule
Switches a graticule or crosshatch on for subsequent invocations of the Display()
command. The frequency of the graticule may be altered by the Alter() command.

Toggle/Header
Switches the default for whether to display the standard Display() command banner or
not. The banner can be toggled off to make more room to display the plot on a small
screen. On startup the banner is enabled.

Toggle/RoundX
Enables rounding on the X axis. By default this is switched on, but for accuracy it may be
desirable to let the absolute values of the axis be fixed to the exact limits of the plot.

Open GENIE Reference Manual Chapter 2

- 50 -

Toggle/RoundY
Enables rounding on the Y axis. By default this is switched on, but for accuracy it may be
desirable to let the absolute values of the axis be fixed to the exact limits of the plot.

Toggle/Info
Switches the display of informational messages on/off. Normally Open GENIE
operations report warning or informational messages as ANSI style blue coloured text
using the Printin() command. For example, Genie command language procedures using a
lot of data I/O may wish to suppress messages about the data being read.

Open GENIE Reference Manual Chapter 2

- 51 -

Zoom()
Interactively choose an area of a plot to magnify.

ZOOM Redraw a plot scaling to the cursor selected box.

[/ERRORS] Redraw using error bars

[/HISTOGRAM] Redraw as a histogram

[/LINE] Redraw as a line plot

[/MARKERS] Redraw as a marker plot

example:
Zoom in on the current plot
and re-display with error bars
>> zoom/errors

Note: A zoom can be undone by a Limits/Default command with no arguments

Zoom
The Zoom() command is an interactive command which helps examine a plot already on the
screen in more detail. After running the zoom command two points are selected with the cursor
to mark the lower and upper X and Y boundaries of the area to be zoomed. The zoom command
works by re-displaying the selected region of data. As a result of this approach, the resolution of
a zoom is only limited to the resolution set by the data or the current bin setting (see
Alter/Binning).

Parameters:

/Errors

Display the resulting plot in the form of error bars.

/Histogram

Display the resulting plot in the form of a histogram (the default for bin-mode
data).

/Line

Display the resulting plot in the form of a line plot (the default for point-mode
data).

/Markers

Display the resulting plot in the form of marker symbols

Open GENIE Reference Manual Chapter 2

- 52 -

Open GENIE Reference Manual Chapter 2

- 53 -

3ULPLWLYH�*UDSKLFV�&RPPDQG�5HIHUHQFH

Open GENIE Reference Manual Chapter 2

- 54 -

Delete()
Deletes unwanted graphics objects from memory

DELETE item=Gobject Deletes an object, window or a picture.

example:
Delete object 10 in window 2, picture 4.
>> delete obj(4,2,10)
Create and delete a picture
>> mypict = picture()
>> delete item=mypict

Note: Once something is deleted then there is no going back.

Delete
Deletes a DrawableObject from the window it is found in. There is no default object chosen by
Delete(), as the operation is permanent, an object must be specified. Delete() will change the
numbering order of pictures, windows and objects.

Parameters:

Item (Gobject)

Deletes the specified object. If the object refers to a window or picture, all
contained objects are deleted too.

Open GENIE Reference Manual Chapter 2

- 55 -

Pic_add()
Copy graphical objects from picture to picture.

PIC_ADD item=Gobject [device=Gobject] Copy item to current
picture/window

PIC_ADD
item=Gobject [dest=Gobject]
[device=Gobject]

Copy item to picture or window

example:
Draw a line object, then copy it into
the last open window on picture 4
redraw the updated picture on device 3.
>> my_line = Line:Draw(0.0,1.0,0.0,1.0,$green)
>> Pic_add item=my_line dest=pic(4) device=dev(3)

Note: item can only ever be a primitive object or a window.

Pic_add()
This command allows graphical objects to be re-show more than once, moved from display to
display or duplicated. Open GENIE contains a copy of every graphical object that has been
created and is still in use (they can be removed permanently by the Delete() command).

Objects can either be referred to using the Pic(), Win(), Dev() or Obj() functions or obtained
directly as an object reference when an object is created (as in the example above).

Note that the default destination for Pic_add() is the current Picture when "item" is a window,
and is the Current Window when "item" is a primitive object.

Parameters:

Item (Gobject)

This must be an object reference to either a drawing primitive (e.g. a line) or a
window. This parameter cannot be a device or picture reference. This is the item
which is to be copied and redrawn at a new destination. Probably the most useful
form of the command is to copy windows which already have several things
drawn in them.

Dest (Gobject) [default = current window]

Specifies a destination picture or window. If a picture is specified and the "item"
parameter is a primitive object the window used will be the last one in the picture.
When the "item" parameter is a window, the window is simply added at the end of
the specified picture.

Device (Gobject) [default = current device]

Open GENIE Reference Manual Chapter 2

- 56 -

After adding an object to a picture, the object will be re-drawn, by default this
will be on the current device. If this is not the device required, the device in which
to re-draw the newly copied primitive can be specified explicitly.

RESULT = (Restype)

Returns a reference to the copied item. This allows "/alter" commands to be
applied to the object without having to find it again.

Open GENIE Reference Manual Chapter 2

- 57 -

Select()
Select a new current device, window or picture

SELECT item=Gobject Sets this to be the current object

example:
Select an old window to draw in
>> Select win(picnum=3,winnum=4)
>> keep_dev = Select(dev(3))
>> draw/text 0.2 0.3 "Fudge this data"
back to previous device & current window
>> select keep_dev
>> select win(0,0)

Note: Drawing is always to the current window.

Select
The Open GENIE graphics system always maintains a record of a current device, picture and
window. This is done so that drawing commands can all occur without having to specify where
to draw. Normally Open GENIE looks after the setting of these defaults in an intuitive way but
the Select() command makes it possible to change the currently selected objects.

The most likely use for the Select() command is when programming a complex system involving
several windows, pictures and open devices. It is also the only way to go back to draw in a
window which was created earlier on and which has been superceded by subsequent window
creating commands. To specify which objects to select, see the Dev(), Pic() and Win()
commands.

Parameters:

Item (Gobject)

This specifies either a picture, window or device object and the object specified
then becomes the current device, picture or window. Generally if you wish to
draw into a previous picture or window, the object to select is the window;
drawing commands can only be into a window. The only time to select a picture
explicitly is when adding a new window to an old picture.

RESULT = (Gobject or Undefined)

Returns the Gobject selected as the new current device, window or picture.

Open GENIE Reference Manual Chapter 2

- 58 -

Redraw()
Redisplay current or previous pictures or objects.

REDRAW [item=Gobject]
[device=Gobject]

Redraws all or part of the specified picture

example:
Store an HPGL copy of the last but one picture
>> device/close
>> device/open "HPGL" file="OUT.HPGL"
>> redraw pic(-2)

Note: The default is to redraw the current picture on the current device

Redraw
This command allows a complete redraw of a picture (either one currently displayed on the
device or one which was previously displayed and still remains in the picture list). As pictures
are stored independently of the device on which they are displayed, it is possible to close the
currently open device, open another, and then redraw one or more pictures to the new device.
This is how the high level command Hardcopy() works. Windows and objects may also be
redrawn specifically where the underlying graphics driver allows updates to specific parts of the
display.

Parameters:

Item (Gobject) [default = current picture]

The graphics object to be redrawn, this will default to the current picture and
effectively refresh the whole picture on the current device. If a window or even an
individual primitive object is specified instead, just the window or object will be
redrawn.

Device (Gobject) [default = current device]

The device on which to redraw the item specified. The default is the currently
selected device.

Open GENIE Reference Manual Chapter 2

- 59 -

Undraw()
Undraw a primitive graphics operation.

UNDRAW [item=Gobject] Temporarily remove a graphics primitive

example:
>> Draw/Text 0.5 0.4 "Special data point"
oops, too far to the right!
>> Undraw
>> Draw/Text 0.4 0.4 "Special data point"

Note: See Obj(), Win() and Pic() commands for specifying objects.

Undraw
Undraw allows a temporary removal of a graphics item; either a primitive object, window or
picture. Normally it is used interactively when annotating a plot as a means of undoing some
annotation which was inappropriate. An undrawn item remains in the display list and can be
redrawn if desired with the Redraw() command. If something is undrawn by mistake, it can be
redrawn using the Redraw() command.

Parameters:

item (Gobject) [default = last graphical object drawn]

This parameter specifies the the primitive to remove. Objects can be referred to
either by an object reference saved when the object was created or by one of the
object locating functions Pic(), Win(), Obj().

Open GENIE Reference Manual Chapter 2

- 60 -

Device()
Selects and controls graphics devices

DEVICE/OPEN [devtype=String]
[width=Real] [height=Real]

Opens a graphics device for
plotting on

DEVICE/CLEAR Clears the current graphics
device

DEVICE/CLOSE Close the current graphics
device

DEVICE:STATUS()
Returns $TRUE if there is a
device open

example:
Open two X-Windows display devices
and close one.
>> device/open "XW" height=5.0
>> dev2 = device:open("XWINDOW",height=3.0)
>> select dev2
>> device/close

Note: For windowing systems, multiple device may be open on the screen at once.

Device/Open
The supported interactive devices on most machines include "XWINDOWS" X-Windows and
"TEK4010" Tek 4010 compatible. The supported non-interactive devices include "PS"
Postscript, "CPS" Colour Postscript and "HPGL" HPGL driver for 7475A For full details of
supported devices on each machine see Supported Graphics Devices.

Parameters:

Devtype (String) [default = "XWINDOW"]

The device name string, this can be any supported device, interactive or hardcopy.

Width (Real) [default = 8.0 inches]

Width of the graphics display in inches.

Height (Real) [default = 8.0 inches]

Height of the graphics display in inches.

RESULT = (Device)

Returns the device object for later reference.

Open GENIE Reference Manual Chapter 2

- 61 -

Device/Clear
Clears the display surface on the currently open device or advances to a new sheet of paper, a
new picture is created automatically and will become the current picture. The older pictures will
still be available by using the Redraw() command (Redraw pic(-1) will redraw the picture before
the device was cleared).

Device/Close
Deactivates the currently open graphics device. This command flushes output to a file when
using a hardcopy device and must be called before the file can be used. Once the device is
closed, it is not possible to draw anything without re-opening the device. A different device can
be used when the device is re-opened.

Parameters:

Object (Gobject)

Optional device to close, otherwise the default is to close the current device.

Device:Status()
Returns true if there is at least one graphics device open. This can be useful where another
procedure may or may not have initialized the graphics system previously and it would be
unnecessary or unhelpful to open a second device.

Open GENIE Reference Manual Chapter 2

- 62 -

Picture()
Creates a picture

PICTURE Creates and displays a picture on the graphics device

example:
Opening a device then
creating a picture
>> device/open
>> picture

Note: To create a pictures without opening a real device, open a "/NULL" device.

Picture
Create and display a picture on the current device. After a picture command the current picture
will be reset to the new picture and the previous picture can be accessed via the Pic() command (
i.e. Redraw pic(-1)). After creating a picture you will need to create windows in which to draw
objects.Parameters:

RESULT = (Picture)

This returns all of the properties of a Picture as a picture object reference.

Open GENIE Reference Manual Chapter 2

- 63 -

Window()
Obsolete command

WINDOW/AUTOSCALED Autoscaled window, use WIN_AUTOSCALED

WINDOW/MULTIPLOT multiplot window, use WIN_MULTIPLOT

WINDOW/SCALED Scaled window, use WIN_SCALED

WINDOW/TWOD 2-D window, use WIN_TWOD

WINDOW/UNSCALED Unscaled window, use WIN_UNSCALED

Window()
This command is now obsolete. The new "Win_" commands provide the same functionality.

Open GENIE Reference Manual Chapter 2

- 64 -

Win_autoscaled()
Creates a scaled window automatically from supplied data.

WIN_AUTOSCALED dxmin=Real dxmax=Real dymin=Real
dymax=Real x=RealArray y=RealArray
[e=RealArray] [colour=Colour]
[minmode=Integer] [maxmode=Integer]

Creates an
autoscaled
window.

example:
Creating and displaying an autoscaled
window, where yarray, xarray and earray
have already been defined
>> win_autoscaled 0.1 0.9 0.1 0.9 xarray yarray earray

Note: d min/max values give fraction of device window to cover

Win_Autoscaled
Creates and displays a scaled window, without the knowledge of the exact co-ordinates needed
for the scaling of the window. The scaling is fairly intelligent and can be controlled by the
"maxmode" and "minmode" parameters. Obviously for this routine to work, the data must be
available already, if not the Win_scaled() command can be used.

Parameters:

Dxmin (Real)

Sets the minimum x device co-ordinate.

Dxmax (Real)

Sets the maximum x device co-ordinate.

Dymin (Real)

Sets the minimum y device co-ordinate.

Dymax (Real)

Sets the maximum y device co-ordinate.

X (RealArray)

Array to use for X axis limits.

Y (RealArray)

Array to use for Y axis limits.

Open GENIE Reference Manual Chapter 2

- 65 -

E (RealArray)

Optional array to use for Y axis limits.

Minmode (Integer)

Specify how the axes are scaled by setting the minimum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

Maxmode (Integer)

Specify how the axes are scaled by setting the maximum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

Colour (Colour)

Sets the colour of the window. By default the colour of the window is the
background colour.

RESULT = (WindowScaled)

Returns all of the properties of the newly created window.

Open GENIE Reference Manual Chapter 2

- 66 -

Win_multiplot()
Controls and creates multi_plot windows for plotting

WIN_MULTIPLOT dxmin=Real dxmax=Real dymin=Real
dymax=Real object=Gobject
[minmode=Integer] [maxmode=Integer]
[colour=Colour]

Creates a
multiplot
window.

example:
Creating and displaying a multiplot
window
>> win_multiplot 0.1 0.9 0.1 0.9

Note: d means the device co-ordinate.

Win_MultiPlot
Creates and displays a window which enables multiplots to be drawn. This window can not be
created without a completed multi_plot object from which to scale the axes.

Parameters:

Dxmin (Real)

Sets the minimum x device co-ordinate.

Dxmax (Real)

Sets the maximum x device co-ordinate.

Dymin (Real)

Sets the minimum y device co-ordinate.

Dymax (Real)

Sets the maximum y device co-ordinate.

Object (Gobject)

An already created multi_plot object with spectra added so that this window can
scale from it.

Minmode (Integer)

Specify how the axes are scaled by setting the minimum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

Maxmode (Integer)

Open GENIE Reference Manual Chapter 2

- 67 -

Specify how the axes are scaled by setting the maximum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

Colour (Colour) [= $background]

Sets the colour of the window.

RESULT = (MultiplotWindow)

Returns all of the properties of the newly created window.

Open GENIE Reference Manual Chapter 2

- 68 -

Win_scaled()
Controls and creates pre-scaled windows for plotting data.

WIN_SCALED dxmin=Real dxmax=Real dymin=Real
dymax=Real wxmin=Real wxmax=Real
wymin=Real wymax=Real [colour=Colour]
[minmode=Integer] [maxmode=Integer]

Creates a
scaled
window.

example:
Creating and displaying a scaled
window
>> win_scaled 0.1 0.9 0.1 0.9 -100.0 10.0 0.0 10.0
>>

Note: d means the device co-ordinate, w means the world co-ordinate.

Win_Scaled
Creates and displays a scaled window. A scaled window is an area in which it is possible to
specify any range of data or window co-ordinates to map onto an area of the display device
(specified in device co-ordinates). Normally a scaled window should be created for every data
plot. For drawing simple graphics which do not require an extra scaling to match the data you
can use the Win_unscaled() command instead.

Parameters:

Dxmin (Real)

Sets the minimum x device co-ordinate.

Dxmax (Real)

Sets the maximum x device co-ordinate.

Dymin (Real)

Sets the minimum y device co-ordinate.

Dymax (Real)

Sets the maximum y device co-ordinate.

Wxmin (Real)

Sets the minimum x world co-ordinate.

Wxmax (Real)

Sets the maximum x world co-ordinate.

Open GENIE Reference Manual Chapter 2

- 69 -

Wymin (Real)

Sets the minimum y world co-ordinate.

Wymax (Real)

Sets the maximum y world co-ordinate.

Colour (Colour) [= $background]

Sets the colour of the window.

Minmode (Integer)

Specify how the axes are scaled by setting the minimum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

Maxmode (Integer)

Specify how the axes are scaled by setting the maximum mode where, 0=absolute
values, 1 or 3 = +10%, 2 or 3 = round down, and 4 = force zero.

RESULT = (WindowScaled)

Returns all of the properties of the newly created window.

Open GENIE Reference Manual Chapter 2

- 70 -

Win_twod()
Controls and creates two dimensional windows for plotting

WIN_TWOD dxmin=Real dxmax=Real dymin=Real
dymax=Real x=RealArray y=RealArray
[colour=Colour]

Creates a Two
dimensional window.

example:
Creating and displaying a Twod window,
where yarray and xarray have already
been defined
>> win_twod 0.1 0.9 0.1 0.9 y=yarray x=xarray

Note: d means the device co-ordinate. Giving the x/yarray the window is scaled
automatically.

Win_Twod
Creates and displays a Two dimensional window ready for plotting a colour cell or contour plot.
The area of the screen to use for the window is specified with the four device co-ordinates and
the supplied X and Y arrays are used to auto-scale the axes in the X and Y directions
respectively. If the X and Y scaling is known the Win_scaled() command my be used instead.

Parameters:

Dxmin (Real)

Sets the minimum x device co-ordinate.

Dxmax (Real)

Sets the maximum x device co-ordinate.

Dymin (Real)

Sets the minimum y device co-ordinate.

Dymax (Real)

Sets the maximum y device co-ordinate.

X (RealArray)

Scales the two dimensional window.

Y (RealArray)

Scales the two dimensional window.

Open GENIE Reference Manual Chapter 2

- 71 -

Colour (Colour) [= $background]

Sets the colour of the window

RESULT = (TwoDWindow)

Returns all of the properties of the newly created window.

Open GENIE Reference Manual Chapter 2

- 72 -

Win_unscaled()
Controls and creates unscaled windows for plotting.

WIN_UNSCALED xmin=Real xmax=Real
ymin=Real ymax=Real
[colour=Colour]

Sets the device co-ordinates and
creates an unscaled window.

example:
Creating and displaying an
unscaled window
>> win_unscaled 0.1 0.9 0.1 0.9

Note: d means the device co-ordinate.

Win_Unscaled
Creates and displays an unscaled window. The unscaled window is the simplest form of graphics
window. By default every new picture has an unscaled window associated with it and they can
be created as desired. Normally things such as plot annotation, text and boxes are drawn in the
default unscaled window to avoid scaling the simple graphics primitives in the same coordinates
as the plot. The co-ordinates within an unscaled window always go from 0 to 1 in the X and Y
directions.

Parameters:

Xmin (Real)

Sets the minimum x device co-ordinate.

Xmax (Real)

Sets the maximum x device co-ordinate.

Ymin (Real)

Sets the minimum y device co-ordinate.

Ymax (Real)

Sets the maximum y device co-ordinate.

Colour (Colour) [= $background]

Sets the colour of the window

RESULT = (Window)

Returns all of the properties of the newly created window.

Open GENIE Reference Manual Chapter 2

- 73 -

New_zoom()
Zooms in on a graphics device

NEW_ZOOM Magnifies specified areas of the current picture

example:
Using the zoom command
new_zoom

Note: This is only partially implemented.

New_Zoom
The left mouse button specifies the region to be zoomed.
The Right mouse button will:

- go back to the original picture (clicked once and device is showing zoomed area)
- exits the command (clicked twice - if originally showing
a zoomed area, otherwise click once)

Open GENIE Reference Manual Chapter 2

- 74 -

Getcursor()
Cursor input routine for a window or a picture.

GETCURSOR() [x=Real] [y=Real] Returns co-ordinates of the point the mouse
was clicked

example:
Shows how to use the getcursor command
>> printn getcursor(0.5, 0.5)

Note: If there is more than one window where the pointer clicked, it will return the last
window drawn.

Getcursor()
Returns the point where the mouse clicked in device co-ordinates (d_x, d_y), window co-
ordinates (w_x, w_y), and a character to represent the mouse button clicked ("A" for left "X" for
right, "D" for middle).

X, Y (Real) [default = (0, 0)]

Specifies an optional starting place to put the cross hairs on the screen. This is
specified in device co-ordinates.

= (Workspace)

At the point the mouse clicked, it returns all of the possible co-ordinates and
window number in a single workspace

RESULT = (Workspace)

At the point the mouse clicked, it returns all of the possible co-ordinates and
window number in a single workspace.

Open GENIE Reference Manual Chapter 2

- 75 -

Draw()
Obsolete command

DRAW/AXES Displays axes on the graphics device, use AXES

DRAW/ERRORS Displays error-bars on a plot, use ERRORS

DRAW/PLOT Plots a Graph on the graphics device, use GRAPH

DRAW/GRATICULE Displays a Graticule on the graphics device, use GRATICULE

DRAW/HISTOGRAM Plots a histogram on the graphics device, use HISTOGRAM

DRAW/LABELS Displays x/y labels on the graphics device, use LABELS

DRAW/LINE Displays a line on the graphics device, use LINE

DRAW/MARKERS Displays markers on the graphics device, use MARKERS

DRAW/POLYGON Displays a polygon on the graphics device, use POLYGON

DRAW/TEXT Displays some text on the graphics device, use TEXT

DRAW/TITLE Displays a Title on the graphics device, use TITLE

Draw()
This command is now obsolete. The alternatives listed above provide the same functionality.

Open GENIE Reference Manual Chapter 2

- 76 -

Axes()
Displays an axes on the graphics device

AXES/DRAW [/XLOG] [/YLOG]
[/YHORIZ] [/NOXNUM]
[/NOYNUM] [/XLINEAR]
[/YLINEAR] [/YVERTICAL]
[/XNUM] [/YNUM]

[colour=Colour] [size=Real]
[font=Font]
[line_thickness=Real]
[line_type=LineStyle]

Draws an Axis
on a graphics
device

AXES/ALTER [/XLOG] [/YLOG]
[/YHORIZ] [/NOXNUM]
[/NOYNUM] [/XLINEAR]
[/YLINEAR] [/YVERTICAL]
[/XNUM] [/YNUM]

[colour=Colour] [size=Real]
[font=Font]
[line_thickness=Real]
[line_type=LineStyle]
object=Gobject

Alters an axis
already drawn
on a graphics
device

example:
Draw green Axes on a device with a window already
displayed, then alters the colour.
>> a = axes:draw(colour=$green)
>> axes/alter colour=$red object=a

Note: By default the axes are linear, x is labeled horizontally and y is labeled vertically

Axes/Draw
Draws an axes on a graphics device when a window is displayed previously.

Parameters:

/Xlog

Draws a logarithmic x axis.

/Ylog

Draws a logarithmic y axis.

/Yhoriz

Labels the numbers horizontally on the y axis..

/Noxnum

Does not put numbers on the x axis.

/Noynum

Does not put numbers on the y axis.

Open GENIE Reference Manual Chapter 2

- 77 -

/Xlinear

Draws a linear x axis.

/Ylinear

Draws a linear y axis.

/Yvertical

Draws the numbers vertically on the y axis.

/Xnum

Draws numbers on the x axis.

/Ynum

Draws numbers on the y axis.

Colour (Colour)

Defines the colour of the axis.

Size (Real)

Defines the size of the numbers.

Font (Font)

Defines the font, $Normal, $Roman, $Italic, $Script.

Line_thickness (Real)

Defines the thickness of the axis.

Line_type (LineStyle)

Defines the line_type of the axes, $Full, $Dash, $Dot_Dash, $Dot.

RESULT = (OneDAxes)

This returns all of the properties of the newly created axes.

Axes/Alter
Alters a specified axes, the parameter object MUST be specified.

Parameters:

/Xlog

Open GENIE Reference Manual Chapter 2

- 78 -

Draws a logarithmic x axis.

/Ylog

Draws a logarithmic y axis.

/Yhoriz

Labels the numbers horizontally on the y axis..

/Noxnum

Does not put numbers on the x axis.

/Noynum

Does not put numbers on the y axis.

/Xlinear

Draws a linear x axis.

/Ylinear

Draws a linear y axis.

/Yvertical

Draws the numbers vertically on the y axis.

/Xnum

Draws numbers on the x axis.

/Ynum

Draws numbers on the y axis.

Colour (Colour)

Defines the colour of the axis.

Size (Real)

Defines the size of the numbers.

Font (Font)

Defines the font, $Normal, $Roman, $Italic, $Script.

Line_thickness (Real)

Defines the thickness of the axis.

Open GENIE Reference Manual Chapter 2

- 79 -

Line_type (LineStyle)

Defines the line_type of the axes, $Full, $Dash, $Dot-Dash, $Dot.

Object (Gobject)

Shows which axes is to be altered.

RESULT = (OneDAxes)

This returns all of the properties of the altered axes

Open GENIE Reference Manual Chapter 2

- 80 -

Errors()
Displays error-bars on a plot

ERRORS/DRAW
[/HORIZONTAL]
[/VERTICAL]

xarray=RealArray
yarray=RealArray
earray=RealArray
[colour=Colour]
[line_thickness=Real]

Draw error-bars at the
x/yarray points, with the size
of the earray values

ERRORS/ALTER
[/HORIZONTAL]
[/VERTICAL]

[xarray=RealArray]
[yarray=RealArray]
[earray=RealArray]
[colour=Colour]
[line_thickness=Real]
object=Gobject

Alter the error-bars

example:
Add error bars to a plot
>> e = Errors:draw(colour=$blue)
>> Errors/alter colour=$red object=e

Note: e array can only default like if it has been given originally.

Errors/Draw
Draws error-bars on a graphics device. If the xarray and yarray have already been defined, by
either graph, histogram or markers, then it is not necessary to define them again.

Parameters:

/Vertical

Draw vertical error-bars.

/Horizontal

Draw horizontal error-bars.

Xarray (RealArray)

Defines the x points.

Yarray (RealArray)

Defines the y points

Earray (RealArray)

Open GENIE Reference Manual Chapter 2

- 81 -

Defines the size of the error-bars.

Colour (Colour)

Defines the error-bars colour.

Line_thickness (Real)

Defines the error-bars width.

RESULT = (OneDVErrors or OneDHErrors)

Returns the properties of the newly created error-bars.

Errors/Alter
Alters an already created set of error bars.

Parameters:

/Vertical

Draw vertical error-bars.

/Horizontal

Draw horizontal error-bars.

Xarray (RealArray)

Not yet implemented.

Yarray (RealArray)

Not Yet Implemented.

Earray (RealArray)

Not Yet Implemented.

Colour (Colour)

Defines the error-bars colour.

Line_thickness (Real)

Defines the error-bars width.

Object (Integer)

Shows which set of error-bars are to be altered, in any one window.

Open GENIE Reference Manual Chapter 2

- 82 -

RESULT = (OneDVErrors or OneDHErrors)

Returns the properties of the altered error-bars.

Open GENIE Reference Manual Chapter 2

- 83 -

Graph()
Displays a graph (or line plot) on a graphics device.

GRAPH/DRAW xarray=RealArray yarray=RealArray
[colour=Colour] [line_type=LineStyle]
[line_thickness=Real]

Draw a graph at the
x/yarray points.

GRAPH/ALTER [xarray=RealArray] [yarray=RealArray]
[colour=Colour] [line_type=LineStyle]
[line_thickness=Real] object=Gobject

Alter the graph

example:
Add graph to a plot
>> g = Graph:draw(colour=$blue)
>> Graph/alter colour=$red object=g

Note: For graph/alter yarray and xarray are not yet implemented.

Graph/Draw
Draws a graph on a graphics device. If the xarray and yarray have already been defined, by either
errors, histogram or markers, then it is not necessary to define them again.

Parameters:

Xarray (RealArray)

Defines the x points.

Yarray (RealArray)

Defines the y points

Colour (Colour)

Defines the graphs colour.

Line_type (LineStyle)

Defines the line type of the graph. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Defines the graphs line width.

RESULT = (OneDGraph)

Returns the properties of the newly created graph.

Open GENIE Reference Manual Chapter 2

- 84 -

Graph/Alter
Alters a graph. The xarray and yarray are not able to be altered at this point in time.

Parameters:

Xarray (RealArray)

Not yet implemented.

Yarray (RealArray)

Not Yet Implemented.

Colour (Colour)

Defines the graph colour.

Line_type (LineStyle)

Defines the line type of the graph. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Defines the graphs line width.

Object (Gobject)

Shows which graph is to be altered.

RESULT = (OneDGraph)

Returns the properties of the altered graph.

Open GENIE Reference Manual Chapter 2

- 85 -

Graticule()
Displays a graticule axis on the graphics device

GRATICULE/DRAW [/XLOG]
[/YLOG] [/YHORIZ] [/NOXNUM]
[/NOYNUM] [/XLINEAR]
[/YLINEAR] [/YVERTICAL]
[/XNUM] [/NUM]

[colour=Colour] [size=Real]
[font=Font]
[line_thickness=Real]
[line_type=LineStyle]

Draws a
Graticule on a
graphics device

GRATICULE/ALTER [/XLOG]
[/YLOG] [/YHORIZ] [/NOXNUM]
[/NOYNUM] [/XLINEAR]
[/YLINEAR] [/YVERTICAL]
[/XNUM] [/NUM]

[colour=Colour] [size=Real]
[font=Font]
[line_thickness=Real]
[line_type=LineStyle]
object=Gobject

Alters a graticule
already drawn on
a graphics device

example:
Draws a green Graticule on a device
then alters the colour.
>> g = graticule:draw(colour=$green)
>> graticule/alter colour=$red object=g

Note: By default the graticule is linear.

Graticule/Draw
Draws a graticule on a graphics device when a window is displayed previously.

Parameters:

/Xlog

Draws with a logarithmic x axis.

/Ylog

Draws with a logarithmic y axis.

/Yhoriz

Labels the numbers horizontally on the y axis..

/Noxnum

Does not put numbers on the x axis.

/Noynum

Does not put numbers on the y axis.

Open GENIE Reference Manual Chapter 2

- 86 -

/Xlinear

Draws a linear x axis.

/Ylinear

Draws a linear y axis.

/Yvertical

Draws the numbers vertically on the y axis.

/Xnum

Draws numbers on the x axis.

/Ynum

Draws numbers on the y axis.

Colour (Colour)

Defines the colour of the graticule.

Size (Real)

Defines the size of the numbers.

Font (Font)

Defines the font, $Normal, $Roman, $Italic, $Script.

Line_thickness (Real)

Defines the thickness of the graticule.

Line_type (LineStyle)

Defines the line_type of the graticule, $Full, $Dash, $Dot-Dash, $Dot.

RESULT = (OneDGraticule)

This returns all of the properties of the newly created graticule.

Graticule/Alter
Alters a specified graticule, the parameter object MUST be specified.

Parameters:

/Xlog

Open GENIE Reference Manual Chapter 2

- 87 -

Draws a logarithmic x axis.

/Ylog

Draws a logarithmic y axis.

/Yhoriz

Labels the numbers horizontally on the y axis..

/Noxnum

Does not put numbers on the x axis.

/Noynum

Does not put numbers on the y axis.

/Xlinear

Draws a linear x axis.

/Ylinear

Draws a linear y axis.

/Yvertical

Draws the numbers vertically on the y axis.

/Xnum

Draws numbers on the x axis.

/Ynum

Draws numbers on the y axis.

Colour (Integer)

Defines the colour of the graticule.

Size (Real)

Defines the size of the numbers.

Font (Font)

Defines the font, $Normal, $Roman, $Italic, $Script.

Line_thickness (Real)

Defines the thickness of the graticule.

Open GENIE Reference Manual Chapter 2

- 88 -

Line_type (LineStyle)

Defines the line_type of the graticule, $Full, $Dash.

Object (Gobject)

Defines which graticule is to be altered, in any one window.

RESULT = (OneDGraticule)

This returns all of the properties of the altered graticule

Open GENIE Reference Manual Chapter 2

- 89 -

Histogram()
Displays a histogram on a graphics device.

HISTOGRAM/DRAW
[/CENTRE]
[/NOTCENTRED]

xarray=RealArray
yarray=RealArray
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Draw a Histogram at
the x/yarray points.

HISTOGRAM/ALTER
[/CENTRE]
[/NOTCENTRED]

[xarray=RealArray]
[yarray=RealArray]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]
object=Gobject

Alter the Histogram

example:
Draws a histogram
then alters the colour.
>> h = histogram:draw(colour=$green)
>> histogram/alter colour=$red object=h

Note: By default the points are not centred.

Histogram/Draw
Draws a histogram on a graphics device. If the xarray and yarray have already been defined, by
histogram, then it is not necessary to define them again.

Parameters:

/Centre

Plots the points at the centre of the bin.

/Notcentred

Plots the points at the beginning of the bin.

Xarray (RealArray)

Defines the x points.

Yarray (RealArray)

Defines the y points.

Colour (Colour)

Open GENIE Reference Manual Chapter 2

- 90 -

Defines the histogram’s colour.

Line_type (LineStyle)

Defines the line type of the graph. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Defines the histogram’s line width.

RESULT = (OneDHistogram)

Returns the properties of the newly created histogram.

Histogram/Alter
Alters a histogram. The xarray and yarray are not able to be altered at this point in time.

Parameters:

/Centre

Plots the points at the centre of the bin.

/Notcentred

Plots the points at the beginning of the bin.

Xarray (RealArray)

Not yet implemented.

Yarray (RealArray)

Not Yet Implemented.

Colour (Colour)

Defines the histogram colour.

Line_type (LineStyle)

Defines the line type of the graph. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Defines the histogram’s line width.

Object (Gobject)

Shows which histogram is to be altered, in any one window.

Open GENIE Reference Manual Chapter 2

- 91 -

RESULT = (OneDHistogram)

Returns the properties of the altered histogram.

Open GENIE Reference Manual Chapter 2

- 92 -

Labels()
Displays x/y labels on the graphics device

LABELS/DRAW
[/XHORIZONTAL]
[/YVERTICAL]
[/XVERTICAL]
[/YHORIZONTAL]

[xlabel=String] [ylabel=String]
[size=Real] [colour=Colour]
[font=Font]

Draws x and
y labels.

LABELS/ALTER
[/XHORIZONTAL]
[/YVERTICAL]
[/XVERTICAL]
[/YHORIZONTAL]

[xlabel=String] [ylabel=String]
[size=Real] [colour=Colour]
[font=Font] object=Gobject

Alters the x
and y labels

example:
Draw some labels
>> a = labels:draw("X Axis", "Y Axis")
Wanted capitals
>> labels/alter "X AXIS" "Y AXIS" object=a

Note: By default xlabel is labeled horizontally, and ylabel is labeled vertically.

Labels/Draw
Draws text just below the x-axis and just to the left of the y-axis.

Parameters:

/Xhorizontal

Sets the xlabels to draw the text horizontally.

/Xvertical

Sets the xlabels to draw the text vertically.

/Yhorizontal

Sets the ylabels to draw the text horizontally.

/Yvertical

Sets the ylabels to draw the text vertically.

Xlabel (String)

Sets the xlabel text.

Open GENIE Reference Manual Chapter 2

- 93 -

Ylabel (String)

Sets the ylabel text.

Size (Real)

Sets the size of the text.

Colour (Colour)

Sets the colour of the text.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

RESULT = (OneDLabels)

Returns all of the properties of the newly created object.

Labels/Alter
Alters any drawableObject with the datatype of OneDLabels.

Parameters:

/Xhorizontal

Sets the xlabels to draw the text horizontally.

/Xvertical

Sets the xlabels to draw the text vertically.

/Yhorizontal

Sets the ylabels to draw the text horizontally.

/Yvertical

Sets the ylabels to draw the text vertically.

Xlabel (String)

Sets the xlabel text.

Ylabel (String)

Sets the ylabel text.

Size (Real)

Open GENIE Reference Manual Chapter 2

- 94 -

Sets the size of the text.

Colour (Colour)

Sets the colour of the text.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

Object (Gobject)

Shows which labels are to be altered, in any one window.

RESULT = (OneDLabels)

Returns all of the properties of the altered object.

Open GENIE Reference Manual Chapter 2

- 95 -

Line()
Displays a line on the graphics device

LINE/DRAW xstart=Real ystart=Real xend=Real
yend=Real [colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Draws a line on a
graphics device.

LINE/ALTER [xstart=Real] [ystart=Real] [xend=Real]
[yend=Real] [colour=Colour]
[line_type=LineStyle]
[line_thickness=Real] object=Gobject

Alters a previously
drawn line.

example:
#Draw a line
>> aline = line:draw(0.0, 0.0, 1.0, 1.0, line_type=$dash)
Want the line type to be dot-dash
>> line/alter line_type=$dot-dash object=aline

Line/Draw
Draws a line in a graphics device.

Parameters:

Xstart (Real)

x co-ordinate of the starting point.

Xend (Real)

x co-ordinate of the ending point.

Ystart (Real)

y co-ordinate of the starting point.

Yend (Real)

y co-ordinate of the ending point.

Colour (Colour)

Sets the colour of the line

Line_thickness (Real)

Sets the width of the line.

Open GENIE Reference Manual Chapter 2

- 96 -

RESULT = (Polyline)

Returns the properties of the newly created line.

Line/Alter
Alters a line in a graphics device.

Parameters:

Xstart (Real)

x co-ordinate of the starting point.

Xend (Real)

x co-ordinate of the ending point.

Ystart (Real)

y co-ordinate of the starting point.

Yend (Real)

y co-ordinate of the ending point.

Colour (Colour)

Sets the colour of the line

Line_thickness (Real)

Sets the width of the line.

Object (Gobject)

Shows which line is to be altered, in any one window.

RESULT = (Polyline)

Returns the properties of the altered line.

Open GENIE Reference Manual Chapter 2

- 97 -

Markers()
Displays markers on a plot

MARKERS/DRAW xarray=RealArray yarray=RealArray
[colour=Colour] [symbol=Marker]
[size=Real]

Draw markers at the
x/y array points.

MARKERS/ALTER [xarray=RealArray]
[yarray=RealArray] [colour=Colour]
[symbol=Marker] [size=Real]
object=Gobject

Alter the markers.

example:
Draws a marker plot with crosses
then alters the marker symbol.
>> mp = Markers:draw(symbol=$cross)
>> Markers/alter object=mp symbol=$box

Note: For markers/alter yarray, xarray are not implemented.

Markers/Draw
Draws markers on a graphics device. If the xarray and yarray have already been defined, by
either graph, histogram or markers, then it is not necessary to define them again.

Parameters:

Xarray (RealArray)

Defines the x points.

Yarray (RealArray)

Defines the y points

Colour (Colour)

Defines the markers colour.

Symbol (Marker)

Defines the style of markers. Such as $point, $plus, $star, $circle, $cross, $box.

Size (Real)

Defines the markers size.

RESULT = (OneDMarkers)

Open GENIE Reference Manual Chapter 2

- 98 -

Returns the properties of the newly created markers.

Markers/Alter
Alters a set of markers. The xarray and yarray are not able to be altered at this point in time.

Parameters:

Xarray (RealArray)

Not yet implemented.

Yarray (RealArray)

Not Yet Implemented.

Colour (Colour)

Defines the markers colour.

Symbol (Marker)

Defines the style of markers; such as $point, $plus, $star, $circle, $cross, $box.

Size (Real)

Defines the markers size.

Object (Gobject)

Shows which set of markers are to be altered, in any one window.

RESULT = (OneDMarkers)

Returns the properties of the altered markers.

Open GENIE Reference Manual Chapter 2

- 99 -

Polygon()
Displays a polygon on the graphics device

POLYGON/DRAW
[/FILLED]
[/OUTLINE]

xarray=RealArray
yarray=RealArray
[colour=Colour]
[line_thickness=Real]

Draws a polygon onto a
graphics device.

POLYGON/ALTER
[/FILLED]
[/OUTLINE]

[xarray=RealArray]
[yarray=RealArray]
[colour=Colour]
[line_thickness=Real]
object=Gobject

Alters a polygon on a
graphics device

example:
Draws a polygon plot with crosses
then alters the marker symbol.
>> Polygon/draw x_points y_points
>> Polygon/alter line_thickness=10.0 object=obj(0,0,0)

Note: By default the polygon is outlined.

Polygon/Draw
Draws a polygon onto a graphics device

Parameters:

/Filled

Colours the whole of the polygon.

/Outline

Colours the perimeter of the polygon.

Xarray (RealArray)

Specifies the x co-ordinates of the polygon.

Yarray (RealArray)

Specifies the y co-ordinates of the polygon.

Colour (Colour)

Sets the colour of the polygon.

Line_thickness (Real)

Open GENIE Reference Manual Chapter 2

- 100 -

Sets the line thickness of the polygon.

RESULT = (Polygon)

Returns all of the properties of the newly created polygon.

Polygon/Alter
Alters a polygon previously drawn on a graphics device.

Parameters:

/Filled

Colours the whole of the polygon.

/Outline

Colours the perimeter of the polygon.

Xarray (RealArray)

Not Yet Implemented. Specifies the x co-ordinates of the polygon.

Yarray (RealArray)

Not Yet Implemented. Specifies the y co-ordinates of the polygon.

Colour (Colour)

Sets the colour of the polygon.

Line_thickness (Real)

Sets the line thickness of the polygon.

Object (Gobject)

Shows which polygon is to be altered, in any one window.

RESULT = (Polygon)

Returns all of the properties of the altered polygon.

Open GENIE Reference Manual Chapter 2

- 101 -

Text()
Displays some text on the graphics device

TEXT/DRAW xcoord=Real ycoord=Real text=String
[colour=Colour] [size=Real] [angle=Real]
[font=Font]

Draws some text onto
a graphics device

[/CENTRE] Centres the text on
the given coordinate

TEXT/ALTER [xcoord=Real] [ycoord=Real] [text=String]
[colour=Colour] [size=Real] [angle=Real]
[font=Font] object=Gobject

Alters some text, on a
graphics device.

example:
>> text/draw 0.0 0.0 "some text" size=3.0
The text is a bit to big
>> text/alter size=1.0 colour=$yellow object=obj(0,0,0)

Text/Draw
Draws some text onto a graphics device.

Parameters:

/Centre

Draw text so that the point specified is at the centre of the string.

Xcoord (Real)

X co-ordinate of the position of the text.

Ycoord (Real)

Y co-ordinate of the position of the text.

Text (String)

Text to be put onto a graphics device.

Colour (Colour)

Sets the colour of the text.

Size (Real)

Sets the size of the text.

Open GENIE Reference Manual Chapter 2

- 102 -

Angle (Real)

Sets the angle for the text to be written.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

RESULT = (Text)

Returns all of the properties of the newly created text.

Text/Alter
Alters some text already on a graphics device.

Parameters:

Xcoord (Real)

X co-ordinate of the position of the text.

Ycoord (Real)

Y co-ordinate of the position of the text.

Text (String)

Text to be put onto a graphics device.

Colour (Colour)

Sets the colour of the text.

Size (Real)

Sets the size of the text.

Angle (Real)

Sets the angle for the text to be written.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

Object (Gobject)

Shows which text is to be altered, in any one window.

RESULT = (Text)

Open GENIE Reference Manual Chapter 2

- 103 -

Returns all of the properties of the altered text.

Open GENIE Reference Manual Chapter 2

- 104 -

Title()
Displays a Title on the graphics device

TITLE/DRAW text=String [colour=Colour]
[size=Real] [font=Font]

Draw a title onto a
graphics device

TITLE/ALTER [text=String] [colour=Colour]
[size=Real] [font=Font]
object=Gobject

Alters a title on a graphics
device

example:
>> title/draw "A Title"
Want the font to be italic
>> title/alter font=$italic

Title/Draw
Draws a title onto a graphics device.

Parameters:

Text (String)

Text to be put onto a graphics device.

Colour (Colour)

Sets the colour of the text.

Size (Real)

Sets the size of the text.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

RESULT = (OneDTitle)

Returns all the properties of the newly created title

Title/Alter
Alters a title on a graphics device.

Open GENIE Reference Manual Chapter 2

- 105 -

Parameters:

Text (String)

Text to be put onto a graphics device.

Colour (Colour)

Sets the colour of the text.

Size (Real)

Sets the size of the text.

Font (Font)

Sets the font of the text. Such as, $normal, $roman, $italic, $script

Object (Gobject)

Shows which title is to be altered, in any one window.

RESULT = (OneDTitle)

Returns all the properties of the altered title.

Open GENIE Reference Manual Chapter 2

- 106 -

Cell()
Colour cell plot for gridded data.

CELL/DRAW
[/SMOOTH]
[/LOG] [/SQRT]

values=RealArray table=ColourTable
[tr=RealArray] [valmax=Real]
[valmin=Real]

Plots a cell on a
graphics device

CELL/ALTER
[/SMOOTH]
[/LOG] [/SQRT]

values=RealArray table=ColourTable
[tr=RealArray] [valmax=Real]
[valmin=Real] object=Gobject

Alters a cell already
drawn on a graphics
device

example:
Produce a cell plot of 2-D data
>> w = get(1:10)
>> yindex=dimensions(10)
>> fill yindex 1.0 1.0
>> win_twod 0.1 0.9 0.1 0.9 x=w.x y=yindex
>> t = colourtable:rainvow(80)
>> Cell/Draw values=w.y table=t

Cell/Draw
Draws a colour cell plot. The cell plot will transform with a transformation matrix if it is given or
it will assume that the data is linear and scale to fit the axes. For non-linear grids or non-gridded
data see Cell_array() and Cell_function() respectively.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Use a logarithmic scale for cell plot colours.

/Sqrt

Use a square root scale for cell plot colours.

Values (RealArray)

Defines the cell values of the cell plot. Values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Defines the colour table for the cell plot.

Tr (RealArray)

Open GENIE Reference Manual Chapter 2

- 107 -

Array defining a transformation between the i, j grid of the data array and the
window coordinates. The window coordinates of the array point a[i,j] are given
by:

x = tr[1] + tr[2] * i + tr[3] * j
y = tr[4] + tr[5] * i + tr[6] * j

Usually tr[3] and tr[5] are zero - unless the coordinate transformation involves a
rotation or shear.

The default transformation if this parameter is not specified is to map linearly
onto the window to fit the plot.

Valmax (Real)

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

RESULT = (Cell)

This returns all of the properties of the Cell plot.

Cell/Alter
Alters an already drawn cell plot.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Draws a logarithmic cell plot.

/Sqrt

Draws a square root cell plot.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Defines the colour table for the cell plot.

Open GENIE Reference Manual Chapter 2

- 108 -

Tr (RealArray)

Array defining a transformation between the i, j grid of the data array and the
window coordinates. The window coordinates of the array point a[i,j] are given
by:

x = tr[1] + tr[2] * i + tr[3] * j
y = tr[4] + tr[5] * i + tr[6] * j

Usually tr[3] and tr[5] are zero - unless the coordinate transformation involves a
rotation or shear.

The default transformation if this parameter is not specified is to map linearly
onto the window to fit the plot.

Valmax (Real)

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

Object (Gobject)

The cell plot to alter.

RESULT = (Cell)

This returns all of the properties of the altered Cell plot.

Open GENIE Reference Manual Chapter 2

- 109 -

Cell_array()
Colour cell plot for gridded data with explicit gridding.

CELL_ARRAY/DRAW
[/SMOOTH] [/LOG]
[/SQRT]

values=RealArray
table=ColourTable
xarray=RealArray
yarray=RealArray [valmax=Real]
[valmin=Real]

Plots a cell_array on
a graphics device

CELL_ARRAY/ALTER
[/SMOOTH] [/LOG]
[/SQRT]

values=RealArray
table=ColourTable
xarray=RealArray
yarray=RealArray [valmax=Real]
[valmin=Real] object=Gobject

Alters a cell_array
already drawn on a
graphics device

example:
Produce a cell plot of 2-D data on a non-linear grid
>> Cell_array/Draw values=my_points &
 xarray=non_linear_x yarray=non_linear_y &
 table=colourtable:rainbow(80)

Cell_Array/Draw
Draws a colour cell plot where the grid is non-linear but can be still be specified by two arrays.
For non-gridded data see Cell_function(), for linearly gridded data you may wish to use the
Cell() primitive which automatically produces a grid.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Draws a cell plot with logarithmic colour scales.

/Sqrt

Draws a cell plot with square root colour scales.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Open GENIE Reference Manual Chapter 2

- 110 -

Defines the colour table for the cell plot.

Xarray (RealArray)

Defines the x gridding of the cell_array.

Yarray (RealArray)

Defines the y gridding of the cell_array.

Valmax (Real)

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

RESULT = (CellArray)

This returns all of the properties of the Cell_array.

Cell_Array/Alter
Alters the already created cell_array.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Draws a logarithmic cell plot.

/Sqrt

Draws a square root cell plot.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Defines the colour table for the cell plot.

Xarray (RealArray)

Open GENIE Reference Manual Chapter 2

- 111 -

Defines the x gridding of the cell_array.

Yarray (RealArray)

Defines the y gridding of the cell_array.

Valmax (Real)

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

Object (Gobject)

The cell_array to alter.

RESULT = (CellArray)

This returns all of the properties of the altered Cell_array.

Open GENIE Reference Manual Chapter 2

- 112 -

Cell_function()
Coloured cell plot for ungridded data.

CELL_FUNCTION/DRAW
[/SMOOTH] [/LOG] [/SQRT]

values=RealArray
table=ColourTable
function_name=String
[valmax=Real]
[valmin=Real]

Plots a cell_function on
a graphics device

CELL_FUNCTION/ALTER
[/SMOOTH] [/LOG] [/SQRT]

values=RealArray
table=ColourTable
function_name=String
[valmax=Real]
[valmin=Real]
object=Gobject

Alters a cell_function
already drawn on a
graphics device

example:
Plot some ungridded data with a
a user specified module function
>> Cell_function/Draw values=my_points &
 function_name="my_gridding_function"

Note: Need to load user function with the Module/Load command before use.

Cell_function/Draw
Draws a colour cell plot using a user written module function to supply the location of the data
points, for example a non-uniform grid for S(Q) plots. This is the most general of the colour cell
plotting functions and requires that the user writes or uses a pre-existing FORTRAN module to
calculate the grid for the data. For more information on writing modules, see the Module()
command and also the "user notes" section of this manual. If a the function can be plotted on a
linear or non-linear grid, you may be able to use the Cell() or Cell_array() commands to avoid
the need to use a module.

The FORTRAN function supplied to the cell function must be declared in the module in a similar
form to the function below with the parameters as specified.

Open GENIE Reference Manual Chapter 2

- 113 -

SUBROUTINE MY_CELL_GRID_FUNC(FLAGS, VAL_IN, VAL_OUT)

INTEGER FLAGS(*)
DOUBLE PRECISION VAL_IN(*), VAL_OUT(*)

VAL_OUT(1) = (VAL_IN(1) + 10.0) / 11.0 ! X gridding modifier
VAL_OUT(2) = (VAL_IN(2) + 10.0) / 11.0 ! Y gridding modifier

END

For cell gridding, the function is supplied with X and Y World coordinates in the VAL_IN(1)
and VAL_IN(2) parameters respectively. For examples, if A(10,10) represents values on a grid
of 1.0 → 100.0 in X and Y then VAL_IN will contain values in the region 1.0 → 100.0 and you
should set VAL_OUT to values in the region 1.0 → 10.0 to represent where they are in the array
grid. Any values outside this region will be clipped because they will not actually be on the
plotted grid.

Note: this function is the inverse of that supplied for the Contour_function() command for
efficiency reasons.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Draws a logarithmic cell plot.

/Sqrt

Draws a square root cell plot.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Defines the colour table for the cell plot.

Function_name (String)

This is the function name of a function previously written and compiled in fortran.

Valmax (Real)

Open GENIE Reference Manual Chapter 2

- 114 -

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

RESULT = (CellFunction)

This returns all of the properties of the Cell_function.

Cell_function/Alter
Alters an already created cell function.

Parameters:

/Smooth

Interpolate colour across each cell.

/Log

Draws a logarithmic cell plot.

/Sqrt

Draws a square root cell plot.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Table (Colourtable)

Defines the colour table for the cell plot.

Function_name (String)

This is the function name of a function previously written and compiled in
FORTRAN.

Valmax (Real)

Cut off maximum above which the colour table will not be mapped.

Valmin (Real)

Cut off minimum below which the colour table will not be mapped.

Object (Gobject)

Open GENIE Reference Manual Chapter 2

- 115 -

The cell function plot to be altered.

RESULT = (CellFunction)

This returns all of the properties of the Cell_function.

Open GENIE Reference Manual Chapter 2

- 116 -

Cell_wedge()
Displays a cell_wedge (colour key) on the graphics device.

CELL_WEDGE/DRAW
[/HORIZONTAL]
[/VERTICAL]

object=Gobject Draws a cell_wedge onto a
graphics device.

CELL_WEDGE/ALTER
[/HORIZONTAL]
[/VERTICAL]

object=Gobject Alters a cell_wedge already drawn
on a graphics device.

example:
Annotate an already drawn cell plot
>> my_cell = Cell:Draw(w.y, colourtable:heat(80))
>> Cell_Wedge/draw/horizontal my_cell

Note: Must be in a separate window to the cell plot. By default the wedge is vertical.

Cell_wedge/Draw
Provides colour key annotation to a cell plot if required. The cell wedge draws either a vertical or
horizontal colour key using the same colour table as the cell plot it is annotating. The cell object
(either a Cell, Cell_array or Cell_function) must already exist and the object reference of the Cell
plot must be supplied for the wedge to be drawn.

Parameters:

/Horizontal

The cell_wedge will be drawn horizontally.

/Vertical

The cell_wedge will be drawn vertically.

Object (Gobject)

Give a reference to the colour cell plot for which the key is required.

RESULT = (CellWedge)

This returns all of the properties of the cell_wedge.

Cell_wedge/Alter
Alters an already created wedge.

Open GENIE Reference Manual Chapter 2

- 117 -

Parameters:

/Horizontal

The cell_wedge will be drawn horizontally.

/Vertical

The cell_wedge will be drawn vertically.

Object (Gobject)

Give an object reference to the cell_wedge to be altered.

RESULT = (CellWedge)

This returns all of the properties of the altered cell_wedge.

Open GENIE Reference Manual Chapter 2

- 118 -

Contour()
Makes a contour plot on the graphics device.

CONTOUR/DRAW
[/LOG] [/SQRT]

values=RealArray
[contours=RealArray]
[ncont=Integer] [tr=RealArray]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Draw a contour plot onto
a graphics device.

CONTOUR/ALTER
[/LOG] [/SQRT]

[values=RealArray]
[contours=RealArray]
[ncont=Integer] [tr=RealArray]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]
object=Contour

Alters a previously
drawn contour plot on a
graphics device.

example:
Produce a contour plot of 2-D data
>> cp = Contour:Draw(my_points)

Note: By default the contour is linear. Use contours or ncont, not both.

Contour/Draw
Draws a contour plot of the data supplied. The contour plot should be drawn in a two-D window
(see Win_twod()). The Contour() function is the simplest of the contouring functions and draws
a contour from linearly gridded data or gridding specified by a transformation matrix. For
contouring non-linearly gridded data or non-gridded data use Contour_array() and
Contour_function() respectively.

If no transformation matrix is specified, the contour assumes linear gridding based on the
window in which the data is being contoured.

Parameters:

/Log

Draws with logarithmic contour spacing.

/Sqrt

Draws with square root contour spacing.

Values (RealArray)

Open GENIE Reference Manual Chapter 2

- 119 -

Defines the level values of the contour plot, values is a two dimensional array
with sufficient data to fit the grid points.

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax,
but modified by /log or /sqrt.

Tr (RealArray)

Array defining a transformation between the i, j grid of the data array and the
window coordinates. The window coordinates of the array point a[i,j] are given
by:

x = tr[1] + tr[2] * i + tr[3] * j
y = tr[4] + tr[5] * i + tr[6] * j

Usually tr[3] and tr[5] are zero - unless the coordinate transformation involves a
rotation or shear.

The default transformation if this parameter is not specified is to map linearly
onto the window to fit the plot.

Colour (Colour)

Sets the contour plots colour.

Line_type (LineStyle)

Sets the line type of the contour plot. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Sets the contour plots line width.

RESULT = (Contour)

Returns all of the properties of the newly created contour plot.

Contour/Alter
Alters a contour plot previously drawn on a graphics device.

Open GENIE Reference Manual Chapter 2

- 120 -

Parameters:

/Log

Draws with logarithmic contour spacing.

/Sqrt

Draws with square root contour spacing.

Values (RealArray)

Defines the cell values of the cell plot, values is a two dimensional array with
sufficient data to fit the grid points.

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax,
but modified by /log or /sqrt.

Tr (RealArray)

Array defining a transformation between the i, j grid of the data array and the
window coordinates. The window coordinates of the array point a[i,j] are given
by:

x = tr[1] + tr[2] * i + tr[3] * j
y = tr[4] + tr[5] * i + tr[6] * j

Usually tr[3] and tr[5] are zero - unless the coordinate transformation involves a
rotation or shear.

The default transformation if this parameter is not specified is to map linearly
onto the window to fit the plot.

Colour (Colour)

Sets the contour plots colour.

Line_type (LineStyle)

Sets the line type of the contour plot. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Sets the contour plots line width.

Open GENIE Reference Manual Chapter 2

- 121 -

Object (Contour)

Shows which contour plot is to be altered.

RESULT = (Contour)

Returns all of the properties of the altered contour plot.

Open GENIE Reference Manual Chapter 2

- 122 -

Contour_array()
Plots a contour_array on the graphics device

CONTOUR_ARRAY/DRAW
[/LOG] [/SQRT]

values=RealArray
contours=RealArray
ncont=Integer
xarray=RealArray
yarray=RealArray
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Draw a contour
array onto a
graphics device.

CONTOUR_ARRAY/ALTER
[/LOG] [/SQRT]

[values=RealArray]
[contours=RealArray]
[ncont=Integer]
[xarray=RealArray]
[yarray=RealArray]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]
object=Gobject

Alters a previously
drawn contour array
on a graphics
device.

example:
Produce a contour plot of 2-D data on a non-linear grid
>> Contour_array/Draw values=my_points &
 xarray=non_linear_x yarray=non_linear_y

Note: Use contours or ncont, not both.

Contour_Array/Draw
Draws a contour plot of the data supplied. The contour plot should be drawn in a two-D window
(see Win_twod()). The Contour_array() function is for contouring with non-linearly gridded
data. For contours with linearly gridded data or non-uniform gridding use the Contour() or
Contour_function() commands respectively.

Parameters:

/Log

Draws logarithmically spaced contours.

/Sqrt

Draws square root spaced contours.

/Linear

Open GENIE Reference Manual Chapter 2

- 123 -

Draws a linear contour array.

Values (RealArray)

Defines the levels of the contour plot, values is a two dimensional array with
sufficient data to fit the grid points.

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax,
but modified by /log or /sqrt.

Xarray (RealArray)

Defines the x gridding of the contours.

Yarray (RealArray)

Defines the y gridding of the contours.

Colour (Colour)

Sets the contour colour.

Line_type (LineStyle)

Sets the line type of the contours. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Sets the contour line width.

RESULT = (ContourArray)

Returns all of the properties of the newly created contour array.

Contour_Array/Alter
Alters a contour array previously drawn on a graphics device.

Parameters:

/Log

Draws logarithmically spaced contours.

Open GENIE Reference Manual Chapter 2

- 124 -

/Sqrt

Draws square root spaced contours.

/Linear

Draws a linear contour array.

Values (RealArray)

Defines the level values of the contour plot, values is a two dimensional array
with sufficient data to fit the grid points.

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax

Xarray (RealArray)

Defines the x gridding of the contours.

Yarray (RealArray)

Defines the y gridding of the contours.

Colour (Colour)

Sets the contour colour.

Line_type (LineStyle)

Sets the line type of the contours. Such as $full, $dash, $dot_dash and $dot.

Line_thickness (Real)

Sets the contour line width.

Object (Integer)

Shows which contour array is to be altered, in any one window.

RESULT = (ContourArray)

Returns all of the properties of the altered contour array.

Open GENIE Reference Manual Chapter 2

- 125 -

Contour_function()
Plots contours for ungridded data.

CONTOUR_FUNCTION/DRAW
[/LOG] [/SQRT]

values=RealArray
contours=RealArray
ncont=Integer
function_name=String
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Draw a contour
function onto a
graphics device.

CONTOUR_FUNCTION/ALTER
[/LOG] [/SQRT]

[values=RealArray]
[contours=RealArray]
[ncont=Integer]
[function_name=String]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]
object=Integer

Alter a previously
drawn contour
function on a
graphics device.

example:
Plot some ungridded data with a
a user specified module function
>> Contour_function/Draw values=my_points &
 function_name="my_gridding_function"

Note: Use contours or ncont, not both.

Contour_Function/Draw
Draws a contour plot using a user written module function to supply the location of the data
points, for example a non-uniform grid for S(Q,E) plots. This is the most general of the contour
plotting functions and requires that the user writes or uses a pre-existing FORTRAN module to
calculate the grid for the data. For more information on writing modules, see the Module()
command and also the "user notes" section of this manual. If a the function can be plotted on a
linear or non-linear grid, you may be able to use the Contour() or Contour_array() commands to
avoid the need to use a module.

The FORTRAN function supplied to the contour function must be declared in the module in a
similar form to the function below with the parameters as specified.

SUBROUTINE MY_CONT_GRID_FUNC(FLAGS, VAL_IN, VAL_OUT)
INTEGER FLAGS(*)
DOUBLE PRECISION VAL_IN(*), VAL_OUT(*)

VAL_OUT(1) = 11.0 * VAL_IN(1) - 10.0 ! X gridding modifier

Open GENIE Reference Manual Chapter 2

- 126 -

VAL_OUT(2) = 11.0 * VAL_IN(2) - 10.0 ! Y gridding modifier

END

For contour gridding, the function is supplied with array grid coordinates in the VAL_IN(1) and
VAL_IN(2) parameters respectively and must return world co-ordinates. For examples, if
A(10,10) represents values on a grid of 1.0 → 100.0 in X and Y then VAL_IN will contain
values in the region 1.0 → 10.0 and you should set VAL_OUT to values in the region 1.0 →
100.0 to represent where they are in world co-ordinates. Any values outside this region will be
clipped by the current window.

The FLAGS(1) parameter is a visibility flag. If set to 0 the contour will not be drawn, if set to 1
the contour will be drawn. VAL_IN(3) also contains the value a(i,j) should it be required. An
example of the use of the last two parameters described might be to provided a high or low cutoff
below or above which contours are not plotted.

Note: this function is the inverse of that supplied for the Cell_function() command for efficiency
reasons.

Parameters:

/Log

Draws logarithmic spaced contours.

/Sqrt

Draws square root spaced contours.

Values (RealArray)

Defines the values of the contour function, values=(xarray,yarray).

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax,
values are modified by /log or /sqrt.

Function_name (String)

This is the function name of a function previously written and compiled in
FORTRAN.

Colour (Integer)

Open GENIE Reference Manual Chapter 2

- 127 -

Sets the contour functions colour.

Line_type (Integer)

Sets the line type of the contour function. Such as $full, $dash, $dot_dash and
$dot.

Line_thickness (Real)

Sets the contour functions line width.

RESULT = (ContourFunction)

Returns all of the properties of the newly created contour function.

Contour_Function/Alter
Alters a contour function previously drawn on a graphics device.

Parameters:

/Log

Draws logarithmically spaced contours.

/Sqrt

Draws square root spaced contours.

Values (RealArray)

Defines the values of the contour function, values=(xarray,yarray).

Contours (RealArray)

Sets the contours explicitly by specifying the heights (in raw data values) of the
contours. If this is specified, the number of contours will be taken from the data
array and Ncont is ignored.

Ncont (Integer)

Draws ncont contours, by default, evenly spaced between Valmin and Valmax,
unless modified by /log or /sqrt.

Function_name (String)

This is the function name of a function previously written and compiled in
FORTRAN.

Colour (Integer)

Open GENIE Reference Manual Chapter 2

- 128 -

Sets the contour functions colour.

Line_type (Integer)

Sets the line type of the contour function. Such as $full, $dash, $dot_dash and
$dot.

Line_thickness (Real)

Sets the contour functions line width.

Object (Gobject)

The contour function plot to be altered

RESULT = (ContourFunction)

Returns all of the properties of the altered contour function.

Open GENIE Reference Manual Chapter 2

- 129 -

Contour_label()
Labels the contours in the contour plot

CONTO
UR_LA
BEL/DR
AW

[text=String] [start=Integer] [end=Integer] [st=Integer]
[intval=Integer] [minint=Integer] [font=Font] [size=Real]
[colour=Colour] object=Gobject

Draw labels
on a contour
plot.

CONTO
UR_LA
BEL/AL
TER

[text=String] [start=Integer] [end=Integer] [st=Integer]
[intval=Integer] [minint=Integer] [font=Font] [size=Real]
[colour=Colour] object=Gobject

Alter labels
on a contour
plot.

example:
put labels on a contour plot, use
label formatting to add units.
>> my_cont = Contour:Draw(w.y)
>> Contour_label object=my_cont &
 text="%gmEV"

Note: Default for text is just to give the values.

Contour_Label/Draw
Add labels to the contours of the specified contour plot. The labels may be formatted by the
optional "Text" parameter if required.

Parameters:

Text (String)

Sets the format of the labels if required. The default is just to print the numbers
but by adding a format string it is possible to gain full control over the label
format. A "%g" in the formatting string converts numbers in general format (G
format in FORTRAN). A "%f" formats in floating point (F) format and "%e"
formats in scientific (E) format. As an example, a string formatting in floating
point format in a field of 10 with four decimal places would be "%10.4f meV".

Start (Integer)

Contour level of first label.

End (Integer)

Contour level of last label.

St (Integer)

Open GENIE Reference Manual Chapter 2

- 130 -

The number of steps between labelled contours.

Intval (Integer)

The number of cells crossed by a contour before another label is drawn. Gives
control over the number of labels drawn on any one contour. The default is 20.

Minint (Integer)

The minimum number of cells to be crossed by a contour to justify adding a label.
Contours crossing less than this number of cells will remain unlabelled. The
default is 10.

Font (Font)

Sets the labels font.

Size (Real)

Sets the label size.

Colour (Colour)

Sets the label colour.

Object (Gobject)

Specifies the contour plot for the labels to draw on.

RESULT = (ContourLabels)

Returns all of the properties of the newly created contour labels.

Contour_Label/Alter
Alters previously drawn contour labels.

Parameters:

Text (String)

Sets the format of the labels if required. The default is just to print the numbers
but by adding a format string it is possible to gain full control over the label
format. A "%g" in the formatting string converts numbers in general format (G
format in FORTRAN). A "%f" formats in floating point (F) format and "%e"
formats in scientific (E) format.

Start (Integer)

Contour level of first label.

Open GENIE Reference Manual Chapter 2

- 131 -

End (Integer)

Contour level of last label.

St (Integer)

Allows label values to be specified explicitly, the steps between labels here.

Intval (Integer)

The number of cells crossed by a contour before another label is drawn. Gives
control over the number of labels drawn on any one contour. The default is 20.

Minint (Integer)

The minimum number of cells to be crossed by a contour to justify adding a label.
Contours crossing less than this number of cells will remain unlabelled. The
default is 10.

Font (Font)

Sets the labels font.

Size (Real)

Sets the label size.

Colour (Colour)

Sets the label colour.

Object (Gobject)

Specifies the contour label to alter.

RESULT = (ContourLabels)

Returns all of the properties of the altered contour labels.

Open GENIE Reference Manual Chapter 2

- 132 -

Multi_plot()
Controls multiplot creation and plotting

MULTI_PLOT/CREATE
[/BINCENTRE]
[/NOTCENTRED]

data=RealArray
[numhist=Integer]
[chmin=Integer]
[chmax=Integer]
[ygap=Real]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]

Creates the initial
parameters of the
multiplot.

MULTI_PLOT/SPECTRA data=Range or RealArray Adds the final
parameter (the y
array’s) needed to draw
a multiplot.

MULTI_PLOT/DRAW Draws a multiplot onto
a graphics device.

MULTI_PLOT/ALTER
[/BINCENTRE]
[/NOTCENTRED]

[numhist=Integer]
[chmin=Integer]
[chmax=Integer]
[ygap=Real]
[colour=Colour]
[line_type=LineStyle]
[line_thickness=Real]
object=Gobject

Alter the multiplot
previously drawn on a
graphics device.

example:
Create a multiplot and display it
>> w=get(1:10)
>> multi_plot/create data=w.x
>> multi_plot/spectra data=w.y
>> win_multiplot 0.1 0.9 0.1 0.9
>> mp = multi_plot:draw()

Note: Multiplot window must be created after the multi_plot but before drawing.

Multi_Plot/Create
Creates a multiplot without adding the data.

Parameters:

/Bincentre

Centres the data before plotting (for point mode data)

Open GENIE Reference Manual Chapter 2

- 133 -

/Notcentred

Plots the data as it is. (by default the data is not centred).

Data (RealArray)

Sets the x data points, these must be identical for all Y data

Numhist (Integer)

Sets the number of histograms wanted, otherwise defaults to all the Y arrays

Chmin (Integer)

Sets an X data minimum cutoff.

Chmax (Integer)

Sets an X data maximum cutoff.

Ygap (Real)

Sets an array of gap values between the data points

Colour (Colour)

Sets the colour of the multiplot.

Line_type (LineStyle)

Sets the line type of the multiplot.

Line_thickness (Integer)

Sets the line thickness of the multiplot.

RESULT = (Multiplot)

Returns all of the properties of the newly created multiplot.

Multi_plot/Spectra
Adds all of the y data to the already created multiplot.

Parameters:

Data (RealArray or Range)

Sets the Y data. A two dimensional array with the second dimension the same as
the X-array (or one less for bin-mode data). For example, x[4000] will require
y[n, 4000] or y[n,3999] for histogram mode for n spectra.

Open GENIE Reference Manual Chapter 2

- 134 -

For an already open data file, a Range may be specified as an integer array of
spectrum numbers to be read from the raw data file. See Range data type. This is
used where it would not be possible to hold all of the data for the multiplot in
memory.

Multi_plot/Draw
Draws the multiplot. Note that a window must be created before the Multiplot/Draw command is
given but after the multiplot has been created and scaled with the Multiplot/Create and
Multiplot/Spectra commands.

Multi_plot/Alter
Alters the multiplot. The ydata and xdata cannot be altered.

Parameters:

/Bincentre

Centres the data.

/Notcentred

Plots the data as it is. (by default the data is not centred).

Numhist (Integer)

Sets the number of histograms wanted.

Chmin (Integer)

Sets the data point to start from..

Chmax (Integer)

Sets the data point to finish at.

Ygap (RealArray)

Sets an array of gap values between the data points

Colour (Colour)

Sets the colour of the multiplot.

Line_type (Integer)

Sets the line type of the multiplot.

Open GENIE Reference Manual Chapter 2

- 135 -

Line_thickness (Integer)

Sets the line thickness of the multiplot.

Object (Gobject)

Shows which multiplot is to be altered, in any one window.

RESULT = (Multiplot)

Returns all of the properties of the altered multiplot.

Open GENIE Reference Manual Chapter 2

- 136 -

Colour()
Define a new graphics colour based on one of several models

COLOUR:RGB() r=Real g=Real
b=Real

Create new colour using RGB model

COLOUR:HLS() h=Real l=Real
s=Real

Create new colour using HLS model

COLOUR:NAMED() name=String Access a named palette colour

example:
Draw lines in colours
created from two different models
>> Line/Draw 0.0 0.0 1.0 1.0 colour:rgb(0.5, 0.6, 0.7)
>> Line/Draw 0.0 0.0 1.0 1.0 colour:named("SteelBlue")

Note: The number of simultaneous colours available depends on the display hardware.

Colour:Rgb()
Define a new colour index value given a set of RGB (Red, Green, Blue) values. The values of R,
G and B are real numbers in the range 0.0-1.0.

Parameters:

r (Real)

Colour intensity value for red

g (Real)

Colour intensity value for green

b (Real)

Colour intensity value for blue

RESULT = (Colour)

Returns a colour index value which may be used instead of the fixed colours (e.g.
$RED, $GREEN) anywhere a colour parameter is required in the Open GENIE
graphics system. The index is only valid in the current Open GENIE session.

Colour:Hls()
Define a new colour index value given a set of HLS (Hue, Lightness, Saturation) values.

Open GENIE Reference Manual Chapter 2

- 137 -

Parameters:

h (Real)

H is an angle in degrees with Blue=0.0 (or 360.0), Red=120.0, Green=240.0

l (Real)

L ranges from 0.0 (black) to 1.0 (white), for example red is (120, 0.5, 1.0).

s (Real)

S ranges from 0.0 (gray) to 1.0 (pure colour), for example black is (any, 0.0, 0.0).

RESULT = (Colour)

Returns a colour index value which may be used instead of the fixed colours (e.g.
$RED, $GREEN) anywhere a colour parameter is required in the Open GENIE
graphics system. The index is only valid in the current Open GENIE session.

Colour:Named()
Look up and instantiate a colour by name. Generally this will only be supported on a windowing
system which supports a standard set of colours by name, for example X-Windows.

Parameters:

Name (String)

Looks up the named colour on the display colour palette. This may change
depending on the windowing system and graphics hardware so care should be
taken or code using this may become device dependent. Names for X-Windows
colours may be found in the "rgb.txt" file which comes with Open GENIE.

RESULT = (Colour)

Returns a colour index value which may be used instead of the fixed colours (e.g.
$RED, $GREEN) anywhere a colour parameter is required in the Open GENIE
graphics system. The index is only valid in the current Open GENIE session.

Open GENIE Reference Manual Chapter 2

- 138 -

Colourtable()
Manipulate graphics colour tables (used with Cell() commands).

COLOURTABLE:CREATE() ncolours=Integer
red=RealArray
green=RealArray
blue=RealArray
contrast=Real

Creates and returns a new
colour table.

[/NOSHARE] Avoid sharing colours

COLOURTABLE/DELETE table=ColourTable Deletes and frees up colours
from an existing colourtable.

example:
Create, use in a cell plot and then
delete a colourtable.
>> ct1 = Colourtable:create(80,ra,ga,ba, 1.0,1.0)
>> Cell/alter object=obj(1,2,3) table=ct1
>> Colourtable/delete ct1

Note: The data in the real arrays will be interpolated if ncolours
exceeds the number of elements in the ra, ga and ba arrays.

Colourtable:Create()
This command creates a colourtable given three arrays of colour values, one each for red, green
and blue. The created colourtable will normally be used to provide a colour scale for a cell array
style plot and will provide "ncolours" different colours for the plot using it. Note that the colour
arrays need not have ncolours elements, the colourtable command will interpolate to provide
intermediate colours if necessary.

Where possible the Colourtable() command will allocate colours which are already being used to
save on a potentially limited number of colour indices. As colour slots can be relatively short on
some devices, it is usually a good idea to deallocate colourtables immediately after they have
been used.

Parameters:

/Noshare

If this qualifiers is specified, the colourtable command avoids sharing similar
colours between colourtables. The most likely use of this is if one plot is
assigning colour tables with the intention of colour cycling (it would not be
desirable to colour cycle any shared colours!). Note that colour slot usage will be
much higher with this qualifier.

Red (RealArray)

Open GENIE Reference Manual Chapter 2

- 139 -

This array specifies how much red goes into the new colour, values must be
between 0.0 and 1.0.

Green (RealArray)

This array specifies how much green goes into the new colour, values must be
between 0.0 and 1.0.

Blue (RealArray)

This array specifies how much blue goes into the new colour, values must be
between 0.0 and 1.0.

Ncolours (Real)

Number of colours in the colour table.

Contrast (Real)

Allows an adjustment of the contrast by scaling each colour value by a power
(default 1.0).

RESULT = (ColourTable)

Returns the newly created colour table.

Colourtable/Delete
Deallocates a previously allocated colourTable, this allows new colourTables to be allocated
with the correct number of colours (only allows 84 colours in total unless changed using an X-
Windows resource).

Parameters:

Table (ColourTable)

Colour table to free up.

Open GENIE Reference Manual Chapter 2

- 140 -

Dev()
Locates and returns device object given its index.

DEV() devnum=Integer Absolute index of the object.

example:
Close the third device
and the current device
>> device/close dev(3)
>> device/close dev(devnum=0)

Dev
This is one of four functions which return a reference to a graphical object when given index
information about the location of the object in the graphics object subsystem (Dev(), Pic(),
Win() and Obj()).

Positive numbers give the number of the object in its list, starting at 1. Negative numbers give
the number of the object starting from the last item in the list and counting backwards, starting at
-1 (this is often the easiest way to find objects). Zero represents the last object created, normally
the current object.

All open genie devices are stored in a single device list so it is only necessary to specify from a
small number of devices. By default, device windows are labeled with the number of the device.

Parameters:

Devnum (Integer)

The position within the device list of the required device.

RESULT = (Gobject)

Returns the device specified.

Open GENIE Reference Manual Chapter 2

- 141 -

Obj()
Locates and returns a graphics primitive object given its location.

OBJ() picnum=Integer winnum=Integer
objnum=Integer

Absolute index of the object.

example:
Undraw the third object in the
current picture and window
>> undraw obj(0,0,3)

Note: Picture and window indices of 0 represent the current values.

Obj
This is one of four functions which return a reference to a graphical object when given index
information about the location of the object in the graphics object subsystem (Dev(), Pic(),
Win() and Obj()).

Positive numbers give the number of the object in its list, starting at 1. Negative numbers give
the number of the object starting from the last item in the list and counting backwards, starting at
-1 (this is often the easiest way to find objects). Zero represents the last object created, normally
the current object.

All Open GENIE primitive graphical objects are stored within a window which itself is stored
within a picture, this means that to refer to a primitive object, say a line, it is necessary to specify
the index of the picture and the window in which the line was drawn. Normally references are
within the current picture and window so these values can be set to zero.

Parameters:

Picnum (Integer)

The position within the picture list of the required picture.

Winnum (Integer)

The position within the window list of the required window.

Objnum (Integer)

The position within the primitive object list of the required primitive.

RESULT = (Gobject)

Returns the graphics primitive specified.

Open GENIE Reference Manual Chapter 2

- 142 -

Pic()
Locates and returns a picture object given its index.

PIC() picnum=Integer Absolute index of the object.

example:
Redraw the third picture
>> redraw pic(3) device=dev(2)

Pic
This is one of four functions which return a reference to a graphical object when given index
information about the location of the object in the graphics object subsystem (Dev(), Pic(),
Win() and Obj()).

Positive numbers give the number of the object in its list, starting at 1. Negative numbers give
the number of the object starting from the last item in the list and counting backwards, starting at
-1 (this is often the easiest way to find objects). Zero represents the last object created, normally
the current object.

All Open GENIE pictures are stored in a single picture list, regardless of the number of devices
opened (pictures may be redrawn to one or more devices using the Redraw() command).

Parameters:

Picnum (Integer)

The position within the picture list of the required picture.

RESULT = (Gobject)

Returns the picture object specified.

Open GENIE Reference Manual Chapter 2

- 143 -

Pic()
Locates and returns a picture object given its index.

PIC() picnum=Integer Absolute index of the object.

example:
Redraw the third picture
>> redraw pic(3) device=dev(2)

Pic
This is one of four functions which return a reference to a graphical object when given index
information about the location of the object in the graphics object subsystem (Dev(), Pic(),
Win() and Obj()).

Positive numbers give the number of the object in its list, starting at 1. Negative numbers give
the number of the object starting from the last item in the list and counting backwards, starting at
-1 (this is often the easiest way to find objects). Zero represents the last object created, normally
the current object.

All Open GENIE pictures are stored in a single picture list, regardless of the number of devices
opened (pictures may be redrawn to one or more devices using the Redraw() command).

Parameters:

Picnum (Integer)

The position within the picture list of the required picture.

RESULT = (Gobject)

Returns the picture object specified.

Open GENIE Reference Manual Chapter 2

- 144 -

Win()
Locates and returns a graphics window object given its location.

WIN() picnum=Integer winnum=Integer Absolute index of the object.

example:
Copy the 2nd window in the
last but one picture into a
new picture
>> pic_add item=win(-2,2) picture=picture()

Note: A picture value of 0 specifies the current picture.

Win
This is one of four functions which return a reference to a graphical object when given index
information about the location of the object in the graphics object subsystem (Dev(), Pic(),
Win() and Obj()).

Positive numbers give the number of the object in its list, starting at 1. Negative numbers give
the number of the object starting from the last item in the list and counting backwards, starting at
-1 (this is often the easiest way to find objects). Zero represents the last object created, normally
the current object.

All Open GENIE window objects are stored within a picture, this means that to refer to a
window, it is necessary to specify the index of the picture as well. If the window is in the current
picture, zero can be used for the "picnum" parameter.

Parameters:

Picnum (Integer)

The position within the picture list of the required picture.

Winnum (Integer)

The position within the window list of the required window.

RESULT = (Gobject)

Returns the graphics window specified.

Open GENIE Reference Manual Chapter 3

- 145 -

Chapter 3

GENIE-V2 Emulation and Data
I/O
This section of the reference manual documents routines and facilities which have been added to
Open GENIE for previous users of the GENIE-V2 program These commands are in general not
essential to using Open GENIE but may be a convenient starting point for accessing single
spectra/scan data. Several of the standard Open GENIE commands also work in concert with
these commands to aid compatibility. For example, the Get() command will still take notice of a
default input file selected using the GENIE-V2 disk, directory, instrument and extension
defaults.

The Genie I/O system maintains several internal variables that control:

• The current input file

• The current output file

• The current disk

• The current directory

• The current instrument

• The current file extension

Current values may be viewed by using Show() commands, and changed by using the Set()
commands.

The GENIE-V2 compatibility commands are listed below.

Assign Select a run for input by giving the ISIS run number

Cfn Construct the full filename from run number and other defaults

Groupbins Groups histogram bins by averaging contents

Open GENIE Reference Manual Chapter 3

- 146 -

Jump Similar to the System() command.

Keep Similar to the Hardcopy() command.

S Identical to the Get() command.

Scatmode Return GENIE-V2 Energy mode description

Set Set user defined defaults

Setpar GENIE-V2 style parameter setting for the Units() command

Show Show user defined defaults and system variables

Open GENIE Reference Manual Chapter 3

- 147 -

*(1,(�9��(PXODWLRQ�DQG�'DWD�,�2�&RPPDQG
5HIHUHQFH

Open GENIE Reference Manual Chapter 3

- 148 -

Assign()
Select a run for input by giving the ISIS run number

ASSIGN p1=Integer Selects a default run for input with the S() command.

example:
Select run 2004 and read in a spectrum
>> Assign 2004
>> w=s(2) # 2nd Spectrum

Note: Assign nnn is equivalent to Set/File/Input Cfn(nnn)

Assign
The assign command is designed to allow a shorthand of specifying the ISIS run number to
select the input file to read from. Essentially it concatenates the defaults for disk, directory,
instrument and extension and then makes the resultant file the default file. It is based on the Cfn()
command.

Parameters:

P1 (Integer)

An existing ISIS run number. Before this can make sense, the disk, directory,
instrument and extension defaults must have been set up with the appropriate Set()
commands.

Open GENIE Reference Manual Chapter 3

- 149 -

Cfn()
Construct the full filename from run number and defaults

CFN [number=Integer] Construct a full path name from the given run
number.

CFN [name=String] Construct a full path name from the given file
name.

example:
>> Set/Disk "IRIS$DISK0:"
>> Set/Dir "[IRSMGR.DATA]"
>> Set/Inst "IRS"
>> Set/Ext ".RAW"
>> printn Cfn(345)
IRIS$DISK0:[IRSMGR.DATA]IRS00345.RAW
>> printn Cfn("special.dat")
IRIS$DISK0:[IRSMGR.DATA]SPECIAL.DAT

Note: Cfn() adds the appropriate number of 0s for ISIS raw file names.

Cfn
The Cfn() function provides the formatting necessary to convert between integer run numbers
and full file names by making use of previously set defaults. The run number conversion is ISIS
file name specific however using Cfn() with a file name is general (note that on Unix systems,
there is no need to specify the Disk default).

Parameters:

Number (Integer)

Integer run number which is automatically converted to a zero padded string
before concatenation into a file name.

Name (String)

A complete filename but without any path (i.e. Disk/Directory) specification.

RESULT = (String)

A fully constructed file name which can be used to access the data.

Open GENIE Reference Manual Chapter 3

- 150 -

Groupbins()
Groups histogram bins by averaging the bin contents.

GROUPBINS wksp=Workspace nbin=Integer
[undef=Real]

Group bins in a GENIE-V2
format workspace.

GROUPBINS() xarray=Realarray
yarray=Realarray
earray=Realarray nbin=Integer
[undef=Real]

Group bins in a spectrum given
X, X, and E arrays.

example:
Group the bins in a workspace by tens.
>> work = s(1)
>> Groupbins work 10 undef=0.0

Note: Undef gives a value to assume when undefined elements are met during the
averaging process.

Groupbins
The Groupbins() function provides a way of reducing (in a fairly simple manner) a spectrum
with large number of bins. The process averages every "nbin" bins by replacing the group of bins
with a single new bin. This process is less sophisticated than that used by the Rebin() command
and is usually used before displaying a large spectrum graphically to achieve a degree of
smoothing.

The first form of the command takes a workspace and modifies the binning to return a re-binned
result or to change the original workspace (depending on whether the command is specified as a
function or keyword command).

The second form of the command takes X, Y, and E data arrays where the E and Y arrays are of
the same length and the X array is one element longer (for the extra bin boundary). The result is
a workspace containing just the rebinned X, Y and E arrays. The original arrays are unaffected.

Parameters:

Wksp (Workspace)

Any workspace W containing a histogram stored in arrays in W.X, W.Y and W.E.
Bin grouping does not work on a two dimensional workspace.

Nbin (Integer)

Number of bins to group together.

Undef (Real) [default = 0.0]

Open GENIE Reference Manual Chapter 3

- 151 -

Because Open GENIE allows arrays to contain undefined elements, it is possible
that the user may wish to set any undefined elements to a specific value before the
bin grouping is carried out (usually zero).

Xarray, Yarray, Earray (Realarray)

These are the three arrays representing the histogram to be grouped. The Xarray
parameter specifies the histogram bin boundaries, the Yarray parameter the data
values and the E array parameter the Error values for the Y array.

RESULT = (Workspace)

Either the bin-grouped input workspace or a new workspace created to hold just
the histogram arrays. Which ever form of the command is used, the resultant
workspace will have X, Y and E fields.

Open GENIE Reference Manual Chapter 3

- 152 -

Jump()
Similar to the System() command.

JUMP/S acommand=String Execute one operating system command

JUMP/P Create an operating system session within Open
GENIE

example:
Use Jump/s to print a file
>> Jump/S "print/q=sys$lsr0 genie.ps"

Note: For new programs use the System() command.

Jump/S
This executes a single operating system command (eg "print") from within Open GENIE. Jump
does not return a status so it is preferable to use the System() command.

Parameters:

Acommand (String)

The command and parameters (if any) to execute.

Jump/P
Jumps out of Open GENIE into a terminal session but keeps Open GENIE running in the
background. To return to Open GENIE type "exit" on Unix or "logout" on VMS.

Open GENIE Reference Manual Chapter 3

- 153 -

Keep()
The keep command is no longer supported. Use Hardcopy() for saving graphics and the
Getcursor() and Asciifile() commands for retrieving and storing peak location data.

Keep
The Keep/Hardcopy command has been superceded by the Hardcopy() command for saving
graphics.

The other keep commands (originally used for storing peak information) can now be specified as
simple procedures using the Getcursor() command to get the co-ordinate data and the Asciifile()
command to write the data in any format into an ASCII formatted file.

Open GENIE Reference Manual Chapter 3

- 154 -

S()
Get data, now identical to the Get() command. See Get/Help

S
The S() command now behaves identically to the Get() command but it is kept as an alias for
consistency.

Open GENIE Reference Manual Chapter 3

- 155 -

Scatmode()
Return GENIE-V2 Energy mode description (emode in a GENIE-V2 workspace)

SCATMODE [emode=Integer] Returns a string giving the meaning of the
emode value.

example:
Get a description from an emode value of 1
>> printn Scatmode(1)
inelastic (direct geometry)

Scatmode
Simply provides a textual description to translate the numeric value of this parameter. This
parameter says how to interpret the efixed value during a units operation.

Parameters:

Emode (Integer)

Emode value (0, 1 or 2)

RESULT = (String)

String description of the instrument energy mode.

Open GENIE Reference Manual Chapter 3

- 156 -

Set()
Set user defined defaults.

SET/DISK value=String Select the default disk

SET/DIR value=String Select the default directory

SET/INST value=String Select the default instrument short name

SET/EXT value=String Select the default file extension

SET/FILE
[/INPUT]
[/OUTPUT]

value=String Set the default input or output files

example:
Change the file for saving data to
>> Set/file/output "Mydat.in3"

Note: Set/File/Input is the default for Set/File

Set/File
Allows selection of the default file for input or output. This new Open GENIE command
overrides the older commands listed below which set parts of the path individually. The full
pathname for the file must be supplied when Set/File is being used, but once set both the Get()
and Put() commands will accept the Input/Output files as defaults.

Parameters:

/Input

Sets the default file for input

/Output

Sets the default file for output

Value (String)

The full pathname for the default input or output file.

Set/Disk
Sets the default disk for the input file. This is not needed on Unix systems but can be useful on
VMS or Windows/NT.

Open GENIE Reference Manual Chapter 3

- 157 -

Parameters:

Value (String)

The full disk name (or disk logical name on VMS - e.g. "USER$DISK:")

Set/Dir
Sets the default directory for the input file.

Parameters:

Value (String)

The full directory path for the file. (e.g. [TFXA.DATA] on VMS or
/home/user/bob/ on Unix - the trailing / is needed on Unix)

Set/Inst
Sets the default instrument short name. This is an ISIS specific three letter abbreviation for the
instrument name which constitutes part of the file name.

Parameters:

Value (String)

The instrument short name (e.g. IRS)

Set/Ext
Sets the default file extension for the input file.

Parameters:

Value (String)

The full file extension (e.g. ".RAW")

Open GENIE Reference Manual Chapter 3

- 158 -

Setpar()
GENIE-V2 style T-O-F parameter setting for the Units() command.

SETPAR wksp=Workspace [l1=Real] [l2=Real] [tt=Real]
[em=Integer] [ef=Real] [d=Real] [t=String]

Set time of flight
parameters

[/R] Take angles to be
values in radians

example:
Set a value of two-theta that was not in the raw data file
>> w = s(1)
>> Setpar w tt=50.0
>> wd = Units:d(w)

Note: Could probably be done more easily by assignment (i.e. w.twotheta = 50.0)

Setpar
The Setpar() command emulates the GENIE-V2 command which set Time-of-Flight parameters
for a workspace so that the Units() command could be used. Open GENIE behaves differently, in
that it will read the parameters from a data file automatically when reading spectra. Setpar() can
be used however to fix parameters which had an incorrect or default value in the raw file. Note
that the problem is trivial in Open GENIE anyway because the correct values can simply be
assigned to the appropriate workspace field by using GCL (as in the note above).

Parameters:

/R

Interpret the two theta angle as a value given in radians.

L1 (Real)

Primary flight path (m)

L2 (Real)

Secondary flight path (m)

Tt (Real)

Two theta angle (in degrees by default but see the /R qualifier).

Em (Integer)

Selects the energy mode of the instrument which affects how the "Ef" fixed
energy parameter is interpreted by the Units() command.

Open GENIE Reference Manual Chapter 3

- 159 -

0 = Elastic
1 = Inelastic (Direct geometry)
2 = Inelastic (Indirect geometry)

Ef (Real)

Fixed energy value (meV)

D (Real)

The hold off time (delta) in microseconds.

T (String)

Workspace title string.

Open GENIE Reference Manual Chapter 3

- 160 -

Show()
Set user defined defaults and system variables.

SHOW/DEFAULTS Show all I/O defaults

SHOW/PAR wksp=Workspace Show parameters set by Setpar()

SHOW/DATA wksp=Workspace Emulate GENIE-V2 show data command

SHOW/CONST Show all the constants in Open GENIE

SHOW/PROC Show all the procedures in Open GENIE

SHOW/TYPE Show all the types in Open GENIE

SHOW/VAR Show all the variables in Open GENIE

[/SYS] Show system variables as well

example:
Check the I/O defaults
>> Show/defaults
Current default disk = EVS$DISK0:
Current default directory = [EVSDATA]
Current default instrument = EVS
Current default extension = .RAW
Current default input = EVS$DISK0:[EVSDATA]EVS00456.RAW
Current default output =

Note: The current default input file can be altered by Assign() or Set/File/Input

Show/Defaults
Shows all the current I/O defaults. Note that the GENIE-V2 disk, directory, instrument and
extension defaults will only change the default input file when the Assign() command is used.
The Get() and S() commands both use whatever the default input file specifies.

Show/Par
Prints the values set in a workspace by the Setpar() command. This is only kept for compatibility
with GENIE-V2, in Open GENIE all values can be printed directly out of the workspace (eg
printn work.twotheta).

Parameters:

Wksp (Workspace)

The workspace being inspected.

Open GENIE Reference Manual Chapter 3

- 161 -

Show/Data
Emulates the GENIE-V2 "show data" command by printing all the data from the workspace to
the terminal screen. If a long workspace is printed to the screen by mistake Control-C can be
used to stop the printout! If similar data is required in a file, use the Open GENIE
Asciifile/Writefree or Put/Ascii commands.

Parameters:

Wksp (Workspace)

The workspace being inspected.

Show/Const
Display all the constants currently defined within the Open GENIE session (including pre-
defined constants such as colours).

Parameters:

/Sys

Show system constants as well (all these begin with an "_")

Show/Proc
Display all the procedures currently defined within the Open GENIE session (including their
help text)

Parameters:

/Sys

Show system procedures as well (all these begin with an "_")

Show/Type
Display all the workspace types currently defined within the Open GENIE session.

Parameters:

/Sys

Open GENIE Reference Manual Chapter 3

- 162 -

Show system types as well (all these begin with an "_")

Show/Var
Display all the variables currently defined within the Open GENIE session.

Parameters:

/Sys

Show system variables as well (all these begin with an "_")

Open GENIE Reference Manual Chapter 4

- 163 -

Chapter 4

I/O Commands
This section details all the commands used in Open GENIE for input and output of data. The
commands can be grouped as show below.

• Storage and retrieval in one of the supported data file formats

Filetype() Returns information about the type of a data file

Get() Reads data into GENIE from a file

List() Lists the contents of a data file

Nblocks() Returns the number of readable blocks in a file

Put() Outputs Open GENIE data into a file

• Free format ASCII input and output of GENIE data

Asciifile() Read or write any format of ASCII data

• Data input from a user written program in FORTRAN or C.

Module() Call user written code as part of Open GENIE

• Printing information to and reading information from the user.

Print() Print information to the user

Inquire() Prompt the user for terminal input and read back an input variable

Read_terminal() Read a string back from the input terminal into a variable

Open GENIE maintains a default "Current input file" and "Current output file". For input and
output the Set/File/Input and Set/File/Output may be used explicitly to set the files to be used as
a default for later commands. For input files, defaults may also be set up in a similar fashion to
those used in GENIE-V2 with separate defaults for disk, directory, instrument name and file
extension using the appropriate Set() commands. The current defaults may be viewed with the
Show/Defaults command.

Open GENIE Reference Manual Chapter 4

- 164 -

One of the major strengths of Open GENIE is the flexibility available in accessing data. For all
the supported file formats it is possible to use the lower level Get() and Put() commands to
access named items of data directly.

The commands reading whole spectra (See the section on GENIE-V2 emulation) are built using
these lower level commands. Whole spectra may also be saved/retrieved using Put() and Get()
by treating workspaces as single Open GENIE variables.

Open GENIE Reference Manual Chapter 4

- 165 -

,�2�&RPPDQG�5HIHUHQFH

Open GENIE Reference Manual Chapter 4

- 166 -

Filetype()
Finds out the type of a data file (if recognized by Open GENIE).

FILETYPE [file=String] Return a string giving the data file type.

example:
Check the type of a file
printn Filetype("HRP00389.RAW")
raw

Note: "file" defaults to the type of the default input file if there is one.

Filetype
The filetype command makes the process Open GENIE uses to determine file types available to
the user. By using the Filetype() command it is possible to write Open GENIE procedures which,
from the outside appear independent of input file type, but internally take account of different
data formats.

Parameters:

File (String) [default = currently selected input file (via the Set() command)]

File which is being tested.

RESULT = (String)

One of the following strings depending on the type of the file.

"<unknown>" Filetype unknown to Open GENIE

"raw" ISIS original format raw data file

"G2 intermediate" GENIE-V2 intermediate file

"G3 intermediate" Open GENIE intermediate file

"CRPT" ISIS Current Run Parameter Table

"HDF" HDF format data file

"ASCII" Plain text (ASCII) file

"<directory>" A directory file on the host system

"G3 ASCII" Open GENIE ASCII dump formatted file

this is only a minimum set of file types. If you have a file reading routine please
mail genie@isise.rl.ac.uk and we will investigate adding your data file as one

Open GENIE Reference Manual Chapter 4

- 167 -

recognized by Open GENIE.

Open GENIE Reference Manual Chapter 4

- 168 -

Get()
Read binary spectrum data into GENIE from any valid data source (e.g. ISIS Raw files, DAE,
intermediate files etc.)

GET() item=String [file=String] Read binary data by name

GET() item=Integer [file=String] Read binary data by number

GET() item=Interval [file=String] Read binary data by interval

GET() item=IntegerArray [file=String] Read binary data by range

/ARRAY
Read data back as a workspace array
instead of a two-d workspace

example:
print the user name
then read in all the spectra in the file,
finally read every third spectrum from a file
>> printn get("USER", "Isisfile.raw")
Professor G. Offar
>> 2d = get(1 : get("NSP1"))
>> spin_up = get(1:50@3 , "CSP4589.RAW")

Note: Use the List() command to find out what data can be read from the file.

Get()
This function is a fully generic way of accessing binary data from Open GENIE from any valid
data format. Open GENIE is always able to detect automatically what format the data source is
in so there is no need to do anything differently when accessing an intermediate file, an ISIS raw
file or even the Data Acquisition Electronics (DAE).

It should be remembered however that even if Open GENIE is able to detect the type of the data
source, it cannot guarantee what items are available in the file, for example, asking for user
information will work fine from an ISIS raw file, but not from the DAE! It is wise to check any
unknown file with the List() command to see what information is available.

Parameters:

/Array

This optional qualifier specifies that when getting multiple spectra, the routine
should return a workspace array of single spectrum workspaces, rather than a
single multi-dimensional workspace.

Item (String or Integer or Range)

This specifies the name (String) or index (Integer) of the primary data item being

Open GENIE Reference Manual Chapter 4

- 169 -

requested from the data file. The assumption here is that all data items in the file
are either named explicitly or numbered. For example, "NSP1" is the name used
in ISIS RAW files to get the total number of spectra in the first time regime. In
the same file, specifying the integer 5 would get the fifth spectrum within the file.
To find the names of items which may be specified for a particular file, the List()
command may be used.

Open GENIE also supports unique data types called Interval and Range, a Range
or Interval can be used to specify multiple indices or a range of indices
respectively to access multi-dimensional data. For more information on specifying
intervals, please see a description of the Interval syntax.

For the most general ability to specify a group of arbitrary spectra an Integer array
of spectrum identifiers can be given as the the "Item" parameter.

File (String) [default = Current input file]

This parameter gives the source from which Open GENIE is reading the data
specified. Normally this will be a file on disk or the data acquisition electronics
but in future could also be a network address of a data source at a remote site.

If this parameter is not given, a file specified previously using the Set/File/Input
command is used.

RESULT = (Any Open GENIE type)

Because the Get() command can return any sort of data from a file, the result of
this function will the the closest available Open GENIE data type to the item
being read. For example, if a string is being read from a file, the return type will
be a String, alternatively, if a spectrum is being read, the return type will normally
be an Open GENIE workspace.

Open GENIE Reference Manual Chapter 4

- 170 -

List()
Lists the items available within any datafile with a format Open GENIE understands.

LIST file=String Catalogues the contents of a data file

LIST/IN Lists the contents of the default input file

LIST/OUT Lists the contents of the default output file

[/FULL] List the file contents with full details

example:
>> List "dat.out"
Genie intermediate file version 1.0
Block Label Type
1 vanadium GXWorkspace
2 Run 1 GXWorkspace
3 Run 2 GXWorkspace

Note: To see comments use the /Full qualifier.

List
This command gives a means of listing out pertinent information about the contents of a data
file. The block number and/or label string identify how to request the data when using the Get()
command (either the block number or the label string can be given as the "Item" parameter).

Parameters:

/Full

Give a full listing of information, eg the full listing for the example above.
t/full "dat.out"
termediate file version 1.0
1, Label = vanadium, Type = GXWorkspace
 Tue 01 Jul at 14:02:36 BST by Chris <cmt@spudtek>

nt: Calibrating run

2, Label = Run 1, Type = GXWorkspace
 Tue 01 Jul at 14:03:36 BST by Chris <cmt@spudtek>

nt: 15/3/98 - Nobel data (first cut)

3, Label = Run 2, Type = GXWorkspace
 Tue 01 Jul at 14:16:58 BST by Chris <cmt@spudtek>

nt: 15/3/98 - Nobel data (what I wrote up)

File (String)

The input file to be listed

Parname2 (Type2)

As above

Open GENIE Reference Manual Chapter 4

- 171 -

RESULT = (Workspace)

Returns the result of the command as a workspace of strings and string arrays so
that the information can be used in a program. The example below shows the
same listing returned in a workspace.

ntn list:full("dat.out")
ace []

= "Genie intermediate file version 1.0"
Chris <cmt@spudtek> Chris <cmt@spudtek> Chris <cmt@spudtek>] Array(3)
GXWorkspace GXWorkspace GXWorkspace] Array(3)
[vanadium Run 1 Run 2] Array(3)
nt = [Calib. run 15/3/98 - Nobel dat (first cut) 15/3/98 - Nobel dat (written up)] Array(3)
Tue 01 Jul at 14:02:36 BST Tue 01 Jul at 14:03:36 BST Tue 01 Jul at 14:16:58 BST] Array(3)

List/In
As for the List() but lists the contents of the default input file as specified with one or more of the
Set() commands.

List/Out
As for the List() but lists the contents of the default output file as specified with one or more of
the Set() commands.

Open GENIE Reference Manual Chapter 4

- 172 -

Nblocks()
Returns the number of readable blocks in an Open GENIE recognized file.

NBLO
CKS()

[file=Strin
g]

Return number of blocks in an intermediate file, or number of
spectra in a raw file

example:
Check the number of spectra in a raw
file then do a multiplot
>> Set/File/Input "hrp00345.raw"
>> n = nblocks()
>> multiplot 1:(n)

Note: For an ISIS raw file the above use of Nblocks() is equivalent to Get("NSP1").

Nblocks
Returns the number of blocks the Get() command would be able to read when reading by block
number. Put in another way for a file "d.dat" the command Get(Nblocks("d.dat"), "d.dat") will
access the last block in the file.

Parameters:

File (String) [default = default input file]

Any file of a type which can be recognised by Open GENIE.

RESULT = (Integer)

Returns the number of the highest block in the file.

Open GENIE Reference Manual Chapter 4

- 173 -

Put()
Outputs Open GENIE data to a known file type.

PUT gv=Any [label=String]
[comment=String]
[file=String]

Appends the specified variable to the end of
the data file, by default in Open GENIE
intermediate file format..

[/NEW] Create a new data file or overwrite existing
file.

[/ASCII] Write the data file in formatted ASCII.

[/HDF] Write in HDF format.

example:
Copy a whole multidimensional spectrum from a raw
file into a single item in an intermediate file
>> Set/file/Input "hrp00273.raw"
>> Set/file/Output "example.in3"
>> put get(1:20) label="bigspec" comment="demo"

Put
The Put() command provides a mechanism for saving Open GENIE variables of arbitrary
complexity in an intermediate binary file. Items are written sequentially and appended to any
already existing file - if the file does not exist or needs re-creating it can be created or
overwritten by specifying the "/New" qualifier.

Variables being put into a file may optionally be tagged with a label string. This makes direct
access using the Get() command easier as the label can be used by Get() instead of the block
number. Comments may also be added to annotate individual data items in the file to enable
identification later with the List() command.

Parameters:

/New

Used to force file creation when no file exists or when it is necessary to overwrite
and existing file rather than appending a data item to it (the default).

/ASCII

Specifies that data will be written in Open GENIE ASCII file format. This is an
alternative to using the normal Open GENIE intermediate file format but it
actually behaves in the same way both on input and output. It allows ASCII
output of all types of data including workspaces.

/HDF

Open GENIE Reference Manual Chapter 4

- 174 -

Identical behaviour, but specifies that data will be written in HDF format rather
than in Open GENIE intermediate file format.

Gv (Any)

The Open GENIE variable to be written to the data file. Any genie variable of any
complexity can be written directly into an intermediate file and retrieved with the
Get() command.

Open GENIE Reference Manual Chapter 4

- 175 -

Asciifile()
Read or write any format of ASCII data.

ASCIIFILE:OPEN() file=String
[comment=String]
[delimiter=String]

Open an ASCII file

ASCIIFILE/CLOSE handle=AsciiFile Close an open file

ASCIIFILE:DATA()
[:RESET]

handle=AsciiFile Return all data currently
accumulated in a workspace.

ASCIIFILE:LINES() handle=AsciiFile Return the number of data
lines left to read

ASCIIFILE/READFIXED

handle=AsciiFile
[fields=String]
format=String
[count=Integer]

Read fixed format data

ASCIIFILE/READFREE

handle=AsciiFile
[fields=String]
[separator=String]
[count=Integer]

Read free format data

ASCIIFILE/SKIP
handle=AsciiFile
[nlines=Integer]

Skip lines on input

ASCIIFILE/WRITEFREE

handle=AsciiFile
comment=String
separator=String
gv1=Any [gv2=Any]
[gv3=Any] [gv4=Any]

Write free format data

ASCIIFILE/REWIND handle=AsciiFile
Close and re-open a file at
the start

example:
Read three data arrays (in columns separated by whitespace)
and assign to arrays in fields X, Y, and E in the new workspace.
Handle = Asciifile:Open("myilldata.dat")
wk1 = Asciifile:Readfree(Handle, "X,Y,E", $WHITESPACE, 8)
printin wk1
 Workspace []
 (
 x = [1.0 1.1 1.2 1.3 1.4 ...] Array(8)
 y = [2.1 2.1 2.2 2.0 2.0 ...] Array(8)
 e = [0.0 0.1 0.2 0.0 0.1 ...] Array(8)
)

Open GENIE Reference Manual Chapter 4

- 176 -

Asciifile/Open
Open a file and return a handle for use with other Asciifile() commands. This command must be
called before any other operations can be carried out

Parameters:

File (String)

Name of the ASCII data file to be opened, or if it does not exist, to be created.

Comment (String) [default = ""]

When an ASCII file is opened by Open GENIE for reading, it is possible to
specify a single character which is being used in the input file as a comment
character. The result of this will be to effectively ignore all lines beginning with
this character up to the last instance of "Delimiter" (the Asciifile:lines() command
will report only the number of non-commented lines).

Delimiter (String) [default = "\n" (new line)]

A single character that indicates the end of a line of input and this is configurable
because different systems may terminate lines in different ways. Normally this
will only be necessary if the ASCII file has come from a different operating
system (for example, files from a Macintosh may require "\r" as the delimiter).

RESULT = (Asciifile)

The result of this command is a file handle variable which must be stored and
passed as a parameter to any future operations on the file.

Asciifile/Close
Close the file, flushing any buffers to disk.

Parameters:

Handle (Asciifile)

Specifies the file to close. Once a file has been closed, the "Handle" value
becomes undefined and should not be used.

Asciifile:Data()
It is possible to read data in two ways with the Asciifile() command. The example at the
beginning of this command description shows how data may be read into a workspace in a single
go with the /Readfree qualifier. An alternative way of reading the same data is shown below

Open GENIE Reference Manual Chapter 4

- 177 -

using the Asciifile:Data() command.
Asciifile/Readfree Handle "X1,Y1,E1" $WHITESPACE 4
Asciifile/Readfree Handle "X2,Y2,E2" $WHITESPACE 4
wk1 = Asciifile:data(Handle)
printn wk1
 Workspace []
 (
 x1 = [1.0 1.1 1.2 1.3] Array(4)
 y1 = [2.1 2.1 2.2 2.0] Array(4)
 e1 = [0.0 0.1 0.2 0.0] Array(4)
 x2 = [1.4 1.5 1.6 1.7] Array(4)
 y2 = [2.0 2.0 2.0 2.0] Array(4)
 e2 = [0.1 0.1 0.2 0.0] Array(4)
)

Using this method several different items of data may be accumulated into the workspace before
it is returned.

Parameters:

/Reset

Clears the workspace which was previously being accumulated of all fields and
gives a fresh start. Note that this does not reset any file pointers; to reset a file on
reading use the /Rewind option.

Handle (Asciifile)

Specifies the file with which all the data is associated. A separate workspace may
be accumulated for every open file handle.

RESULT = (Workspace)

Returns the accumulated workspace of data items.

Asciifile:Lines()
Returns the number of data lines (i.e. non comment lines) in the file left to read. To return the
total number of data lines in a file, the Asciifile:lines() command must be called before any lines
of data are read in.

Parameters:

Handle (Asciifile)

Specifies the file to count the remaining lines in.

RESULT = (Integer)

Count of remaining lines to read.

Open GENIE Reference Manual Chapter 4

- 178 -

Asciifile/Readfixed
Reads lines from an ASCII formatted file in "Fixed" format. This is similar to FORTRAN fixed
format reads where data is identified exactly by position and length and there are not necessarily
any spaces separating the data being read in. For example, the line below reads 50 lines out of a
fixed format file consisting of two columns of real numbers in fields of width 10 each. The first
character on each line is a space to be skipped before the numbers start.
wk = Asciifile:Readfixed(Handle, "x,y", " %10f%10f", 50)

Parameters:

Handle (Asciifile)

Specifies the file to read data from. The current position in the file is also
remembered with the file handle.

Fields (String) [default = "field01, field02, field03, field04, field05, field06"]

Gives a list of names, separated by commas, which will be assigned to the fields
of the resultant data workspace. The names will be associated, in order, with the
columns of data as they are read from the input file.

If the empty string ("") is passed and the data being read is either a single value or
a single column of data, a single variable or array will be returned instead of a
whole workspace.

Format (String)

This is a C style sscanf expression (similar in a FORTRAN FORMAT statement
in meaning). The "%" character is used to indicate the position and specific
format for each data item in the line. Some examples of common formatting
possibilities are given below.

%6f Matches a floating point number of total width 6

%s Matches a string of non-whitespace characters

%10c Matches ten characters, including white space

%d Matches an integer

%4d Matches an integer of width 4

%*f Skips a float in the line

%% Matches a % character

" " (space) Skips one or more spaces

Other sscanf formatting conventions may be used if they are supported on the host
operating system.

Open GENIE Reference Manual Chapter 4

- 179 -

Count (Integer) [default = 1]

Number of lines to read in one operation. This effectively defines the size of the
data arrays being returned for each column of data. To read to the end of the file
specify -1.

RESULT = (Workspace, array or single value)

The result of an ASCII read operation depends on the amount and format of the
data read, normally a workspace is returned, but for a single column of data or a
single value in the file, an array or single item can be returned respectively (see
the "Fields" parameter description).

Asciifile/Readfree
Reads lines from an ASCII formatted file in "Free" format. This is similar to FORTRAN list
directed read statements where data is separated, usually by spaces or commas. For example, the
line below reads back a workspace with two array fields X and Y which are read from two
columns in the input file where the columns are delimited by one or more "!" characters.

wk = Asciifile:Readfree(Handle, "x,y", "[!]+", 40)

Parameters:

Handle (Asciifile)

Specifies the file to read data from. The current position in the file is also
remembered with the file handle.

Fields (String) [default = "field01, field02, field03, field04, field05, field06"]

Gives a list of names, separated by commas, which will be assigned to the fields
of the resultant data workspace. The names will be associated, in order, with the
columns of data as they are read from the input file.

If the empty string ("") is passed and the data being read is either a single value or
a single column of data, a single variable or array will be returned instead of a
whole workspace.

Separator (String) [default = $WHITESPACE (one or more tabs or spaces)]

A single character or regular expression specifying what to expect between each
item of data on a line. The definition of the default $WHITESPACE is "[\t]+"
meaning one or more space or tab characters. This default will be suitable for
many cases but for example, an expression like "," will delimit comma separated
data. For more details of how to construct regular expressions see regular
expressions in the Appendices to this manual.

Count (Integer) [default = 1]

Open GENIE Reference Manual Chapter 4

- 180 -

Number of lines to read in one operation. This effectively defines the size of the
data arrays being returned for each column of data.

RESULT = (Workspace, array or single value)

The result of an ASCII read operation depends on the amount and format of the
data read, normally a workspace is returned, but for a single column of data or a
single value in the file, an array or single item can be returned respectively (see
the "Fields" parameter description).

Asciifile/Skip
This skips "Nlines" of input data (i.e. non comment) lines in an input file.

Parameters:

Handle (Asciifile)

Specifies the file in which to skip the lines.

Nlines (Integer) [default = skip 1 line]

Number on lines in the input file to skip.

Asciifile/Writefree
Writes Open GENIE variables into up to four free formatted columns of ASCII data. Data cannot
be written to an existing file already opened for reading.

Handle (Asciifile)

Specifies the opened file to write data to.

Comment (String) [default = ""]

Optional user comment which will be preceded by the comment character
specified with the Asciifile/Open command. If a comment character was specified
for the file and nothing is specified for this parameter, Open GENIE will add its
own default header.

Separator (String) [default = " "]

Specifies the default character(s) to separate columns of output data with.

Gv1-Gv4 (Any valid Open GENIE type except workspaces)

Up to four separate GENIE data items to write out at one time. The values are
written out in up to four columns. The longest data item of the four determines the

Open GENIE Reference Manual Chapter 4

- 181 -

length of the data added to the file. The shorter items are repeated to fill their
columns.

Open GENIE Reference Manual Chapter 4

- 182 -

Module()
Manage the dynamic loading and execution of user written C or FORTRAN code.

MODULE/COMPILE
[/C]

file=String [comp_flags=String]
[link_flags=String]
[symbols=String]

Compile a user written
module

MODULE/LOAD file=String [desc=String] (Re-) load the routine
into memory

MODULE/EXECUTE
[/C]

func=String pars=Workspace Run a loaded module

MODULE/LIST Show loaded modules

example:
Compile a convolution module, load then run it on a 2-D workspace
>> Module/Compile "conv.for" comp_flags="/check=all" symbols="conv_sub"
>> Module/Load "conv.so"
>> w1 = get(1:30)
>> w2 = Module:Execute("conv_sub", w1)

Note: A compiled module only needs loading once per Open GENIE session.

Module/Compile
Open GENIE looks after the details of compiling a dynamically loadable program module
whatever system it is running on. This greatly simplifies what on some systems is quite a
complex process. The end result of the compilation of either a C or FORTRAN program is a
dynamically loadable library which can contain one or more subroutines callable by Open
GENIE once the module has been loaded.

The Compiled module may be written in FORTRAN or C and needs to adhere to a simple set of
conventions to ensure its correct communication with the running Open GENIE. The structure of
a module and the facilities available to it are described in the FORTRAN Module Interface and
the C Module Interface sections of this manual.

Parameters:

/C

Invoke the C compiler instead of the FORTRAN compiler (the default).

File (String)

The name of the FORTRAN or C source file (including the .f, .c, or .for part of
the filename). The compilation will produce a shareable library of the same file
name but with the file extension of ".so" for the dynamic library. Once created,

Open GENIE Reference Manual Chapter 4

- 183 -

this can be kept and used with the Module/Load command.

Comp_flags (String) [default = ""]

This string takes any compiler flags or switches which may be needed by your
program. Open GENIE already will have already added anything that is needed
for compiling modules.

Link_flags (String) [default = ""]

This string takes any linking flags or switches which may be needed to link the
compiled code. Open GENIE will have already added all the flags needed to build
a shareable library.

Symbols (String) [default = ""]

This is a comma separated list of the subroutine or C function names which you
want open GENIE to be able to call from your module when you run a loaded
module. This parameter supplies all the names you can use when specifying the
"func" parameter in the Module/Execute command.

Note that if you do not list a name here, on most operating systems, the
Module/Execute command will not be able to find your subroutine in the dynamic
library and you will get an error.

Module/Load
The Module/Load command takes an existing compiled shareable module library and activates it
into Open GENIE so that the routines in the module may be called. This only needs to be done
once for any module file in an Open GENIE session. From then on it is possible to call routines
within the module using the Module/Execute command. It is possible to check which modules
are loaded with the Module/List command.

Parameters:

File (String)

The filename of the shareable library module to be loaded (it will always be a file
ending in ".so"). Open GENIE searches for files in the current directory, its own
area and any other directories specified by the GENIE_USER_LIBRARY_DIR
environment variable/logical name.

Desc (String) [default = "<no description>"]

An optional description string. This is useful when several different modules are
being used to identify their function. The description is show when using the
Module/List command.

Open GENIE Reference Manual Chapter 4

- 184 -

Module/Execute
This command runs a FORTRAN subroutine or C function from within a user written module.
Open GENIE’s advanced data access mechanism means that complex data can easily be
transferred to and from a user written program without complex programming on the part of the
user. The Module/Execute command can be called either as a function (x = Module:Execute(...)
) or as a keyword command (Module/Execute ...). When called as a function a workspace is
returned which may contain complex multi-dimensional data and/or simple strings and
individual parameters.

Parameters:

/C

Invoke a C program instead of a FORTRAN program (the default).

Func (String)

The name of the subroutine or C function in the compiled module to call.

Pars (Workspace)

A workspace containing all the information for the external routine to process.
This may be a workspace assembled just to package a few parameters and a data
array needed by the external routine or it can be a complete n-dimensional
workspace as read in by Open GENIE from data file (see the example above). See
the sections on C Module Interface or FORTRAN Module Interface for details
about the method of communicating parameters with the shareable library.

RESULT = (Workspace)

Contains the workspace given in the "Pars" parameter but as modified by the
external subroutine.

Module/List
Lists all the currently loaded user written modules.

Open GENIE Reference Manual Chapter 4

- 185 -

Print()
Print to the users terminal (no newline).

PRINT [p1-p20=Any] Converts all parameters for printing to the terminal screen

example:
print out a variable with some text
>> print "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Print(), Printn(), Printi(), Printin(), Printe(), Printen(),
Printd(), Printdn(),
The generic print command takes up to 20 parameters, these are converted into a text form
suitable for display on an interactive terminal and then displayed to the terminal. Depending on
the suffix of the print command the text will be sent via different output streams and will be
coloured differently using ANSI escape code sequences. If the command ends with an "n" a
newline will be added automatically after the text has been printed. If the print conversion is
required (i.e. from variable to string) but without writing to the terminal, it is possible to use the
As_string() function.

There are four possible output streams with the following attributes:

Stream type Print Command Characteristics

Normal output Print() or Printn() Normal output in (typically) black text

Informational
output

Printi() or
Printin()

Blue coloured, can be switched on and off (see Toggle/Info)

Error output
Printe() or
Printen()

Red coloured, includes line number and procedure where
error occurred

Debugging
output

Printd() or
Printdn()

Mauve coloured, separates debugging output from other
types of output (not usually visible during an ordinary user
session).

Parameters:

P1-P20 (Any)

Variables to be printed. The strings produced by each variable are concatenated
by the print command without adding any white space to allow maximum control
over formatting.

Open GENIE Reference Manual Chapter 4

- 186 -

Printn()
Print to the users terminal with a terminating newline.

PRINTN [p1-p20=Any] Converts all parameters for printing to the terminal screen

example:
print out a variable with some text
>> printn "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979
>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printn()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 187 -

Printi()
Print an informational message to the users terminal (no newline).

PRINTI [p1-p20=Any] Converts all parameters for printing to the terminal
screen

example:
print out a variable with some text
>> printi "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printi()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 188 -

Printin()
Print an informational message to the users terminal with a terminating newline.

PRINTIN [p1-p20=Any] Converts all parameters for printing to the terminal
screen

example:
print out a variable with some text
>> printin "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979
>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printin()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 189 -

Printe()
Print an error message to the users terminal (no newline).

PRINTE [p1-p20=Any] Converts all parameters for printing to the terminal
screen

example:
print out a variable with some text
>> printe "Value of variable $PI=" $PI
0/(none)/Value of variable $PI=3.14159265358979>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printe()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 190 -

Printen()
Print an error message to the users terminal with a terminating newline.

PRINTEN [p1-p20=Any] Converts all parameters for printing to the terminal screen

example:
print out a variable with some text
>> printen "Value of variable $PI=" $PI
0/(none)/Value of variable $PI=3.14159265358979
>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printen()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 191 -

Printd()
Print an debugging message to the users terminal (no newline).

PRINTD [p1-p20=Any] Converts all parameters for printing to the terminal screen

example:
print out a variable with some text
>> printd "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printd()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 192 -

Printdn()
Print a debugging message to the users terminal with a terminating newline.

PRINTDN [p1-p20=Any] Converts all parameters for printing to the terminal screen

example:
print out a variable with some text
>> printdn "Value of variable $PI=" $PI
Value of variable $PI=3.14159265358979
>>

Note: See also the other print commands in the group ("print" - "n, i, in, e, en, d, dn" e.g.
"printdn")

Printdn()
See the generic Print() command for a full description.

Open GENIE Reference Manual Chapter 4

- 193 -

Inquire()
Prompts the user for terminal input and reads back an input variable.

INQUIR
E

[aprompt=String] Inquire information from the user interactively

example:
Read in a lower limit from the user
>> llimit = inquire("Enter lower limit")
Enter lower limit: 45.678
>> printn llimit
45.6779999999999
>> printn Is_a(llimit, "Real")
$TRUE

Note: To read a string without any conversions or prompting use Read_terminal()

Inquire
This command reads input from the users terminal. It also supplies a prompt string to obtain
input from the user. The Inquire() command attempts to read the input variable back into the
correct type of Open GENIE internal variable. Currently, this is only the case for single Integer
or Real values. Any unrecognized type is returned as a string.

Parameters:

Aprompt (String) [default = " :"]

A string which tells the user what information is required, a ":" is appended to the
prompt.

RESULT = (Any)

Either a string or the value of the variable as a Real or Integer. If no input is given
"" is returned.

Open GENIE Reference Manual Chapter 4

- 194 -

Read_terminal()
Read a string back from the input terminal into a variable

READ_TERMINAL() Return a string typed in at the terminal

example:
Read a string
>> printn "(" read_terminal() ")"
abcd efg
(abcd efg)
>>

Note: To read numbers as well as strings you may wish to use the Inquire() command.

Read_terminal()
This command reads a string (terminated by a carriage return) from the terminal. A numeric
string can be converted by using As_variable() on the string returned by Read_terminal(). This is
the way the Inquire() command is written.

Parameters:

RESULT = (String)

The string read from the terminal, not including the return character which terminated the input.

Open GENIE Reference Manual Chapter 5

- 195 -

Chapter 5

Syntax
Open GENIE commands fall into two obvious groupings, those used primarily in interactive
mode and which are complete within a single line, and those used mainly to build procedures and
whose effect spans several lines. The former are termed "single-line" and the latter "multi-line"
commands. Single line commands also fall into a further division between commands which are
expressed in an algebraic or functional notation and commands which are accessed as a simple
keyword type command.

• Micro-syntax (some preliminaries about Open GENIE syntax)

• Comments

• Intervals

• Line extending

• Single-line commands

• Keyword Commands (of the form Display w)

• Function Commands (of the form x = sin(y))

• Multi-line commands

• IF - ELSE - ENDIF

• CASE - ENDCASE

• LOOP - ENDLOOP

• PROCEDURE - ENDPROCEDURE

Micro-syntax
This section describes a few minor but important parts of the syntax of Open GENIE command
language.

Open GENIE Reference Manual Chapter 5

- 196 -

Comments

Comments in Open GENIE may be placed anywhere on a line as long as they are preceded by a
"#". The rest of the line is then treated as a comment and ignored. There is no mechanism for
commenting out multiple lines in Open GENIE without putting a "#" at the beginning of each
line, this avoids the risk of commenting out sections of code inadvertently.

Intervals (and Ranges)

Intervals are a means by which groups of indices can be specified within Open GENIE. The most
common usage for intervals is in slicing parts out of arrays and in specifying groups of spectra.
The basic syntax is

j : k [@ m] (for example 1:5@2)

where "j" is an integer start value, "k" is an integer end value and "m" is an optional step value.
An interval such as 1:4 specifies all the numbers between 1 and 4 i.e. 1 2 3 4. If the step value is
used, the interval selects only those numbers which fall in multiples of step from the starting
value, so 2:12@3 will specify the numbers 2 5 8 11. If required, the values specified in an
interval can be variables but it is necessary to surround each variable name in parentheses so
instead of writing start:stop@step it is necessary to write (start):(stop)@(step).

Note that some spectrum manipulation functions in Open GENIE take a "Range" data type which
is either an Integer array or an Interval. The Integer array form is more general than the interval
syntax but the interval syntax is more convenient.

Examples
reads every third spectrum into a multi-dimensional workspace
starting from the first spectrum.
>> maxspec = get("NSP1")
>> a = get(1:(maxspec)@3)
copy selected elements of the array "myarray" to make a new array called "slice"
>> slice = myarray(34:50)
Create a Range in an integer array equivalent to
the interval 4:20@2
>> my_range=Dimensions(9)
>> fill my_range 4 2
>> set/file "myfile.raw"
>> printn get(my_range) = get(4:20@2)
true

Line extending

Open GENIE uses similar rules to FORTRAN in that single line statements are assumed to
terminate at the end of the physical line. Sometimes however, it is useful to be able to extend a
single logical line over several physical lines. In Open GENIE the line extension character is an
"&", it must be used at the end of the line being extended. All white space following the "&" is
ignored. If necessary, strings can also be extended in an unbroken fashion. There is no limit to
the number of continuation lines which may be created in this way.

Conversely, several logically separate single-lines may be placed on one physical line by using
the ";" character as a separator. This is just provided as a convenience which can be used to make
a program more readable.

Open GENIE Reference Manual Chapter 5

- 197 -

Examples
>> long_string = "My very long string is being broken&
in two"
IF a = b; printn "yes, a = b"; ELSE; printn "no, a !=b"; ENDIF

Note that in the first example, any spaces before the start of the following line WILL get
included in the string.

Single-line commands
The term "single-line" refers to a single logical line containing one keyword command or
assignment.

Single-line commands consist of keyword commands and assignments. Any Open GENIE
procedure may be invoked as a keyword command. Any Open GENIE procedure which returns a
result can be invoked either as a keyword command (in which case the value is ignored) or as an
expression using the function syntax.

In some cases it is useful to know in which way a procedure has been invoked

whilst within the procedure, for this the Called_as_function() command can be used.

Keyword commands

Open GENIE keyword commands start off with a keyword followed by a list of parameters and
qualifiers. As a general rule, the keyword specifies the basic command, the qualifiers modify the
action of the command and the parameters supply the values which the command operates on.
An example of a keyword command is
>> Display/Line w1
>>

The Display() command is used to plot a histogram on the graphics screen. The /Line qualifier
modifies the command to do the plot as a polyline rather than a histogram, the parameter w1 is
the workspace being displayed.

Specifying parameters

Parameters are generally specified by the position on the command line which they occupy. For
example, with the Display() command the first parameter is the workspace to be displayed, the
next two are the low and high X limits for the plot and the final two the low and high Y limits.
An example is
>> Display w1 0 100 -35 70
>>

All the parameters except for the workspace are optional and where omitted a default value will
apply. Unfortunately, identifying parameters by position alone is not sufficient. If the Y limits
need specifying but the X limits should be defaulted it is necessary to tell Open GENIE that the
parameters on the line are the Y limits and not X limits. This is done by giving each parameter a
keyword which uniquely identifies it amongst other parameters on the line. The command with
defaulted X values could then be specified
>> Display w1 ymin=-35 ymax=70
>>

Open GENIE Reference Manual Chapter 5

- 198 -

The parameters to a command may be expressions or function invocations themselves so
commands such as
>> Display w1-background 0 xmax/100.0 ymin=Min(w1.y) ymax=Max(w1.y)
>>

or
>> Display sqrt(w1)
>>

are perfectly legal. Occasionally it may be necessary to bracket an expression to make the
meaning obvious.

Anonymous placeholders

Another mechanism to avoid the problem referred to above is to use anonymous placeholders. In
Open GENIE the "_" character is used. The example given above could also be written.
>> Display w1 _ _ -35 70
>>

Although a little less readable it is quicker to type!

Qualifiers

Qualifiers in Open GENIE are defined as switches which in some way modify the action of a
command. Taking the Display() command as an example, the default action is to display a
spectrum as a histogram rather than a line plot. It wouldn’t be sensible to change the name of the
command completely to get a line plot because in all other senses the command is the same.
Qualifiers allow this modification to be achieved in an obvious way. The command to display a
line plot is Display/Line. Further qualifiers may be added to the command to modify the action
further. For example Display/Errors would display the spectrum as a line plot with error bars.
Sometimes a qualifier will require some modification to the parameter list, this is permissible but
qualifiers which require this are mutually exclusive.

Abbreviations

Many keywords can be abbreviated, as long as there exists an acceptable unique abbreviation by
using the Alias() command. The native commands are allocated abbreviations as they are defined
in Open GENIE. This means that in general, user defined commands will have longer
abbreviations than the native commands. Qualifiers may be abbreviated as much as is allowed by
other qualifiers used with the command. Note, it is quite possible to obscure a command by
abbreviating something else to it!

Assignments

Apart from keyword commands there is one other sort of single-line command, the assignment.

<destination-location> = <expression>

Assignments are made using the "=" symbol. The left hand side of an assignment specifies a
destination variable or possibly one element of a compound variable. Any value already in
<destination-location> is replaced by a copy of the value of the expression on the right hand side.

Open GENIE Reference Manual Chapter 5

- 199 -

Expressions

Expressions can be used anywhere a value is required, for example, on the RHS of an assignment
or in the parameter list of a function call. An expression is made up from one or more sub-
expressions built from the parts listed below.

• A literal value. e.g. 5.6 or "Hello".

• A variable, or part of a variable. e.g. TwoTheta or w1.npts.

• A bracketed expression e.g. (x - 7).

• A function invocation e.g. Sin(Pi). See Function commands.

• An unary expression e.g. -value or NOT logAxes. The unary operators are " - + NOT"
and are evaluated before any binary operators.

• A binary expression e.g. 4.5 + 8.0 or 5 <= 6. The binary operators are given below, the
operators with the highest precedence first. Where two operators with the same
precedence are used at the same bracketing level in an expression the leftmost sub-
expression will be evaluated first.

^
AND * / |
OR + -
&
> < = >= <= !=

For details of how these operators are interpreted for different Open GENIE variable
types and combinations of types (see Storage).

Function commands

The Open GENIE function syntax provides a method for calling Open GENIE procedures as
functions. The function/procedure result can then be assigned to a variable. Commands which
return a value can be used interchangeably as statements or as value returning functions in an
expression. For example
>> integral = Integrate(W1, 100.0, 200.0)
>>

or
>> Integrate w1 100.0 200.0
>>

are both valid single-line commands.

When the Integrate() command is used here as a function, the assignment places the result of the
integration in the user defined variable "integral". When used with the keyword syntax, the result
of the integration is lost.

Open GENIE Reference Manual Chapter 5

- 200 -

Specifying parameters

The parameters to an Open GENIE command invoked as a function are supplied in a similar
format to that used in the keyword command syntax. Default values for parameters will be
supplied if the parameter is omitted. Parameter names may also be used as in a keyword
command if desired. For example
>> V6 = Integrate(w1, High=200.0)
>>

An important point to note is that Open GENIE commands being invoked as functions must
always specify a parameter list, even if it is empty e.g. " look_no_parameters()". This allows
Open GENIE to distinguish between function commands and ordinary variables.

Qualifiers

Qualifiers may be specified in the functional notation by placing a colon separated list of
qualifiers after the function name and before the parentheses delimiting the parameter list. For
example,
>> W2 = Asciifile:Open("My_ascii_file.txt")
>>

Here the equivalent keyword command would be Asciifile/Open but there would be no way to
return the workspace without the assignment.

Abbreviations

Abbreviations are allowed in function commands as with keyword commands and the same rules
apply.

Multi-line commands
These statements provide all the program flow control in Open GENIE. The keywords beginning
the constructs may not be abbreviated and must be written in uppercase to distinguish them from
ordinary commands. Open GENIE procedures should avoid names which clash with these
keywords.

IF statement

The IF statement provides for a choice between two actions. A boolean condition is tested and
the clause following the IF is executed if the condition is true. If the condition is false the clause
following the ELSE statement is executed. In the absence of the ELSE part, no action is taken on
a false condition.
 IF <Condition1>
 <Statement1>
 [ELSEIF <Condition2>
 <Statement2>]
 [ELSE
 <Statement3>]
 ENDIF

In the example <Condition1> and <Condition2> are expressions evaluating to true or false. If
<Condition1> evaluates to true <Statement1> is executed. If <Condition1> and
<Condition2> are false then <Statement3> is executed. <Statement1> and <Statement2> may

Open GENIE Reference Manual Chapter 5

- 201 -

consist of several Single-line or Multi-line Open GENIE commands. In multiply nested IF
statements, one ENDIF is required for each opening IF statement.

Examples
Initialise and zero an array that may or may not exist yet.
IF NOT Defined(A4)
 A4 = Dimensions(1000) # Create a 1000 element long array
 Fill A4 0.0 # initialises each element to 0.0
ELSE
 A4=A4*0.0 # Shorthand way of zeroing array
ENDIF
Multi line commands can be reduced to a
single physical line by using semicolons
IF a >= 0; Printn "a=" sqrt(a); ELSE; Printn "complex"; ENDIF

CASE statement

The CASE statement allows a selection of alternative actions to be specified depending on the
value of an expression. This is similar in operation to the FORTRAN computed GOTO
statement.
 CASE <expression>
 IS <value1> [TO <Range1>]
 <Statement1>
 ...
 IS <valueN> [TO <RangeN>]
 <StatementN>
 OTHERWISE
 <StatementN+1>
 ENDCASE

The expression after the CASE statement is evaluated and then compared with the expression or
optional range after each IS statement. The statement after the first matching IS statement is
executed and all others are ignored. If no values or ranges match, the statement following the
OTHERWISE statement is executed. In the absence of an OTHERWISE statement no action is
taken.

Examples
#CASE My_mode() # User heck for batch mode operation
 IS "BATCH"
 Hardcopy devtype="PS" # Save postscript plots if in batch
 IS "INTERACTIVE"
 Device/Open devtype="XW" # X-windows if interactive
 OTHERWISE
 Printn "Invalid mode - No plot device open"
ENDCASE
CASE energy # a real number
 IS 0.0
 Printn "No data" # energy = 0.0
 IS 0.0 TO 500.0
 Myplot/positive # 0.0 < energy <= 500.0
 IS -500.0 TO 0.0
 Myplot/negative # -500 <= energy < 0.0
 OTHERWISE
 Printn "Energy out of range"
ENDCASE

LOOP statement

The LOOP statement provides a means of controlled loop execution in an Open GENIE
program. The LOOP statement provides for conditional and/or counted loops.
 LOOP [<variable> FROM <Start> TO <End> [STEP <Step-size>]]

Open GENIE Reference Manual Chapter 5

- 202 -

 <Statements>
 [EXITIF <Condition>]
 <Statements>
 ENDLOOP

Statements in the loop are executed until <condition> after the EXITIF statement becomes true,
or until the optional counting variable has reached or exceeded the final value. If the loop has
neither a counter nor an EXITIF statement it will continue to loop indefinitely.

Only one EXITIF statement may be directly contained in any loop. It must not be used inside any
other form of control construct within the loop (doing this will generate a syntax error). In the
case of nested loops, the exit is to the end of the loop directly containing the EXITIF statement.

For counted loops, the values of <start> and <end> can be real or integer values and they may
be positive or negative. Any sensible combination of start and end values will work as long as
<step> has the correct sign to progress the counter to (or past) the end value. If it does not, the
loop is guaranteed not to execute any statements. If the STEP part is omitted the step interval
defaults to one.

The counter for the loop does NOT need to be declared anywhere else. It only has a valid value
within the body of the loop and will shadow the value of any other variable of the same name for
the duration of the loop.

Examples
print some squares
LOOP i FROM 1 TO 10 STEP 1
 Print i^2 " " # print squares
 IF i = 10; Printn; ENDIF # print a newline
ENDLOOP
something a little more complicated
cubic=0; square=0; y=0
LOOP i FROM -10.0 TO 10.0 STEP 0.01
 y = i
 cubic = y^3 - 5
 square = y^2
 EXITIF cubic > square # stop at +ve intersection
ENDLOOP
Printn "cubic=" cubic ", square=" square " for y=" y
Dimension an array of strings
position = 0
sr = Dimensions(10)
sr[8] = "Find me" # and hide a string in it
sr[5] = "Decoy"
LOOP i FROM 1 TO Length(sr)
 position = i
 EXITIF sr[i] = "Find me"
ENDLOOP
Printn "Found at position " position

PROCEDURE statement

The PROCEDURE statement provides a method for writing Open GENIE programs. Most of
Open GENIE is built using procedures which are loaded each time it is run, usually this is
transparent to the user. By writing procedures it is possible to customise Open GENIE for a
specific task or for a specific group of data manipulation and display operations.
 [FORWARD <name>]

 PROCEDURE <name>
 [QUALIFIERS /<Qname1> /<Qname2> ... /<QnameN>]
 [PARAMETERS <parname1>=<partype1> ...]

Open GENIE Reference Manual Chapter 5

- 203 -

 [RESULT <resname>=<default-value>]

 [GLOBAL <gloabalvar1> [= <initial-value>] ...]
 [LOCAL <localvar1> [= <initial-value>] ...]

 <Statements>
 [RETURN]

 ENDPROCEDURE

The PROCEDURE statement defines a command to be known to the whole of Open GENIE.
Once defined, the procedure may be invoked at the " >>" prompt using either the keyword or
function syntax (see Single-line commands). This section describes the individual parts of a
procedure definition as shown above.

Occasionally it is necessary to use a procedure before it can be defined, this is likely if any
routines use recursion, or when groups of commands stored in multiple GCL command files are
interdependent. In this circumstance, a procedure can be forward declared with the FORWARD
statement, generally this will not be needed if files are loaded so that procedures are declared
before they are used.

<Statements> consists of any number of single-line or multi-line Open GENIE commands just
as would be typed at the terminal in an interactive session. An optional RETURN statement can
also be used to allow the procedure to return to the calling procedure before control reaches the
ENDPROCEDURE line.

The major difference from typing commands interactively is that all variables used in the
procedure must be defined before they can be used, this is the purpose of the five optional
declaration statements at the start of each procedure.

These declarations are used in two groups QPR (QUALIFIERS, PARAMETERS and RESULT)
and GL (GLOBAL and LOCAL). Within these groups the order of the declarations is
unimportant and all (except for the RESULT declaration --- for obvious reasons) can be used as
often as necessary. A valid set of declarations could be ordered RQQPPPLLGLG. The only
major restriction is that all members of the QPR group must come before any of the GL group, if
not, a syntax error will result. The format and purpose of the individual declarations is given
below.

• QUALIFIERS /<Qname> ...

The QUALIFIERS statement declares any qualifiers that the procedure should respond
to. In the procedure, qualifiers can be accessed by treating them as variables with a truth
value i.e. true if the qualifier was specified on the command line, false otherwise.
Qualifier variables can be tested with IF statements.

Examples
Line /Markers

rs
Without markers"

• PARAMETERS <Parname>=<Partype> ...

This PARAMETERS statement declares all the parameters which can be passed to the

Open GENIE Reference Manual Chapter 5

- 204 -

procedure. <Parname> specifies the name by which the parameter will be known within
the procedure and also the name by which it can be specified explicitly on the command
line. <Partype> specifies the type of the parameter expected by the procedure. Valid
types are "Real", "Integer", "String", "Workspace" and arrays of these "RealArray",
"IntegerArray", "StringArray", "WorkspaceArray". If the type fails to match the actual
parameter given by the user of the procedure an error message will be generated. Within
the procedure, the parameter can be used just like a normal variable. For the simple types
(Real, Integer and String), the variable in the procedure is just a copy of the original
parameter and cannot be passed back. For all types of arrays and workspaces however,
the procedure may modify the contents of the parameters passed to it.

Examples
ata hacking
x_results
ad_point=Integer yarray=RealArray
bad point
ad_point] = 0.0

l to this procedure could be
ts bad_point=100 yarray=MyThesisData

• RESULT <Resname> [= <default-value>]

The RESULT statement declares a special variable which will be returned at the end of
the procedure as a function result. This result variable may be used normally during
procedure execution and assigned any value. An optional default value can be specified
such that the procedure will return this as the result even if the variable is never assigned
another value. Any procedure which is to be called using the function syntax should
return a result. Any procedure called using the function syntax but which does not
contain a RESULT statement will return the value "Undefined."

Examples
the standard functions with a new procedure
nD # sind(x) for angle 0 <= x <= 360
=real
999.0 # Sentinel silly value
 # Global (defined elsewhere)

x) AND (x <= 360.0)
n(x * (2.0*$PI/360.0))

• LOCAL <Localvar> [= <initial-value>] ...

• GLOBAL <Globalvar> [= <initial-value>] ...

The LOCAL and GLOBAL statements declare variables for use in the procedure.

Local variables are only accessible within the procedure, they are created on entry to the
procedure and deleted on exit. If the procedure is called recursively, a new set of
variables is created for each level of recursion.

Global variables may be shared with other procedures which have declared global
variables of the same name. Unlike local variables, global variables last as long as the

Open GENIE Reference Manual Chapter 5

- 205 -

Open GENIE session. There is only ever one global variable corresponding to one name
(This is in contrast to local variables where there may be several different variables under
the same name in different procedures).

Both global and local variables may be initialised with a value. For local variables, this
will be reset each time the declaring procedure is entered. For global variables, this will
be set only when the first procedure giving an initial value is loaded. The initial value is
only assigned if the global variable does not already exist.

All variables created interactively are global variables.

Examples
bal & local variables
stG
hing = 45.0 anything = 50.0
ng = 90.0

hing " " anything

1

.000000

sion 2
= 88.0 # Override the GLOBAL
= 22.0 # a new global variable

.000000

Open GENIE Reference Manual Chapter 5

- 206 -

Open GENIE Reference Manual Chapter 6

- 207 -

Chapter 6

Storage
Although not a very explanatory title "Storage" is probably the best umbrella term to describe the
ways and forms in which Open GENIE holds the data which it manipulates. This chapter gives
an overview of the way in which variables are held in GENIE, some of the conventions used,
and a detailed list of the variable types available and intrinsic operations which can be applied to
them. The standard Open GENIE variable types are:

Real
Integer
String
Workspace
Arrays of the above types.

The variable pool
Each Open GENIE session can be viewed as having a pool of global variables associated with it.
Every variable in the pool can be referred to by name. This allows the values of variables to be
used or changed. When using Open GENIE interactively, assigning a value to an unused variable
name will create a new variable and add that variable to the pool automatically. Variables can
also be added to the pool from procedures by using the GLOBAL statement (local variables,
parameters and qualifiers in procedures are slightly different in that they belong in a local pool
for that procedure, just while it is running). The lifetime of a global variable - that is the time for
which it retains its value and is accessible - is the entire Open GENIE session. By default, all
variables created during a session will be lost when Exit() is typed.

This "variable pool" which forms the basis of Open GENIE is also used to store procedures,
some of which are defined by the user and others which are predefined by Open GENIE during
start-up. It is possible to see what variables are defined and the values they hold by using the
Show/Var command. The Show/Proc command will list currently defined procedures. Normally,
memory reclamation is looked after by the Open GENIE system but in circumstances where
memory is short it is possible to explicitly free up the storage and remove a variable with the
Free() command.

It is possible to preserve all the variables from one Open GENIE session to another. This is done
using the Save() command to take a snapshot of all the variables and procedures currently

Open GENIE Reference Manual Chapter 6

- 208 -

available in the session. The session can then be restarted by specifying the saved image when
restarting Open GENIE.

Conventions
There are a few conventions which are used in Open GENIE to distinguish different uses for
variables and procedures. Some of these conventions are optional, others are not. It is
recommended that these conventions are kept, especially when writing procedures.

Naming system procedures and variables

All procedure and variable names beginning with an underscore ("_") are reserved for use by
Open GENIE and may change or be removed at any time. The exception to the rule is "_" itself
which is the "undefined" value and can be used freely. By using the Show/Proc/Sys and
Show/Var/Sys commands, all system variables or procedures will be shown along with the
normal procedures and variables.

It is important to be very careful about using anything beginning with an underscore in a
procedure. There is no guarantee that system variables and procedures will remain the
same or even continue to exist in later versions of Open GENIE.

Constants

Constants in Open GENIE are variables whose names begin with the "$" symbol. As such they
are defined using the same methods as normal variables, the only difference is that a constant
variable can only have a value assigned to it once. Usually this would be done when the variable
is first created, for example by using an initial value in the declaration. Subsequent attempts to
change the value of a constant will fail. System constants begin "$_" and should be avoided.
They should not be confused with ordinary constants defined by the system for general use, for
example " $sea_green". Constants like this may be used when required and are guaranteed to be
supported. All available constants can be viewed using the Show/Const command.

Case sensitivity

Open GENIE is largely insensitive to the case of commands. In true FORTRAN fashion it is
possible to hit the case lock and type everything in upper case however it does make procedures
harder to read if this is done. Keywords however must be in upper case, (e.g. LOOP,
PROCEDURE) to ensure that they can be distinguished from user variables.

The recommended approach is use lower case for everything except control constructs (see
Multi-line commands). For the pedantic, all references to procedures and their qualifiers should
be capitalised (i.e. Capital first letter and the rest lowercase). Where a procedure or variable
name consists of several words, the first letter in each word should be capitalised or an
underscore should be used to separate the words (e.g. MyProcedure or My_procedure). The
examples in this manual are kept as close to these conventions as possible.

Variable types
The following section describes the basic variable types available in Open GENIE. They fall into

Open GENIE Reference Manual Chapter 6

- 209 -

two groups, simple types which for most purposes can be treated as atomic, and compound types
which consist of groupings of other variables.

The simple types are Real numbers, Integers and Strings and the compound types are Arrays and
Workspaces. In this section, each type is described in some detail with a list of the intrinsic
operations applicable to variables of that type.

Real

Real numbers are always floating point double precision values. The normal floating point
operations are provided.

• x ^ y
Raise to a power (xy).

• + - * /
Add, subtract, multiply and divide.

• > = <= >= !=

Comparisons; Less than, Greater than, Equal to, Less than or equal to, Greater than or
equal to and Not equal to. The equality tests are exact and so should be used with care for
real numbers.

• Sin(x), Cos(x), Tan(x), Arcsin(x), Arccos(x), Arctan(x)
Trig functions sinx,cosx,tanx,arcsinx,arcosx,arctanx (see Mathematical Functions).

• Log(x), Ln(x), Exp(x)
Transcendental functions. Log10x, logex, ex (see Mathematical Functions).

Real values can be specified literally as a number with a decimal point or in scientific notation.
Some examples of valid real numbers are given below.
233.0 +0.5 -.01 33. 1.6e-19

In an expression combining integers and real numbers, real numbers are considered to be the
more general type and the result is given as a real after implicitly converting any integer values to
corresponding real values. The conversion is carried out at the point when a real number and an
integer are directly combined by an operator. For example,
>> Printn 5/2 * 5.0
10.000000

is evaluated differently to
>> Printn 5/2.0 * 5
12.500000

because the conversion to real numbers is delayed in the first expression.

Using this implicit conversion, integers may be explicitly converted to real numbers by
multiplying by 1.0. This is useful when a using a command or procedure which insists on real
numbers as parameters.

Open GENIE Reference Manual Chapter 6

- 210 -

Integer

Integers are used in GENIE mainly for counting and specifying quantities. Array indices also
have to be integer values. The normal integer operations are provided.

• x ^ y
Raise to a power (xy). The power need not be an integer but the result will be.

• + - * / |
Add, subtract, multiply, quotient and remainder (modulo). The quotient and remainder
operators use the convention of truncating towards zero where negative numbers are
involved.

• < > = <= >= !=
Comparisons; Less than, Greater than, Equal to, Less than or equal to, Greater than or
equal to and Not equal to.

• All trigonometric and transcendental functions as for real numbers. The results of these
are given as real numbers.

Integer values can be specified literally in decimal, hexadecimal, octal and binary. Some
examples of valid integers are given below.
23 -1987 -0xBBC2 0o444 0b1011010100101010 +1

To convert a real number to an integer use the As_integer() function.

The default is to truncate an integer towards zero.

String

Open GENIE strings are of variable length and may be combined and assigned just like the other
types of Open GENIE variables. The normal string operations are provided.

• + or &
Concatenate two strings

• < > = <= >= !=
Comparisons; Less than, Greater than, Equal to, Less than or equal to, Greater than or
equal to and Not equal to. These have a dual functionality. For strings of the same length,
comparisons act as a test based on the collating order of the text in the strings. For strings
of different lengths, comparisons are between the string lengths.

• Substring(), Locate(), Length() (see String Handling Functions).
The location of sub-strings within a string and the extraction of parts of the string can be
carried out using these functions.

Literal strings are always specified within double quotes """ to avoid any conflict with variable
names. The "\" character is a special character when used in a string. It introduces control
sequences which could not otherwise be easily typed into a string. The sequences are listed
below.

Open GENIE Reference Manual Chapter 6

- 211 -

• \\
Put a single "\" into a string.

• \n \t \f \v \r
Put a newline, tab, form-feed, vertical tab or carriage-return into a string (respectively)..

• \"
Put a double quote (") into a string.

• \0nn
An octal byte value, must start with a zero.

• \Xnn
An hexadecimal byte value, must start with "x" or "X."

• \nnn
A decimal byte value, must not start with a zero (or it will be taken as an octal value)

Some examples of valid strings are given below.
"Hello world\n" # line with a newline
"column1\tcolumn2\tcolumn3" # tabs for a table
"Tinker\7 Bell" # Bell character in decimal
escape = "\x1B" # <ESC>
reset = escape + "c" # ANSI device reset string
"" # Null string

Most Open GENIE variable types can be converted to a string of some sort using the As_String()
function. Used in combination with Printn() it allows numbers to be formatted into strings ready
for later printing.

Examples
 # 1. Formatting an array
 PROCEDURE PrintArray
 PARAMETERS Array_to_print=Realarray
 LOCAL buffer

 buffer = ""
 LOOP i FROM 1 TO Length(Array_to_print)
 buffer = buffer + "\t" + As_string(Array_to_print[i])
 IF Length(buffer) >= 70
 Printn "--" buffer
 buffer = ""
 ENDIF
 ENDLOOP
 Printn "--" buffer

 ENDPROCEDURE
 # 2. String concatenation with a number
 >> a = as_string(3.0)
 >> a = "*twiddly bits -> " + a + " <- twiddly bits*"
 >> Printn a
 twiddly bits -> 3.0 <- twiddly bits

Arrays

In Open GENIE there are four array types. They provide for n-dimensional arrays of each of the
four the basic variable types. Arrays may be manipulated as a whole or, alternatively, individual
elements may be accessed and modified separately. The four array types are:

Open GENIE Reference Manual Chapter 6

- 212 -

• RealArray

• IntegerArray

• StringArray

• WorkspaceArray

An array is created in two stages, firstly by creating an empty array of the appropriate size and
dimensionality using the Dimensions() function and secondly by assigning a value to one of its
elements. It is only when an element is assigned a value that the final type of the array is chosen.
From this point on the type of the array is fixed.

Examples
Create a RealArray
>> two_d_data = Dimensions(100,200) # created in 2-dimensions
>> two_d_data[1,1] = 5.0 # type is set here to real
>> Printn two_d_data
[5.0 _ _ _ _ ...] Array(100 200)

In the example above the Printn() command is used to show the first few elements of the newly
created array. Notice that all elements which have not had a value assigned to them are marked
as "_". If these are used in a calculation, the undefined value will propagate such that the result
of any operation involving an undefined value will also become undefined itself.

The same array operations apply to all Open GENIE array types, any differences in effect are as
a result of differences in the types of the array elements. For example, string arrays cannot be
multiplied!

• Array[i, j, k, ...] (Indexing)
Individual array elements are accessed using integer indices. All indices start at one and
can be as large as there is memory available for them. Whenever an element is being
accessed the appropriate indices must be specified after the array name in a comma
separated list between square brackets.

• Array[l1:o1, l2:o2, ...] (Slicing)
This operation produces a smaller array by "slicing" up a larger array. The smaller array
retains the dimensionality of the larger array as long as each dimension is given a slicing
interval (i.e. lower:higher). Note that if one dimension is fixed, the dimensionality of the
sliced array is effectively reduced by one.

• + - (Unary operations)
The unary operators are applied individually to each element of the array. The results are
placed into a new array of the same size and dimensionality as the old array.

• + - * / | ^ (Binary)
The Binary operators are applied to corresponding elements of the two arrays, if the
arrays differ in dimensionality, the corresponding elements are selected using storage
order (all arrays are stored in row-major order as a contiguous block). The result of the
operation is to create a new array of identical structure to the array on the left hand side
of the operator. There are three cases which this gives rise to:

Open GENIE Reference Manual Chapter 6

- 213 -

1. The arrays are of equal length.
All pairs of elements are processed and a result is stored in the result array.

2. The LHS array is longer.
The extra elements are set to the undefined value "_" in the result array.

3. The LHS array is shorter.
The result array is truncated to the length of the LHS array.

The result of this is that by specifying the order differently (for commutative
operators) it is possible for the user to define whether to truncate or fill the result
array with undefined values.

• < > <= >= = !=
Comparisons for arrays, respectively: Shorter than, Longer than, Shorter than or equal to,
Longer than or equal to, Elements and length are identical, Elements and/or length differ.
All length tests are carried out on the array as stored ignoring dimensionality. Exact
equivalence "=" and "!= " also test all corresponding elements for equality.

• &
Appends the RHS array to the end of the LHS array, for this operation both arrays must
be of the same type or an error is generated.

• All trigonometric and transcendental functions are treated in the same way as unary
operators

• Length() (See Array Handling Functions)
Returns the length of the array as stored (the figure returned will be the product of the
dimensions for a multidimensional array).

When arrays are used in algebraic expressions, several implicit type conversions can occur. The
aim of these is to allow simple and expressions to express relatively complex concepts. The rules
work in a similar way to those already explained when mixing integers and real numbers in an
expression and are largely intuitive. For example, given an array of type RealArray called
y_values the whole array may be multiplied by a constant.
>> y_values = y_values * 2

The implicit conversion here is to make the integer constant "2" into a RealArray of elements
value 2.0. At this point a standard array multiplication can be carried out to find the result. There
are a large number of implicit conversion in Open GENIE (See Implicit Data Conversions).

Workspace

A workspace is a compound variable where individual elements of the variable may be of
different types (in contrast to arrays which are all of one type). Examples of similar structures in
other languages are a record in Pascal or a struct in ‘C.’

Open GENIE workspaces are made up of fields consisting of variables of any of the Open
GENIE data types, these fields may be created dynamically while a session is running. This
means that during the process of analysing data, new information can be added into the

Open GENIE Reference Manual Chapter 6

- 214 -

description of a workspace without necessarily needing to know what type the new data will be
beforehand. The following example shows the of the construction of a simple workspace
interactively.
create a brand new workspace
>> mywork = fields() # creates an empty workspace
>> Printn mywork # look at it now
Workspace []
(
)
>>
Now put some fields in it
>> mywork.description = "My test workspace"
>> mywork.some_value = 3.14159
>> mywork.anarray = dimensions(2,3)
>> mywork.anarray[1,1] = 25
>> Printn mywork # now look again
Workspace []
(
 some_value = 3.14159
 anarray = [25 _ _ _ _ ...] Array(2 3)
 description = "My test workspace"
)
>>

Open GENIE workspaces are unlike other types of variable in that the operations on them may
be re-defined and/or extended by the user. To make the process easier, a set of template
operations are defined which work in a manner similar to the way the original GENIE-V2
program operated on its workspaces (see Workspace Operations). The symbolic operators (+ * /
etc.) map onto calls to generic Open GENIE procedures which implement the operations. The
mapping of symbols to procedures is given in the list of operations shown below.

The basic Open GENIE Workspace operations are listed below.

• workspace.field-name (Field accessing)
Any field in a workspace may have its value set or read by using the name of the
workspace followed by a "." and a field name. A field is automatically created in a
workspace when a value is assigned to it (as shown in the previous example). Once
created, a field retains its value until the workspace is destroyed or the Open GENIE
session ends.

• + - (Unary)
Calls Workspace_negated() (The unary operation "+" is a no-op).

• + - * / | ^ (Binary)
These respectively call Workspace_add(), Workspace_subtract(), Workspace_multiply(),
Workspace_divide(), Workspace_modulo(), Workspace_raised_to()

• < > <= >= = !=
These respectively call Workspace_less_than(), Workspace_greater_than(),
Workspace_less_than_or_equal(), Workspace_greater_than_or_equal(),
Workspace_equal(), Workspace_not_equal()

• &
Calls Workspace_append()

Open GENIE Reference Manual Chapter 6

- 215 -

• All the trigonometric and transcendental functions are defined generically and call
workspace specific functions Workspace_sin(), Workspace_cos(), Workspace_tan(),
Workspace_arcsin(), Workspace_arccos(), Workspace_arctan(), Workspace_ln(),
Workspace_exp(), Workspace_log(), Workspace_sqrt(), Workspace_abs()

• Length()
This generic function returns the number of fields in the workspace.

Automatic conversions (see Implicit Data Conversions) apply to operations combining
workspaces with other Open GENIE numeric types. It is important to note however, that this will
follow whatever is defined in the Workspace_coerce() function which can be re-defined by the
user.

The default action on a workspace (i.e. defined by the template routines) is to perform the
operation on the array of y values contained within it. Consequently, if a workspace is not of the
default GENIE-V2 structure, arithmetic routines as defined by the templates will not be
applicable.

Open GENIE Reference Manual Chapter 6

- 216 -

Open GENIE Reference Manual Chapter 7

- 217 -

Chapter 7

Array and Workspace Handling
Functions

This section describes the basic utility functions for creating and using Open GENIE workspaces
and arrays. For detailed information on the data analysis based use of workspaces see the section
on Workspace Operations. Most arithmetic functions on arrays are described in the section on
Mathematical Functions and are simply generalisations of the scalar functions.

The functions documented in this section are listed below.

Array functions Description

Bracket Finds the index position of a given value in an array.

Centre_bins Centre the bins of a real array.

Cut Takes a one-D cut out of a two-D array

Dimensionality Return an integer giving the dimensionality of the array

Dimensions Create and size an Open GENIE array

Fill Fill an array with values

Fix Fix any undefined values in an array

Max Find the maximum value in an array

Min Find the minimum value in an array

Redim Re-dimensions an array whilst keeping the size and contents identical

Sum Sums all the elements in an array

Unfix Replace sentinel values with "undefined"

Workspace

Open GENIE Reference Manual Chapter 7

- 218 -

functions

Fields Create a workspace

See also the generic Length() command (documented in String Operations) for getting the
number of fields in a workspace or the total length of an array.

Open GENIE Reference Manual Chapter 7

- 219 -

$UUD\�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 7

- 220 -

Bracket()
Finds the lower index position of a given value in an array.

BRACKET xarray=Realarray
xval=Real

Allows bracketing of X values.

example:
Rebin data to a smaller range manually
>> lower = bracket(w.x, 1000.0)
>> upper = bracket(w.x, 4000.0)
>> w.x = w.x[(lower):(upper)]
>> w.y = w.y[(lower):(upper-1)]
>> w.e = w.e[(lower):(upper-1)]

Note: Normally this would be done with the Rebin() command.

Bracket
This command is effectively used to "find" the location or nearest location to a number n in a
real array, where the assumption for all i x[i] <= x[i+1] holds true for an array x (the X values
of a histogram). When this is so return i such that x[i] <= n <= x[i+1].

This command is used when it is necessary to bracket out a section of a histogram based on the
actual X values.

Parameters:

Xarray (Realarray)

An array which fulfils the assumption above.

Xval (Real)

The value being searched for.

RESULT = (Integer)

This is either the index of the first element with the value "xval" or the index of
the element such that "xval" would be included within the open interval (x[i],
x[i+1]) where i is the returned index.

If the range where the value would be found is not present in the array then a
value of -1 is returned.

Open GENIE Reference Manual Chapter 7

- 221 -

Centre_bins()
Centre the bins of a real array (i.e. convert from histogram to point mode).

CENTRE_BINS array=Array Centre the bins of a real array (i.e. convert
from histogram to point mode).

example:
Do a rough conversion from a histogram workspace to
to a new point mode workspace
point_mode = my_work
point_mode.x = centre_bins(my_work.x)

convert an array to point mode
centre_bins my_array

Centre_bins
The Centre_bins() command is useful for converting histogram data to point mode data. Used on
the X-array of a workspace, it will reduce the total number of X points by one and the X values
left will be those of the centre of each bin.

Parameters:

Array (Array)

Any valid Open GENIE array type

RESULT = (Array)

Returns the centered array

Open GENIE Reference Manual Chapter 7

- 222 -

Cut()
Takes a one-D cut out of a two-D array

CUT array=Realarray dimension=Integer
index=Real

Takes a slice out of an array.

example:
Take a cuts at 1 and 1.5 along the 2nd dimension
printn y
>> y = Dimensions(2,3)
>> fill y 1.0 1.0
>> printn cut(y, 1, 1.0)
[1.0 2.0 3.0] Array(3)
>> printn cut(y, 1, 1.5)
[2.5 3.5 4.5] Array(3)

Note: Returns a one-D array of one element if a one-D array is supplied.

Cut
The Cut() command takes a one dimensional slice out of a two dimensional array (useful in two
dimensional graphics applications where a one dimensional plot is required along one axis).
Depending on which dimension is chosen from the source array, the length of the resulting array
is the length of the orthogonal dimension. The cut is taken at an index value along the dimension
selected and the values of the resulting slice are linearly interpolated for this position of the index
value.

Parameters:

Array (Realarray)

The array to be cut

Dimension (Integer)

Specifies the dimension along which the index position of the slice is specified.

RESULT = (Realarray)

The values along the orthogonal dimension, interpreted if necessary for a non-
integer index value.

Open GENIE Reference Manual Chapter 7

- 223 -

Dimensionality()
Return an integer giving the dimensionality of the array

DIMENSIONALITY [array=Array] Returns the number of dimensions

example:
create an array and print its dimensionality
>> a = dimensions(2,3,4)
>> printn dimensionality(a)
3

Dimensionality
Returns the dimensionality of an array.

Parameters:

Array (Array)

The array to test the dimensionality of.

RESULT = (Integer)

Number of dimensions

Open GENIE Reference Manual Chapter 7

- 224 -

Dimensions()
Create and size an Open GENIE array

DIMENSIONS() dim1=Integer [dim2=Integer] ...
[dim10=Integer]

Create an empty array

example:
Dimension a 1 x 2 x 3 array
>> a = dimensions(1, 2, 3)
>> printn is_a(a, "Realarray")
$FALSE
>> a[1,2,1] = 4.0
>> printn is_a(a, "Realarray")
$TRUE
>> printn a
[_ _ _ 4.0 _ ...] Array(1 2 3)

Note: Arrays print as if they are one dimensional (in row major order).

Dimensions
The dimensions command is used for creating arrays of a specified length and dimensionality.
The number of "dim" parameters specified gives the dimensionality and the values give the
length of each dimension. In Open GENIE arrays always start at 1.

Until a value has been assigned to one element of the array, the array has no fixed type and it
will take on the type of the first value assigned to one of its elements. After this, trying to assign
a different type will create an error as arrays may only contain variables of one type. Elements in
an array that are undefined are shown as an "_" character. Undefined values in arrays can be
changed to fixed values using the Fix() command.

Parameters:

Dim1, ..., Dim10 (Integer)

Sizes of each array dimension.

RESULT = (Array)

An array of the correct size and dimensionality but with an as yet undecided type.

Open GENIE Reference Manual Chapter 7

- 225 -

Fill()
Fill an array with values

FILL value=Any [step=Number] Fill and array with values

[/GEOMETRIC] Fill array geometrically

example:
Create some geometric data
>> a = dimensions(200)
>> Fill/Geometric a 1.0 0.9
>> printn a
[1.0 0.9 0.81 0.729 0.6561 ...] Array(200)

Note: step values only work with integer and real arrays.

Fill
The Fill() command provides a quick way of filling up an array with data. For non-numeric data,
it is just a way of filling the array with identical values. For numeric data, it is also a quick way
of putting some useful data in an array, for example, an arithmetic fill is ideal for generating an
axis to plot an array of data against. In the same mode, a geometric fill creates automatic log data
to plot against.

Parameters:

/Geometric

Increase the values placed into the array geometrically based on the starting value
and the step

Value (Any)

The value to fill the array with, or, if "step" is used, this is the starting value of the
series and appears in the first element of the array.

Step (Number)

Sets a step size (or rate if /Geometric) is specified.

RESULT = (Array)

The filled array can also be returned as a result. In this case, the original array
remains unmodified.

Open GENIE Reference Manual Chapter 7

- 226 -

Fix()
Fix any undefined values in an array

FIX array=Array value=Any (except Array) Replaces any instances of
"undefined" in an array.

example:
Fix undefined results to 999
>> fill a -4.0 1.0
>> printn 10/a
[-2.5 -3.33333333333333 -5.0 -10.0 _ ...] Array(6)
>> fix a 999.0
>> printn a
[-2.5 -3.33333333333333 -5.0 -10.0 999.0 ...] Array(6)

Note: See Unfix() for replacing sentinel values with "_" on data import.

Fix
Open GENIE caters for situations where an element of an array has an undefined value. This
value is correctly propagated through all internal operations but can cause problems, especially
when exporting data. To get round this problem, the Fix() command is used to replace any
instances of an undefined value in an array with a specific sentinel value.

To go the other way, for example with imported data which, say, has undefined values
represented by a specific number, the Unfix() command can be used.

Parameters:

Array (Array)

The array containing one or more undefined values to be fixed.

Value (Any except an array)

A value of the same type as the array with which to replace any undefined values.

RESULT = (Array)

An array of the same type as the original but with all undefined values replaced
with a sentinel value of the correct type.

Open GENIE Reference Manual Chapter 7

- 227 -

Max()
Find the maximum value in an array

MAX() array=Array Find the value of the highest element

example:
Find the index of the highest data value
>> print Bracket(w.y, Max(w.y))
12456

Max
The Max() function returns the value of the largest element of the array it is applied to. The size
of an element is determined by comparing elements with each other using the "<" and "<
"operators. As a result string arrays may also have a maximum value.

In arrays where there are undefined elements, the maximum value returned is the value of the
largest defined element. For correctness, the array should have all undefined elements "fixed"
explicitly to a defined value first. This can be done using the Fix() command.

Parameters:

Array (Array)

Array to be tested.

RESULT = (Array element type)

The maximum value found in the array.

Open GENIE Reference Manual Chapter 7

- 228 -

Min()
Find the minimum value in an array

MIN() array=Array Find the value of the lowest element

example:
Find the index of the lowest data value
>> print Bracket(w.y, Min(w.y))
245

Min
The Min() function returns the value of the smallest element of the array it is applied to. The size
of an element is determined by comparing elements with each other using the "<" and "<
"operators. As a result string arrays may also have a minimum value.

In arrays where there are undefined elements, the minimum value returned is the value of the
smallest defined element. For correctness, the array should have all undefined elements "fixed"
explicitly to a defined value first. This can be done using the Fix() command.

Parameters:

Array (Array)

Array to be tested.

RESULT = (Array element type)

The minimum value found in the array.

Open GENIE Reference Manual Chapter 7

- 229 -

Redim()
Re-dimensions an array whilst keeping the size and contents identical

REDIM [array=Array] i=Integer [j=Integer]
[k=Integer][l=Integer]

Re-dimensions an array whilst
keeping the contents identical

example:
>> printn a
[1.0 2.0 3.0 4.0 5.0 ...] Array[400] Array(1)
>> printn redim(a,20,10,2)
[1.0 2.0 3.0 4.0 5.0 ...] Array[20 10 2] Array(3)
>> printn a[1,2,1]
3.0

Note: Redim will return an error if an attempt is made to change the total size of the array

Redim
The Redim() command is used to re-dimension an array whilst keeping the contents and overall
size of the array the same. Arrays in GCL are stored in row major order so that the fastest
varying index is on the Right hand side.

Parameters:

Array (Array)

Any valid Open GENIE array type

i, j, k, l (Integer)

Up to four integer indices for re-dimensioning the array

RESULT = (Array)

Returns the re-dimensioned array

Open GENIE Reference Manual Chapter 7

- 230 -

Sum()
Sums all the elements in an array

SUM() array=Array Sum all the elements

example:
Integrate some data
>> printn sum(w.y)
12456890.789

Sum
The Sum() function returns the sum of all the elements in an array.If the array contains an
undefined element the result will always be undefined. To get around this when a result is
required, all undefined elements should be "fixed" to a chosen value (e.g. 0.0) using the Fix()
command.

Parameters:

Array (Array)

Array to be summed.

RESULT = (Array element type)

The sum of all the data in an array.

Open GENIE Reference Manual Chapter 7

- 231 -

Unfix()
Replace sentinel values with "undefined"

UNFIX array=Array value=Any (except
Array)

Replace a specific value with
undefined

example:
Fix undefined results to 999
>> scan = get_dat("Old_data_file")
>> Unfix scan 999.0 # 999.0 represents unknown values

Note: See Fix() for replacing undefined values with a sentinel value.

Unfix
Open GENIE caters for situations where an element of an array has an undefined value. This
value is correctly propagated through all internal operations but when importing data it may be
necessary to convert external sentinel values into proper Open GENIE undefined values before
operating on the data.

To go the other way, for example when exporting data the Fix() command can be used.

Parameters:

Array (Array)

The array containing one or more sentinel values to be fixed.

Value (Any except an array)

The sentinel value to replace with proper undefined values in Open GENIE.

RESULT = (Array)

An array of the same type as the original but with all sentinel values replaced with
undefined.

Open GENIE Reference Manual Chapter 7

- 232 -

Open GENIE Reference Manual Chapter 7

- 233 -

:RUNVSDFH�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 7

- 234 -

Fields()
Create a workspace

FIELDS() Create a new empty workspace.

example:
Example in preformatted font
>> w = fields()
>> w.new = 5
>> printn w
 Workspace []
 (
 new = 5
)

Fields
Creates an empty workspace to which fields may be added.

Parameters:

RESULT = (Workspace)

Returns an empty workspace.

Open GENIE Reference Manual Chapter 8

- 235 -

Chapter 8

String Handling Functions
Open GENIE supports a "String" type which allows the normal programming operations to be
carried out on string variables, see also String operations (in the chapter on Storage).

There are also several functions designed for working with Open GENIE strings.

The functions which operate on strings directly are:

Substring()
Locate()
Length()

There are also two powerful functions which handle conversions to and from strings and are very
useful for input and output formatting.

As_string()
As_variable()

Many other functions take strings as parameters or return them as results. Arrays of strings are
handled similarly to arrays of other Open GENIE types except that no arithmetic operations are
permitted (for obvious reasons!).

Examples
 # 1.
 # play around using Locate() and Substring()
 >> nth = 2 # find the 2nd occurrence
 >> printn Locate("you fish you", "you", nth)
 10 # start position of 2nd "you"
 >> pos = 6; length = 4
 >> printn Substring("Blackbird", pos, length)
 bird
 # 2.
 # convert some variables
 >> printn as_variable(".34e1") * 5.6
 19.04
 >> t = 19.04
 >> temp_string = as_string(t) + "mK"
 >> printn temp_string
 # 3.
 # or even a whole workspace
 >> w=s(1)
 >> x = as_string(w)
 >> printn is_a(w, "string")

Open GENIE Reference Manual Chapter 8

- 236 -

 false
 >> printn is_a(x, "string")
 true

Open GENIE Reference Manual Chapter 8

- 237 -

6WULQJ�+DQGOLQJ�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 8

- 238 -

Substring()
Extracts a smaller string out of a larger string using the given indices.

SUBSTRING() astring=String
[start=Integer]
[length=Integer]

Select a string of a specified length from
a given starting position.

example:
pick the user name from this string
>> printn substring("Run: no, User: A Neutron", 16)
A Neutron

Select just the initial
>> printn substring("Run: no, User: A Neutron", 16, 1)
A

Note: if the length value is null, the rest of the string is returned.

Substring
The Substring() command extracts a smaller string from a larger string. Characters in the string
are selected by an index starting at 1 for the first character position in the string.

Parameters:

Astring (String)

The string from which a sub-string is to be selected

Start (Integer)

Starting position of the sub-string to take.

length (Integer)

The length of the sub-string to take.

RESULT = (String)

The sub-string selected.

Open GENIE Reference Manual Chapter 8

- 239 -

Locate()
Finds the position (or positions) of a given sub-string within a string.

LOCATE astring=String substring=String
[count=Integer]

Returns the index position of a sub-
string within the string

example:
Look for all the positions of the string "quick"
>> position = 0
>> words = "The quick brown quick fox&

 jumped quick over the lazy quick dog"
LOOP i FROM 1 TO 10
 position = locate(words,"quick",i)
 EXITIF position = 0
 print position
ENDLOOP
5 17 33 53>>

Note: Locate() is most useful when used in conjunction with the Substring() function.

Locate
Locate allows the position of a substring to be found within a string. If necessary, it is possible to
specify an extra count parameter to locate which will allow the position of the nth occurrence of
a string to be found. In all cases, if a sub-string is not found, a zero is returned.

Parameters:

Astring (String)

The string which is to be searched for sub-strings.

Substring (String)

The sub-string to search for within the string

count (Integer) [default=1]

Optional parameter to allow the position of the nth substring to be found. This
parameter defaults to 1 to look for the first occurrence of the substring.

RESULT = (Integer)

The position of the sub-string within the searched string. The character positions
are numbered from 1 for the first character in the string, the same way as for the
Substring() command.

Open GENIE Reference Manual Chapter 8

- 240 -

Length()
Generic command for returning the length of something

LENGTH item=Generic Returns the length of a variable

example:
a String
>> printn length("abcd")
4
an array
>> a = dimensions(2,3)
>> printn length(a)
6

Note: for workspaces, Length() returns the number of defined elements.

Length
This is a generic command which may be used on nearly all Open GENIE data types but most
usefully on Strings, Arrays and Workspaces.

Parameters:

Item (Generic)

This is an Array, String, or Workspace parameter where the type of the item is of
variable length. For arrays, the length is the total length, for workspaces it is the
number of fields.

RESULT = (Integer)

The length or size of the item.

Open GENIE Reference Manual Chapter 8

- 241 -

As_string()
Converts any genie variable into a string.

AS_STRING var=Generic Print a variable into an internal string

example:
Format a real to two decimal places
>> printn myval
34.234567
>> str = as_string(myval)
>> prec = Substring(str, _, locate(str,".") + 2)
>> printn prec
34.23
useful for graphics
>> Draw/text xcoord=0.5 ycoord=0.5 prec

Note: Has a similar purpose to the FORTRAN internal write.

As_string
This function is used in much the same way as the FORTRAN internal write statement. It allows
a GCL program to get access to the string which would normally be printed out to a terminal
with a Print() command. A likely use of this command is formatting text which is going to be
displayed on the graphics screen (which the Print() commands do not write to). Being a generic
function, the As_string() command will work with any sort of Open GENIE variable.

Parameters:

Var (Generic)

Any Open GENIE variable or expression can be put here.

RESULT = (String)

A string exactly as if the variable had been printed to the console window with the
Print() command.

Open GENIE Reference Manual Chapter 8

- 242 -

As_variable()
Converts a string into an internal Open GENIE variable type.

AS_VARIABLE astring=String Read a string into a variable

example:
Obtain a number from an awkward string
>> printn w.title
BaCuO2 Sprogget & Sylvester t=.589E+1K
>> tstr = Substring(w.title, locate(w.title,"=")+1)
>> printn as_variable(tstr)
5.89

Note: Only reads valid numbers otherwise returns the string.

As_variable
This function is used in much the same way as the FORTRAN internal read statement. It allows
a GCL program to get a real or integer value from a string. Normally for user input this is done
automatically by the Inquire() command but there may be situations where, as in the example
above a number already comes as a string type.

The As_variable() command will attempt to return either a real or integer depending on whether
a decimal point is in evidence. If the string passed to the command starts with something which
cannot be a number, the original string is returned. It is assumed that, as in the example above,
the numeric part of the string is being passed. There is no need to trim the end of the string
(unless it makes the number ambiguous) as any extra text will be discarded.

Parameters:

Astring (String)

A string which starts with the number to be read. Any white space in front of the
number will be ignored.

RESULT = (Real, Integer or String)

Either a String, Integer or Real depending on whether the function was able to decode a
number.

Open GENIE Reference Manual Chapter 9

- 243 -

Chapter 9

Mathematical functions
As well as providing intrinsic arithmetic operations for different data types (See Storage -
Variable Types) Open GENIE provides several basic functions for performing mathematical
operations. These are coded generically so that the same function can be applied to any data type
which is capable of undergoing the operation. For example, the Sin() function may be called for a
single number, an array or a data workspace. Normally, the result of the operation is of the same
data type as the value operated upon. Where the operand contains several values (eg an array),
each value is operated on individually in isolation to the others and an individual result is
calculated for that value.

For example we can create an array of real numbers, and square root them all in one go.
>> my_numbers = Dimensions(10,20) # First create a 10 x 20 array
>> fill my_numbers 1.0 1.0 # Fill the array with some data
>> printn my_numbers
[1.0 2.0 3.0 4.0 5.0 ...] Array(10 20)
>> printn sqrt(my_numbers) # print the square roots.
[1.0 1.414213 1.732050 2.0 2.236067 ...] Array(10 20)

When one of these generic operations is applied to a data workspace, a separate routine is called
which allows the user to define the operations that are carried out (see Workspace Operations).

Trigonometric Functions
Arccos()
Arcsin()
Arctan()
Cos()
Sin()
Tan()

Transcendental Functions
Exp()
Ln()
Log()

Open GENIE Reference Manual Chapter 9

- 244 -

Miscellaneous Functions
Abs()
Sqrt()

Open GENIE Reference Manual Chapter 9

- 245 -

7ULJRQRPHWULF�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 9

- 246 -

Arccos()
Generic trig functions.

ARCCOS(x) x=Generic Arccosine in radians.

example:
print result in degrees
y = Arccos(0.5) * 180 / $pi
#take the arccos of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a 0.5 # Set all elements to 0.5
y = Arccos(a)

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Arccos()
These function returns an Arccosine value in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the
appropriate trig function is to be applied. Angles must be specified in radians.
Undefined values passed to this function will be returned as an undefined result.

RESULT = (Generic)

Angle(s) in radians.

Open GENIE Reference Manual Chapter 9

- 247 -

Arcsin()
Generic trig functions.

ARCSIN(x) x=Generic Arcsine in radians.

example:
print result in degrees
y = Arcsin(0.5) * 180 / $pi
#take the arcsine of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a 0.5 # Set all elements to 0.5
y = Arcsin(a)

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Arcsin()
These function returns an Arcsine value in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the
appropriate trig function is to be applied. Angles must be specified in radians.
Undefined values passed to this function will be returned as an undefined result.

RESULT = (Generic)

Angle(s) in radians.

Open GENIE Reference Manual Chapter 9

- 248 -

Arctan()
Generic trig functions.

ARCTAN(x) x=Generic Arctangent in radians.

example:
print result in degrees
y = Arctan(1000.0) * 180 / $pi
#take the arctan of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a 0.5 # Set all elements to 0.5
y = Arctan(a)

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Arctan()
These function returns an Arctangent value in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the
appropriate trig function is to be applied. Angles must be specified in radians.
Undefined values passed to this function will be returned as an undefined result.

RESULT = (Generic)

Angle(s) in radians.

Open GENIE Reference Manual Chapter 9

- 249 -

Cos()
Generic trig function.

COS(x) x=Generic Cosine in radians.

example:
take cosine of angle in degrees
y = Cos(90.0 * 180.0/$PI)
#take the cosine of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a $pi*2.0 # Set all elements to pi*2
y = Cos(a)

Note: This function can be applied to all numeric types (including arrays & workspaces).

Cos()
These function calculates the cosine of an angle in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the trig
function is to be applied. Angles must be specified in radians. Undefined values
passed to this function will be returned as an undefined result.

RESULT = (Generic)

Cosine of the angle(s) given in radians.

Open GENIE Reference Manual Chapter 9

- 250 -

Sin()
Generic trig function.

SIN(x) x=Generic Sin in radians.

example:
take sin of angle in degrees
y = sin(40.0 * 180.0/$PI)
#take the sin of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a 0.5 # Set all elements to 0.5
y = Sin(a)

Note: This function can be applied to all numeric types (including arrays & workspaces).

Sin()
These function calculates the sine of an angle in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the trig
function is to be applied. Angles must be specified in radians. Undefined values
passed to this function will be returned as an undefined result.

RESULT = (Generic)

Sine of the angle(s) given in radians.

Open GENIE Reference Manual Chapter 9

- 251 -

Tan()
Generic trig function.

TAN(x) x=Generic Tangent in radians.

example:
take tangent of angle in degrees
y = Tan(90.0 * 180.0/$PI)
#take the tangent of all elements in an array
a = Dimensions(10) # create a 10 element array
fill a 0.5 # Set all elements to 0.5
y = Tan(a)

Note: This function can be applied to all numeric types (including arrays & workspaces).

Tan()
These function calculates the tangent of an angle given in radians.

Parameters:

X (Generic)

A single number, array or workspace containing the values to which the trig
function is to be applied. Angles must be specified in radians. Undefined values
passed to this function will be returned as an undefined result.

RESULT = (Generic)

Tangent of the angle(s) given in radians (or undefined where the function result is
beyond the precision of the machine).

Open GENIE Reference Manual Chapter 9

- 252 -

Open GENIE Reference Manual Chapter 9

- 253 -

7UDQVFHQGHQWDO�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 9

- 254 -

Exp()
Generic transcendental functions.

EXP(x) x=Generic Exponentiate

example:
antilog a data array
which is in logs to base 10
data = Exp(w.y * ln(10.0))

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Exp()
Exponentiates, i.e. takes ex

Parameters:

X (Generic)

A single number, array or workspace containing the values to be exponentiated.
Undefined values passed to this function will be returned undefined.

RESULT = (Generic)

Exponentiated value(s).

Open GENIE Reference Manual Chapter 9

- 255 -

Ln()
Generic transcendental functions.

LN(x) x=Generic Log to the base e

example:
Take logs to base e of a data array
lndata = Ln(w.y)

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Ln()
Take natural logarithms.

Parameters:

X (Generic)

A single number, array or workspace containing the values to take logs of.
Undefined values passed to this function will be returned undefined. Illegal values
(i.e. negative numbers are permitted) but will return an undefined result.

RESULT = (Generic)

Either the log of the value or an undefined result.

Open GENIE Reference Manual Chapter 9

- 256 -

Log()
Generic transcendental functions.

LOG(x) x=Generic Log to the base 10

example:
Take logs of a data array
log10data = Log(w.y)

Note: These functions can be applied to all numeric types (including arrays &
workspaces).

Log()
Take logs to base10.

Parameters:

X (Generic)

A single number, array or workspace containing the values to take logs of.
Undefined values passed to this function will be returned undefined. Illegal values
(i.e. negative numbers are permitted) but will return an undefined result.

RESULT = (Generic)

Either the log of the value or an undefined result.

Open GENIE Reference Manual Chapter 9

- 257 -

0LVFHOODQHRXV�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 9

- 258 -

Abs()
Calculate the absolute values.

ABS(x) x=Generic Calculate |x|.

example:
Print the absolute value
printn Abs(-3.3)
3.3

Note: This function can be applied to all numeric types (including arrays & workspaces).

Abs()
Calculates the absolute value of a number or of the numbers in an array. All negative numbers
will be returned as positive numbers of the same magnitude.

Parameters:

X (Generic)

A single number, array or workspace containing the values for which to find |x|.
Undefined values passed to this function will be returned undefined.

RESULT = (Generic)

Either the absolute value or an undefined result.

Open GENIE Reference Manual Chapter 9

- 259 -

Sqrt()
Calculate the square root of a value.

SQRT(x) x=Generic Calculate the square root.

example:
Calculate the square root of Pi
printn Sqrt($PI)
1.77245310234149

Note: This function can be applied to all numeric types (including arrays & workspaces).

Sqrt()
Calculates the square root of a number.

Parameters:

X (Generic)

A single number, array or workspace containing the values to square root.
Undefined values passed to this function will be returned undefined. Illegal values
(i.e. negative numbers are permitted) but will return an undefined result.

RESULT = (Generic)

Either the square root of the value or an undefined result.

Open GENIE Reference Manual Chapter 9

- 260 -

Open GENIE Reference Manual Chapter 10

- 261 -

Chapter 10

General Programming Functions
This chapter lists functions built into the Open GENIE command language which don’t fall
directly under the other section headings but are likely to be fairly essential in writing any Open
GENIE programs.

Alias() Allows the definition of aliases for command names and qualifiers

As_integer Truncates an Open GENIE real number to an integer.

Called_as_function Test if a procedure was called as a function, i.e. x = command(y)

Defined Tests whether a variable has a defined value (not undefined).

Free Deletes a variable or workspace field and frees the storage.

Inquire Prompts the user for terminal input and reads back an input variable.

Interactive Tests whether code is running as part of a procedure or not.

Is_a Tests the type of an Open GENIE variable.

Now Returns the current date and time as a string.

Read_terminal Read a string back from the input terminal into a variable

Open GENIE Reference Manual Chapter 10

- 262 -

Open GENIE Reference Manual Chapter 10

- 263 -

*HQHUDO�3URJUDPPLQJ�)XQFWLRQ��5HIHUHQFH

Open GENIE Reference Manual Chapter 10

- 264 -

Alias()
Allows the definition of aliases for command names and qualifiers

ALIAS alias_name=String
full_name=String

Define one or more aliases for commands and
qualifiers.

example:
Some aliases defined for the display command
>> alias "d/e/m/l" "display/errors/markers/line"
>> d/e/l

can have more than one alias defined for a command
>> alias "showit/Ebars/stars/wigglything" "display/errors/markers/line"

>> showit/e_bars/wigglything

Note: Open GENIE already defines some common aliases for commands (e.g. d/e for
display/errors).

Alias
The Alias() command is provided as a convenience for the command line interface to Open
GENIE. It allows any Open GENIE procedure to effectively take on another, usually shorter
name. The same can be done for any qualifiers taken by the procedure. The command relies on
matching up the names of the real command and qualifiers with the names you wish to alias
them to. The procedure and number of qualifiers must match in the two strings and those in the
second string must be a valid command and its qualifiers (or they will not work).

This command is so powerful that some care should be used when exercising it! Note that it is
entirely possible to define aliases which swap or duplicate the meanings of procedures and
qualifiers.

A more serious use for this command is when defining a custom procedure in place of a standard
Open GENIE procedure. For example, say we wish to redefine the Spectrum() command to load
up some custom two theta values. By aliasing the original Spectrum command as old_spectrum.
We can write a new Spectrum() procedure which first calls the old old_spectrum() procedure to
get most of the data and then add our own code to fix the two theta values. To the user, there is
no change to how the command works and they can still call Spectrum() but will get the
modified version (Note that without aliasing the name, Open GENIE would think that we were
writing Spectrum() as a recursive procedure).

Parameters:

Alias_name (String)

These are the new (fictitious) names for the command and its qualifiers. It is not
necessary to specify all the qualifiers a command has, just the ones that you wish
to abbreviate or alias. Any unspecified qualifiers from the original command will

Open GENIE Reference Manual Chapter 10

- 265 -

still work perfectly with the new command name.

full_name (String)

The exact command name and qualifiers which we wish to alias, keeping the
order so that this list matches the aliasing parameters in number and position.

Open GENIE Reference Manual Chapter 10

- 266 -

As_integer()
Truncates an Open GENIE real number to an integer.

AS_INTEGER() var=Real Convert to integer

example:
Convert 2.5 to an integer
>> printn As_integer(2.5)
2

Note: Add 0.5 before truncating to get the nearest integer instead

As_integer
A simple function to convert Open GENIE real numbers into integers. Note that Open GENIE
loops work fine with Real numbers as loop counters so the most likely reason for converting to
an integer is to index into an array or if exact precision arithmetic is required (a loop with real
numbers may be subject to systematic floating point errors).

Parameters:

Var (Real)

An Open GENIE real value.

RESULT = (Integer)

An Open GENIE integer or undefined value if the number cannot be converted
successfully. For example if the real number is larger than the representation
available for the integer.

Open GENIE Reference Manual Chapter 10

- 267 -

Called_as_function()
Test if a procedure was called as a function, i.e. x = command(y)

CALLED_AS_FUNCTION() Test whether a procedure should alter its parameters

example:
Procedure which checks how it is called
PROCEDURE double
PARAMETERS w=workspace
RESULT wres

IF Called_as_function() # leave the parameter untouched
wres = w
wres.y = w.y * 2.0

ELSE # change the parameter
w.y = w.y * 2.0

ENDIF
ENDPROCEDURE

Called_as_function
This procedure is very important for a language which allows procedures to be called either as
functions returning results or as keyword commands where the parameters are affected. For
example, with the Rebin() command, it may be called either as

w = rebin(s(1), ...)

where the last thing we would want to do is replace the value "s(1)" with the result of the
rebinning. Alternatively we could type

Rebin w ...

where of course, we would expect to change the contents of workspace "w".

If this check is not made a sequence of functions could produce unexpected results, for example
>> x = bad_rebin(w, v.x)
>> y = bad_rebin(w, v.x)
>> printn (x=y)
$FALSE

Parameters:

RESULT = (Boolean)

Returns $TRUE if the currently executing procedure was called as a function.

Open GENIE Reference Manual Chapter 10

- 268 -

Defined()
Tests whether a variable has a defined value (not undefined).

DEFINED() var=Any Returns $TRUE if var was defined

example:
Check for arithmetic undefined values
>> x = 5.5 / 0.0
>> printn Defined(x)
$FALSE

Note: Useful for testing the presence or absence of procedure parameters.

Defined
Tests an Open GENIE variable to see if its value is undefined. This may happen either as the
result of an arithmetic expression which returns an undefined value or because a value has not
yet been given to a variable. The results of procedures that terminate with an error are also
generally set to undefined.

One of the major uses of this test is to check whether procedure parameters have been supplied
by the user. Any parameters which have not been supplied will take an undefined value and can
be checked and maybe supplied with a default value if required.

Parameters:

Var (Any)

Variable to test for being defined.

RESULT = (Boolean)

Returns $TRUE if the variable has a defined value.

Open GENIE Reference Manual Chapter 10

- 269 -

Free()
Deletes a variable or workspace field and frees the storage.

FREE variable=String
[subvariable=String]

Delete a variable

[/PROC] Delete a procedure definition

[/TYPE] Delete a user defined workspace type

example:
Delete a workspace field "test" and then an array "arr"
>> printn w
 Workspace []
 (
 test = 45.0
)
>> free "w" "test"
 Workspace []
 (
)
>> free "arr"

Free
This command is provided to allow the user a little more control over the disposal of memory
used by large variables. If for example, a large data array is known to be unused it would
normally be automatically removed from memory eventually by Open GENIE. To remove it
explicitly may be useful, for example, if the user knows they are about to create another large
array.

Parameters:

/Proc

Interpret the given string as procedure name.

/Type

Interpret the given string as user defined type name.

Variable (String)

A string giving the name of the item to be deleted - must be double quoted.

Subvariable (String)

For workspaces only, this parameter contains a string which is the name of the
field to delete from the workspace.

Open GENIE Reference Manual Chapter 10

- 270 -

Inquire()
Prompts the user for terminal input and reads back an input variable.

INQUIRE() [aprompt=String] Inquire information from the user interactively

example:
Read in a lower limit from the user
>> llimit = inquire("Enter lower limit")
Enter lower limit: 45.678
>> printn llimit
45.6779999999999
>> printn Is_a(llimit, "Real")
$TRUE

Note: To read a string without any conversions or prompting use Read_terminal()

Inquire
This command reads input from the users terminal. It also supplies a prompt string to obtain
input from the user. The Inquire() command attempts to read the input variable back into the
correct type of Open GENIE internal variable. Currently, this is only the case for single Integer
or Real values. Any unrecognized type is returned as a string.

Parameters:

Aprompt (String) [default = " :"]

A string which tells the user what information is required, a ":" is appended to the
prompt.

RESULT = (Any)

Either a string or the value of the variable as a Real or Integer. If no input is given
"" is returned.

Open GENIE Reference Manual Chapter 10

- 271 -

Interactive()
Tests whether code is running as part of a procedure or not.

INTERACTIVE() Returns $TRUE if it is run within a procedure

example:
Only print date if this is code is running
outside of a procedure (in a .gcl file for example)
IF NOT Interactive()

printn "Running as batch file at " Now()
ENDIF

Note: Useful for code fragments which may be used in different ways

Interactive
The Interactive() command checks to see which of two possible modes a piece of Open GENIE
code is executing in.

1. As a line inside an Open GENIE procedure

2. As a line running at the terminal or outside a procedure but within a loading GCL file.

Parameters:

RESULT = (Boolean)

Returns $TRUE if the command was run outside a procedure.

Open GENIE Reference Manual Chapter 10

- 272 -

Is_a()
Tests the type of an Open GENIE variable.

IS_A() var=Any
typestring=String

Checks to see what type an Open GENIE variable is

example:
Convert a real if necessary
IF Is_a(x, "real")
 x = As_integer(x)
ENDIF

Note: Important when using user defined workspace types.

Is_a
The format of this command appears a little strange at first however it is designed to be easily
used in the sort of programming situations where type checking is common, see the example
above. It is possible to test a variable for being any Open GENIE predefined type or any user
defined workspace type.

A generic type may also be checked for, for example
>> printn Is_a(y, "Array")
$TRUE
>> printn Is_a(y, "Realarray")
$FALSE

Parameters:

Var (Any)

The variable to be checked

Typestring (String)

The name of the type being checked for.

RESULT = (Boolean)

Returns $TRUE if the variable was of the type specified.

Open GENIE Reference Manual Chapter 10

- 273 -

Now()
Returns the current date and time as a string.

NOW() Returns date and time

example:
Printn the date and time
>> printn Now()
11-Jul-97 8:47:50

Note: Use Substring() and Locate() to select time or date individually

Now
The Now() command returns out a simple time and date string. If time or date are required
individually they can be chopped out of the string using the Substring() and Locate() commands
to take the date before the space or the time after the space.

Parameters:

RESULT = (String)

Combined time and date string.

Open GENIE Reference Manual Chapter 10

- 274 -

Read_terminal()
Read a string back from the input terminal into a variable

READ_TERMINAL() Return a string typed in at the terminal

example:
Read a string
>> printn "(" read_terminal() ")"
abcd efg
(abcd efg)
>>

Note: To read numbers as well as strings you may wish to use the Inquire() command.

Read_terminal()
This command reads a string (terminated by a carriage return) from the terminal. A numeric
string can be converted by using As_variable() on the string returned by Read_terminal(). This is
the way the Inquire() command is written.

Parameters:

RESULT = (String)

The string read from the terminal, not including the return character which terminated the
input.

Open GENIE Reference Manual Chapter 11

- 275 -

Chapter 11

System Dependent Functions
These functions are listed separately as they all have some dependency on the operating system
Open GENIE is running. By careful use of the Os() command, procedures can be written to work
system independently.

Cd Change the default directory from within Open GENIE

Dir List the files in the current directory or the directory specified

Pwd Print the current working directory

Os Returns a string giving the operating system Open GENIE is running on

System Executes a single command or command session from within Open GENIE

Open GENIE Reference Manual Chapter 11

- 276 -

Open GENIE Reference Manual Chapter 11

- 277 -

6\VWHP�'HSHQGHQW�)XQFWLRQ�5HIHUHQFH

Open GENIE Reference Manual Chapter 11

- 278 -

Cd()
Change the default directory from within Open GENIE

CD [path=String] Change the working directory

example:
Change to the examples directory
>> cd "/usr/local/genie/examples"
>> dir

Cd
Select the directory which Open GENIE will read and write files to by default. This command
avoids the need to exit Open GENIE to change directory.

Parameters:

Path (String)

Directory path as specified on the native operating system, e.g. VMS or Unix.

Open GENIE Reference Manual Chapter 11

- 279 -

Dir()
List the files in the current directory or the directory specified

DIR [path=String] List the directory contents

example:
List the examples directory
>> dir "[.examples]"

Dir
Display the contents of a directory on the host operating system.

Parameters:

Path (String)

Directory path as specified on the native operating system, e.g. VMS or Unix.

Open GENIE Reference Manual Chapter 11

- 280 -

Pwd()
Print the current working directory

PWD Show the working directory

example:
Change to the examples directory
>> cd "/usr/local/genie/examples"
>> pwd
/usr/local/genie/examples

Pwd
Print the current working directory if called as a keyword command or return the directory as a
string if called as a function.

Parameters:

RESULT (String)

String giving the current working directory.

Open GENIE Reference Manual Chapter 11

- 281 -

Os()
Returns a string giving the operating system Open GENIE is running on

OS() Returns the name of the operating system

example:
Print the current operating system
>> printn Os()
OSF

Os
When writing portable GCL programs is is sometimes necessary to know which operating
system is being used. For example if VMS is being used, a disk name must be specified whereas
none is needed on Unix. This command is provided to allow a procedure to check for differences
which might occur and need to be handled.

Parameters:

RESULT = (String)

Currently returns one of the strings "OSF", "VMS", "IRIX" or "LINUX"
depending on the supported operating systems.

Open GENIE Reference Manual Chapter 11

- 282 -

System()
Executes a single command or command session from within Open GENIE.

SYSTEM [command=String] Execute system commands from within
Open GENIE

example:
find some user details on VMS
>> system "$ SEARCH journal.txt \"flux\" "
IRS14142ZAB/NJR Flux tests 18-FEB-1997 12:00:01 163.2
IRS14143ZAB/NJR Flux tests 18-FEB-1997 13:43:40 6.1
>>

Note: The Dir() command in Open GENIE is simply a procedure written using the
System() command.

System
The System() command allows a user to execute native operating system commands from within
Open GENIE. This can be very useful for accessing facilities not actually built into Open
GENIE. To make a procedure Operating system independent, use the Os() command to choose
which system command to use, see the example below.
PROCEDURE TIME
IF Os() = "VMS"
 system "show time"
ELSE # assume Unix
 system "date"
ENDIF
ENDPROCEDURE

If no command is given as a parameter, the System() command starts a sub-shell process which
must be terminated with an "exit" on Unix or a "LOGOUT" on VMS. This is a handy form of the
command if you just want to type a few commands without closing down your Open GENIE
session. Note that on VMS some normal logical name definitions may be missing in the sub
process.

Parameters:

Command (String)

The command to be executed by the operating system.

RESULT = (Integer)

The execution status returned by the command.

Open GENIE Reference Manual Chapter 12

- 283 -

Chapter 12

Miscellaneous commands
This section lists command which are primarily designed to be used interactively for the control
of an Open GENIE terminal session.

Copying Prints the GNU licensing conditions for Open GENIE

Exit Exits from Open GENIE

Help Prints out a general Open GENIE help message

Load Loads a file containing GCL procedures into GENIE

Save Saves a complete Open GENIE image file with all variables and procedures.

Warranty Prints the warranty disclaimer for Open GENIE

Open GENIE Reference Manual Chapter 12

- 284 -

Open GENIE Reference Manual Chapter 12

- 285 -

0LVFHOODQHRXV�&RPPDQG�5HIHUHQFH

Open GENIE Reference Manual Chapter 12

- 286 -

Copying()
Prints the GNU licensing conditions for Open GENIE

COPYING Print the distribution license

Copying()
Prints a copy of the licensing conditions for distribution/re-distribution of Open GENIE under
the GNU General Public licence.

Open GENIE Reference Manual Chapter 12

- 287 -

Exit()
Exits from Open GENIE

EXIT Stops Open GENIE

example:
Finish an open genie session
>> Exit
GENIE exiting
$

Note: Can also use quit to stop Open GENIE

Exit
Stops an Open GENIE session from the command line.

Open GENIE Reference Manual Chapter 12

- 288 -

Help()
Prints out a general Open GENIE help message.

HELP Prints a help message

Note: Help/Help is not a useful command.

Help
Provides a few tips as to how to find Open GENIE commands and how to get help on them.

Open GENIE Reference Manual Chapter 12

- 289 -

Load()
Loads a file containing GCL procedures into GENIE

LOAD filename=String Load a command file

example:
Load a genie program
>> Load "myprog.gcl"
Loading file myprog.gcl
 56 lines scanned/compiled
>>

Note: Cannot always load one command file from within another.

Load
The load command allows a file consisting of Open GENIE commands and procedure definitions
to be read by Open GENIE. It is normally possible to have one file containing "Load" commands
for a few other component files but some care should be taken as the Load() command is
primarily an interactive command and some odd effects may occur as a result of multiple nesting
or calling of Load() within a procedure (not recommended).

Parameters:

Filename (String)

File consisting of valid GCL statements and PROCEDURE definitions.

RESULT = (Boolean)

Returns $FALSE if the load command failed to work.

Open GENIE Reference Manual Chapter 12

- 290 -

Save()
Saves a complete Open GENIE image file with all variables and procedures.

SAVE filename=String Save a frozen image of the current Open GENIE

example:
Save the current session
>> Save "mygenie.im"
Saving GENIE in file mygenie.im ...
>>

Note: Saving an image after loading a large number of procedures can give a quicker
startup.

Save
The save command saves a binary image of the complete internal state of Open GENIE. It is
most useful when quite a large number of GCL procedures have been loaded as part of a major
program. To save time on startup, use the Save() command to create an image immediately after
starting Open GENIE and loading the necessary GCL files.

Open GENIE can be re-invoked with the new image containing all the procedures by the
command

$ genie "" mygenie.im

or by defining the symbol or logical name GENIE_SMALLTALK_IMAGE to point to the file.
Note that if an image is not found, Open GENIE will usually start up with some errors.

Parameters:

Filename (String)

File to save the binary image in, conventionally ending with ".im"

Open GENIE Reference Manual Chapter 12

- 291 -

Warranty()
Prints the warranty disclaimer for Open GENIE

WARRANTY Print the warranty disclaimer

Warranty()
Prints a copy of the warranty disclaimer for Open GENIE.

Open GENIE Reference Manual Chapter 12

- 292 -

Open GENIE Reference Manual Chapter 13

- 293 -

Chapter 13

Diagnostics and Debugging
This section lists commands specifically to do with diagnostics and debugging

Debug() Enables simple procedure call debugging

Gripe Report a problem, solution or idea about Open GENIE

Inspect Inspect in some detail, the type and contents of Open GENIE variables.

Version Prints the Open GENIE Version.

Open GENIE Reference Manual Chapter 13

- 294 -

Open GENIE Reference Manual Chapter 13

- 295 -

'LDJQRVWLFV�DQG�'HEXJJLQJ�&RPPDQG
5HIHUHQFH

Open GENIE Reference Manual Chapter 13

- 296 -

Debug()
Enables simple procedure call debugging

DEBUG/ON Enable debugging of procedure calls

DEBUG/OFF Switch off debugging messages

example:
Switch debugging on for next statement
>> DEBUG/ON
>> printn "HI"
0:PRINTN
hi

Debug
This procedure switches on rudimentary procedure debugging. For each procedure that is called,
a line giving the name of each procedure is printed on the screen. The level to which this line is
indented shows how far down in the program the procedure is called. Although not ideal, this can
give you a good idea of which procedure has caused an error message.

Open GENIE Reference Manual Chapter 13

- 297 -

Gripe()
Report a problem, solution or idea about Open GENIE

GRIPE [subject=String]
[message=String]
[email=String]

Send a message to the Open GENIE
development team.

example:
Type in a gripe interactively
>> Gripe
 ... fill in details as requested ...

Note: email defaults to genie@isise.rl.ac.uk, the normal support mail address for Open
GENIE.

Gripe
This command simplifies the reporting of problems, ideas or solutions to problems you have
found when using Open GENIE. Just typing "gripe" should be sufficient to get an error message
directly to the development team and management.

Parameters:

Subject (String)

Useful if you can give a succinct subject line so we can categorise any gripes
easily

Message (String)

One line gripes are very acceptable, and this makes them possible.

Email (String)

the Gripe() command will attempt to send all gripes to genie@isise.rl.ac.uk but if
your mailer has to cross a firewall or gateway system to get onto the internet you
can put the appropriate address here to make the gripe command work.

Open GENIE Reference Manual Chapter 13

- 298 -

Inspect()
Inspect in some detail, the type and contents of Open GENIE variables.

INSPECT p1=Any Print the internal type or representation of a variable

example:
Example in preformatted font
>> inspect 45
An instance of Integer

Inspect
The Inspect() command gives details of the type and structure of the underlying smalltalk
variables. Sometimes it can be useful to get information about the type of a complex variable but
usually one of the Print() commands is a better bet.

Parameters:

P1 (Any)

Variable to be inspected.

Open GENIE Reference Manual Chapter 13

- 299 -

Version()
Prints the Open GENIE Version.

VERSION Print out the version string

example:
print out the genie version
>> Version
@(#)Open GENIE V1.1 BUILD-30
[Linked] Thu Jul 10 13:47:02 BST 1997 [library version] 1.1

Note: Please quote this when reporting problems with the Gripe() command.

Version
Prints out the Open GENIE version string (the same string printed out on startup of Open
GENIE).

Open GENIE Reference Manual Chapter 13

- 300 -

Open GENIE Reference Manual Chapter 14

- 301 -

Chapter 14

External Programming
Interfaces

This section describes ways in which Open GENIE may be interfaced to externally written code
in FORTRAN or C++ for a variety of purposes.

External software may be either called from Open GENIE whilst Open GENIE maintains control
of the session and is responsible for handling any exception conditions which might arise.
Alternatively, external code may call into specific parts of Open GENIE in more of the fashion
of a subroutine library. Currently there is one defined interface of each sort in Open GENIE.

Callout Interfaces
Open GENIE supports a simple callout interface which allows user FORTRAN code to be called
from within an Open GENIE session and provides a mechanism for providing the code with data
from Open GENIE internal variables.

FORTRAN module interface
C module interface

Callin Interfaces
Open GENIE supports a callin interface to allow any user program to use the Open GENIE Data
Access Interface (GDAI). This interface provides a multi-language way of getting at the same
data as Open GENIE.

GDAI interface

Open GENIE Reference Manual Chapter 14

- 302 -

0RGXOH�6XEURXWLQHV�&DOODEOH�IURP�)2575$1
This section describes the user written FORTRAN interface which allows modules in
FORTRAN to be compiled and loaded into Open GENIE so that they can be run as if they had
been built into the original code. Once loaded, a module can be called as efficiently as any other
hard coded function from Open GENIE (see the Module() command). The function will run in a
"safe" environment so that if it should crash, control will return to Open GENIE without causing
a crash of Open GENIE itself.

Here we give reference information for:

1. FORTRAN template for a user written module.

2. Helper functions to aid communication of the module with Open GENIE.

For more general information and examples of using modules, see the Open GENIE User
Manual

FORTRAN Template
The essential purpose of this interface is to allow data transfer and communication with the
running Open GENIE session from which the external FORTRAN module was called. All data
transfer is handled by allowing the Module() command in GCL to take a workspace of
parameters which are made available to the FORTRAN SUBROUTINEs if they adhere to a
certain template. The workspace itself, is an advanced data type and as such is not easily handled
itself in FORTRAN, what is provided in the FORTRAN interface is a set of Helper Functions
which allow data to be read and written to and from this parameter workspace.

The FORTRAN template is actually very simple and is given below. A normal procedure for
converting an existing program is to turn the program into one or more subroutines taking
appropriate data as parameters and then to call these subroutines from the FORTRAN template
subroutine to perform the appropriate functions. It may be necessary to separate the functional
part of the program from any subroutines that query a user interactively for data, these
subroutines will probably need replacing with helper functions (or they may more easily be done
from GCL and/or the TK graphical interface anyway).

Open GENIE Reference Manual Chapter 14

- 303 -

C An F77 template subroutine for creating an Open GENIE module in FORTRAN
C Several subroutines like the one routine below may be included in one
C module.
C
C Called from GCL with e.g. MODULE:EXECUTE("my_fortran_module", PARS)
C
C Freddie Akeroyd, ISIS, 20/2/97 - modified by CM-S 2/7/97
C
 SUBROUTINE MY_FORTRAN_MODULE(PARS_GET, PARS_PUT)
 IMPLICIT NONE

C Include mandatory definitions

 INCLUDE ’genie_modules.inc’
 EXTERNAL PARS_GET, PARS_PUT

C ... User declarations here ...

C Check we have a recent enough version of the genie library -
C all modules should do this to avoid unexpected crashes

 IF (MODULE_VERSION_OK(GENIE_MAJOR, GENIE_MINOR) .EQ. 0) THEN
 MODULE_ERROR("my_fortran_module",
 + "Error - Open GENIE Version mismatch",
 + "Please re-compile this module")
 ENDIF

C All user code goes here, generally the format will be to access some
C data using the helper functions, process it via new or existing user
C written subroutines, and finally return any modified parameters using the
C helper functions

 RETURN
 END

Helper Functions
There are three sorts of helper functions provided by the FORTRAN module interface. They are
all listed below

Commands to obtain data from Open GENIE Description

MODULE_GET_DOUBLE
Reads a double precision real from the
PARS workspace

MODULE_GET_INT Reads an integer from the PARS workspace

MODULE_GET_REAL Reads a real from the PARS workspace

MODULE_GET_STRING Reads a string from the PARS workspace

MODULE_GET_DOUBLE_ARRAY
Reads a double precision real array from
the PARS workspace

MODULE_GET_INT_ARRAY
Reads an integer array from the PARS
workspace

MODULE_GET_REAL_ARRAY
Reads a real array from the PARS
workspace

Open GENIE Reference Manual Chapter 14

- 304 -

MODULE_GET_STRING_ARRAY
Reads a string array from the PARS
workspace

Commands to return data to Open GENIE Description

MODULE_PUT_DOUBLE
Replaces a double precision real in the
PARS workspace

MODULE_PUT_INT Replaces an integer in the PARS workspace

MODULE_PUT_REAL Replaces a real in the PARS workspace

MODULE_PUT_STRING Replaces a string in the PARS workspace

MODULE_PUT_DOUBLE_ARRAY
Replaces an double precision real array in
the PARS workspace

MODULE_PUT_INT_ARRAY
Replaces an integer array in the PARS
workspace

MODULE_PUT_REAL_ARRAY
Replaces an real array in the PARS
workspace

MODULE_PUT_STRING_ARRAY
Replaces an string array in the PARS
workspace

MODULE_PUT_ND_REAL_ARRAY
Replaces an n-dimensional real array in the
PARS workspace

Commands to communicate with the user Description

MODULE_PRINT Prints to the terminal

MODULE_INFORMATION
Prints to the terminal as an informational
message (in blue)

MODULE_ERROR Prints a formatted error message

Open GENIE Reference Manual Chapter 14

- 305 -

)2575$1�+(/3(5�)81&7,21�5()(5(1&(

Commands to Obtain Data from Open Genie
All commands to read data from Genie into a user program start with the "module_get_" prefix,
and have their first two parameters in common. The first parameter, called PARS_GET, is an
EXTERNAL entity passed by Genie. The second parameter, NAME, is a character variable
which is the label assigned to the variable in GCL when the parameters workspace was created.
For arrays, a LENGTH variable must also be passed; on input this should be set to the maximum
allowed number of points, and on output it will be set to the number actually read. If too many
points are passed out from GCL, LENGTH will still indicate how many were passed, but the
number actually read will be the length of the array which was passed as input; thus testing
LENGTH on return provides a check for array overflow.

There is no need for MODULE_GET_ND_REAL_ARRAY to correspond to the
MODULE_PUT_ND_REAL_ARRAY function because an array can always be converted to 1-
D using the Redim() command from GCL before passing it out.

The subroutine names and parameter types and names are given below:
MODULE_GET_DOUBLE (EXTERNAL PARS_GET, CHARACTER*80 NAME, REAL*8 VALUE)

MODULE_GET_INT (EXTERNAL PARS_GET, CHARACTER*80 NAME, INTEGER VALUE)

MODULE_GET_REAL (EXTERNAL PARS_GET, CHARACTER*80 NAME, REAL VALUE)

MODULE_GET_STRING (EXTERNAL PARS_GET, CHARACTER*80 NAME, CHARACTER*512 VALUE)

MODULE_GET_DOUBLE_ARRAY (EXTERNAL PARS_GET, CHARACTER*80 NAME, REAL*8 VALUE(*), INTEGER
LENGTH)

MODULE_GET_INT_ARRAY (EXTERNAL PARS_GET, CHARACTER*80 NAME, INTEGER VALUE(*), INTEGER
LENGTH)

MODULE_GET_REAL_ARRAY (EXTERNAL PARS_GET, CHARACTER*80 NAME, REAL VALUE(*), INTEGER LENGTH)

MODULE_GET_STRING_ARRAY (EXTERNAL PARS_GET, CHARACTER*80 NAME, CHARACTER*512(*) VALUE, INTEGER
LENGTH)

Open GENIE Reference Manual Chapter 14

- 306 -

Commands to return Data to Open Genie
These commands return data to Open GENIE by replacing the fields in the PARS workspace,
otherwise they are very similar to the corresponding "module_get_" commands. The NAME
parameter will be the field name in the result workspace returned to GCL, and the LENGTH
parameter for the array routines will indicate how many data points to send.

The subroutine names and parameter types and names are given below:
MODULE_PUT_DOUBLE (EXTERNAL PARS_PUT, CHARACTER*80 NAME, REAL*8 VALUE)

MODULE_PUT_INT (EXTERNAL PARS_PUT, CHARACTER*80 NAME, INTEGER VALUE)

MODULE_PUT_REAL (EXTERNAL PARS_PUT, CHARACTER*80 NAME, REAL VALUE)

MODULE_PUT_STRING (EXTERNAL PARS_PUT, CHARACTER*80 NAME, CHARACTER*512 VALUE)

MODULE_PUT_DOUBLE_ARRAY (EXTERNAL PARS_PUT, CHARACTER*80 NAME, REAL*8 VALUE(*), INTEGER
LENGTH)

MODULE_PUT_INT_ARRAY (EXTERNAL PARS_PUT, CHARACTER*80 NAME, INTEGER VALUE(*), INTEGER
LENGTH)

MODULE_PUT_REAL_ARRAY (EXTERNAL PARS_PUT, CHARACTER*80 NAME, REAL VALUE(*), INTEGER LENGTH)

MODULE_PUT_STRING_ARRAY (EXTERNAL PARS_PUT, CHARACTER*80 NAME, CHARACTER*512(*) VALUE, INTEGER
LENGTH)

MODULE_PUT_ND_REAL_ARRAY (EXTERNAL PARS_PUT, CHARACTER*80 NAME, REAL VALUE(*),
 INTEGER DIMS_ARRAY(NDIMS), INTEGER NDIMS)

Commands to Communicate With The User
These provide a means for a FORTRAN program to send messages to the user through the
standard Open GENIE messaging system. This means, for example that informational messages
can be switched off using the Toggle/Info command as with ordinary Open GENIE informational
messages. Using these routines ensures that the timing of output messages will be properly
synchronized with Open GENIE.

The subroutine names and parameter types and names are given below:
MODULE_PRINT (CHARACTER*(*) MESSAGE)

MODULE_INFORMATION (CHARACTER*(*) MESSAGE)

MODULE_ERROR (CHARACTER*(*) FUNCTION_NAME, ERROR_MESSAGE, POSSIBLE_SOLUTION)

Open GENIE Reference Manual Chapter 14

- 307 -

0RGXOH�6XEURXWLQHV�&DOODEOH�IURP�&
This section describes the user written C interface which allows modules in C to be compiled and
loaded into Open GENIE so that they can be run as if they had been built into the original code.
Once loaded, a module can be called as efficiently as any other hard coded function from Open
GENIE (see the Module() command). The function will run in a "safe" environment so that if it
should crash, control will return to Open GENIE without causing a crash of Open GENIE itself.

Here we give reference information for:

1. C template for a user written module.

2. Helper functions to aid communication of the module with Open GENIE.

For more general information and examples of using modules, see the Open GENIE User
Manual

C Template
The essential purpose of this interface is to allow data transfer and communication with the
running Open GENIE session from which the external C module was called. All data transfer is
handled by allowing the Module() command in GCL to take a workspace of parameters which
are made available to C functions if they adhere to a certain template. To access parts of the
workspace in the C interface a set of Helper Functions which allow data to be read and written to
and from this parameter workspace are provided.

The C template is actually very simple and is given below. A normal procedure for converting an
existing C program is to take the existing analysis functions and to call them from one or more
functions following the C template below. User interface functions doing output can be replaced
with the print helper functions (or they may more easily be done from GCL and/or the TK
graphical interface anyway once the module is in Open GENIE).

Open GENIE Reference Manual Chapter 14

- 308 -

/* A C template function for creating an Open GENIE module in C
 * Several functions like the one routine below may be included in one
 * module.
 * Called from GCL with e.g. MODULE:EXECUTE:C("my_c_module", PARS)
 *
 * Freddie Akeroyd, ISIS, 19/2/97 - modified by CM-S 2/7/97
 */
/*
 * These two genie includes must be present in any C module
 * They include important definitions and typedefs
 */
#include <genie_cmodule.h>
#include <genie_cmodule_ver.h>

void my_c_module(GenieWorkspace* pars_get, GenieWorkspace* pars_put)
{
/* ... User definitions here ... */
/*
 * All C modules should do the following test - it ensures that a module
 * linked against a recent version of the genie library is
 * not executed by a program linked against an older version
 */
 if (!cmodule_version_ok(CMODULE_MAJOR_VERSION, CMODULE_MINOR_VERSION))
 {

cmodule_print("Library version mismatch for MY_C_MODULE",
CMODULE_PRINT_ERROR);

return;
 }
/* All user code goes here, generally the format will be to access some
 * data using the helper functions, process it via new or existing user
 * written functions, and finally return any modified parameters using the
 * helper functions
 */
}

Helper Functions
There are three sorts of helper functions provided by the C module interface. They are all listed
below

Commands to obtain data from Open GENIE Description

cmodule_get_double
Reads a double precision real from the PARS
workspace

cmodule_get_int Reads an integer from the PARS workspace

cmodule_get_real Reads a real from the PARS workspace

cmodule_get_string Reads a string from the PARS workspace

cmodule_get_double_array
Reads a double precision real array from the
PARS workspace

cmodule_get_int_array
Reads an integer array from the PARS
workspace

cmodule_get_real_array Reads a real array from the PARS workspace

Open GENIE Reference Manual Chapter 14

- 309 -

cmodule_get_string_array
Reads a string array from the PARS
workspace

Commands to return data to Open GENIE Description

cmodule_put_double
Replaces a double precision real in the PARS
workspace

cmodule_put_int Replaces an integer in the PARS workspace

cmodule_put_real Replaces a real in the PARS workspace

cmodule_put_string Replaces a string in the PARS workspace

cmodule_put_double_array
Replaces an double precision real array in the
PARS workspace

cmodule_put_int_array
Replaces an integer array in the PARS
workspace

cmodule_put_real_array
Replaces an real array in the PARS
workspace

cmodule_put_string_array
Replaces an string array in the PARS
workspace

cmodule_put_nd_real_array
Replaces an n-dimensional real array in the
PARS workspace

Commands to communicate with the user Description

cmodule_print Prints to the terminal

Open GENIE Reference Manual Chapter 14

- 310 -

Open GENIE Reference Manual Chapter 14

- 311 -

&�+(/3(5�)81&7,21�5()(5(1&(

Commands to Obtain Data from Open Genie
All commands to read data from Genie into a user program start with the "cmodule_get_" prefix,
and have their first two parameters in common. The first parameter, called "pars_get", is an
pointer to the workspace passed by Genie. The second parameter, "name", is a character variable
which is the workspace field name assigned to the variable in GCL when the parameters
workspace was created. For arrays, a "len" variable must also be passed; on input this should be
set to the maximum allowed number of points, and on output it will be set to the number actually
read. If too many points are passed out from GCL, "len" will still indicate how many were
passed, but the number actually read will be the length of the array which was passed as input;
thus testing "len" on return provides a check for array overflow.

Because C is able to cope with memory allocation, it is possible for the cmodule_get functions to
allocate memory if required. You will of course be responsible for calling free() afterwards if this
is the case! To get the functions to allocate memory pass a pointer variable containing NULL as
the destination for the data and sufficient memory to hold the requested item will be allocated
(actual length allocated returned in the "len" parameter where applicable). Note that functions
returning strings will always allocate memory and hence you are responsible for calling free().

There is no need for cmodule_get_nd_real_array to correspond to the
cmodule_put_nd_real_array function because an array can always be converted to 1-D using the
Redim() command from GCL before passing it out.

The function prototypes are given below:
void cmodule_get_double (GenieWorkspace* pars_get, const char* name, fort_double* val);

void cmodule_get_int (GenieWorkspace* pars_get, const char* name, fort_int* val);

void cmodule_get_real (GenieWorkspace* pars_get, const char* name, fort_real* val);

void cmodule_get_string (GenieWorkspace* pars_get, const char* name, char** val);

void cmodule_get_double_array (GenieWorkspace* pars_get, const char* name, fort_double** val,
fort_int* len);

void cmodule_get_int_array (GenieWorkspace* pars_get, const char* name, fort_int** val,
fort_int* len);

Open GENIE Reference Manual Chapter 14

- 312 -

void cmodule_get_real_array (GenieWorkspace* pars_get, const char* name, fort_real** val,
fort_int* len);

void cmodule_get_string_array (GenieWorkspace* pars_put, const char* name, const char** val[],
fort_int* len);

Commands to return Data to Open Genie
These commands return data to Open GENIE by replacing the fields in the "pars_put"
workspace, otherwise they are very similar to the corresponding "cmodule_get_" commands. The
"name" parameter will be the field name in the result workspace returned to GCL, and the "len"
parameter for the array routines will indicate how many data points to send.

The function prototypes are given below:
void cmodule_put_double (GenieWorkspace* pars_put, const char* name, fort_double val);

void cmodule_put_int (GenieWorkspace* pars_put, const char* name, fort_int val);

void cmodule_put_real (GenieWorkspace* pars_put, const char* name, fort_real val);

void cmodule_put_string (GenieWorkspace* pars_put, const char* name, const char* val);

void cmodule_put_double_array (GenieWorkspace* pars_put, const char* name, const fort_double*
val, fort_int len);

void cmodule_put_int_array (GenieWorkspace* pars_put, const char* name, const fort_int* val,
fort_int len);

void cmodule_put_real_array (GenieWorkspace* pars_put, const char* name, const fort_real*
val,fort_int len);

void cmodule_put_string_array (GenieWorkspace* pars_put, const char* name, const char* val[],
fort_int len);

fort_int cmodule_put_nd_real_array (GenieWorkspace* pars_put, const char* name, const fort_real*
val,

 const fort_int* dims_array, fort_int ndims);

Commands to Communiate With The User
These provide a means for a C program to send messages to the user through the standard Open
GENIE messaging system. This means, for example that informational messages can be switched
off using the Toggle/Info command as with ordinary Open GENIE informational messages.
Using these routines ensures that the timing of output messages will be properly synchronized
with Open GENIE.

The C output helper functionality is combined into one function "cmodule_print". The
"cmodule_print" function takes one of three constants, CMODULE_PRINT_NORMAL,
CMODULE_PRINT_INFORMATION or CMODULE_PRINT_ERROR as the "option"
parameter to select the corresponding Open GENIE I/O stream to print to.

The subroutine names and parameter types and names are given below:
void cmodule_print (const char* s, fort_int option);

Open GENIE Reference Manual Chapter 14

- 313 -

2SHQ�*(1,(�'DWD�$FFHVV�,QWHUIDFH��QHZ
JHW�
This document describes a set of routines designed to create, populate, read and modify ISIS
format and NeXus format data files. The aim of these routines is to provide one simple way to
read and write all styles of data files. The routines are based on the routines used in Open GENIE
and will therefore cope with automatic detection of file input types for all Open GENIE
supported file formats.

Basic Principles
Any data interface design is a compromise between flexibility and complexity. The interface
below is intended to be simple to use from C, C++ or FORTRAN programs but does make use of
some of the most advanced parts of the Open GENIE data access subsystem to do this. As a
result, it is worth being aware of how data is actually read or written by the interface.

File conversions

When reading a file on different machine types, there are inherently several different conversion
problems which may arise. Some are due to differences in the structure of the data files, others
may be due to differences in numerical precision or binary format. As a result, the access
routines work in two stages.

For reading:

1. Access and convert the desired data block from the file.

2. Select the data from the block to read into the program.

For writing:

1. Construct a data block to be written to the file.

2. Write and convert the data to the file.

In both cases, this is a very simple operation if the structure of the data file is simple. On the
other hand, if the structure of the data file is complex, the data access routines provide a unique

Open GENIE Reference Manual Chapter 14

- 314 -

and powerful data structure parsing mechanism which allows complex structures to be easily
snipped up into manageable (if not byte sized!) pieces.

Handles

A "Handle" is the name given to the data block which has been converted from the file but has
not yet been loaded into your program. It is simply a user chosen name to identify the block of
data in transition between stages (1) and (2) above, effectively the data enters a holding area
where you can then make detailed requests of it. For example, if we read one experimental
parameter from an ISIS raw file, "NSP1", the fragment of the program using handles would look
something like the one below.
 ...
* Access the data item by name and put in the transfer area
 CALL GX_get(’MY_HANDLE’, ’NSP1’, 0)

* Read the value into the INTEGER variable "my_nsp"
 CALL GX_transfer(’MY_HANDLE’, ’-->’, ’INTEGER’, my_nsp, 0, 0)
 ...

The handle name links the request to get the data with the subsequent request to load the data
into a program variable.

A handle can be re-used as often as required or several different handles may be used to allow to
store data blocks before reading them out into the code. A handle expression can also be used to
select a small amount of data to read into the program from a larger data block.

Let’s assume now that we want to read the first "MAXLEN" elements of the detector to spectrum
mapping table and write it out to a new file. We know the name of the data item in the ISIS raw
file and can access it as below.
* Somewhere to put the data we are about to read
 INTEGER*4 my_tab(42)
 ...
* Get the whole data block to the handle.
 CALL GX_get(’MY_HANDLE’, ’SPEC’, 0)

* Select part of the data to read out from the handle.
 CALL GX_transfer(’MY_HANDLE[1:42]’, ’-->’, ’INTEGER’, my_tab, 42, 1)
 ...

This way we can slice the first 42 elements out of the array (assuming it has at least 42
elements). This example could have just specified a single array element if only one value was
required. In some file formats, the block may contain named fields or attributes. These can be
accessed using the syntax for accessing workspaces, for example "My_Handle.Two_Theta".

Data access routines descriptions
Before reading or writing data, a session must be initialised using GX_activate_session(), at the
end of data access GX_deactivate_session() session should also be called. These routines control
the allocation and deallocation of memory as well as setting the default output file format.

The interface makes the general assumption that a user may well want to have one file open for
writing at the same time as having a different file open for reading. This is achieved by having
both GX_select_source() and GX_select_destination routines(), either or both of these calls may
be used in a data access session. The GX_directory() function allows the calling program to find

Open GENIE Reference Manual Chapter 14

- 315 -

out what data items are available for a program to read in the specified file.

The following is a generic description of the Application Programming Interface (API) and is
divided into sections grouping similar functions. Language specific routine calls are given in the
reference documentation for each routine.

Session Control

Function Return value Description

GX_activate_session(in default_format) status code Initialises the interface selecting
a default data format for output.

GX_deactivate_session() status code Deactivates the interface, frees
storage

File operations

Function Return value Description

GX_select_source(in filename) status code Selects a data source for
subsequent operations

GX_select_destination(in filename, in
file_format)

status code Selects a data destination for
subsequent operations

GX_directory(in filename, [out dir_listing]) status code Returns a directory of available
fields in any data file.

Data reading/writing

Function Return value Description

GX_get(in handle, in tag, in object-id) status code Associates a handle with the
referenced data file object.

GX_put(in handle, in tag, in object-id, in flag) status code Writes data associated with a
handle into a data file.

Handle manipulation

Function Return value Description

GX_assign_handle(in handle_lval, in
handle_rval)

status code Assign one handle to the whole
or part of another handle.

GX_release_handle(in handle) status code Deactivate the handle and release
and storage.

GX_transfer(in handle, in direction, in type,
inout data, in length, in dims)

status code Transfer data to or from variables
in the program.

Open GENIE Reference Manual Chapter 14

- 316 -

NOTES:

1. References to an object in the data file can be made either by a string tag or an object-id
(number) for the data file. For a GX_get, if both are specified, the tag must correspond to
the tag on the object selected by the object-id. Objects may also be accessed by block
number if the object-id is negative (e.g. -1 for block 1).

2. For a GX_put, the object at the object-id specified may be overwritten with the new tag
and associated handle value. If the "flag" parameter to GX_put is set to "OVERWRITE",
when the object-id corresponds with that already in an output file, the object and tag will
be overwritten.

Handles are always strings and are marked as "in" parameters. It is worth pointing out that
although the handle is effectively a constant reference, what it points to acts like a variable.

Open GENIE Reference Manual Chapter 15

- 317 -

Chapter 15

Workspace Operations
Workspace operations and transformations form the heart of Open GENIE. They permit analysis
which takes into the account the underlying model of the data from neutron scattering
experiments. For example, the Units() command can be used to convert the units of a Time-of-
Flight (TOF) spectrum.

This level of knowledge about the data being operated on is only possible if some assumptions
are made about the fields which will be present in any workspace containing experimental data.
This in turn requires agreement about the contents and names of fields for each kind of data.

By default, Open GENIE workspaces are treated as an enhanced version of the original GENIE-
V2 workspace which was based on a one dimensional Time-of-Flight spectrum. In Open GENIE
two dimensional workspaces are also supported (i.e. workspaces with a two-dimensional Y-
array).

The arithmetic functions (as defined in the Template Routines section) require arrays of X, Y,
and error values to be present (a basic histogram). For the Units() command to work, a
workspace also requires fields giving parameters such as the primary flight path and incident
angle (a TOF spectrum).

In the next sections three topics are discussed before giving a complete listing of the modifiable
template routines.

• Taxonomy- How different types of Open GENIE workspaces are classified

• Steps for the creation of new workspace types

• Required Open GENIE Workspace Fields

• Template routine listing for all customizable routines.

Open GENIE Reference Manual Chapter 15

- 318 -

7D[RQRP\
Classification of the basic data models used in the analysis of neutron scattering data is still at a
very early stage. Open GENIE is being designed to cope with several detailed classifications
when they are developed. So far it only recognises one class of neutron scattering data - the
GENIE-V2 style TOF spectrum - but extended to cope with 2-D data. This consists of n-
histograms of data and may also contain general annotation information suitable for a plotting
and units conversion. In experimental terms a workspace can correspond to a single detector scan
(in TOF) or multiple scans as would be collected from a single timed run on a position sensitive
detector array (the contents of an ISIS raw data file). Open GENIE is also intended for
workspaces with different types of data (e.g. triple axis Qx, Qy, Qz arrays) and it is only
necessary to redefine the template routines to make sense of operations such as w1 + w2
appropriately.

The next section briefly describes how to go about adding a new workspace type. Before doing
this, some experience of writing Open GENIE procedures in GCL should be gained..

Steps for the Creation of New Workspace Types
When defining a different class of data there is a special syntax for defining a new type of data
workspace with default fields. Lets say for example, that we wish to create a workspace for triple
axis data where we can directly plot/compare this data with ISIS TOF data. The steps in this
process are given below.

1. Create a new GCL file to hold the definitions and load it before performing any
operations. Lets say the file is "tripleaxis.gcl".

2. At the top of the file add the new workspace type definition as shown below.
Defines a new workspace type called Tripleaxis
[Workspace.(subclass="Tripleaxis", fields="QX QY QZ", comment="Triple axis workspace")

]

The string after "subclass" gives the new workspace type name and the fields are
specified in a list after "fields" and separated by a single space. This syntax is case
sensitive so be sure to use a capital letters where they are used below and nowhere else
(anything is OK in the comment string of course).

3. Now add any data specific procedure definitions. For example, printing. This is also the

Open GENIE Reference Manual Chapter 15

- 319 -

place to redefine the S() procedure if the input data format is different.
Now define any PROCEDURES which operate on these workspaces, for example,
to fill with data, display, convert etc.
PROCEDURE example_print
PARAMETERS scan=Tripleaxis # we can now type check for triple axis data
 printn "Qx = " scan.qx "Qy = " scan.qy "Qx = " scan.qz
ENDPROCEDURE

4. To create new workspace of class triple axis you will need to use one more piece of
special Open GENIE syntax

>> my_work = Tripleaxis.new() # note capital T, rest lowercase.
>> printn my_work # print out workspace
 Tripleaxis [Triple axis workspace]
 (
 qx = _ # elements undefined and needing values
 qz = _ # eg my_work.qx = ...
 qy = _
)

5. If you wish to re-define or augment the workspace operations +, -, *, / etc. Copy the file
"workspace_user.gcl" from the genie area and edit the template routines. You can do this
to make them take only "Tripleaxis" data but by being more cunning, you can keep the
original functionality as well. eg

PROCEDURE Workspace_add; PARAMETERS w1=Workspace w2=Workspace; RESULT=wres
IF is_a(w1, "Tripleaxis")
 wres = my_TA_func(w1, w2)
ELSE
 ... what was here before

ENDPROCEDURE

6. From now on, your "Tripleaxis" workspace type is as much a part of Open GENIE as any
other workspace. Please note that type names cannot contain "_" and "$" characters, must
always be lowercase and need to start with a Capital letter.

If you intend to embark on a project of this sort it is probably worth mailing genie@isise.rl.ac.uk
to check that this work has not already been done for your type of data.

Required Open GENIE workspace fields
This section lists the required fields and types needed in a workspace to "Qualify" as a
Histogram, TOFSpectrum or AnnotatedSpectrum.

The field names and requirements are listed here but the distinctions are not made rigidly with
separate workspace types at the moment. For example if you try to add two workspaces without
Y arrays you will certainly get an error.

Histogram

Workspace Field Description Variable type

X(1-D) array of X values RealArray

Y(1-D) array of Y values RealArray

E(1-D) array of errors for Y field RealArray

Open GENIE Reference Manual Chapter 15

- 320 -

2-D Histogram

Workspace Field Description Variable type

X(1-D) array of X values RealArray

Y(2-D) 2-D array of Y values RealArray

E(2-D) 2-D array of errors for Y field RealArray

TOF Spectrum

Workspace Field Description Variable type

Histogram + (all fields in Histogram)

L1 primary flight path (m) Real

L2 secondary flight path (m) Real

Twotheta scattering angle Real

Delta hold off in microseconds Real

Emode energy mode Integer

Efixed fixed energy (if applicable) Real

Xlabel Units for X values String

Ylabel Units for Y values String

Ut(1-D)

User parameters (this array may
be of any length and caters for
information not already named
in a field

RealArray

2-D TOF Spectrum

Workspace Field Description Variable type

2DHistogram + (all fields in 2DHistogram)

L1 primary flight path (m) Real

L2(1-D) secondary flight path (m) Real

Twotheta(1-D) scattering angle Real

Delta hold off in microseconds Real

Emode energy mode Integer 0=inelastic, 1=incident,

Open GENIE Reference Manual Chapter 15

- 321 -

2=transmitted

Efixed fixed energy (if applicable) Real

Xlabel Units for X values String

Ylabel Units for Y values String

Ut(1-D)

User parameters (this array may
be of any length and caters for
information not already named
in a field)

RealArray

Annotated Spectrum

Workspace Field Description Variable type

TOFSpectrum + (all fields in TOFspectrum)

File File from which data came String

Title run title String

User_name User name String

Time run start date and time String

Run_duration run duration in seconds Real

Spec_no spectrum number Integer

Run_no run number String

Inst_name instrument name String

History workspace history String

Annotated 2-D Spectrum

Workspace Field Description Variable type

2DTOFSpectrum + (all fields in TOFspectrum)

AnnotatedSpectrum + (all fields in AnnotatedSpectrum but...)

Spec_no(1-D) spectrum number (this is now an array) Integer

Open GENIE Reference Manual Chapter 15

- 322 -

7HPSODWH�5RXWLQH�5HIHUHQFH
The following functions are called whenever an intrinsic operation involving workspaces is
specified (for example w1 + w2 will invoke the template routine Workspace_add () with the
workspaces as parameters). The purpose of this is to allow customisation of the routines. These
functions can be redefined by a (careful) user to take account of any experiment specific data
which may be passed in the workspace.

The example with each function description gives the template procedure currently installed in
Open GENIE, the aim of these is to broadly approximate the operations implicit in GENIE-V2
and to give an example of how to write the routine and handle the errors as Open GENIE does.

Customising the templates
All the template routines are kept together in one file "workspace_user.gcl." By modifying all the
template routines in the file, the behaviour of the Open GENIE workspace operations may be
completely modified. It is important to maintain the default functionality for each procedure, or
at least to be aware of routines which may fail to operate when it is changed!

To activate the changes, the modified copy of "workspace_user.gcl" can be loaded into Open
GENIE using the Load command. e.g.
>> Load "SRC/workspace_user.gcl"
Loading file SRC/workspace_user.gcl
 275 lines scanned/compiled buffer space remaining = 10958

Workspace operations index
This table lists all the Workspace operations which can be modified.

Unary operations Description

Workspace_abs |w|

Workspace_arccos acos(w)

Workspace_arcsin asin(w)

Workspace_arctan atan(w)

Open GENIE Reference Manual Chapter 15

- 323 -

Workspace_coerce
Defines how workspaces combine with other types,
e.g. w1 * 4.0

Workspace_cos cos(w)

Workspace_exp exp(w)

Workspace_ln ln(w)

Workspace_log log(w)

Workspace_negated -w

Workspace_not NOT w

Workspace_sin sin(w)

Workspace_sqrt sqrt(w)

Workspace_tan tan(w)

Binary Operations

Workspace_add w1 + w2

Workspace_append End on join of one histogram to another (w1 & w2)

Workspace_divide w1 / w2

Workspace_raised_to w1 ^ w2

Workspace_subtract w1 - w2

Workspace_modulo w1 | w2

Workspace_multiply w1 * w2

Comparison Operations

Workspace_and w1 AND w2

Workspace_equal w1 = w2

Workspace_greater_than w1 > w2

Workspace_greater_than_or_equal w1 >= w2

Workspace_less_than w1 < w2

Workspace_less_than_or_equal w1 <= w2

Workspace_not_equal w1 != w2

Open GENIE Reference Manual Chapter 15

- 324 -

Workspace_or w1 OR w2

Open GENIE Reference Manual Chapter 15

- 325 -

8QDU\�2SHUDWLRQV�5HIHUHQFH

Open GENIE Reference Manual Chapter 15

- 326 -

Workspace_arccos()
Called by the generic function Acos(x) when x is of type Workspace.

WORKSPACE_ARCCOS() w1=Workspace acos(w)

Workspace_arccos
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_arccos; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = arccos(w1.y)
wres.e = w1.e / sqrt(1 - w1.y^2)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 327 -

Workspace_arcsin()
Called by the generic function Asin(x) when x is of type Workspace.

WORKSPACE_ARCSIN() w1=Workspace asin(w)

Workspace_arcsin
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_arcsin; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = arcsin(w1.y)
wres.e = w1.e / sqrt(1 - w1.y^2)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 328 -

Workspace_arctan()
Called by the generic function Atan(x) when x is of type Workspace.

WORKSPACE_ARCTAN() w1=Workspace atan(w)

Workspace_arctan
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_arctan; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = arctan(w1.y)
wres.e = w1.e / (1 + w1.y^2) * w1.e/(1_+ w1.y^2)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 329 -

Workspace_coerce()
Called to convert numbers and arrays automatically in to workspaces.

WORKSPACE_COERCE() something=Any convert "something" into a
workspace (if possible)

Workspace_coerce
The default procedure definition and the calculation of errors for this procedure is shown below.
This routine is called whenever a mixed type expression involving workspaces requires to
convert the NON workspace parameter into a workspace. The result will always be a workspace

This is procedure is best not changed without a good understanding of how it works. It is not
likely to be necessary to alter this when defining a new type of workspace.
PROCEDURE workspace_coerce; PARAMETERS something; RESULT wres

LOCAL self

assign self to be the current workspace object to allow sizing & copying to the new
one

%(gXself _ line at: 1)%

wres=fields() # new a workspace

these cases shouldn’t be able to happen
IF is_a(something, "workspace") OR is_a(something, "workspacearray")

printen "Coercion failure - workspace(array) -> workspace"
ELSE

wres = self # copy all workspace fields
 wres.ylabel = "(dimensionless)"
 fill wres.e 0.0

use array coercion to fill the workspace
wres.y = fill(wres.y, 0.0) + something ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 330 -

Workspace_cos()
Called by the generic function Cos(x) when x is of type Workspace.

WORKSPACE_COS() w1=Workspace cos(w)

Workspace_cos
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_cos; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = cos(w1.y)
wres.e = abs(sin(w1.y) * w1.e)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 331 -

Workspace_exp()
Called by the generic function Exp(x) when x is of type Workspace.

WORKSPACE_EXP() w1=Workspace exp(w)

Workspace_exp
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_exp; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = exp(w1.y)
wres.e = w1.e * wres.y

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 332 -

Workspace_ln()
Called by the generic function ln(x) when x is of type Workspace.

WORKSPACE_LN() w1=Workspace ln(w)

Workspace_ln
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_ln; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = ln(w1.y)
wres.e = w1.e/w1.y

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 333 -

Workspace_log()
Called by the generic function log(x) when x is of type Workspace.

WORKSPACE_LOG() w1=Workspace log(w)

Workspace_log
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_log; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = log(w1.y)
wres.e = w1.e/(w1.y * ln(10.0))

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 334 -

Workspace_negated()
Called by the generic function -x when x is of type Workspace.

WORKSPACE_NEGATED() w1=Workspace -w

Workspace_negated
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_negated; PARAMETERS w1=workspace; RESULT wres

wres=w1
wres.y = -w1.y

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 335 -

Workspace_not()
Called by the generic function NOT x when x is of type Workspace.

WORKSPACE_NOT() w1=Workspace NOT w

Workspace_not
The default procedure definition and the calculation of errors for this procedure is shown below.
This function does not have a useful implementation currently. This is really only included for
the sake of completeness as the syntax does allow it to be called.
PROCEDURE workspace_not; PARAMETERS w1=workspace; RESULT wres

printen "Operation NOT is not defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 336 -

Workspace_sin()
Called by the generic function Sin(x) when x is of type Workspace.

WORKSPACE_SIN() w1=Workspace sin(w)

Workspace_sin
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_sin; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = sin(w1.y)
wres.e = abs(cos(w1.y) * w1.e)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 337 -

Workspace_sqrt()
Called by the generic function Sqrt(x) when x is of type Workspace.

WORKSPACE_SQRT() w1=Workspace sqrt(w)

Workspace_sqrt
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_sqrt; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = sqrt(w1.y)
wres.e = w1.e / (2.0 * wres.y)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 338 -

Workspace_tan()
Called by the generic function Tan(x) when x is of type Workspace.

WORKSPACE_TAN() w1=Workspace tan(w)

Workspace_tan
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_tan; PARAMETERS w1=workspace; RESULT wres

wres = w1
wres.y = tan(w1.y)
wres.e = w1.e * (1 + wres.y^2)

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 339 -

%LQDU\�2SHUDWLRQV�5HIHUHQFH

Open GENIE Reference Manual Chapter 15

- 340 -

Workspace_add()
Called by the generic function x + y when x and y are of type Workspace.

WORKSPACE_ADD() w1=Workspace w2=Workspace w1 + w2

Workspace_add
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_add; PARAMETERS w1=workspace w2=workspace; RESULT wres

IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y + w2.y
wres.e = sqrt(w1.e*w1.e + w2.e*w2.e)

ELSE
printen "Workspaces are not compatible - please re-bin"

ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 341 -

Workspace_append()
Called by the generic function x & y (append) when x and y are of type Workspace.

WORKSPACE_APPEND() w1=Workspace w2=Workspace w1 & w2

Workspace_append
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_append; PARAMETERS w1=workspace w2=workspace; RESULT wres
LOCAL lenx1 lenx2 leny1 leny2

lenx1 = length(w1.x)
lenx2 = length(w2.x)
leny1 = length(w1.y)
leny2 = length(w2.y)
IF (Max(w1.x) = Min(w2.x))

wres = w1
wres.x = w1.x & w2.x[2:lenx2]
wres.y = w1.y & w2.y
wres.e = w1.e & w2.e

ELSEIF (leny1 = lenx1) OR (leny2 = lenx2)
printen "Error - both workspaces must be histograms"

ELSE
printen "Error - Start and end X values must match"

ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 342 -

Workspace_divide()
Called by the generic function x / y when x and y are of type Workspace.

WORKSPACE_DIVIDE() w1=Workspace w2=Workspace w1 / w2

Workspace_divide
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_divide; PARAMETERS w1=workspace w2=workspace; RESULT wres

 IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y / w2.y

 wres.e = wres.y * sqrt((w1.e/w1.y)^2 + (w2.e/w2.y)^2)
 IF w2.ylabel != "(dimensionless)"
 wres.ylabel = "(dimensionless)"
 ENDIF
 ELSE

printin "Workspaces are not compatible - please re-bin"
 ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 343 -

Workspace_raised_to()
Called by the generic function x ^ y when x and y are of type Workspace.

WORKSPACE_RAISED_TO() w1=Workspace w2=Workspace w1 ^ w2

Workspace_raised_to
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_raised_to; PARAMETERS w1=workspace w2=workspace; RESULT wres

IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y ^ w2.y
wres.e = wres.y * sqrt((ln(w1.y)*(w2.e))^2 + ((w2.y/w1.y)*w1.e)^2)

ELSE
printin "Workspaces are not compatible - please re-bin"

ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 344 -

Workspace_subtract()
Called by the generic function x - y when x and y are of type Workspace.

WORKSPACE_SUBTRACT() w1=Workspace w2=Workspace w1 - w2

Workspace_subtract
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_subtract; PARAMETERS w1=workspace w2=workspace; RESULT wres

IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y - w2.y
wres.e = sqrt(w1.e*w1.e + w2.e*w2.e)

ELSE
printin "Workspaces are not compatible - please re-bin"

ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 345 -

Workspace_modulo()
Called by the generic function x | y when x and y are of type Workspace.

WORKSPACE_MODULO() w1=Workspace w2=Workspace w1 | w2

Workspace_modulo
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_modulo; PARAMETERS w1=workspace w2=workspace; RESULT wres

IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y | w2.y
wres.e = wres.y / 0.0 # Set errors to undefined
wres.ylabel = "(dimensionless)"

ELSE
printin "Workspaces are not compatible - please re-bin"

ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 346 -

Workspace_multiply()
Called by the generic function x * y when x and y are of type Workspace.

WORKSPACE_MULTIPLY() w1=Workspace w2=Workspace w1 * w2

Workspace_multiply
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that the characteristics of the Left hand workspace are those that define the resultant
workspace (i.e. final length, dimensionality of arrays).
PROCEDURE workspace_multiply; PARAMETERS w1=workspace w2=workspace; RESULT wres

 IF (w1.x = w2.x) AND (w1.xlabel = w2.xlabel)
wres = w1
wres.y = w1.y * w2.y

 wres.e = sqrt((w1.y*w2.e)^2 + (w2.y*w1.e)^2)
 ELSE

printin "Workspaces are not compatible - please re-bin"
 ENDIF

ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 347 -

Workspace_and()
Called by the generic function x AND y when x and y are of type Workspace.

WORKSPACE_AND() w1=Workspace w2=Workspace w1 AND w2

Workspace_and
The default procedure definition and the calculation of errors for this procedure is shown below.
This function does not have a useful implementation currently. This is really only included for
the sake of completeness as the syntax does allow it to be called.
PROCEDURE workspace_and; PARAMETERS w1=workspace w2=workspace; RESULT wres

printin "Operation AND is not defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 348 -

Workspace_equal()
Called by the generic function x = y when x and y are of type Workspace.

WORKSPACE_EQUAL() w1=Workspace w2=Workspace w1 = w2

Workspace_equal
The default procedure definition and the calculation of errors for this procedure is shown below.
Note that this does not test exact equality of all the workspace, just the main operational fields
and units.
PROCEDURE workspace_equal; PARAMETERS w1=workspace w2=workspace; RESULT wres

wres = (w1.x = w2.x) AND (w1.xlabel = w2.xlabel) AND (w1.y = w2.y)
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 349 -

Workspace_greater_than()
Called by the generic function x > y when x and y are of type Workspace.

WORKSPACE_GREATER_THAN() w1=Workspace w2=Workspace w1 > w2

Workspace_greater_than
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_greater_than; PARAMETERS w1=workspace w2=workspace; RESULT wres

printin "w1 > w2 is not currently defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 350 -

Workspace_greater_than_or_equal()
Called by the generic function x >= y when x and y are of type Workspace.

WORKSPACE_GREATER_THAN_OR_EQUAL() w1=Workspace
w2=Workspace

w1 >= w2

Workspace_greater_than_or_equal
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_greater_than_or_equal; PARAMETERS w1=workspace w2=workspace; RESULT wres

printin "w1 >= w2 is not currently defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 351 -

Workspace_less_than()
Called by the generic function x < y when x and y are of type Workspace.

WORKSPACE_LESS_THAN() w1=Workspace w2=Workspace w1 < w2

Workspace_less_than
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_less_than_or_equal; PARAMETERS w1=workspace w2=workspace
RESULT wres

printin "w1 <= w2 is not currently defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 352 -

Workspace_less_than_or_equal()
Called by the generic function x <= y when x and y are of type Workspace.

WORKSPACE_LESS_THAN_OR_EQUAL() w1=Workspace
w2=Workspace

w1 <= w2

Workspace_less_than_or_equal
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_less_than_or_equal; PARAMETERS w1=workspace w2=workspace
RESULT wres

printin "w1 <= w2 is not currently defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 353 -

Workspace_not_equal()
Called by the generic function x != y when x and y are of type Workspace.

WORKSPACE_NOT_EQUAL() w1=Workspace w2=Workspace w1 != w2

Workspace_not_equal
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_not_equal; PARAMETERS w1=workspace w2=workspace; RESULT wres

wres = (w1.x != w2.x) OR (w1.y != w2.y)
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 354 -

Workspace_or()
Called by the generic function x OR y when x and y are of type Workspace.

WORKSPACE_OR() w1=Workspace w2=Workspace w1 OR w2

Workspace_or
The default procedure definition and the calculation of errors for this procedure is shown below.
PROCEDURE workspace_or; PARAMETERS w1=workspace w2=workspace; RESULT wres

printin "Operation OR is not defined for workspaces"
ENDPROCEDURE

Open GENIE Reference Manual Chapter 15

- 355 -

Chapter 1

New Data Formats
There is quite a lot of support already built into Open GENIE pending ratification and a formal
definition of the Neutron and X-ray scattering data format NeXus. There are some routines
already in Open GENIE to support this style of data representation however until the format is
ratified, this section only serves to mark some likely placeholder procedures from prototype
versions.

As_new Converts a GENIE-V2 compatible workspace/data file to a new format workspace

As_old Converts a new format workspace/data file to a GENIE-V2 compatible workspace

Data Constructor for Data information

Experiment Constructor for Experiment information

History Constructor for History information

Instrument Constructor for Instrument information

Sample Constructor for Sample information

User Constructor for User information

Unit Constructor for Unit information

Open GENIE Reference Manual Chapter 15

- 356 -

Open GENIE Reference Manual Chapter 16

- 357 -

Chapter 2

Appendices
Supported Data File Formats

Supported Graphics Devices

Supported Graphics Attributes

Implicit Data Conversions

Regular Expressions

Open GENIE Reference Manual Chapter 16

- 358 -

6XSSRUWHG�'DWD�)LOH�)RUPDWV
Open GENIE supports access to the file formats listed below:

• ISIS Raw File (Read only)

• GENIE-II Intermediate file (Read only)

• Open GENIE Intermediate File (Read and Write, Machine independent)

• Open GENIE ASCII File (Read and Write)

• HDF Files (Write only, see following note)

These files can all be read directly with the Get() and Put() commands by specifying numbered
or named data elements. Open GENIE supports access to any format of ASCII file via the
Asciifile() command.

Open GENIE Reference Manual Chapter 16

- 359 -

6XSSRUWHG�*UDSKLFV�'HYLFHV
This is a list of Graphics device currently supported by Open GENIE. Currently Open GENIE
relies on the PGPLOT package and it may well be possible to use other pgplot drivers with Open
GENIE. In the distributed version of Open GENIE we have only checked out the functioning of
the devices below on all platforms. To see other devices which may be available on a particular
version of Open GENIE type
>> Device/Open "Help"

Display devices
Device Name Description String Not supported on

Tcl/Tk driver "TK" or "tk"

X-Windows devices "XWINDOW" or "xwindow"

Hardcopy devices
Device Name Description String Not supported on

Postscript (portrait) "PS" or "ps"

Colour Postscript (portrait) "CPS" or "cps"

Postscript (landscape) "PS" or "ps"

Colour Postscript (landscape) "VCPS" or "vcps"

Open GENIE Reference Manual Chapter 16

- 360 -

6XSSRUWHG�*UDSKLFV�$WWULEXWHV

Fonts
Open GENIE uses the PGPLOT fonts when drawing fonts onto the open graphics device,
currently, the supported fonts available are:

$NORMAL
$ROMAN
$ITALIC
$SCRIPT

Note: For accessing special scientific/greek characters within these fonts, the documented
PGPLOT escape sequences may be used in the Open GENIE text string being plotted. For
example "Time-of-Flight (\gms)" where "\gm" produces a greek Mu character. For further details
see the PGPLOT documentation, available at ftp://astro.caltech.edu/pub/pgplot.

Markers
Markers types available for plotting.

$POINT
$PLUS
$STAR
$CIRCLE
$CROSS
$BOX

Linestyles
Linestyles available for plotting.

$FULL
$DASH
$DOT_DASH
$DOT

Open GENIE Reference Manual Chapter 16

- 361 -

Colours
Pre-defined colours available for the graphics by default. For using further colours in the
graphics, see the Colourtable() and Colour() comamnds.

$BLACK
$WHITE
$RED
$GREEN
$BLUE
$CYAN
$MAGENTA
$YELLOW
$ORANGE
$LIGHT_GREEN
$SEA_GREEN
$LIGHT_BLUE
$PURPLE
$CRIMSON
$DARK_GRAY
$LIGHT_GRAY

Open GENIE Reference Manual Chapter 16

- 362 -

,PSOLFLW�'DWD�FRQYHUVLRQV�WDEOH
This table shows how implicit data conversions are handled in Open GENIE. These occur when
any two items of different data types are used together in one expression, for example
mutliplying an array of Real values by a single integer. The table is symmetrical so only the
possibilities on and below the diagonal are shown.

For the example above, we look in the row labeled RA and column labeled I, from this we can
see that the result will be an array of Real values.

+ - * / I R IA RA W WA U

I I

R R R

IA IA RA IA

RA RA RA RA RA

W W W W W W

WA WA WA WA WA WA WA

U U U U U U U U

Key
I = Integer
R = Real
W = Workspace
IA = Integer Array
RA = Real Array
WA = Workspace Array
U = Undefined value (nil)

Open GENIE Reference Manual Chapter 16

- 363 -

5HJXODU�([SUHVVLRQV
This description was copied from the TCL documentation which in turn was copied from a
manual page written by Henry Spencer. The definition below is very succinct but accurate and
worth a study, alternatively you may find a more readable description on UNIX systems by
doing "man ed" and looking up regular expressions!

A regular expression is zero or more branches, separated by "|". It matches anything that
matches one of the branches.

A branch is zero or more pieces, concatenated. It matches a match for the first, followed by a
match for the second, etc.

A piece is an atom possibly followed by "*", "+", or "?". An atom followed by "*" matches a
sequence of 0 or more matches of the atom. An atom followed by "+" matches a sequence of 1 or
more matches of the atom. An atom followed by "?" matches a match of the atom, or the null
string.

An atom is a regular expression in parentheses (matching a match for the regular expression), a
range (see below), "." (matching any single character), "^" (matching the null string at the
beginning of the input string), "$" (matching the null string at the end of the input string), a "\"
followed by a single character (matching that character), or a single character with no other
significance (matching that character).

A range is a sequence of characters enclosed in "[]". It normally matches any single character
from the sequence. If the sequence begins with "^", it matches any single character not from the
rest of the sequence. If two characters in the sequence are separated by "-", this is shorthand for
the full list of ASCII characters between them (e.g. "[0-9]" matches any decimal digit). To
include a literal "]" in the sequence, make it the first character (following a possible "^"). To
include a literal "-", make it the first or last character.

Here are some examples to get you going.

(abc|def) Matches the string "abc" or the string "def"

^U + Matches the beginning of the line followed directly by a U then one or more spaces

F.REWO Matches the strings FOREWORKS FIREWORKS F@REWORKS etc.

Open GENIE Reference Manual Chapter 16

- 364 -

RKS

A[^BC]D Matches anything A.D matches but excluding ABC and ACD.

^[\t]*$ Matches any lines with only spaces or tabs on them.

Open GENIE Reference Manual Chapter 16

- 365 -

/LVW�RI�)XQFWLRQV
This index lists all the supported functions in Open GENIE. In some cases commands fall
naturally under more than one category, where this occurs the command will be found
documented under the most appropriate section. References in parentheses show where a
command could also be listed appropriately.

• Data Analysis Functions

focus peakgen rebin sumspec units integrate peakfit

• Graphics Commands

alias alter axes cell cell_array cell_function cell_wedge centre_bins colour colourtable
contour contour_array contour_function contour_label cursor debug delete dev device
display draw errors get getcursor graph graticule hardcopy histogram labels limits line
markers multi_plot multiplot new_zoom obj peak pic pic_add picture plot polygon redim
redraw select text title toggle undraw win win_autoscaled win_multiplot win_scaled
win_twod win_unscaled window zoom select

• GENIE-V2 Emulation

assign cfn groupbins jump keep s setpar show set scatmode

• I/O Commands

asciifile filetype Get() list module put (set) (show) nblocks (inquire) print printd printdn
printe printen printi printin printn (read_terminal)

• Array and Workspace Handling Functions

bracket Centre_bins() cut dimensionality dimensions fields fill fix (length) max min
Redim() sum unfix

• String Handling functions

as_string as_variable length Locate() Substring()

Open GENIE Reference Manual Chapter 16

- 366 -

• Mathematical functions

abs arccos arcsin arctan cos exp ln log sin sqrt tan

• General Programming functions

Alias() as_integer (as_string) (as_variable) called_as_function defined free inquire
interactive is_a now read_terminal

• System Dependent Functions

cd dir pwd os system

• Interactive Control of Open GENIE sessions

exit copying help load save warranty

• Diagnostics and Debugging

Debug() gripe inspect version

• Workspace Operations

workspace_add, workspace_and, workspace_append, workspace_arccos,
workspace_arcsin, workspace_arctan, workspace_coerce, workspace_cos,
workspace_divide, workspace_equal, workspace_exp, workspace_greater_than,
workspace_greater_than_or_equal, workspace_less_than,
workspace_less_than_or_equal, workspace_ln, workspace_log, workspace_modulo,
workspace_multiply, workspace_negated, workspace_not, workspace_not_equal,
workspace_or, workspace_raised_to, workspace_sin, workspace_sqrt,
workspace_subtract, workspace_tan

• New data formats

as_new as_old data experiment history instrument sample user unit

Open GENIE Reference Manual Chapter 16

- 367 -

/LVW�RI�.H\ZRUGV
This section lists all the predefined keywords in Open GENIE (always in capitals). Some of these
work on their own, others are part of larger control structures.

Boolean Expressions
OR
AND
NOT

Procedures
FORWARD
PROCEDURE
ENDPROCEDURE
PARAMETERS
QUALIFIERS
RESULT
GLOBAL
LOCAL
RETURN

Loops
LOOP
FROM
TO
STEP
ENDLOOP
EXITIF

Selection
CASE
IS

Open GENIE Reference Manual Chapter 16

- 368 -

ENDCASE
OTHERWISE

IF
ELSEIF
ELSE
ENDIF

