

Development of EUV Quality SiC Optics NASA Phase 2 SBIR

Jay Schwartz jschwartz@ssginc.com

Mirror Technology Days, September 19, 2006

- Program Title: "High Quality, Low Scatter, SiC Optics Suitable for Space-Based UV and EUV Applications." NASA Phase 2 SBIR
- Contract Number: NNG04CA15C
- NASA Technical Monitor: David Content, Ph.D. (GSFC)
- Program Objectives
 - Develop manufacturing process for EUV quality, lightweight SiC aspheric optics
 - Demonstrate process through the design, modeling and fabrication of flight-like Secondary Mirror for delivery to NASA Goddard

Program Overview

- Process development of superpolishing techniques to achieve EUV quality in Si cladding
- Design and modeling of Secondary mirror
 - Thermal loading (gradient and soak)
 - Effects of cladding (bi-material)
 - Mounting errors
 - Launch Load
 - Gravity
 - Stiffness
- Delivered hardware-Secondary Mirror for PICTURE/SHARPI missions
 - 100 mm aperture lightweighted SSG 55A SiC substrate
 - Amorphous Silicon cladding
 - Invar mounting foot
 - Operational SE requirements < 5 nm RMS met
 - As fabricated surface error results
 - 3.1 nm RMS (>10 mm)
 - 1.3 nm RMS (1 mm< spatial frequency<10 mm)
 - 0.38 nm RMS (0.001 mm < spatial frequency < 1 mm)

Mirror Design

Substrate

- SSG 55A SiC
- Amorphous Si cladding on facesheet
- Physical diameter: 4.8" (122 mm)
- Facesheet thickness: 0.10" (2.5 mm)
- Rib and rim thickness: 0.10" (2.5 mm)
- Mass:0.457lbs. (Areal density of 17.7 kg/m2)
- Invar Mounting Foot
- Optical surface characteristics of Secondary Mirror
 - Clear aperture: 3.864"
 - Conic Constant: -0.663290
 - Base radius: 8.93030"

SSG-Tinsley

- Off-axis distance: 0.060"

All surface error values presented are RMS

*Focus term removed

Yellow indicates derived from modeling and analysis

Modeling Results

Modeled Condition	Contribution to Surface Error	Comments
Solar Loading		
1.86 watts	0.25 nm	Focus removed, error is 94% focus
Bi-material Effect		
Si (10 microns)	0.076nm	Focus removed, 94% focus
Gravity Error	0.24 nm	
Mounting Errors		
0.0002" normal to mounting	2.4 nm	No focus term
Launch Load (20g's RMS)	N/A	Max. stress in mounting foot = 783 psi (60 G's)
First Mode	N/A	1751 Hz, fixed at three mounting points
RSS'd Surface Error	2.43	nm

SM Thermal Model and Heat Load

Emissivity of Ribs and Mirror Back= 0.56 Heat load applied evenly over area shown in red Emissivity of Mirror Face = 0.02 Three conductors represent the bolted joint conductance to a boundary held at 20 °C Conductance = 0.4 W/°C98 mm The mirror face is loaded with 1.86 watts of A simple insulated solar radiation. This load is distributed over a reflector effectively "doughnut shape" area on the mirror face prevents any heat loading on the back of the mirror 8 % of the energy is absorbed **Critical Mirror** inches **Dimensions** Face Thk. 0.1 Mirror radiates to a black body Ribs Thk. 0.1 housing at 20 °C Rim Thk. 0.1 communications

SSG-Tinsley

Thermal Model Results

The maximum mirror gradient = 0.219 °C

Thermally Induced Surface Error

- The RMS Surface Error = 0.0070 waves at 632.8 nm (4.43 nm)
- With Focus Removed the RMS Surface Error = 0.0004 waves at 632.8 nm (0.25 nm)
- The Error is 94 % Focus

SSG-Tinsley

Temperature Soak (Bi-Material Effect)

- Nominal 10 micron amorphous Si cladding on facesheet
- The RMS Surface Error = 0.00195 λ (1.23 nm) at 632.8 nm for Si coating
- With Focus Removed the RMS Surface Error = 0.00012 λ (0.076nm) for Si coating
- The Error is 94 % Focus

Gravity Errors

- RMS Surface Error = 0.24 nm RMS for both y and z orientations
- With Focus Removed

Assembly Mounting Error

- The RMS Surface Error = 0.00381 λ at 632.8 nm (2.4 nm)
- With Focus Removed the RMS Surface Error = 0.00381 λ (2.4nm)
- The Error is 0 % Focus

Launch Stress

- The RMS G's = 20
- Max. tension stress in mounting foot = 783 psi (60 G's)

Modes & Frequencies

V1 C1

Assumed fixed boundary • condition at three mounting points

Output Set: Mode 1, 1751.374 Hz Deformed(58.91): Total Translation

> communications SSG - Tinsley

1st Mode = 1751 Hz

Mode	Frequency (Hz)	Comment
1	1751	Bending of mounting foot
2	1752	Bending of mounting foot
3	1771	Torsional about post
4	5001	Extensional at post

Assumed free-free boundary condition

 1^{st} Mode = 6643 Hz

Mode	Frequency (Hz)	Comment
1	6643	Bending of mirror surface
2	6643	Bending of mirror surface
3	10101	Bending of mirror surface
4	12090	Extensional at post

Fabrication Overview

UV/EUV Quality SiC Asphere

• High Precision Secondary Mirror Fabricated and Delivered to NASA GSFC

- 100 mm CA Off-axis ellipsoid
- UV quality surface error (3 nm RMS goal)
- Solar loading over clear aperture (1.82 watts)
- To be integrated into telescopes for two upcoming NASA experiments (sounding rocket platform)
 - PICTURE visible
 - SHARPI UV coronographic mission
- Surface Error Results
 - 3.1 nm RMS (> 10 mm)
 - 1.3 nm RMS (1 mm to 10 mm)
 - 0.38 nm RMS (0.001mm to 1mm)

Secondary Mirror Metrology Results

- Unfiltered Interferogram
- Central shadow from obscuration masked from interferogram
- Clear Aperture of 3.864"

• .28 x .28 mm

EUV M-2 Measurement Summary

Figure of Merit	Actual	Comments
Figure υ > 10mm	3.1nm rms	ACCEPTED BY GSFC
Figure 10 > υ > 1 mm	1.3 nm rms	ACCEPTED BY GSFC
Figure 1 > υ > 0.001 mm	0.38 nm rms	ACCEPTED BY GSFC
Optical Axis Centration ± 0.005"	0.002" *	ACCEPTED BY GSFC
Surface Quality 60/40 MIL PRF 13830	60/40	ACCEPTED BY GSFC
Base Radius 8.93030 +/020"	8.92988 +/- 0.0003" **	ACCEPTED BY GSFC
Conic Constant -0.663290 (no tolerance)	-0.663304 +/- 0.00001	REFERENCE
F1 125.014 mm (no tolerance)	125.008 +/- 0.004 mm	REFERENCE
F2 1222.313 mm (no tolerance)	1222.313 +/- 0.002 mm ***	REFERENCE

- * Optical axis centration was measured with respect to the best fit diameter
- ** Based on estimated accuracy of profilometer radius fit
- *** Based on estimated accuracy of DMI spacing

Summary

- Manufacturing process developed for lightweight SiC EUV aspheric optics
- Delivered demonstration mirror to NASA Goddard for use in PICTURE and SHARPI missions.
 - SHARPI/PICTURE Secondary Mirror
 - SSG 55A SiC
 - Thin amorphous Si cladding on facesheet
 - Designed for thermal load of 1.82 W on facesheet
 - Designed for 20g launch conditions
 - Measured Surface Error
 - 3.1 nm RMS (> 10 mm spatial frequencies)
 - 1.3 nm RMS (1 mm < spatial frequency < 10 mm)
 - 0.38 nm RMS (0.001 mm < spatial frequency < 1 mm)
 - Operational SE (RSS of fabricated mirror and model results) = 3.9 nm RMS
- Mirror represents highest precision Si clad SiC aspheric optic fabricated to date
- 3 nm RMS surface error achieved on lightweighted optic

Acknowledgements

NASA Goddard: Dave Content, Doug Rabin SSG-Tinsley: Mike Chung, Steve Taveletti, Kevin Newman, Dave Landry Andrea Jordan, Jay Daniel

