
Brief communication

Hidden Markov models and optimized sequence alignments

L. Smith *, L. Yeganova, W.J. Wilbur

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Rm. 614D, Bldg. 38A, 8600 Rockville

Pike, Bethesda, MD 20894, USA

Received 8 November 2002; received in revised form 14 November 2002; accepted 14 November 2002

Abstract

We present a formulation of the Needleman�/Wunsch type algorithm for sequence alignment in which the mutation matrix is

allowed to vary under the control of a hidden Markov process. The fully trainable model is applied to two problems in

bioinformatics: the recognition of related gene/protein names and the alignment and scoring of homologous proteins.

Crown Copyright # 2002 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Algorithm; Optimization; Gene synonyms; Sequence alignment

1. Introduction

The Needleman�/Wunsch algorithm (Needleman and

Wunsch, 1970) or the more efficient Gotoh version

(Gotoh, 1982) are dynamic programing algorithms that

align two sequences of symbols to achieve a minimum

cost. The cost of an alignment is the sum of costs of the

symbols that are paired by the alignment, where one or

other symbol may be a ‘gap.’ These depend on a

predetermined mutation matrix of symbol-pair cost

values, and so the usefulness of the resulting alignment

depends on how accurately the model and the values

reflect the origin of the sequences.

We reformulate the alignment problem in terms of a

random process with a probability model. Probabilities

govern state transitions in a hidden Markov model and

the output of paired and gapped sequence elements.

This allows a sequence alignment to be the output of a

hidden Markov process in a manner similar to the way

speech is viewed as the output of a HMM part-of-speech

tagger (Jurafsky and Martin, 2000) or an amino acid

sequence is viewed as the output of an HMM protein

family model (Krogh et al., 1994; Durbin et al., 1998).

Our formulation is closely related to the pair HMMs

described in (Durbin et al., 1998) chapter 4. However,
we carry the methodology further in presenting a

training algorithm for our HMM approach which is

unique. For training, one specifies a collection of pairs

of sequences, without any corresponding alignments.

One also assigns some initialization of the parameter

values (possibly random or uniform). The training then

takes place iteratively to learn the parameters which will

produce overall maximal forward probabilites for the set
of training pairs.

As an application, we apply our methods to two

problems of related sequence detection. One problem is

from computational linguistics. Given a particular gene

name occurring in the literature, how can one identify

other forms of the same name or closely related names.

The second problem arises in computational biology.

Given a particular amino acid sequence in one organism
how can one find its homolog in a different organism. In

both cases we are able to demonstrate learning from

training sets which generalizes to independent test sets.

2. Sequence alignment hidden Markov model

In this section, we describe a hidden Markov process

controlling the alignment of two sequences.

* Corresponding author. Tel.: �/1-301-594-2845; fax: �/1-301-435-

7794.

E-mail address: lsmith@ncbi.nlm.nih.gov (L. Smith).

Computational Biology and Chemistry 27 (2003) 77�/84

www.elsevier.com/locate/compbiolchem

1476-9271/02/$ - see front matter. Crown Copyright # 2002 Published by Elsevier Science Ltd. All rights reserved.

PII: S 1 4 7 6 - 9 2 7 1 (0 2) 0 0 0 9 6 - 8

mailto:lsmith@ncbi.nlm.nih.gov

2.1. Definition

Let S denote a finite alphabet and let * be a special

symbol denoting a gap, and S ?�/S @ /{*}. If x1, . . ., xt � /

S ?�/S ? then x1&. . .&xt denotes the pair of sequences of

symbols in S obtained by deleting the gap symbols. For

example, with:

a a c � g

� � c t g

x1 x2 x3 x4 x5

then:

x1&x2&x3&x4&x5�
a a c g

c t g

� �

Let N]/1 denote the number of states of a Markov
process, with initial probabilities pi and transition

probabilities aij for 15/i , j 5/N . In each state i , there

is a probability for the symbol-pair x � /S ?�/S ? denoted

by bi(x). If X1, . . ., Xt are output pairs obeying this

model, then Ot denotes the pair of sequences

X1&. . .&Xt . The random variables defining the state at

each time are denoted by q1, . . ., qt .

The probability of observing outputs x1, . . ., xt and
states i1, . . ., it is:

Pr
x1 x2 . . . xt

i1 i2 . . . it

� �

�pi1
bi1

(x1) � ai1 i2
bi2

(x2) � � � ait�1 it
bit

(xt)

Therefore:

2.2. Forward�/backward algorithm

The forward�/backward and Viterbi algorithms can

be derived following (Rabiner, 1989), modified for

multiple output streams. Suppose that two sequences

of symbols in S are observed, denoted A and B , with
lengths M�/(M1, M2). A position in the observation is

given by coordinates r�/(r1, r2) such that 05/r15/M1

and 05/r25/M2. The observation corresponding to the

position r is the pair of sequences consisting of r1

symbols from the first sequence, A1, . . ., Ar1
and r2

symbols from the second sequence, B1, . . ., Br2
. This pair

of sequences is denoted by O (00/r).

The forward and backward variables can be defined
for each position r and state i ,

ar(i)�Pr[Ot�O(0 0 r); qt� i for some t]

br(i)�Pr[Ot?�O for some t?]t½Ot�O(0 0 r);

qt� i for some t] (1)

We also need a notation for the various ways of

moving from one position to another. A move, denoted

by e is one of (0, 1), (1, 0) or (1, 1) (this condition will be

denoted by 0/ß/e5/1). From a given position r a move e

indicates a move from the position r to the position r�/

e , if this is valid. The output corresponding to this move

is denoted by O (r 0/r�/e) which is:

O(r 0 r�e)�(�; Br2�1) if e�(0; 1)

O(r 0 r�e)�(Ar�1; �) if e�(1; 0)

O(r 0 r�e)�(Ar1�1; Br2�1) if e� (1; 1)

To further facilitate writing formulas, define:

pr(i)�Pr[Ot�1�O(0 0 r); qt� i for some t] (2)

so that:

p0(i)�pi

pr(i)�
XN

j�1

ar(j)aji

and for convenience let pr(i)�/0 if any coordinate of r is

negative. Then the formulas (1) can be written:

ar(i)�
X

0ße51

pr�e(i)bi(O(r�e 0 r))

br(i)�
X

0ße51

XN

j�1

aijbj(O(r 0 r�e))br�e(j)

The probability of observing O is found from:

2.3. Viterbi algorithm

The Viterbi algorithm computes the probability of the

maximum path. This is done recursively by computing
the maximum probability of reaching a position r and

being in state i .

dr(i)� max
t;x1;...;xt ;i1;...;it�1

x1&...&xt�O(00r)

Pr
x1 x2 . . . xt�1 xt

i1 i2 . . . it�1 i

� �

Define p̃r(i) to be the maximum probability of being

in state i after being in position r . Then:

p̃0(i)�pi

p̃r(i)�max
j

dr(j)aji

Let p̃r(i)�0 if any coordinate of r is negative. Then

the recursive expression for d is:

dr(i)� max
0ße51

p̃r�e(i)bi(O(r�e 0 r))

The state sequence is derived from the computation of

Pr[Ot�O for some t]�
X�
t�1

X
x1;...;xt;i1 ;...;it
x1&...&xt�O

Pr
x1 . . . xt

i1 . . . it

� � Pr[Ot�O for some t]�
XN

i�1

aM(i) (3)

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/8478

d . Let cr(i) record some pair (j , e) that achieves the

maximum in dr (i) and p̃r(i); and if the maximum occurs

with r�/e then take j�/0. To reconstruct the state

sequence, let T ?�/M1�/M2 and:

rT ?�M

qT ?� �argmax
i

[dM(i)]

Then for t�/T ?�/1, . . . and until qt��/0, let:

(qt�; et�1�)�crt�1
(qt�1�)

rt�rt�1�et�1�

xt�1� �O(rt 0 rt�1)

At the end of the algorithm, both qt��/0 (undefined

state) and rt �/0 and with this value of t let T�/T ?�/t

and relabel the sequences x*, q* so that they begin at
t�/1 and end at t�/T .

2.4. Training

In order to train we need to estimate the probability

of a particular output and a particular transition from

each state in the model, given the observed sequences.

Let:

j1
r (i; e)�Pr[Ot�O(0 0 r); Xt�O(r�e 0 r);

qt� i for some t5t?½Ot?�O for some t?]

Using pr (i) from (2):

j1
r (i; e)�pr�e(i)bi(O(r�e 0 r))br(i)=Pr[O] (4)

where the denominator is Pr[Ot �/O for some t]

computed, for example, using (3). We also need:

j2
r (i; j)�Pr[Ot�O(0 0 r); qt� i;

qt�1� j; for some t5t?½Ot?�O for some t?]

which is found to be:

j2
r (i; j)�

X
0ße51

ar(i)aijbj(O(r 0 r�e))br�e(j)=Pr[O] (5)

Using expressions (4) and (5), the training formulas
are:

p̄i 8
X

0ße51

j1
e(i; e)

b̄i(x)8
X

0ße5r5M

O(r�e0r)�x

j1
r (i; e)

āij 8
X

0ßr5M

j2
r (i; j)

where the proportionality signs are used to indicate that

the estimates are to be normalized to define probabil-

ities.

When there are multiple sequence pairs observed in

training, each gives rise to jr
1(i , e) and jr

2(i , j). These are

added together in the reestimation and the totals are

normalized to define probabilities.
In programing HMM algorithms, some form of

scaling is used to prevent floating point underflow in

the forward�/backward algorithm. Scaling does not

conveniently apply to these algorithms, and an alter-

native solution is to use a nonstandard floating point

representation which allows a very large exponent.

3. Gene synonyms

Identifying and tagging gene names in scientific

literature is a prerequisite for computer understanding

of genetics and molecular biology text (Tanabe and

Wilbur, 2002). One aspect of this problem is associating

expressions referring to genes that are spelled, punctu-

ated, or phrased differently. This was addressed in

(Krauthammer et al., 2000) by translating names to
false DNA sequences and making use of BLAST, a fast

partial matching search algorithm. In this example, we

treat names as sequences in their original alphabet and

train a Markov model for sequence alignment to ‘align’

and score potential synonyms. We expect this approach

to succeed by capitalizing on the fact that some

characters are less critical, particularly punctation, to

the meaning of a gene name phrase, as was analyzed
systematically in (Cohen et al., 2002).

3.1. Training

Out of a list of approximately 42 000 gene names, we

found that 3754 of these names occurred in from 100 to

10 000 MEDLINE documents. We began a process for

each gene name of identifying closely related names in
the MEDLINE database. If ph denotes the gene name,

let Xph denote the set of MEDLINE documents contain-

ing ph . Then we may denote the set of MEDLINE

documents not containing ph by MED �/Xph . We

applied naive Bayesian learning with words and MeSH

terms as features to learn the difference between Xph and

MED �/Xph . This learning was then applied to score

MED �/Xph and the high scoring documents formed a set
Yph in which we presumed the gene denoted by ph

would likely be discussed but under a different name.

We then applied the ABGene tagger (Tanabe and

Wilbur, 2002) to all the documents in Yph to produce

a set of potential gene names GNph . This set of terms

contains generally much more than gene names closely

related to ph . We finally applied a relatively naive

matching algorithm to extract from GNph those names
likely to be closely related to ph . Since this was an

imperfect process, human review and correction was

applied as a final step to produce a subset of GNph

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/84 79

which are gene names closely related to ph . We denote

this final set by GRph . Since this is labor intensive, at the

time of this writing, we have processed 29 gene names

from the set of 3754. On average, it was found that over
the set of 29 gene names, GRph was 0.8% of GNph .

From the 29 original gene names, 20 were selected at

random, phi i�/1, . . ., 20, and a training set was created

that consisted in up to 300 random pairs of phrases

sampled from each GRphi
. For example one of the 20

gene names is ‘adrenergic receptor’. For this gene name

GRadrenergic receptor contained 1273 names. Some of the

300 pairs that were randomly chosen for this gene name
group are:

adipocyte beta-adrenergic receptors
human alpha 1 adrenoceptors

7000 beta-adrenergic receptors

smooth muscle alpha-1 adrenoceptors

cardiac beta-adrenergic receptors

beta 2-like adrenoceptors

Another gene name in the set of 20 is ‘ccr4’. Here

GRccr4 contains only three names so only three pairs can

be produced and no random selection is necessary. All
three pairs are included in the training set. The result of

this process is a training set of 3737 pairs of related gene

names.

The training set was used to train three different

models. The first model has only one state (a degenerate

case in which only the outputs of the single state are

trained and there are no state transitions). The remain-

ing models have three states, and in both of these state 2
allows only gaps in the first string, and state 3 allows

only gaps in the second string. The difference between

these two models is that in one model (the ‘pure’ model),

state 1 allows only matches to occur, whereas in the

other model (the ‘mixed’ model), state 1 allows both

matches and gaps. None of the models allow mis-

matches. All of these models are further constrained to

be symmetric. In all models, state 1 satisfies b1(x , y)�/

b1(y , x) where x , y are any letters or *. In the three state

models, the symmetry requires identical probabilities

when the outputs are interchanged along with inter-

changing states 2 and 3. That is, in addition to the

symmetry in state 1, b2(x , y)�/b3(y , x) and a12�/a13,

a21�/a31, a22�/a33, and a23�/a32.

3.2. Results

The log (base 10) of the probability of the entire set

of 3737 synonym pairs achieved after training was

�/250 655 for the one state model, �/225 530 for the
three state pure model, and �/224 093 for the three state

mixed model. The trained state transition probabilites

are shown in Fig. 1 and the output probabilities are

summarized in Table 1. As expected, the probability is

higher in the three state models, and the added flexibility

of the mixed three state model gives it an advantage over

the pure model.
Our objective is not to learn the peculiarities of

particular gene names or classes of names, but to learn

over a large sample of name pairs what is not important

in a gene name as opposed to what signals a difference in

meaning. As expected, we found that the models learned

that some characters are more important than others

when comparing synonyms. For example, in the one

state model the probability of a gapped ‘e’ is 0.7134

times the probability of a matching ‘e’ pair. Thus if an

‘e’ is missing from one phrase the probability of

alignment is decreased by a factor of 0.7134. Compare

this with the space character which is 1.1617 times more

likely to occur as a gap than a match (together, the ‘e’

and space are the most frequently occuring characters,

appearing in 18.9% of all pairs).

An example of the difference in the performance

between the one and three state models is shown in the

alignment of ‘phospholipase c-coupled bombesin recep-

tors’ and ‘subtype 2 bombesin receptors’ illustrated in

Table 2. The three state model is able to identify words

inserted in one or the other phrase, and these are

accurately grouped together. The one state model

produces a meaningless alignment of the word ‘subtype’

with a gapped version of the word ‘phospholipase’.
These trained models can be used to compute the

probability of observing a given pair of phrases. This

probability can then be used to construct a score

measuring the relatedness of two phrases. This approach

allowed us to carry out a retrieval experiment testing

how well we could identify related gene/protein names.

We used the nine sets GRph that were excluded from

training. For each of these ph , we paired ph with every

element x � /GNph and computed the probability that the

model would produce the pair (ph , x). We also

computed the probability that the model would produce

(null, x). This allowed us to write:

score(x)� log10 Pr(ph; x)� log10 Pr(null; x)

The scoring produces a ranking of the names in GNph

and we can compute the precision and recall where GRph

are the true positives. Results over all nine sets were

averaged to produce the precisions at 11 different recall

points, and the 11 point average precision as a summary

value (Witten et al., 1999) in Table 3.
In this data it is clearly seen that the three state

models far outperform the one state model, as one might

expect. The mixed model performs slightly better than

the pure model.

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/8480

4. Sequence homologies

Sequence alignment is a technique used in molecular

biology to perform research on related biological

sequences. The standard algorithm for globally aligning

and scoring sequences is the Needleman�/Wunsch algo-

rithm (Needleman and Wunsch, 1970) or the more

efficient Gotoh algorithm (Gotoh, 1982). The quality

of alignments and scores produced by the algorithm

depends critically on cost parameters associated with

matches, mismatches, and gaps in the alignment. Our

approach gives a new method for estimating these

parameters, i.e. the probabilities b (x , y), and further

extends the alignment model to allow multiple para-

meter sets (corresponding to states) selected by a hidden

Markov process, and enables learning of these extended

parameters. We will illustrate this by taking a training

set of homologous protein sequence pairs from human

and mouse.

4.1. Training

The training set consisted of homologous human and

mouse proteins that were obtained by the following

Fig. 1. State transitions and probabilities (�/100) of the two 3 state models trained on 3737 gene synonym pairs.

Table 1

Output probabilities of classes of output (match, mismatch, and gap) for each state of three models trained on 3737 gene synonym pairs

Model State Match Mismatch Gap in first Gap in second

One state 1 0.36 0 0.32 0.32

Three state (pure) 1 1.0 0 0 0

2 0 0 1.0 0

3 0 0 0 1.0

Three state (mixed) 1 0.92 0 0.039 0.039

2 0 0 1.0 0

3 0 0 0 1.0

Table 2

The optimal alignments of the gene synonyms ‘phospholipase c-coupled bombesin receptors’ and ‘subtype 2 bombesin receptors’ produced by one

state and three state (mixed) models trained on 3737 gene synonym pairs

The prob column is the log (base 10) of the probability of the alignment in that model. The sequence of states is shown between each pair of aligned

sequences.

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/84 81

procedure. First, a list of 400 frequently searched genes

was obtained from Genecards1. For each of these genes,

LocusLink2 was used to identify a LocusId of the

human gene. The HomoloGene database3 was then

used to find the LocusId of homologous mouse (Mus

musculus) genes. Given the LocusId of homologous

genes, the corresponding proteins were found using the

RefSeq database4. This resulted in 145 homologous

protein sequences which were downloaded using En-

trez5.

These homologs were then aligned for preliminary

evaluation using untrained probabilities that give the

probability of a match that is ten times the probability

of a mismatch or a gap (b (x , x)�/0.016129 and b(x ,

y)�/0.001629 for x "/y)6. To reduce the computer

memory required to execute the training algorithms,

those homologs that had an alignment length of 2000 or

more were removed from the set, leaving 138 homologs.

Finally, to help ensure the quality of the homologs in the

training set, each homolog was scored by taking the

logarithm of the probability of the optimal alignment

(untrained) divided by the length of the optimal align-

ment. A cutoff value of �/2 was arbitrarily chosen with a

further limitation of 500 in the length of the optimal

alignment which resulted in a training set of 49

homologs. As a consequence, these 49 were more closely

related than the remaining 89.

In order to evaluate the effect of multiple states, four

different models were trained using the training set of 49

homologs, corresponding to one, two, three or four

states in the underlying model. Unlike the gene synonym

problem, we do not ask for symmetry in these models,

rather we want to take advantage of specific differences
in the sequences to improve the specifies-specific align-

ment. However, we do give states special meaning to

help guide the interpretation of the results. The one state

model permits any output (match, mismatch, or gap).

The two state model permits a match or mismatch

output from the first state (no gaps) and only gaps in the

second state. In the three and four state models, the first

state permits any output (match, mismatch, or gap), and
the last state permits any match or mismatch. In the

three state model, state 2 only permits gaps in either

sequence. The four state model has two states that allow

gaps, state 2 only permits outputs that gap the human

protein, i.e. (*, x) and state 3 only permits outputs that

gap the mouse protein, i.e. (x , *). Other than these

restrictions, the probabilities were not constrained

during training.
We also compared trained parameters with published

mutation matrices. For this evaluation we trained a two

state model on the full set of 138 homologs (those with

optimal alignments not exceeding 2000 in length). The

model was constrained similarly to the two state model

described above except that it was also required to be

symmetric, bi(x , y)�/bi(y , x). This model corresponds

to the method of aligning sequences using a 20�/20
mutation matrix together with a model for gap penal-

ties. The output probabilities of state 1 in this model

correspond precisely to a 20�/20 matrix, while state 2

defines the penalties for single gaps and the Markov

process models the overall gap penalty in the transition

probabilities.

4.2. Results

The log (base 10) of the probability of the entire set of

49 homologs achieved after training of four models is

shown in Table 4. This table shows that the overall

performance of the models with two or more states is

superior to the one state model on both the 49 training

1 http://www.bioinformatics.weizmann.ac.il/cards.
2 http://www.ncbi.nlm.nih.gov/LocusLink.
3 http://www.ncbi.nlm.nih.gov/HomoloGene.
4 ftp://www.ftp.ncbi.nih.gov/refseq/LocusLink/loc2ref.
5 http://www.ncbi.nlm.nih.gov/Entrez.
6 This is equivalent to a classic Needleman�/Wunsch alignment with

a cost of 1.79 for matches and 2.79 for nonmatches and gaps.

Table 4

Performance of an untrained model and four models trained on 49

human/mouse protein homolog pairs

Model Training total Testing total

Untrained �/31 984 �/11 7789

One state �/25 221 �/109 189

Two state �/24 855 �/98 467

Three state �/24 861 �/98 540

Four state �/24 766 �/98 159

The totals are the sum of all log (base 10) probabilities of the

homologs in each set (49 homologs in the training set and 89 homologs

in the test set).

Table 3

Precision achieved in identifying synonyms from nine gene synonym

sets for three models trained on 3737 gene synonym pairs and for recall

levels from 0 to 100%

Recall One state Three state (pure) Three state (mixed)

0 0.526741 1 0.977778

10 0.508618 0.890567 0.917662

20 0.463762 0.867323 0.893462

30 0.400175 0.79764 0.831689

40 0.396255 0.746139 0.82642

50 0.391586 0.699388 0.717144

60 0.37287 0.69152 0.703653

70 0.360286 0.671416 0.700752

80 0.34832 0.559857 0.581367

90 0.228984 0.550942 0.561543

100 0.174817 0.495818 0.495418

Average 0.37931 0.724601 0.746081

Precision at 0 recall is simply the highest precision seen at any point

in the ranking (Witten et al., 1999).

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/8482

homologs and the remaining 89 homologs. The trained

state transition probabilites are shown in Fig. 2 and the

output probabilities are summarized in Table 5.

A comparison is made between the logarithm of the

output probabilities (from state 1) of the symmetric two

state model trained on 138 homologs with published

mutation matrices. Following (Tomii and Kanehisa,

1996), we computed the correlation coefficients between

the the log probabilities and the mutation matrices made

available by those authors, 56 out of 83 of which were

symmetric 20�/20 matrices. The correlations were

performed over all 210 entries. Any correlation observed

that is greater (in absolute value) than 0.135 is statisti-

cally significant with P B/0.05. The average of the

absolute value of correlation was found to be 0.4164

and 54 out of 56 were statistically significant. For

example, the overall correlation with the Dayhoff

PAM250 matrix was 0.5681, and the three BLOSUM

series matrices had mean correlation of 0.4860. Gen-

erally, the correlation with matrices obtained from

observed amino acid exchanges were better than those

obtained from other methods, such as using physico-

Fig. 2. State transitions and probabilities (�/100) of the 2, 3 and 4 state models trained on 49 human/mouse protein homolog pairs.

Table 5

Output probabilities of classes of output (match, mismatch, and gap) for each state of an untrained model and four models trained on 49 human/

mouse protein homolog pairs

Model State Match Mismatch Gap (human) Gap (mouse)

Untrained 1 0.32 0.61 0.03 0.03

One state 1 0.91 0.08 0.008 0.005

Two state 1 0.93 0.07 0 0

2 0 0 0.526 0.474

Three state 1 0.97 0.03 0.0002 0.0002

2 0 0 0.533 0.467

3 0.19 0.81 0 0

Four state 1 0.96 0.04 0.002 0.0001

2 0 0 1.0 0

3 0 0 0 1.0

4 0.18 0.82 0 0

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/84 83

chemical properties of amino acids, as might be expected

since our data is derived from homologies.

5. Discussion

The model presented provides two new benefits to

modeling paired sequences. First, it extends the classical

Needleman�/Wunsch type algorithm to allow multiple

mutation matrices selected by a hidden Markov process.

And second, it provides a way for estimating the

parameters of the model given a training set of paired
sequences. No actual alignments need be specified as a

starting point, only pairs which are to be aligned. We

have described two very different applications, and there

are many other possibilities. This algorithm is extend-

able to multiple sequence alignment and training, just as

the Needleman�/Wunsch type algorithm has been ex-

tended to align multiple sequences.

A practical limitation of the approach is the time and
memory required to carry out the algorithms, especially

when many iterations are required to achieve conver-

gence. Two factors mitigate this limitation. First, in the

applications presented here we found two to six itera-

tions adequate for convergence. Second, the increasing

speed of computers is making such calculations more

feasible. In our evaluation we used a Dell PowerEdge

2550 computer with dual 1.26 GHz Pentium III
processors and 2 Gbyte RAM, running the LINUX

2.4.17 operating system, and the time per iteration

ranged from a few minutes for the one state models up

to about an hour for the four state model.

The running time for a single training iteration with a

single observed pair is proportional to the product of the

number of states, N , and the lengths of the observed

sequences, M1 and M2. But of course actual running
time depends on the speed of the computer. On the other

hand, the computer memory required can be reliably

predicted. For each single training iteration with a single

observed pair, the space required for each a , b , d , is

(M1�/1)(M2�/1)N numbers, c requires 3(M1�/l)(M2�/

l)N numbers, j1 requires 4(M1�/l)(M2�/1)N numbers,

and j2 requires (M1�/l)(M2�/1)N2. A floating point

number is sufficient for the d and j arrays, while a

single byte may suffice to store c . However, since a
large exponent implementation is required in computing

a and b these numbers will require a floating point

representation of a mantissa together with a numeric

(integer) exponent. Assuming 8 bytes for floating point

numbers and 4 bytes for integer numbers, the total space

requirement in bytes is:

(80�8 � N)(M1�1)(M2�1)N

During training and evaluation model probabilities

require storage of N2�/2N�/NS2 floating point numbers

where N is the number of states and S is the size of the

alphabet. Normally, this space requirement is small

compared with the space requirement needed for the

training algorithms on each observation.

The gene synonym and protein homolog data sets
developed for this study and an implementation of the

algorithms in a C�/�/ library are available for down-

load7.

References

Cohen, K.B., Dolbey, A.E., Acquaah-Mensah, G.K., Hunter, L.,

2002. Proceedings of the 40th ACL Workshop on NLP in the

Biomedical Domain, pp. 14�/20.

Durbin, R., Eddy, S., Krogh, A., Mitchison, G., 1998. Biological

Sequence Analysis. Cambridge University Press.

Gotoh, O., 1982. J. Mol. Biol. 162, 705�/708.

Jurafsky, E., Martin, J.H., 2000. Speech and Language Processing.

Prentice Hall, New Jersey.

Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C., 2000.

Gene 259 (1�/2), 245�/252.

Krogh, A., Brown, M., Mian, I., Sjolander, K., Haussler, D., 1994. J.

Mol. Biol. 235, 1501�/1531.

Needleman, S.B., Wunsch, C.D., 1970. J. Mol. Biol. 48, 443�/453.

Rabiner, L.R., 1989. Proc. IEEE 77 (2), 257�/286.

Tanabe, L., Wilbur, J., 2002. Bioinformatics 18, 1124�/1132.

Tomii, K., Kanehisa, M., 1996. Protein Eng. 9 (1), 27�/36.

Witten, I.H., Moffat, A., Bell, T.C., 1999. Managing Gigabytes.

Morgan Kaufmann, San Francisco, pp. 188�/190.

7 ftp://www.ftp.ncbi.nlm.nih.gov/pub/lsmith.

L. Smith et al. / Computational Biology and Chemistry 27 (2003) 77�/8484

	Brief communication
	Hidden Markov models and optimized sequence alignments
	Introduction
	Sequence alignment hidden Markov model
	Definition
	Forward-backward algorithm
	Viterbi algorithm
	Training

	Gene synonyms
	Training
	Results

	Sequence homologies
	Training
	Results

	Discussion
	References

