### **S&A FY03 ANNUAL REVIEW MEETING**

## THERMAL IMAGING CONTROL OF FURNACES AND COMBUSTORS

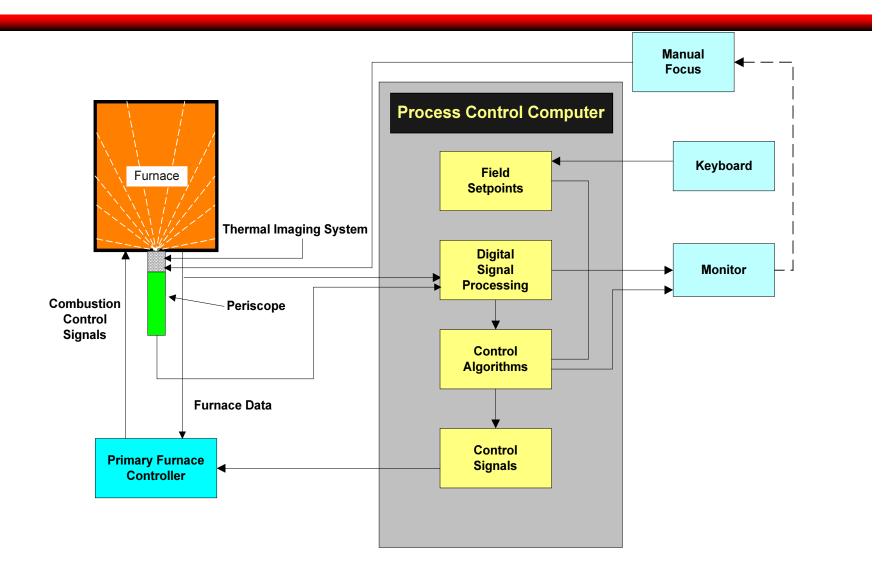
David M. Rue, Serguei Zelepouga Gas Technology Institute Ishwar K. Puri University of Illinois at Chicago

GTI - Rue, Zelepouga / 1

## **Project Overview**

#### Project description

 Dual wavelength near-IR thermal imaging system developed in the laboratory, demonstrated in the lab, and demonstrated on several industrial furnaces


#### Objectives

- Demonstrate technology in the laboratory
- Design and fabricate an industrial demonstration unit
- Test the thermal imaging and control technology industrially
- Find a partner to commercialize the technology

#### Overall goal

The objective of this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors.

## **Project Description**



## **Technical Merit**

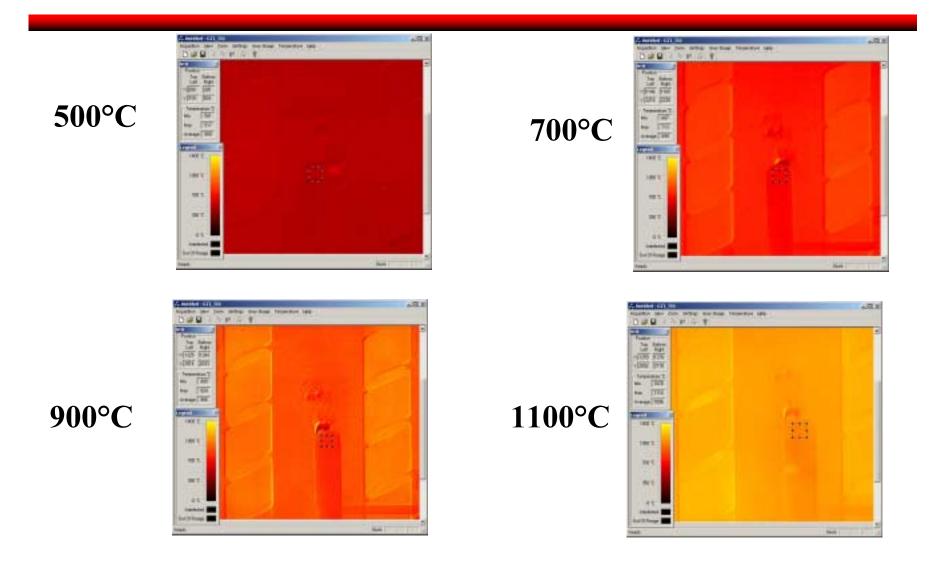
 Addresses technical need(s) of the S/C community and the S/C priorities of the IOFs

- Higher energy efficiency
- Improved product quality

- -- lower emissions
- -- longer furnace life

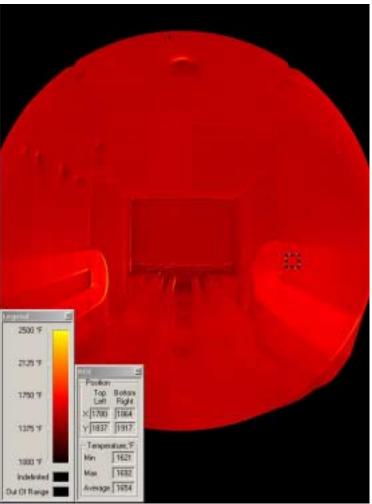
### **Directly addresses industry needs**

Glass, steel, aluminum – seeing and eliminating hot spots and improving temperature uniformity extends furnace life, improves efficiency, and lowers emissions


Chemicals – temperature uniformity in process heaters with many burners improves product quality while also extending furnace life and maintaining low NOx emissions from many burners at once

## **Technical Merit**

### Contributes a critical, significantly advanced technology to the S/C community


- Increases the temperature range (500 to 2000°C) of industrial thermal imaging systems
- Provides output in a format useful to furnace control systems because temperature information can be averaged, summed over defined areas, or compared directly with a desired temperature 'map'
- Temperature and video images can be obtained simultaneously, providing a dual sensor function, making the technology simultaneously more useful and more cost effective

## **Expanded Temperature Range**



### Heat Treat Tube Thermal Images



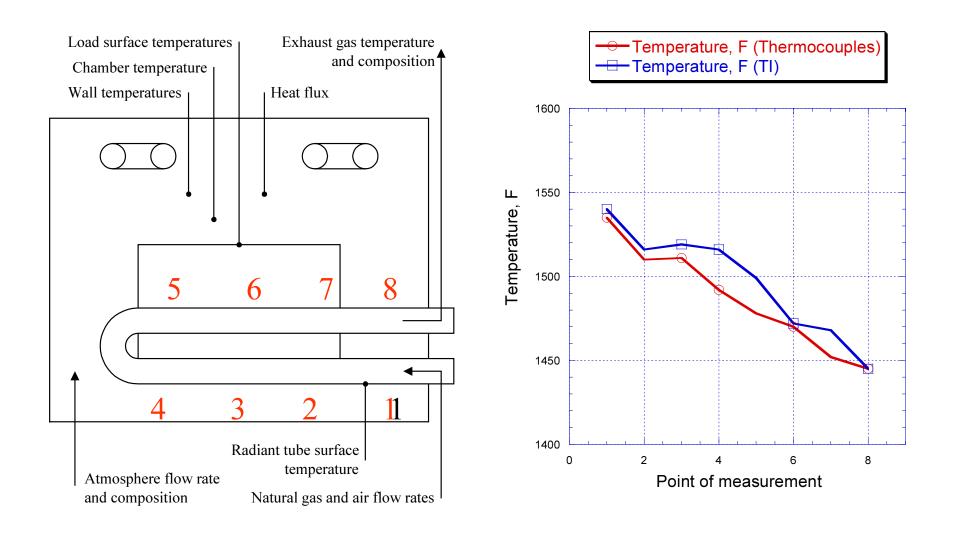


# **Technical Progress and Outlook**

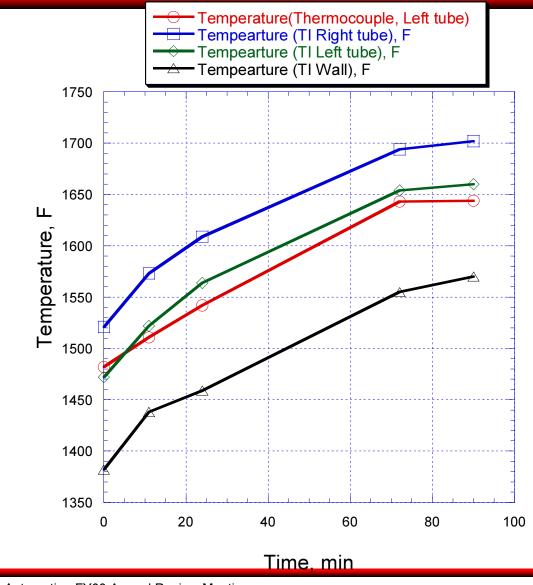
### **Technical Milestones**

| Milestone                                                             | Comments                                                                                                                 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Complete control component<br>for bench-scale furnace                 | In Progress                                                                                                              |
| Demonstrate thermal imaging<br>and control on bench-<br>scale furnace | Done on a GTI heat treating furnace                                                                                      |
| Complete field system design                                          | Done                                                                                                                     |
| Install thermal imaging control<br>system on industrial<br>furnace(s) | Planned for summer 2003 on two Owens Illinois<br>glass furnaces – a regenerative air-gas melter<br>and an oxy-gas melter |
| Complete field testing and data analysis                              | Summer 2003                                                                                                              |

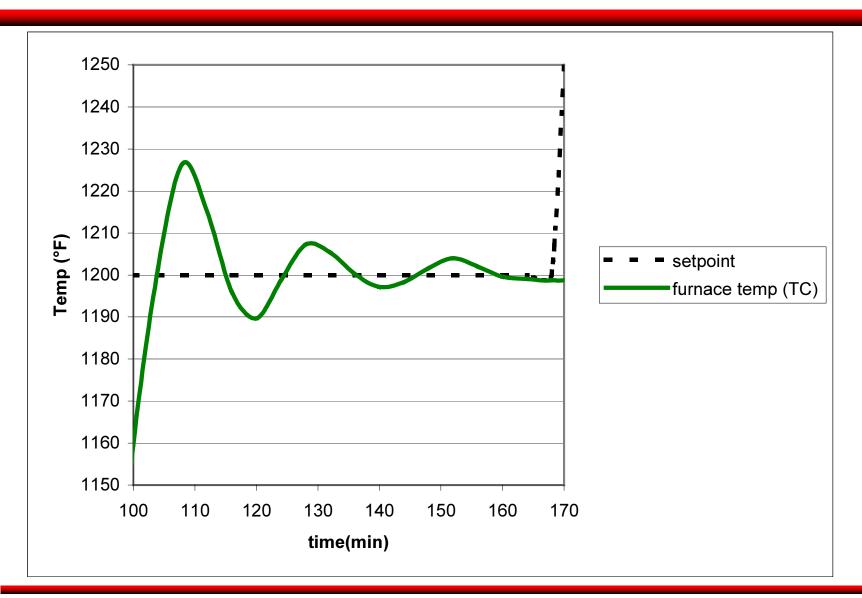
### Thermal Imaging System – *Bench-Scale Testing*



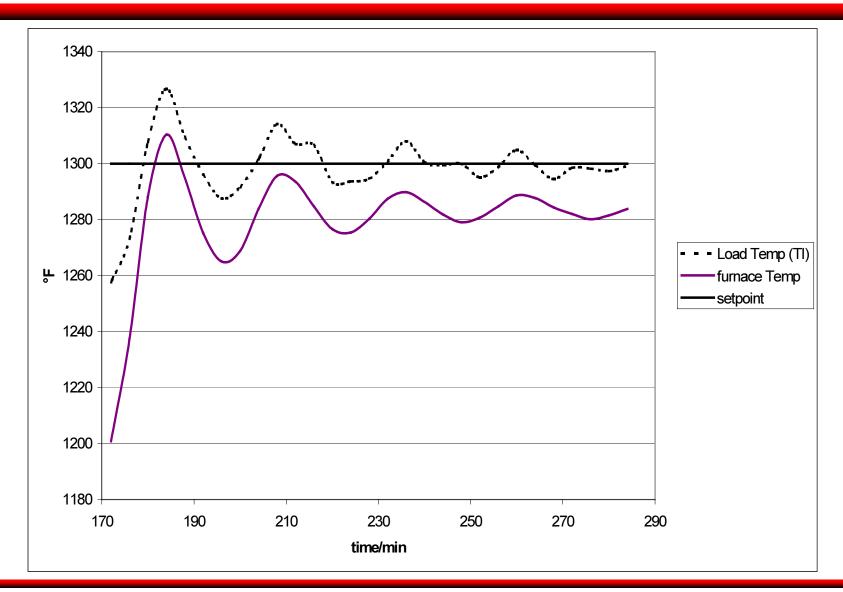

### **GTI Heat Treating Furnace**


### **Bench-Scale Thermal Imaging System Hardware**




# Radiant Tube Temperature Profile




## Temperature rise with time Thermal Imaging vs. thermocouple



## Heat Treat Furnace Control - Traditional



## Heat Treat Furnace Control – Thermal Imaging



Sensors and Automation FY03 Annual Review Meeting

GTI - Rue, Zelepouga / 13

## **Technical Progress and Outlook**

### **Future Technical Milestones/Goals**

| Milestone/Goal                                                         | Expected<br>Completion<br>Date | Comments                                                             |
|------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------|
| Owens Illinois glass furnace (air-gas and oxy-gas) demonstrations      | Summer<br>2003                 | Schedule being organized<br>with OI Manager of<br>furnace operations |
| NYSERDA funded project to develop an<br>industrial prototype TI system | July 2003                      | 18-month project with IEM<br>and GTI                                 |
| Invited paper on TI system published at 2003 Glass Problems Conference | Oct. 2003                      | One of 25 papers to 600-<br>member glass industry<br>audience        |
|                                                                        |                                |                                                                      |
|                                                                        |                                |                                                                      |
| DOE Project Completion                                                 | Dec. 2002                      | Project complete – further development in prgress                    |

# NYSERDA Project Work Plan

| Tasks                                    |  | Thermal Imaging System Task Durations |    |           |    |          |  |
|------------------------------------------|--|---------------------------------------|----|-----------|----|----------|--|
|                                          |  | Q2                                    | Q3 | Q4        | Q1 | Q2       |  |
| 1. Define TIS Specs with GTI             |  |                                       |    |           |    |          |  |
| 2. Software Technology Transfer          |  |                                       |    |           |    |          |  |
| 3. Fabricate TIS Prototype               |  |                                       |    |           |    |          |  |
| 4. Demonstrate and Test Prototype        |  |                                       |    |           |    |          |  |
| 5. Refine and Solidify Commercial Design |  |                                       |    |           |    |          |  |
| 6. Prepare for Marketing and Production  |  |                                       |    |           |    |          |  |
| 7. Project Management and Reporting      |  |                                       |    |           |    |          |  |
| Reports                                  |  |                                       |    |           |    |          |  |
| Meetings                                 |  | V                                     |    | · · · · · |    | <u> </u> |  |

## **Technical Progress and Outlook**

- Heat management. The camera lens must be inside the furnace; other parts are near the furnace exterior and will be subjected to heat, which must be removed if the system is to continue to operate. *This will be addressed* through with a *cooling shroud* which around affected components with a constant flow of coolant, usually water.
- Lens cleaning. Even the cleanest furnace will inevitably release soot, dust, or something which could adhere to a lens. There must be a way to clean the lens, preferably without having to remove it from the furnace and without interfering with furnace operation. A *pressurized nitrogen cleaning system is planned* for the objective lens.
- **Repair and maintenance.** For severe service locations, the camera system will be on a *retractable mount* which will allow it to be removed from the furnace without interrupting operations.
- *High-temperature optics.* The objective lens must be made of a material which can transmit the near infrared spectrum needed and will not be harmed by temperatures of 3,000° or more. The properties of candidate substances will be studied and most suitable selected.

# **Technical Progress and Outlook**

### Industrial end-user involvement

- Owens Illinois testing in summer of 2003
- Blasch Precision Ceramics field testing for the industrial prototype in the upcoming NYSERDA project
- IEM, Corp. development of the industrial prototype sensor and OEM marketer and supplier of final near-IR thermal imaging system

## Industry Needs and TIS Benefits

| Higher energy<br>efficiency, lower fuel<br>costs                    | Control of furnace instabilities and a more<br>uniform temperature profile allows the less<br>over-firing fuel and faster load processing                                |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower exhaust gas<br>emissions, including<br>CO and NO <sub>x</sub> | Better control provides more complete<br>combustion (lower CO) and more uniform<br>temperature profile with decreased peak flame<br>temperature (lower NO <sub>x</sub> ) |
| Higher product quality and less solid waste                         | More uniform load temperature profile lowers product loss, raises product quality                                                                                        |
| Elimination of refractory hot spots                                 | Field data indicates refractory hot spots.<br>Burner conditions are modified to produce a<br>more uniform temperature profile                                            |
| Better furnace stability                                            | Real-time field data enables system to focus<br>on an instability and use controls to eliminate it<br>in near real time                                                  |

Sensors and Automation FY03 Annual Review Meeting

## **Market Potential**

### Commercialization plan

- After market review, product price evaluation, and industrial need assessment, the project team has found the best commercialization route to be a low-cost, reliable video and thermal imaging system
- The original dual-wavelength near-IR approach will be used to collected thermal imaging data in real time
- The same information will be used to create real-time video images of the process
- The propreitary technique uses the same hardware and more sophisticated algorithms relative to the original thermal imaging system

## Market Potential - IOF Industries

| Industry         | Application            | Production,<br>10 <sup>6</sup> ton/y | Total Fuel,<br>10 <sup>12</sup> Btu/y |  |
|------------------|------------------------|--------------------------------------|---------------------------------------|--|
| Steel            | Reheating              | 90                                   | 144                                   |  |
| Steel            | Continuous<br>Anealing | 22                                   | 19.8                                  |  |
| Steel            | Batch<br>Annealing     | 8                                    | 8                                     |  |
| Aluminum         | Remelting              | 3.5                                  | 7                                     |  |
| Glass            | Melting                | 30                                   | 120                                   |  |
| Chemicals        | Ethylene<br>Cracking   | 6                                    | 50.4                                  |  |
| Metal<br>Casting | Heat<br>Treating       | 60                                   | 60                                    |  |
|                  | Total                  |                                      | 410                                   |  |

# Programmatic Merit

### Energy and environmental benefits

- Lower energy costs for batch and continuous processes
- Decreased NO<sub>x</sub> abatement costs by an estimated 30% for high temperature processes
- More product meeting specifications optimized process control
- Less down time between loads
- Longer furnace life from elimination of hot spots and decreased furnace component wear with more heat applied directly to the load
- Lower capital cost per piece or per pound of product from higher furnace throughput (continuous furnaces) or faster cycling (batch furnaces

### Economic benefit

Annual savings of \$17 million dollars with 10 percent market penetration

GTI – Rue, Zelepouga / 21

## **Energy and Environmental Benefits**

|           |             |                          |                        | Reductions, 10% of market |                   |       |                   |  |
|-----------|-------------|--------------------------|------------------------|---------------------------|-------------------|-------|-------------------|--|
|           |             | Production               | Total Fuel,            | Fuel,                     | CO <sub>2</sub> , | CO,   | NO <sub>x</sub> , |  |
| Industry  | Application | $, 10^{6} \text{ ton/y}$ | 10 <sup>12</sup> Btu/y | $10^{12}$ Btu/y           | Ton/y             | ton/y | ton/y             |  |
| Steel     | Reheating   | 90                       | 144                    | 0.43                      | 25,100            | 4.1   | 1,100             |  |
| Steel     | Continuous  | 22                       | 19.8                   | 0.06                      | 3,500             | 0.3   | 50                |  |
|           | Annealing   |                          |                        |                           |                   |       |                   |  |
| Steel     | Batch       | 8                        | 8                      | 0.025                     | 1,400             | 0.1   | 6                 |  |
|           | Annealing   |                          |                        |                           |                   |       |                   |  |
| Aluminum  | Remelting   | 3.5                      | 7                      | 0.02                      | 1,250             | 0.1   | 2                 |  |
| Glass     | Melting     | 30                       | 120                    | 0.36                      | 20,900            | 6.7   | 300               |  |
| Chemicals | Ethylene    | 6                        | 50.4                   | 0.15                      | 8,700             | 0.35  | 13                |  |
|           | Cracking    |                          |                        |                           |                   |       |                   |  |
| Metal     | Heat        | 10                       | 10                     | 0.03                      | 1,750             | 0.6   | 30                |  |
| Casting   | Treating    |                          |                        |                           |                   |       |                   |  |
|           | Total       |                          | 410                    | 1.1                       | 62,500            | 12    | 1,450             |  |

## **Coordinated Projects**

### GTI, with gas industry FERC support, is developing a suite of combustion sensors

- Thermal imaging
- Flame rich and lean zones
- Flame temperature
- Flame species
- Fuel gas BTU value
- All sensors utilize passive spectroscopic methods to monitor characteristics of combustion performance in real time inside the furnace or process heater

### For each industrial process

- The best 'multi-point' sensor is selected to work with GTIdeveloped control algorithms and the furnace controller
- The objective is local and global optimization