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Wordplay: An Examination of Semantic Approaches to
Classify Safety Reports

Shawn R. Wolfe.1

NASA Ames Research Center, Moffett Field, CA, 94035

Aviation safety reports, such as those of the Aviation Safety Action Program (ASAP) and
the Aviation Safety Reporting System (ASRS), provide a valuable record of safety incidents
for industry analysts. Unfortunately, the sheer quantity of safety reports often makes it
difficult to identify recurring safety issues and their causes. In response, NASA has explored
the use of text classification techniques to automatically identify safety issues from the text of
safety reports. One common approach for text classification is to use a statistical model of
word occurrences in each report (often referred to as a bag of words), and use these models
to train a classifier. We performed an experiment to evaluate whether simple semantic
approaches could improve classification results with a support vector machine (SVM)
classifier by factoring semantic relationships of words into the statistical model. Counter to
our intuition, most of these semantic enhancements did not improve classification results.
One method of combining meaningful words did show an improvement over the standard
approach, however, and is presented along with the results of our study.

 I. Introduction
VIATION safety reports can provide a valuable record of safety incidents. The Aviation Safety Action
Program (ASAP) and the Aviation Safety Reporting System (ASRS) are two successful programs that

systemize and standardize the reporting of safety incidents. These incident reports are stored in several archives and
provide a means for industry analysts to identify and monitor recurring safety issues. The volume of such reports is
staggering: over 600,000 reports have been submitted to ASRS1 with more than 40,000 new reports submitted in
2005 alone2. This overwhelming quantity of information surpasses the ability of an analyst to review every report. In
part, this is mitigated by the use of classification schemes to group reports into categories of potential interest, such
as the type of incident or situation characteristics. This allows the analysts to quickly identify a subset of reports in
the corpus that are relevant to the current study.

In reality, the challenge of reviewing each report remains, but it has been transferred from the analysis phase to a
classification phase. This potentially reduces the cost by performing the classification only once per report, rather
than once for each analyst, benefiting all analysts who use the archive. The task of classifying such a large quantity
of reports remains daunting, however. Typically, a team of highly trained experts will review each report and arrive
at a mutually agreeable set of classifications1. The requisite expertise is rare, and several teams of experts are needed
to keep up with the incoming flow of documents. Coupled with the cost of manually encoding the reports, it is not
surprising that no more than one in five submitted reports are entered into the ASRS database3. Since the majority of
reports are unavailable for analysis, it is unlikely that the full benefit of ASRS is currently realized.

Any technology that decreases the difficulty of categorizing aviation safety reports could both increase the
benefit and decrease the cost of managing a program such as ASRS. An effective tool that assists an expert in
classifying incident reports would save effort; a system that automatically and reliably classifies a portion of the
incident reports without expert guidance could have an even greater impact. In support of these goals, NASA has
investigated the application of text classification technologies to classify aviation safety reports.

The most popular text classification techniques use domain-independent statistical models of the text and
sophisticated machine learning algorithms to classify text. Improving upon these underlying algorithms remains an
active area of research, but is outside the scope of our investigation. Rather, we sought to evaluate whether the
introduction of domain knowledge could significantly improve the performance of a standard text classifier for
aviation safety reports. Our hypothesis was that the lack of domain knowledge was negatively impacting
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classification results, and even a modest amount of incorporated domain knowledge could improve performance.
Unfortunately, domain knowledge is typically expensive to incorporate into a computer system and is not commonly
a part of text classification (which instead relies on implied relationships derived through statistical analysis rather
than an explicit representation of meaning). In this work, we only approximate the effect semantic information
might have on classification results in order to measure its potential without incurring the full developmental cost.

 II. Related Work
In our study, we represent each document in terms of weighted statistics of word occurrences, commonly

referred to as a bag of words, and use a support vector machine (SVM) to classify the documents. The bag of words
model and TF*IDF term weighting scheme was initially developed in the context of information retrieval4,5. Support
vector machines were introduced by Vapnik as a general method for statistical learning; their applicability to text
classification was argued by Joachims6 and has since become a popular approach to text classification7.

Automatic classification of aviation safety reports has been examined in previous studies. Decision trees were
used to classify Southwest Airlines ASAP reports in a proof of concept study8. Srivastava et al. used SVMs to
classify ASRS reports9, and have since expanded on their earlier work with a system called Mariana10. Their effort
has been a strong influence on our study; we have attempted to recreate their techniques9 in our baseline when
possible, but acknowledge that differences in implementation are inevitable.

Information extraction techniques have also been used to classify JetBlue and United Airlines safety reports by
looking for key phrases in the text that are representative of a given incident type11,12. A similar approach was used
to classify ASRS reports13, which is relevant to our approach in that lists of related terms were also exploited to
modify the bag of words. However, the phrases and term lists were engineered manually and applied globally,
unlike our approach where all term lists were derived statistically, and different term lists were used for each
incident class.  A logic-based approach was also used to derive a concept lattice from the fixed field data of ASRS14.

Statistically deriving relationships between terms has been explored previously within the context of aviation
safety reports15. More generally, statistical techniques for dimensionality reduction such as Principal Component
Analysis and Singular Value Decomposition are similar to our use of term lists16. Koller and Sahami developed a
hierarchical method for classifying documents with very few words17, a much more sophisticated approach than the
simple one word classifier we used for comparison.

 III. Aviation Safety Reporting System
We used a corpus consisting of 20696 ASRS reports as our dataset. Every report in the corpus had been

classified previously, with most reports classified in more than one incident type. We limited ourselves to the forty
most common incidents, which together occurred in all but 135 reports. Figure 1 shows the distribution of incident
classes and number of incident classes per report, given our restricted set of incident classes. Metadata (such as
phase of flight, time of day, etc.) were also encoded for each report but were not used in our study. Instead, we used
only the narrative text of the reports, which vary from a single sentence to several paragraphs in length. Figure 2
shows a representative narrative18. ASRS reports contain a high number of domain specific terms, nonstandard
abbreviations, and shorthand. The use of abbreviations is fairly regular but not entirely so; abbreviated and complete
versions of the same word occur in the text (for example, ACFT and AIRCRAFT), and some abbreviations expand
out into different words. These issues make the reports more challenging to work with, but are not unique problems:
synonymy and polysemy are a normal part of language.
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Figure 1. Distribution of incidents and incidents per report.
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The assigned classifications in the corpus were not always consistent: in one extreme case, two reports with
identical narratives had different classifications. There are several reasons for this. First, important differences may
lie in the metadata of reports with similar narratives, leading to different classifications. Second, reports are not all
from the same period of time, and the prevailing wisdom as to what constitutes a certain safety incident is likely to
drift over time. Finally, even aviation experts do not always agree on the nature of a safety incident. To a degree,
this is reduced by the requirement of consensus with the team, but different teams may still classify the same report
differently. Regardless of the reason, the variation in classification is an additional challenge when learning from the
ASRS corpus.

PAX ARRIVED BRU DEC/MON/04. HAD MALARIA ATTACK 3 WKS PRIOR IN SIERRA LEONE (SAW DOCTOR).
IN FRA, REQUESTED WHOLE ROW FLT ON DEC/TUE/04 AND SAID HE WASN'T FULLY RECOVERED. GND
STAFF ALERTED ME AND I ALERTED CAPT. HAD GND STAFF CALL DOCTOR WHO SAID HE WASN'T
CONTAGIOUS AND COULD FLY. 2 1/2 HRS PRIOR TO LNDG, DISPATCH CONTACTED CAPT THAT PAX MAY
BE CONTAGIOUS AND THAT PUBLIC HEALTH WOULD MEET FLT. ALSO ADVISED ALL PAX HAD TO REMAIN
ON BOARD UNTIL CLRED BY PUBLIC HEALTH. PUBLIC HEALTH REFUSED TO MEET FLT. (WE WERE NOT
ADVISED UNTIL LNDG.) FLT MET BY AGENT Y AND Z (MGRS, COMPANY CUSTOMS). SO, FOR 2 1/2 HRS,
ENTIRE CREW THOUGHT WE MAY BE QUARANTINED. ADVISED GND STAFF TO KEEP US IN THE KNOW IN
FUTURE.

Figure 2. Example narrative from ASRS report ACN: 642270

term tf idftf*idfterm tf idftf*idfterm tf idftf*idfterm tf idftf*idf
04 25.86 11.72COULD 11.33 1.33LEONE 19.83 9.83SIERRA 16.74 6.74
1/2 24.93 9.86CREW 11.92 1.92LNDG 21.25 2.50SO 11.40 1.40
2 21.04 2.08CUSTOMS 15.33 5.33MALARIA 19.83 9.83STAFF 36.00 18.00
3 11.53 1.53DEC 24.70 9.40MAY 22.37 4.74THAT 20.39 0.78
ADVISED 31.86 5.58DISPATCH 12.97 2.97ME 11.24 1.24THE 10.08 0.08
AGENT 13.81 3.81DOCTOR 25.12 10.24MEET 24.02 8.04THOUGHT 12.14 2.14
ALERTED 24.43 8.86ENTIRE 13.50 3.50MET 13.61 3.61TO 40.03 0.12
ALL 11.34 1.34FLT 45.06 20.24MGRS 17.19 7.19TUE 14.25 4.25
ALSO 11.51 1.51FLY 12.38 2.38MON 14.55 4.55UNTIL 21.94 3.88
AND 50.06 0.30FOR 10.37 0.37NOT 10.45 0.45US 10.98 0.98
ARRIVED 13.25 3.25FRA 17.89 7.89ON 20.20 0.40WASN'T 20.45 0.90
ATTACK 15.48 5.48FULLY 13.96 3.96PAX 35.24 15.72WE 20.46 0.92
BE 20.88 1.76FUTURE 12.96 2.96PRIOR 22.07 4.14WERE 10.46 0.46
BOARD 13.38 3.38GND 31.65 4.95PUBLIC 35.64 16.92WHO 12.29 2.29
BRU 18.22 8.22HAD 30.50 1.50QUARANTINED 19.83 9.83WHOLE 14.18 4.18
BY 20.85 1.70HE 20.99 1.98RECOVERED 15.43 5.43WKS 14.79 4.79
CALL 11.84 1.84HEALTH 36.65 19.95REFUSED 14.22 4.22WOULD 11.10 1.10
CAPT 23.65 7.30HRS 22.76 5.52REMAIN 13.61 3.61Y 12.99 2.99
CLRED 14.18 4.18I 10.31 0.31REQUESTED 12.30 2.30Z 13.58 3.58
COMPANY 12.25 2.25IN 40.27 1.08ROW 14.69 4.69
CONTACTED 12.46 2.46KEEP 13.19 3.19SAID 21.27 2.54
CONTAGIOUS 29.14 18.28KNOW 12.37 2.37SAW 12.11 2.11

Figure 3. ASRS Report ACN:642270 modeled as a bag of words

 IV. Approach
In our approach, each document of the corpus is represented as a bag of words, thus discarding all document and

sentence structure. For each document, the term frequency for each word is calculated. Then, for each term, a
corpus-wide count of documents that contain the term is calculated. These two quantities are combined in a measure
called TF*IDF, which stands for term frequency multiplied by inverse document frequency. TF*IDF is an intuitive
weighting measure for the component terms in the document: the more often a term occurs in a document, the higher
it is weighted; the more documents a term occurs in, the lower it is weighted. This matches our expectation that a
term will be more significant when it occurs frequently in a document but in few documents of the corpus. There are
a variety of ways to scale the term frequency and inverse document frequency components in TF*IDF; we use the
most common formulation:

TF*IDF = term frequency * log(inverse document frequency) (1)

When calculating the inverse document frequency, we used only the documents used to train the classifier (i.e., the
training set) rather than the entire corpus, as we did for all our statistics used in training. As a result, the inverse
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document frequency score would vary minimally from one run to another. Figure 3 gives an example of a document
modeled as a bag of words.

We subdivided the corpus into separate training and testing sets. Ninety percent of the corpus (approximately
eighteen thousand documents) was available for training and the remaining ten percent (approximately two thousand
documents) were used for testing. We created a separate classifier for each class (so for a single run and method,
forty separate classifiers were created). For the SVM experiments, only a fraction of the available testing data was
used, for two reasons. First, training a SVM is relatively time consuming, and training over all the available training
data was not feasible given the time constraints of our study. Second, it is often best to train a SVM classifier using
equal proportions of positive and negative examples19. Therefore, we manipulated the training set so that equal
numbers of positive and negative examples were present in the training data used. For many of the incident classes,
this meant that we used a lower number of training examples when training the SVM- in some cases, fewer than four
hundred documents. The ordering and selection of training data from the training set was randomized in all cases.
The testing set was not altered in any way, so it preserved the overall distribution of positive to negative examples,
with natural variations due to the randomness of the partitioning of the corpus.

We evaluated the results of our experiments using the standard measures of precision and recall rather than the
rate of correctly classified instances. The rate of correctly classified instances can be misleading when there are few
positive instances to classify- in such cases, a classifier can classify every instance as negative (thus misclassifying
all positive instances) yet still have a high rate of correctly classified instances. Instead, precision is a measure of
purity for the positively classified instances, defined as the ratio of the correctly classified positive instances to all
positive instances in the testing set, and recall is a measure of coverage, defined as the ratio of the correctly
classified positive instances to all instances classified as positive from the testing set. Consider the four types of
classification outcomes: true positives (correctly classified positive instances), false positives (negative instances
incorrectly classified as positive), false negatives (positive instances incorrectly classified as negative), and true
negatives (correctly classified negative instances). Representing these as tp, fp, fn, and tn respectively, the formula
for precision p is:

p = tp / (tp +fp) (2)

and the formula for recall r is:

r = tp / (tp + fn) (3)

Precision and recall are often combined into a third measure, F-measure20 (also called F1-measure), defined as:

F = (2 * p * r) / (p + r) (4)

which we use in our evaluation as well.
The measures of precision and recall (and correspondingly, F-measure) are highly sensitive to the number of true

positives. With many of our target incident classes having few positive examples (see Figure 1), we could have
twenty or fewer positive instances in our testing set. This presented the possibility of random effects skewing our
results. We used three runs of ten-fold cross-validation to address this issue. Cross-validation amounts to rerunning
the experiment several times with different training and testing data selected from the corpus. The corpus is divided
into folds of approximately the same size. The experiment is run once for each fold, every time using a different fold
as the testing data and using the remaining folds for training data. This insures that all data are used for testing, thus
minimizing the potential for random effects. The results of the multiple runs are averaged together.

 V. Experimental Methodology
We devised a battery of experiments to approximate the particular semantic transformations as well as several

non-semantic methods for the purpose of comparison.

1) Baseline methods
We created three baseline methods against which to compare the results of our experiments, as well as to

evaluate the performance of the SVM text classification approach itself. The first method, Baseline, was our generic
SVM-based approach. We used the unaltered bag of words representation (as described in the previous section). We
had explored using mutual information for feature selection (e.g., to select the terms), but found no significant



American Institute of Aeronautics and Astronautics
5

improvement over simply selecting the most frequently occurring terms in the corpus. This corresponds with prior
research, which also found term selection provided no improvement in classification performance when using an
SVM for text classification21. Favoring simplicity, we selected all terms that occurred in more than one percent of
the documents of the training set (approximately 1600 terms) and discarded all less common terms, as they occurred
in less than twenty documents in our training set and thus were unlikely to significantly contribute to classification
accuracy. Stop words (i.e., words with little semantic value) were included in the list of terms. We used the Weka
software package22, version 3.4.7, for the SVM implementation, using an RBF kernel with a full cache and
normalization. We used a reasonable starting point for the SVM parameters, based on ongoing experimentation in
the domain19, and did no further tuning. The Baseline method served as the basis for all of our SVM-based
experiments, using the same SVM implementation and parameters, and the same bag of words with modifications as
noted.

Our other two baselines did not use an SVM classifier and are the only methods we used that did not. The second
method, Feeble, was meant to measure a performance floor for classification. Our Feeble classifier does not make
use of training data, and as such, does not learn. Instead, it classifies all instances to be in the target class.
Necessarily, the Feeble classifier will always have perfect recall, since all positive instances will be correctly
classified. On the other hand, precision will match the ratio of positive instances to all documents in the training set.
For most of our safety incident classes, this ratio is quite low, and the Feeble method performs poorly. Ideally, a
reasonable classification technique will significantly outperform the Feeble method, but may not when the target
class is difficult to characterize from the training data.

Our third method and final baseline, BestWord, used a simple scheme for classification. For each class, a single
term is chosen as the lone classifying feature. When the chosen word is present in a document, it is classified as a
positive instance of the class, and when the chosen word is absent, the document is classified as a negative instance.
The magnitude of the frequency of classifying term in the document is not considered. For every class, each term
was evaluated separately as the potential classifying word. The terms that had the best performance on the training
set were selected as the classifying term. Since creating classifiers for the BestWord algorithm was much faster than
training SVM classifiers, we were able to make use of all the available training data (approximately 18,000
instances). Unlike the SVM classifiers, the training sets were not manipulated to maintain a 1:1 ratio of positive to
negative instances, as that was not likely to benefit the resulting BestWord classifier.

2) Pseudo-semantic methods
We created several methods to evaluate how different semantically-based transformations of the bag of words

might impact classification performance, while using the same SVM parameters as Baseline. Such transformations
require encodings of appropriate domain knowledge to guide the transformation. Unfortunately, domain specific
resources were not available for our study, and general purpose semantic resources (such as WordNet23, FrameNet24

and the Open Mind Common Sense project25) are unlikely to include the specialized vocabulary and knowledge
appropriate for aviation safety reports. Creating our own semantic resource was outside the scope of our study, so
we approximated the sorts of transformations that an appropriate semantic resource could facilitate, as described
below. As approximations, our methods could not firmly establish the benefit of a particular transformation with a
proper semantic resource, but could guide us to approaches that held the most promise.

Our fourth method, WordSplit, was designed to measure the potential for exploiting synonymy within the
documents, specifically by replacing all terms in a set of synonyms with a single term. For example, rather than
using both “aircraft” and “airplane” in the text, only “aircraft” would be used. Our assumption was that restricting
usage to a single term (rather than the full set of synonymous variations) would increase the number of uses of the
term in the training corpus, thereby enhancing the classifier’s ability to generalize. Without a list of appropriate
synonyms, it is difficult to see how merging synonyms terms can be simulated, so we simulated the reverse
transformation. Every term in the corpus was randomly split into two artificial synonymous terms, with an equal
probability for each synonymous form. For example, “aircraft” was split into “aircraft1” and “aircraft2”, so each
occurrence of “aircraft” in the text was substituted with either “aircraft1” or “aircraft2”. Real synonyms may have
different patterns of usage, but our artificial synonyms came from the same term and so had a stronger sense of
equivalence than actual synonyms. TF*IDF computations and term selection was performed on this transformed
corpus in the same manner as described previously. WordSplit was intended to reverse the merging of synonyms, so
our expectation was that it would underperform Baseline if merging synonymous terms in the bag of words would
be generally beneficial.

Our fifth method, Collocation, identified all bigrams (i.e., pairs of words occurring consecutively in the
narrative) and added them as new terms into the bag of words. Thus, a phrase such as “hold short” would be
represented as “HoldShort” in the bag of words, along with the component words “hold” and “short”. No attempt
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was made to identify meaningful phrases or indicative bigrams, so many of the bigrams comprised of common
words that occurred together but had no special significance. Some of the included bigrams have a special meaning
in the domain (e.g., “hold short” means to stop an aircraft before some point). Including bigrams significantly
increases the size of the bag of words representation: approximately twenty-four thousand bigrams occurred in more
than one percent of the corpus, resulting in over four thousand features (terms and bigrams) selected. We expected
that the benefits of including significant bigrams would offset the drawbacks of including insignificant bigrams,
resulting in an increase in classification performance if phrase identification was particularly useful in this domain.

Our sixth method, PartOfSpeech, was designed to measure the effect ambiguous terms might have on
classification. Disambiguating terms manually went beyond the scope of our study, and disambiguation is difficult
to simulate or approximate. Similar to our WordSplit experiment, artificial ambiguation has been used previously to
study the effects of disambiguation in an information retrieval context26. However, subsequent studies have
contradicted the findings based on this technique, and critiqued artificial ambiguation in general as unrepresentative
of ambiguity as it normally occurs in actual language27,28. For these reasons we avoided using artificial ambiguity
and instead used the General Architecture for Text Engineering (GATE) package of tools29 to perform a simple
disambiguation based on parts of speech. This disambiguation is neither completely accurate nor as powerful as we
would like, since only the distinction between nouns, verbs, adjectives and adverbs is provided and not finer the
distinctions between word senses. Nonetheless, some important differences are identified. For instance, the noun
“pilot” is represented separately from the verb “pilot” in the transformed bag of words, and such distinctions could
be important for certain classes.

3) Term grouping methods
Our last set of methods was intended to estimate how the semantic relationship between terms might be

exploited to improve classification performance. Terms, or more specifically, the concepts they represent, have a
wide variety of potential relationships. For instance, “pilot” is a type of “person” who uses an “aircraft” to perform
“flying.” Domain knowledge such as this has been the mainstay of artificially intelligent applications, with
ontologies recently emerging as a preferred representation. It may not be obvious how such a varied set of
relationships could be factored into the text classifier, but one possibility would be to use the ontology as the basis
for generalization. Specifically, the ontology could be used to generalize more specific terms into a broader term if
there is no practical difference between the specific terms for purposes of classification. For example, a “doctor” and
a “nurse” can both be represented as a “medical practitioner”, and the difference between the two is not likely to be
meaningful when classifying reports as medical emergencies. For another type of incident, however, the distinction
may be relevant, so performing such transformations are not necessarily beneficial for all classes.

term tf idftf*idfterm tf idftf*idfterm tf idftf*idfterm tf idftf*idf
04 25.86 11.72CONTAGIOUS 29.14 18.28KEEP 13.19 3.19ROW 14.69 4.69
1/2 24.93 9.86COULD 11.33 1.33KNOW 12.37 2.37SAID 21.27 2.54
2 21.04 2.08CREW 11.92 1.92LEONE 19.83 9.83SAW 12.11 2.11
3 11.53 1.53CUSTOMS 15.33 5.33LNDG 21.25 2.50SIERRA 16.74 6.74
ADVISED 31.86 5.58DEC 24.70 9.40MALARIA 19.83 9.83SO 11.40 1.40
AGENT 13.81 3.81DISPATCH 12.97 2.97MAY 22.37 4.74STAFF 36.00 18.00
ALERTED 24.43 8.86DOCTOR 25.12 10.24ME 11.24 1.24THAT 20.39 0.78
ALL 11.34 1.34pseudo1-10 23.75 7.50MEET 24.02 8.04THE 10.08 0.08
ALSO 11.51 1.51ENTIRE 13.50 3.50MET 13.61 3.61THOUGHT 12.14 2.14
AND 50.06 0.30FLT 45.06 20.24pseudo31-70 11.05 1.05TO 40.03 0.12
ARRIVED 13.25 3.25FLY 12.38 2.38MGRS 17.19 7.19TUE 14.25 4.25
ATTACK 15.48 5.48FOR 10.37 0.37MON 14.55 4.55UNTIL 21.94 3.88
pseudo11–30 12.40 2.40FRA 17.89 7.89NOT 10.45 0.45US 10.98 0.98
BE 20.88 1.76FULLY 13.96 3.96ON 20.20 0.40WASN'T 20.45 0.90
BOARD 13.38 3.38FUTURE 12.96 2.96PAX 35.24 15.72WE 20.46 0.92
BRU 18.22 8.22GND 31.65 4.95PRIOR 22.07 4.14WERE 10.46 0.46
BY 20.85 1.70HAD 30.50 1.50PUBLIC 35.64 16.92WHO 12.29 2.29
CALL 11.84 1.84HE 20.99 1.98QUARANTINED 19.83 9.83WHOLE 14.18 4.18
CAPT 23.65 7.30HEALTH 36.65 19.95RECOVERED 15.43 5.43WKS 14.79 4.79
CLRED 14.18 4.18HRS 22.76 5.52REFUSED 14.22 4.22WOULD 11.10 1.10
COMPANY 12.25 2.25I 10.31 0.31REMAIN 13.61 3.61Y 12.99 2.99
CONTACTED 12.46 2.46IN 40.27 1.08REQUESTED 12.30 2.30Z 13.58 3.58

Figure 4. ASRS Report ACN:642270 with pseudowords added below the component word.
Our seventh method, Pseudoword, was intended to simulate what the effects of combining sets of related terms

together would have on classification performance, such as representing both “doctor” and “nurse” as a “medical
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practitioner” in the example above. For every set of related terms, an artificial pseudoword was created to represent
all the terms in the corresponding set. The bag of words was modified to include the pseudoword whenever a
component term was present. The occurring component terms were also left as is in the bag of words. Figure 4
shows an example of this transformation. The pseudowords were treated as normal terms for the purposes of the
TF*IDF scaling computations. Since each pseudoword represented a set of terms, they occurred more frequently in
the modified corpus, resulting in higher term frequencies and typically lower inverse document frequencies. This
meant we could use less frequent component terms (we used component terms that occurred in as few as 0.1% of all
documents in the corpus) for our pseudowords and still have enough occurrences of the pseudoword to make it
viable for training.

As we did not have an appropriate ontology to use, we once again tried to simulate the desired transformation by
approximating reasonable sets of terms to combine. Since we had no knowledge structure or relationship between
terms to use, nor an easy way to explore the space of combining terms, we once again used an approximation. In this
case, we used a measure of each term’s correlation with the target class. Our supposition was that highly correlated
terms would have some semantic relationship to one another, as “doctor” and “nurse” would for evaluating medical
emergencies in the example above. However, since terms were identified only by their correlation to the target class
and not through their meaning, they were not guaranteed to have any specific semantic relationship to each other
(like a common hypernym in the example above). Indeed, the set of indicative terms are likely to incorporate a
variety of semantic relationships amongst each other; so along with “doctor” and “nurse”, one might also expect to
see terms like “breathing” or “unconscious” in the list of terms associated with medical emergencies. A separate list
of terms that were inversely correlated with the target class was also generated. For example, terms like “engine” or
“restricted” might indicate that the incident was not a medical emergency. The semantic relationship between the
terms that negatively correlate with the target class is even more tenuous, often including disparate concepts that are
positively correlated to other classes.

pseudoword word f*prec pseudoword word f*prec pseudowordword f*prec
pseudo1-10 paramedics 0.29116 medication 0.04438 attendant 0.012

doctor 0.29057 attack 0.04307 volunteered 0.01071
paged 0.2287 sick 0.04107 lady 0.01033
medical 0.21594 husband 0.02971 aisle 0.00988
breathing 0.21164 ambulance 0.02588 laid 0.00984
heart 0.20679 assisted 0.02444 onboard 0.00947
physician 0.19911pseudo31-70patient 0.02398 passenger 0.00934
unconscious 0.19383 assistance 0.02243 assist 0.00908
AED 0.19322 enhanced 0.02066 her 0.00904
nurse 0.18064 died 0.01823 diverted 0.00899

pseudo11-30consciousness 0.1729 breath 0.01779 history 0.00891
seizure 0.15183 symptoms 0.01687 traveling 0.00889
administered 0.15007 complaining 0.01683 ASAP 0.00872
pulse 0.14612 woman 0.01547 attended 0.00851
ILL 0.135 CPR 0.01536 treatment 0.00821
hospital 0.12777 shock 0.01504 contents 0.0078
chest 0.11586 divert 0.01474 she 0.00761
pains 0.10591 retrieved 0.01455 assisting 0.00754
doctors 0.10241 conscious 0.01396 BOY 0.00752
emt 0.10206 female 0.01354 family 0.00746
blood 0.10147 mother 0.01339 row 0.00721
kit 0.09692 MET 0.01337 diversion 0.00698
oxygen 0.05819 pax 0.01337
pain 0.04812 attending 0.01243

Figure 5. Creating three pseudowords from the ranking of component words.
We wanted to guide the pseudoword generation towards pseudowords that were highly correlated with the target

class. Since each pseudoword was a conglomeration of its component words, we felt that selecting higher precision
words, specifically by weighting precision higher than recall, would ultimately lead to more effective pseudowords.
We used a measured similar to F0.5-measure (itself a variant of F-measure), which we call Fp,

Fp = F * p = (2 * p2 * r) / (p + r) (5)

though other measures could also be used. We chose to make six pseudowords for each target class: three from
positively correlated terms and three from negatively correlated terms. The first pseudoword was created from the
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ten most highly ranked terms; the second from the next twenty ranked terms; and the third from the next forty
ranked terms. Figure 5 gives an example of how these pseudowords were formed.

Our eighth and final method, NoGroup, served as a comparison to Pseudoword. We wanted to know whether
any observed difference in performance between Pseudoword and Baseline were due to creation of the pseudowords
or the way the pseudowords were selected, specifically by the inclusion of lower frequency terms selected by our
measure Fp. Therefore, NoGroup used the same unaltered bag of words as Baseline, additionally including any rare
component words from Pseudoword that were omitted in Baseline.

 VI. Empirical Results
The results of our experiments are given in Figure 6, Figure 7, and Figure 8. The incident classes are ordered as

in Figure 1, in order of decreasing prevalence from left to right. Regardless of the method used, there is a general
tendency for decreased performance as the incident classes decrease in prevalence. This is an expected result, as
precision will usually decline when fewer positive instances are in the testing set; forcing a 1:1 positive to negative
ratio on the testing set would eliminate the downward trend. Likewise, recall, which is not affected by the scarcity of
positive instances, is more or less stable across the incident classes. Furthermore, the SVM methods had less training
data available for rare incidents, as we had forced a 1:1 ratio of positive and negative instances in the training set.

Figure 6 shows the results of our three baselines in terms of precision, recall, and F-measure. The average
measures over all incident classes for Baseline, Feeble, and BestWord, respectively, are: precision, 0.24, 0.08, and
0.33; recall, 0.81 1.00, and 0.50; and F-measure, 0.34, 0.13, and 0.36. As expected, the Baseline method
significantly outperforms the Feeble method. However, in some cases the performance was similar and for a single
incident class, Feeble actually outperformed Baseline. The classes where Feeble compared favorably with Baseline
tended to be “catch-all” classes (i.e., containing all reports that did not fit a more specific class) or very broad classes
that are difficult to characterize. It is not surprising that a classifier would have very poor performance on such
classes. What is surprising is the competitive performance of BestWord when compared to our Baseline. BestWord’s
overall performance actually exceeded Baseline, typically underperforming on the frequent incident classes but
outperforming Baseline on the less frequent incident classes. The performance of the BestWord method does not
appear to be as tightly coupled with the frequency of the positive instances, which gives it an overall advantage over
Baseline. Although tuning of the SVM parameters and careful selection of terms could boost the performance of
Baseline, the relative success of the BestWord method shows that relatively simple methods can perform
competitively, particularly when overall performance is low.

Figure 7 shows the results of our pseudo-semantic methods along with the comparative Baseline in terms of
precision, recall, and F-measure. The average measures over all incident classes for WordSplit, Collocation, and
PartOfSpeech, respectively, are: precision, 0.22, 0.23, and 0.24; recall, 0.79, 0.77, and 0.81; and F-measure, 0.32,
0.33, and 0.34. The three methods tracked the Baseline method closely and exhibited only insignificant differences
in performance.  For WordSplit, we had artificially split each word into two pseudo-synonyms and had expected that
performance would significantly decrease if merging synonyms are beneficial. WordSplit did show slightly lower
performance, but not enough for us to conclude that it would be worthwhile to combine synonyms into a single term.
Collocation also showed slightly worse performance than the Baseline. We had expected that the inclusion of
meaningful phrases such as “hold short” would boost performance, but performance actually decreased when we
included bigrams – possibly because most of our bigrams were not actual phrases but only terms that frequently
occur consecutively in a sentence. Regardless, the results of the Collocation experiment fail to indicate any
advantage to the inclusion of phrases. Finally, the PartOfSpeech method did outperform Baseline but the difference
between the two is not significant. The bag of words representation makes it difficult, if not impossible, to fully
reconstruct the meaning of the original document. Rather, it provides an overall gist of the document, and in that
context, the difference between noun and verb forms (as in “pilot”) may not be relevant in this domain. In any case,
the results of the PartOfSpeech experiment fail to show that disambiguation would be worth the effort.

Figure 8 shows the results of our term grouping methods along with the comparative Baseline in terms of
precision, recall, and F-measure. The average measures over all incident classes for Pseudoword, and NoGroup,
respectively, are: precision, 0.27, and 0.24; recall, 0.79, and 0.81; and F-measure, 0.39, and 0.35. The Pseudoword
method compares favorably with the Baseline method, offering equal or better performance, as measured by F-
measure, in all cases. (Baseline had a slightly better F-measure value for a few incident classes but the difference is
not significant.) Moreover, Pseudoword had the most significant performance gains over Baseline for the rare
incident classes. On the whole, the Pseudoword method produced higher precision, particularly for these rare
incident classes, in exchange for a loss of recall. NoGroup also performed favorably when compared to Baseline.
This indicates that the inclusion of the high precision, low frequency words is beneficial and presumably contributes
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to the performance gains of Pseudoword over Baseline. However, Pseudoword significantly outperforms NoGroup
as well. This leads us to conclude that combining indicative terms into pseudowords boosted classification
performance in this domain.
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Figure 6. Results of the Baseline, Feeble, and BestWord experiments
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Figure 7. Results of the WordSplit, Collocation, and PartOfSpeech experiments.
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Figure 8. Results of the Pseudoword and NoGroup experiments.
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 VII. Conclusions and Future Work
Text classification today makes little explicit use of semantics. This would appear to be an obvious shortcoming,

and we hypothesized that the incorporation of semantics into standard text classification methods could easily result
in significant improvement in classification performance. Unfortunately, appropriate semantic resources were not
available as a part of our study and are costly to create. Therefore, we developed a series of experiments that were
meant to approximate what an appropriate semantic resource might contribute. For the most part, the results of these
experiments do not support our hypothesis. In particular, merging terms based on synonymy, use of bigrams, and
simple word disambiguation did not produce significant gains in classification performance. Our methods were
approximations of semantic approaches and only applied to one domain, so we cannot reject our hypothesis in
general. However, it does appear clear that introducing arbitrary semantic content into the bag of words model is not
likely to produce positive results.

The results of our experiments were not entirely negative. We used a simple classification scheme, BestWord,
which compares favorably with our SVM-based baseline. An ensemble learner that uses both BestWord and the
more standard SVM-based approach could produce better overall performance. The BestWord method could also be
expanded to use multiple terms in its classification. Our intuition is that ultimately more sophisticated methods
should be able to outperform BestWord or any subsequent variants, but it serves as a reasonable point of
comparison. Also, due to its simplicity, BestWord is easily understood and very fast, making it an easy platform to
explore transformations that could lead to improvements in the bag of words model.

We used a term ranking measure, Fp, to identify high precision terms that could improve classification results.
Even with limited usage, our use of this measure to select rare but valuable terms in the NoGroup method produced
positive results. Further evaluation is needed to determine if Fp is useful in general, as a basis to select all the terms
as well as in other text classification domains. Fp should also be compared to commonly used measures, such as
mutual information.

The most promising result from our experiments was the performance gains of the Pseudoword method over our
Baseline method. Many of the choices in the Pseudoword method were arbitrary and the grouping technique used
was crude from a semantic perspective, but Pseudoword still significantly outperformed our baselines. This shows
that grouping of indicative terms may be beneficial, but more evaluation and refinement of the Pseudoword method
is warranted. First, the number and size of the term groupings should be examined. Second, the actual semantic
relationships should be identified in the term groupings, and the component terms should be recombined into sets
that adhere to these semantic relationships. Third, the Pseudoword method should be evaluated with an improved
baseline with tuned SVM parameters and term selections. Finally, Pseudoword should be tried in other domains to
see if the benefit is globally realized or particular to our corpus of ASRS reports.

Our initial hypothesis, that incorporating semantics into the bag of words would improve classification results, is
difficult to disprove, as the possibilities for incorporating semantics are vast. In addition, we approximated what
effects a truly semantic approach might have, and so it is quite possible that merging synonyms, phrasal
identification and term disambiguation can improve classification results, even in our domain. However, the results
of our study failed to show a benefit to these approaches, so discretion should be used before expending significant
effort to develop the appropriate semantic resources. Increasing classification performance by infusing additional
information into the bag of words has proved difficult in our domain, as is reasonable classification performance in
general. However, the Pseudoword method shows that classification performance gains can be achieved through
manipulation of the bag of words, and may lead to a beneficial method for incorporating semantics into a text
classification framework.
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