
IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 33, NO. 3, JUNE 2005 1031

Phase Distortion Mechanisms in Linear Beam
Vacuum Devices

John G. Wöhlbier, Member, IEEE

Abstract—The mechanism for phase distortion in linear beam
vacuum devices is identified in the simplest system that pertains to
such devices: the force-free drifting electron beam. We show that
the dominant cause of phase distortion in a force-free drifting beam
is the inverse dependence of arrival time on velocity for an elec-
tron, i.e., the “1 nonlinearity,” and that a secondary cause of
phase distortion is the nonlinearity of the velocity modulation. We
claim that this is the mechanism for phase distortion in all linear
beam vacuum devices, and provide evidence from a traveling wave
tube calculation. Finally, we discuss the force-free drifting beam
example in the context of the “self-intermodulation” description of
phase distortion recently described by J. Wöhlbier and J. Booske,
2004 and J. Wöhlbier and J. Booske, 2005.

Index Terms—Electron tubes, intermodulation distortion,
klystrons, phase distortion, traveling wave tubes.

WE RECENTLY reported on mechanisms for phase
distortion in linear beam vacuum devices [1], [2].

The mechanism for phase distortion was reported there as a
“self-intermodulation” process, where harmonic beam dis-
tortions interacted with the fundamental beam modulation to
produce a phase shift at the fundamental. While this frequency
domain view of phase distortion is a useful one, we felt that
a corresponding time domain view of phase distortion would
be a useful contribution to the overall understanding of phase
distortion. In this paper, we consider the simplest possible
system that pertains to linear beam electron devices, a space
charge free (“force-free”) drifting electron beam. Indeed, the
physical mechanism for phase distortion exists in the force-free
drifting beam, and hence the system provides the most lucid
example in which to study phase distortion.

A one-dimensional (1-D) force-free drifting beam is de-
scribed by the inviscid Burgers equation for the beam velocity

(1)

where is space, is time, and the subscripts indicate partial
derivatives. To apply (1) to a klystron where the space charge
force is negligible, for example, one sets the boundary value of

as the sum of a direct current (dc) beam velocity and a
sinusoidal perturbation due to the cavity modulation. Assuming
that the dc velocity is normalized to 1, this is written

(2)
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Given the solution to (1) with boundary condition (2), the beam
density evolution is obtained by solving the continuity equation

(3)

for an appropriate density boundary condition.
The force-free Burgers equation (1) implies that the velocity

of an electron (fluid element) does not change, i.e., the tra-
jectories, or characteristics, of (1) are straight lines with slopes
determined by the boundary data. In vacuum electronics, the
density bunching that results from the sinusoidal velocity mod-
ulation is called “ballistic bunching.” Initially, we will consider
inputs for which there is no electron overtaking, and inputs such
that electron overtaking occurs will be considered later.

In principle, the force-free drifting electron beam can be
solved exactly prior to electron overtaking, although closed
form analytic solutions need to be written in terms of infinite
series [3]. Equation (1) is solved using the method of char-
acteristics. The method of characteristics involves changing
the equations to Lagrangian independent coordinates (material
coordinates), solving the equations in Lagrangian coordinates,
and changing the solution back to Eulerian coordinates. For
a fluid element that crosses at time , we write the
transformation from Lagrangian to Eulerian coordinates as the
time function , i.e., the time at which the fluid element
with injection time arrives at , with . Since
the velocity is a constant for each fluid element, the velocity
solution in Lagrangian coordinates is

(4)

That is, independent of location , the velocity of an electron is
set by the time at which it crosses . Since the electron
orbits are straight line trajectories in space, we can infer
the solution for the function

(5)

(6)

To solve for , one needs to invert the function ,
i.e., calculate , and substitute it into (4). Since we restrict,
for now, our attention to input levels such that no electron over-
taking occurs, i.e., the characteristics do not cross, (6) can be
inverted. Unfortunately, in (6) is a transcendental func-
tion of , so an analytic inverse needs to be expressed in terms
of an infinite series.

For phase distortion, we are ultimately interested in the beam
current and beam density, since they linearly drive circuit or
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Fig. 1. Nonlinear, linear, and fundamental component of nonlinear density
solution versus t at x = 0:3 for two periods.

cavity fields. The continuity equation in Lagrangian coordinates
is given by [3], [4]

(7)

(8)

where the last equality comes from the fact that
since we are considering a force-free drifting beam. For

the density solution in Eulerian coordinates, one composes the
density in Lagrangian coordinates (8) with the mapping from
Eulerian to Lagrangian coordinates .

The factor is the Jacobian of the transformation
from Lagrangian to Eulerian coordinates, and it quantifies
the amount of stretching or compressing in time the electron
beam undergoes. That is, for a fluid element entering the
system of time length , it will occupy a time length of

downstream at position . For pur-
poses of explaining phase distortion, it will be convenient to
write the Jacobian in terms of derivatives with respect to both

and , i.e.,1

(9)

In Fig. 1, we show density solutions versus time, where a root
finder was used to invert (6). The results are for the velocity
modulation (2) with and a uniform density boundary
condition . To accentuate the effect of phase dis-
tortion, we use a strong velocity modulation, , and
observe the output at . There is no electron overtaking
at if the Jacobian stays greater than zero, i.e., when

(10)

1We use the function t̂(x; t ; u), cf. (5), to formally differentiate from the
function t(x; t ), cf. (6), so that the left-hand side of (9) and the first term on
the right-hand side of (9) are not considered equal. We did not use the hat (^)
notation in (5) and (6) where there was no chance of confusion, and we will
drop the notation for the remainder of the paper.

for all . In the present case, the maximum value of the left-
hand side of (10) is equal to 0.9992 with . The linear
velocity and density solutions are solutions to the (normalized)
linear equations

(11)

(12)

and, for the same boundary data as used for the nonlinear
problem, are given by

(13)

(14)

In Fig. 1, the nonlinear density solution, the linear density so-
lution, and the fundamental component of the nonlinear density
solution obtained by using a fast Fourier transform are shown.
The phase shift between the linear density solution and the fun-
damental component of the nonlinear density solution is the
“phase distortion” of the nonlinear solution. It is clear from the
figure that the reason for the phase shift of the fundamental com-
ponent of the nonlinear density solution from the linear solution
is because the density is larger “on average” following (in time)
the density peak (early times are to the left). Therefore, to ex-
plain phase distortion, one must explain the reason for the asym-
metry in the density about the density peak. (Also, note that for
this value of , the nonlinear solution shown in Fig. 1 shows
“amplitude distortion” in that the fundamental component of the
density is smaller than the predicted linear density amplitude.)

The reason for the higher density following the peak comes
predominantly from the “ nonlinearity” in the arrival time
function (5), and secondarily from the nonlinearity of the

velocity modulation. It is intuitive that about a larger
initial velocity , a given deviation will result in a smaller

at than the same would have on for a smaller
initial velocity [a fluid element with velocity arrives
earlier (later), at time , than a fluid element with velocity

which arrives at ]. This intuition is of course borne out by
the derivative

(15)

evaluated at large and small values of velocity . This depen-
dence causes phase distortion in that relatively slower fluid ele-
ments stretch and compress differently than the relatively faster
fluid elements. That is, the size of density fluctuations at a fluid
element depends on its initial velocity, with smaller initial veloc-
ities having larger fluctuations. This effect is best demonstrated
with an example where more specific points regarding the inter-
play of the nonlinearity and the nonlinearity of the velocity
modulation may be emphasized.

In Fig. 2, we show the velocity modulation, the Jacobian, and
the density versus injection time at . Note that since

, the velocity versus injection time is also
the initial velocity modulation at versus injection time .
In the region B-D, the beam is bunched because fluid elements
entering at any time are given a faster initial velocity than the
fluid elements entering just prior to them, where again, we as-
sume for the time being that modulations are not strong enough
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Fig. 2. Beam velocity, beam density, and Jacobian versus injection time t

at x = 0:3. That is, the value of velocity, density and Jacobian that the fluid
element that crossed x = 0 at time t will have when it arrives at x = 0:3.
Results show slightly more than one period in t .

to cause electron overtaking. It is instructive to look at the ex-
pression for the Jacobian

(16)

and determine, for example, the fluid element at which the den-
sity will be maximum. The Jacobian is inversely proportional to
density, and hence the maximum density occurs the minimum
Jacobian; for a given , the minimum corresponds to the
maximum fluid compression. Consider the two derivatives on
the right-hand side of (16). As described above, due to the in-
verse dependence of on , for a given , fluid elements with
relatively larger initial velocities in B-D will be compressed
less than fluid elements with relatively smaller initial veloci-
ties. That is, is largest negative at B and smallest neg-
ative at D. Furthermore, for the sinusoidal velocity modulation
the change in velocity for a given , , is zero at point
B and increases to a maximum at point C. The minimum Jaco-
bian will occur at a fluid element between points B and C such
that is the largest negative. The value of
for which this happens can be computed by setting the deriva-
tive of the Jacobian with respect to to zero, and solving for

. For the linear solution, point C is the fluid element around
which the density is maximum.

The density asymmetry about the peak also comes from the
nonlinearity. Since the compression is enhanced in B–C rel-

ative to C–D, region B–C becomes smaller than C–D, as seen
in Fig. 3. The results in Fig. 3 are the solutions in Eulerian co-
ordinates which are obtained by composing the Lagrangian so-
lutions in Fig. 2 with the map , i.e., the mapping that de-
termines which fluid element arrives at a given , shown
in Fig. 4. Indeed, while the maximum density fluid element lies
nearly half way between points B and C at the input (see Fig. 2)2

it is very near to point C by , the point about which the
linear density is maximum, as seen in Fig. 3. Because B–C is

2Since the velocity of a fluid element does not change in the force-free drifting
beam u(x; t ) = u(0; t ). Hence, u(x; t ) in Fig. 2 can be used to determine
the phase position of fluid element t with respect to the velocity modulation at
x = 0, even though the figure caption indicates that the quantities are evaluated
at x = 0:3.

Fig. 3. Beam velocity, density, and Jacobian versus t at x = 0:3 for one period
of t. Results are those of Fig. 2 composed with t (x; t), shown in Fig. 4.

Fig. 4. Mapping t (x; t) from Eulerian to Lagrangian coordinates at x = 0:3
for one period of t.

much more compressed than C–D, loosely speaking, the regions
that neighbor the region of maximum density are a stretched re-
gion A–B earlier in time and the compressed region C–D along
with the stretched region D–A (periodic waveform) later in time.
Furthermore, the stretched region A–B has enhanced stretching
over region D–A, contributing to the higher density following
(in time) the peak.

In sum, the above describes how phase distortion of a
force-free drifting beam is a manifestation primarily of the
inverse dependence of the arrival time on velocity ,
but also depends on the nonlinearity of the velocity modulation.
To prove that the “dominant” cause for phase distortion is the

nonlinearity, we do the following calculation. First, for a
small velocity modulation ( small) we can linearize the
nonlinearity to get

(17)

(18)

For this arrival time function the location of maximum density
(minimum Jacobian) is the same as for the linear solution, point
C in Fig. 3. However, with this approximation the problem does
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Fig. 5. Nonlinear beam density, linear beam density, fundamental component
of the nonlinear beam density, and nonlinear beam velocity for an input such
that electron overtaking occurs.

not immediately reduce to the linear solution since the charac-
teristics do not all have the same slope.3 In this limit, there is no
phase distortion since (18) is an even function about the Jaco-
bian minimum, and hence the density is an even function about
the density peak. Furthermore, we could replace the modulation
by any periodic function that is odd in (plus or minus an ar-
bitrary time shift) for a period and get the same result. Thus, by
linearizing, the nonlinearity and not linearizing the velocity
modulation the phase distortion is removed. This confirms that
the nonlinearity is the dominant cause of phase distortion.4

Up to now, we have restricted the input to a level such that
electron trajectories do not cross. The reason for such a restric-
tion was to ensure that the phase distortion physics was not po-
tentially clouded by electron overtaking physics. In fact, no such
restriction was necessary, and the principle of phase distortion
is the same even when the input is set such that electron tra-
jectories cross. In Fig. 5, we show the beam velocity, nonlinear
beam density, linear beam density, and the fundamental com-
ponent of the nonlinear beam density for an input of .
The velocity solution and the two peaked structure of the den-
sity confirm the multivalued nature of the solutions. From the
fluid element labels, we see that region B–D is in the multiphase
region of the density, and that the higher density following the
peak is again because region D–A (or region B–A outside the
multiphase zone) is not stretched to the extent that region A–B
(or region A–C outside the multiphase zone) is stretched.

Even though the preceding analysis considered only a force-
free drifting beam, we claim that phase distortion mechanism
identified holds more generally for klystrons when space charge
forces are considered, and in traveling wave tubes (TWTs). The
reason is again the inverse dependence of arrival time on ve-
locity. That is, electrons slowed down from the dc beam velocity

3To get to the solution of the linear problem, one can substitute (18) into (8),
use that � is small to move the denominator to the numerator with a sign change
on the cosine term, and use t = t� x which can be obtained by .taking � = 0

in (17).
4One might be tempted to linearize the modulation without linearizing the

1=u nonlinearity for a complementary view. However, it is not possible to lin-
earize the modulation and maintain its periodicity since a periodic function is
nonlinear in its argument.

Fig. 6. Beam density and beam velocity versus time for two periods from a
Lagrangian TWT calculation accounting for space charge and circuit fields.
Expanded view of the beam density is to highlight the density asymmetry about
the peak.

will have enhanced stretching or compression over those that are
sped up from the dc beam velocity. Although we do not provide
an exhaustive analysis, for illustration we consider the electron
beam density versus time from a Lagrangian TWT model [5]
in Fig. 6. Even though electrons experience forces due to space
charge and circuit fields in a TWT, as can be inferred by com-
paring the beam velocities of Figs. 5 and 6, the cause of phase
distortion is the same. Electrons slowed down from the dc beam
velocity will spread more in time than electrons sped up from
the dc beam velocity. The result is that the density wave form
has a relatively higher density following the peak than in front
of it, as seen in Fig. 6.

In [1], [2], we described phase distortion from a frequency do-
main perspective as a “self-intermodulation” process, whereby
harmonic distortions mix with the fundamental to produce dis-
tortions at the fundamental. Below we outline this view of phase
distortion so that it may be compared to the time domain view
given above.

If we express the velocity and density with Fourier series
(for periodic inputs), then the fundamental frequency compo-
nents of nonlinear products of and are seen to come from
mixing of the second harmonic with the fundamental frequency,
and mixing of higher order harmonics. In particular, if we define
state variable envelopes as in [1], [2], e.g.,

(19)

then the continuity equation for the force-free drifting beam
gives

(20)

where the approximations used in [1], [2] have been made.
From (20), products of frequencies such as

, etc. are seen to influence
the fundamental frequency . In [1], [2], we considered

(third order intermodulation, “3IM”)
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and (5IM) contributions to phase
distortion in linear beam devices.

Equation (20), together with the corresponding nonlinear en-
velope equation for the velocity, has an analytic solution that
may be expressed in an infinite series of complex exponentials.
The first terms in the series correspond to the linear solution,
as seen in Fig. 1. The linear terms are used in the equation for
the second harmonic envelopes to produce the first terms in the
series solution at the second harmonic. The second harmonic
terms are then combined with the linear terms from the funda-
mental solution to produce the next set of terms at the funda-
mental. These complex exponentials add to the linear density
solution and produce a phase shift (distortion) in the density
solution. As it turns out, this process of generating harmonics
and then additional terms at the fundamental must be continued
to get an accurate representation of the nonlinear phase shifted
density seen in Fig. 1. For the example in Fig. 1, we found that
terms higher than 11IM were required to adequately approxi-
mate the nonlinear density, whereas in [1], [2], we found that
5IMs were sufficient to predict the phase distortion. The differ-
ence between the two cases is that the case in Fig. 1 has a much
larger relative input modulation.

We have identified the mechanism for phase distortion in the
simplest system that pertains to linear beam vacuum devices,
the force-free drifting electron beam. The dominant cause of
phase distortion is shown to be the inverse dependence of ar-
rival time for an electron on its velocity, i.e., the “ nonlin-
earity,” and that a secondary cause of phase distortion is the non-
linearity of the velocity modulation. Although we show this to
be the case for the force-free drifting beam, we claim that the

nonlinearity is also the cause of phase distortion in other
linear beam devices, such as the traveling wave tube. That is,
even though electrons are experiencing forces from the circuit
and space charge fields, the fact remains that charges slowed
down from the dc beam velocity will stretch and compress more
than charges sped up from the dc beam velocity. Results from
a traveling wave tube calculation are given that show the same
characteristic asymmetric density modulation that is seen in the
force-free drifting beam. We also show that the nonlinearity
is the cause of phase distortion regardless of whether drive levels
are strong enough such that electron overtaking occurs.

The identification of the mechanism for phase distortion
suggests how inputs might be tailored to ameliorate phase
distortion. The obvious candidates would involve somehow
reducing the amplitude of the velocity modulation on the nega-
tive half cycle to lessen the effect of the “enhanced stretching,”
or to provide a density modulation 180 out of phase from the
velocity modulation so that the “enhanced stretching” before

the peak starts from a higher density value relative to the
density following the peak, and would be balanced about the
density peak at the output. The latter scheme may be facilitated
by cold cathode technology [6]. It is anticipated that either of
these schemes, and potentially any scheme, may come with
an associated gain compression, as in [1] where harmonic
injection was used to set the fundamental output phase at a
cost of reducing output power. It is also possible that further
study may show that any tailoring of the velocity modulation
may just be a manifestation of harmonic injection, proving
the usefulness of the complementary views of phase distortion
given in this note and in [1], [2].
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