
Dark Energy, or Worse?

Sean Carroll, University of Chicago

Observation tells us: the universe is <u>spatially flat</u> (CMB) and <u>accelerating</u> (SNe).

There is a straightforward interpretation: The universe is dominated by "<u>dark energy</u>", essentially smooth and slowly–varying, comprising 70% of the total energy density.

[Jaffe et al.]

Simplest candidate: vacuum energy,

 $\rho_{vac}(t,\vec{x}) = const.$

In fact, we have: $\rho_{vac} \approx 10^{-8} ergs/cm^3$.

This raises (at least) two big problems:

• Why is $\rho_{vac} \approx 10^{-120} M_{planck}^4$?

• Why is
$$\rho_{vac} \sim \rho_{Matter}$$
 '

What might be going on?

Possibilities include:

- 1 The vacuum energy ("true" or "false") is small, but nonzero.
- 2 A slowly–varying dynamical component is mimicking a vacuum energy.
- ³ Einstein was wrong.

1) Might the true vacuum energy be nonzero?

Some numerology: $M_{SUSY} = \sqrt{M_{Planck}} M_{vac}$

$$M_{vac}^{4} = e^{-2/\alpha} M_{Planck}^{4}$$

This is the state of the art. That should tell you something.

Perfectly reasonable people are driven to invoke the anthropic principle.

2) Is the dark energy a slowly-varying dynamical component?

 $V(\phi)$

0

e.g. a slowly–rolling scalar field: "quintessence"

Good:

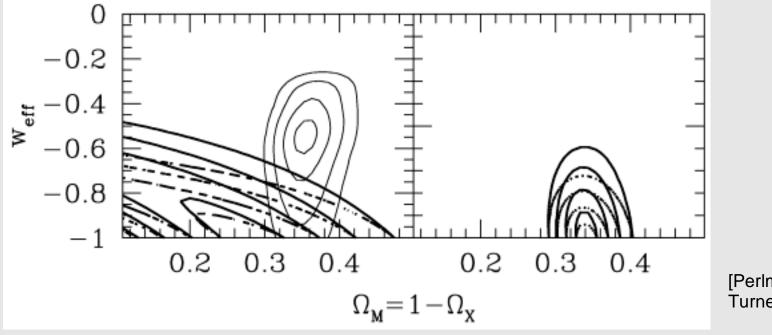
- Consistent with $\rho_{vac} = 0$ ultimately.
- Observationally interesting.
- Solve the coincidence problem?

Bad:

- Unnatural particle physics. $(m_{\phi} \approx 10^{-33} eV)$
- Should have been detected already.

Characterize using an effective equation of state:

 $p = w \rho$. For actual vacuum energy, w = -1 (forever).


The more negative pressure (negative *w*), the more acceleration you get:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p).$$
 W

First thing to ask: is the dark energy dynamical?

$$(w \neq -1 \text{ or } w' \neq 0)$$

Limits from SNe and LSS are already pretty good:

[Perlmutter, Turner & White]

Should we consider w < -1?

Against: Violates "null dominant energy condition" ($\rho + p > 0$, $|\rho| > |p|$); might allow faster-than-light transmission of energy.

For: We are clueless about dark energy, and should be correspondingly humble.

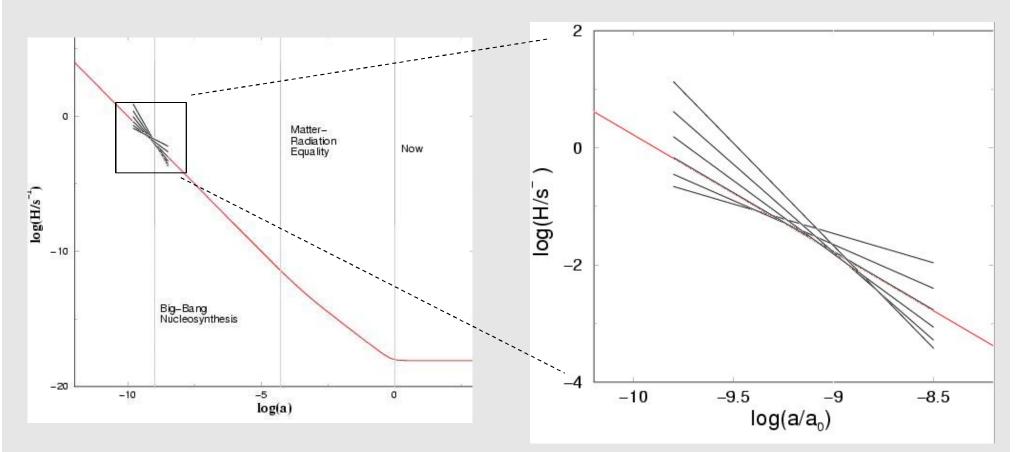
Could dark–energy dynamics solve the coincidence problem?

At issue: we need something special about today in order to make today special.

Two possibilities:

• Today is not so far (on a log scale) from matter/radiation equality ($z_{eq} \sim 10^4$).

[e.g. "k-essence": Armendariz-Picon, Mukhanov & Steinhardt]

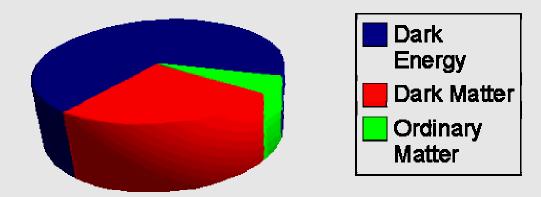

• Perhaps acceleration is something that just happens from time to time.

[e.g. "oscillating dark energy": Dodelson, Kaplinghat & Stewart]

4) Was Einstein wrong?

Issue: numerous observational constraints.

e.g., expansion history during Big Bang Nucleosynthesis:



Notice: there is a coincidence problem!

[Carroll & Kaplinghat]

Conclusion:

We know much, we understand nothing.

