SRS Digital Photography Upgrade

Andrew P. Fellinger

Sharon L. Marra Robotics, Remote & Specialty Equipment Savannah River National Laboratory

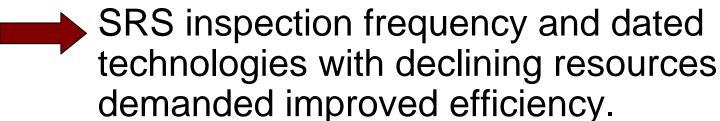
October 10, 2007

Agenda

- Visual Inspection History
- Digital Program Need
- Proposed Digital Upgrade
- Direct Photography (DP) Solution
- Wide Angle Photography (WAP) Solution
- Current Status
- Program Continuation
- Questions and Contacts

History of Visual Inspections for SRS Tanks

- Visual inspection programs initiated in the 1960s relied on the best available technology at the time.
 - shining flashlights into the risers and looking into the risers through binoculars using mirrors.
 - Technological improvements deployed as they became available
- The 1970s saw improvements to the deployment methods
 - 35 mm cameras were used in tank annulus to acquire a photographic record of the tank walls.
 - Remote inspection tool enabled ultrasonic wall thickness measurements
- "Skate UT Program" continued until the mid-1980s.
 - Incorporated video inspections and improved 35 mm cameras and lenses.
- In the mid-1990s, a commercially available ultrasonic testing (UT) system was used to acquire volumetric wall information on six underground tanks.



Tank Inspection using Periscope

SRS Inspection Program Moves to the 21st Century

- 100,000 still photos and thousands of hours of video
 - Storage space and record retention requirements
 - Deterioration
 - Archiving and retrieval
 - Continued availability of film and film processing
 - Manual screening

SRNL 2005 proposal to begin program to transition to digital technology

SRNL Proposed Digital Photography Program

- Conceptual Phase Design digital photography program (equipment) to systematically address looming issues with film technology
 - Storage space hardcopy vs. electronic
 - Availability of film processing equipment / resources
 - Repeatability
 - Screening
 - Cost/Quality*

^{*} Quality concerns stemming from compromises of di all equi, nent and image

SRNL Digital Photography Solution

CONSIDERATIONS

- Replace Contax camera body
- Zeiss Hologon T 16mm lens
- Use existing deployment mast
- Provide real-time image feedback

<u>APPROACH</u>

- 5-8 Mega pixel to retain image quality
- 12mm telecentric lens to compensate for smaller imager format
- Head redesign (larger camera body, modular flash bars)
- Add portable viewer and transmission

Digital Photography to Address DP and WAP

Direct Photography

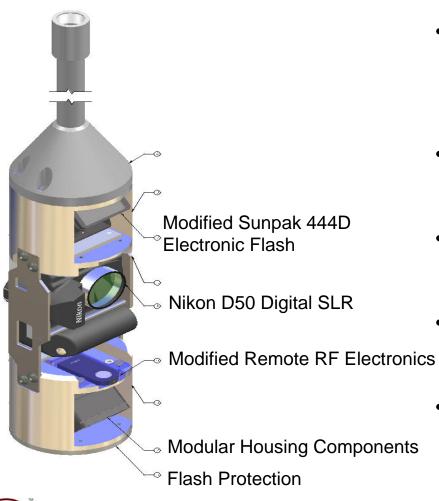
- Visual spot inspection of welds, seams, etc.
- Collective review and analysis of condition at inspection site (salt nodule changes, etc.)

Wide Angle Photography

Annular bottom views (floor space)

Common Flements

- Results are manually reviewed
- Equipment constraints
 - Selection of high quality lens for desired view drives selection of camera
 - 5" clearance challenges
 - Robustness (rigs subject to impacts and contamination)
 - Maximize rapid prototyping / manufacturing
 - Remote control and image transmission


1st Generation Direct Photography (DP) Rig

- 1st Generation design mounted camera and dual flash (above and below)
- Battery and electronics housed above camera / flash assembly
- Reduced weight significantly
- Field tested in 2007
 - Flash assembly susceptible to damage
 - Battery replacement required removal of the assembly

2nd and 3rd Generation of Direct Photography (DP) Rig

- 2nd generation improved design with flash protection and modular mountings
- Batteries and controls remoted to tank surface
- 3rd generation integrated controls into single chassis
- Added commercial DVD and instant feedback
- Both generations successfully field tested in 2007

Wide Angle Photography (WAP) Solution

Sunpak 444D Electronic Flash (four)

Nikon D50 Digital SLR

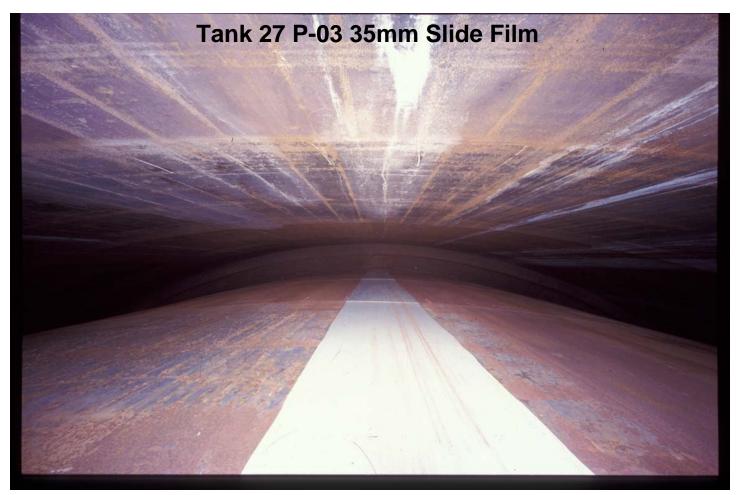
Custom Remote Electronics

Modular Housing Components

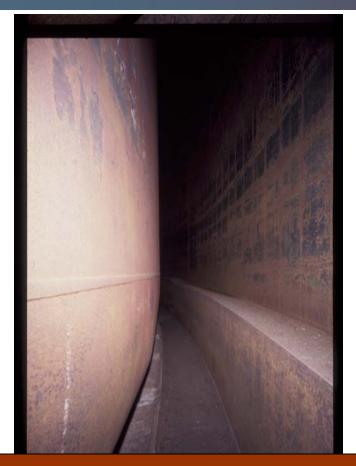
- Addressed different lighting needs
 - Multiple iterations of number, position and angle
- Mechanically cable drive to horizontal position
- Full modularity in design (allows interchangeability for maintenance by component), significant improvement over previous design

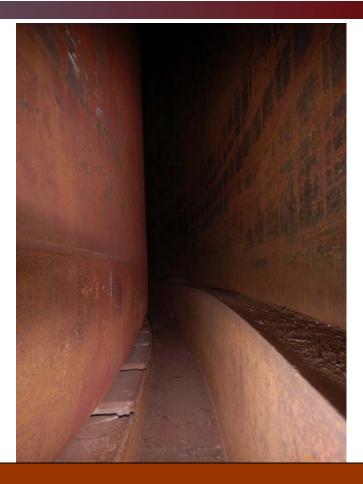
FY07 Development and Deployment Status

- Successful demonstration of DP and WAP in multiple deployments FY07
- Over 10 SRNL supported deployment reviews performed in 2007
- Full transition from film to digital camera equipment technology planned for 2008



Digital Results




Compared to Film

Side by Side Comparison

Tank 27 P-11

2003 35 MM Slide Film

2007 Digital Image

Contributors to Success

- Rapid Prototyping
 - Eden and Titan Rapid Prototype Machines used extensively for reviews
 - Eden 330 cured resin parts used for delicate flash mounts in final product
 - Working scale models deployed for evaluation in the field
 - Reduced iterative turn around time to < 48 hrs
- Solid Edge freeware to view and convert to CNC machine language
- Operator reviews during iteration of designs
- No paper reviews (3D model and rapid prototypes)
- Continuity in expertise and knowledge (customer, engineering design, machinist)

Digital Photography Program Follow On

- Proof and maturity of the digital photography equipment and technology would enable a program designed for;
 - image recognition (maturity of existing technologies)
 - improved delivery (deployment)
 - future retrievability of image formats
 - legacy photograph conversion
 - contamination controls / recovery

Digital Photography Status

- Successfully deployed and demonstrated both Direct Photography and Wide Angle Photography in FY07
- Perform funded maintenance activities to deployment rigs in FY08
- LW Inspection and Monitoring group to implement Digital Photography exclusively for routine annulus inspections in FY08
- SRNL performing review and evaluation of programmatic elements and follow on in FY08

SRNL Digital Photography Contacts

Andrew P. Fellinger (Drew)

Remote & Specialty Equipment Group, SRNL (803) 725-5705

Richard W. Poland (Rick)

Non-destructive Examinations and Systems Group, SRNL (803) 725-1998

Richard K. O'Donnell (Rich)

Non-destructive Examinations and Systems Group, SRNL (803) 725-1998

George D. Thaxton IV (Donnie)

Waste Tank Chemical Cleaning, F-Tank Farm Closure Project Engineering (803) 208-0603

Ruel S. Waltz

Structural Integrity, Liquid Waste Process Engineering (803) 208-8719

