HADRON07, Frascati

Heavy quark spectroscopy at Tevatron Michal Kreps University of Karlsruhe On behalf of the CDF and DØ Collaborations

Outline:

- $B_c \rightarrow J/\psi \pi$
- D_s^{**} , B^{**0} and B_s^{**}

• Σ_b, Σ_b^*

 Ξ_{b}^{-}

Introduction

- Heavy Quark mesons are QCD analog of "hydrogen atom"
 - → Starts to be very sensitive test of various model in non-perturbative regime of QCD
 - \rightarrow Lot of information in charm sector
 - \rightarrow Bottom sector starts to speak up as well
- Heavy Quark baryon are next interesting laboratory
 - \rightarrow Heavy quark light diquark is basic picture
 - $\rightarrow\,$ Another sensitive test of models
 - \rightarrow Still many things to observe in charm sector
 - \rightarrow In bottom sector only Λ_b directly seen up to recently
- Discovery of new particles is exciting and fun
- Good practice for future discoveries

- Contains two distinct heavy quarks
- Interesting for interplay of the two heavy quark in decays
- Up to recently only seen in semileptonic decays \Rightarrow bad mass measurement with uncertainty \approx 400 MeV/ c^2
- In May 2006, observation of decay $B_c \rightarrow J/\psi\pi$ in 1.1 fb⁻¹
 - $\rightarrow\,$ Fully reconstructed decay
 - \Rightarrow Good mass resolution
- Strategy
 - Derive selection on $B^+ \rightarrow J/\psi K^+$
 - Apply same cuts to $B_{c} \rightarrow J/\psi\pi$
 - Wait for enough data

$\mathbf{B_c} \to \mathbf{J}/\psi\pi$

- Update from 1.1 fb⁻¹ to 2.2 fb⁻¹: $N_s = 87 \pm 13$ (was 45 \pm 9) $M(B_c) = 6274.1 \pm 3.2(\text{stat}) \pm 2.6(\text{sys})$ Significance > 8σ (was > 6σ)
- Mass consistent with expectation
- Experiment much better than theory

\mathbf{B}^{**} and $\mathbf{B}_{\mathbf{s}}^{**}$ Mesons

- Spin of heavy quark and light quark decoupled
- For L = 1 light quark has $j_q = 1/2$ or $j_q = 3/2$
- \checkmark Combining with spin of heavy quark \Rightarrow four states in two doublets
- \rightarrow S-wave decay for $j_q = 1/2$
- \rightarrow D-wave decay for $j_q = 3/2$
- Expect to see only states with $j_q = 3/2$
- At Tevatron also missing γ from ${\it B}^*$ decay
- B_s^{**} analogous to B^{**} with K instead of π in decay
- $B_s^{**} \rightarrow B_s \pi$ decay forbidden by isospin

\mathbf{B}^{**} and $\mathbf{B}^{**}_{\mathbf{s}}$ Mesons

- Decay modes of B⁺
 - $B^+
 ightarrow J/\psi K^+$ (CDF, DØ)
 - $B^+
 ightarrow \overline{D}^0 \pi^+$ (CDF)
 - $B^+
 ightarrow \overline{D}^0 3 \pi^+$ (CDF, only B^{**})
- Only fully reconstructed B^+ \Rightarrow excellent mass resolution

- Combine B⁺ with π⁻ (K⁻) to form B^{**} (B^{**}_s)
- Expect to see three peaks from decays
 - $B_1 \rightarrow B^{*+}\pi^-$
 - $B_2^* \rightarrow B^+ \pi^-$

•
$$B_2^* \rightarrow B^{*+}\pi^-$$

All observed peaks above 5σ significance \Rightarrow First observation of narrow B_s^{**}

B** **Results**

CDF also measures $\Gamma(B_2^*) = 22.1^{+3.6}_{-3.1} + 3.5_{-2.6}$ MeV

\mathbb{D} D_{s1}(2536) Mass Measurement

- Measure $\mathcal{B}(B_s \rightarrow D_{s1}(2536)\mu\nu X)$
- Clean sample of $D_{s1}(2536) \rightarrow D^{*-}K_s^0$
- Observe 43.8 ± 8.3 signal events
- Measured mass $2535.7 \pm 0.6 \pm 0.5 \text{ MeV}/c^2$
- $\mathcal{B}(B_s \rightarrow D_{s1}(2536)\mu\nu X) = (0.86 \pm 0.16 \pm 0.13 \pm 0.09)\%$

 $\Sigma^{(*)\pm}_{
m b}
ightarrow \Lambda^0_b \pi^{\pm}$

- Up to recently Λ_b only directly observed *b*-baryon
- Lack of the experimental result mainly due to the statistics
- Tevatron experiments start to have enough statistics to search for other *b*-baryons
- Decay via p-wave π

 $\begin{array}{rl} & \rightarrow \ 3/2^+ \ (\Sigma_b^*) \\ \Sigma_b : \ bqq & J^P \ = \ S_Q \ + \ S_{qq} \\ & \rightarrow \ 1/2^+ \ (\Sigma_b) \end{array}$

- b	
$\Sigma_b^{(*)-}$	ddb
$\Sigma_b^{(*)0}$	udb
_(*)0	
$\Sigma_b^{(*)0} \rightarrow$	$\Lambda_b^0 \pi^0$ dif-
ficult at	Tevatron

IIIIh

Property	Expectation (MeV/ c^2)
$m(\Sigma_b) - m(\Lambda_b)$	180 — 210
$m(\Sigma_b^*) - m(\Sigma_b)$	10 — 40
$m(\Sigma_b^-) - m(\Sigma_b^+)$	5 — 7
$\Gamma(\Sigma_b), \ \Gamma(\Sigma_b^*)$	pprox 8, $pprox$ 15

 $\Sigma^{(*)+}$

 $(*)^{\pm} \rightarrow$

- $\Lambda_b \rightarrow \Lambda_c^+ \pi^-, \Lambda_c^+ \rightarrow p K^- \pi^+$
- With 1.1 fb⁻¹ around 3200 $\Lambda_b \Rightarrow$ worlds largest sample
- For Σ_b search select narrow region around fully reconstructed peak

$\Sigma_{\rm b}$ Q-distribution

- Fixed background before looking to signal region
- Excess after unblinding

	Data	bkg	excess
$\Sigma_b^{(*)-}$	416	268	148
$\Sigma_b^{(*)+}$	406	298	108

- Data indicate two peaks for each charge
- Do unbinned maximum likelihood fit
- Fit for Q values and number of events

 $L^{(*)\pm} \rightarrow \Lambda^0_{\mu} \pi^{\pm}$ Result

0.5

0.4

 $Q = m(\Lambda_b^0 \pi) - m(\Lambda_b^0) - m_{\pi} \quad (GeV/c^2)$

What do we know about $\Xi_{\rm b}$

- Quark content $bsu(\Xi_b^0)/bsd(\Xi_b^-)$
- Weak decay dominated by the b quark decay
 - Expect lifetime comparable to other *b*-hadrons
 - LEP experiments measure $\tau = 1.39^{+0.34}_{-0.28}$ ps from excess in $\Xi^- I^- \nu_I X$ events
- Theory expectations for mass in the range 5788–5812 MeV/c^2
- Possible decays useful for search
 - $\Xi_b \rightarrow J/\psi \Xi$ good for trigger, at Tevatron only access to charged one
 - $\Xi_b \to \Xi_c \pi$
 - $\Xi_b \rightarrow D\Lambda$
 - $\Xi_b \rightarrow \Lambda_c K \pi$

Decay topology of $\Xi_{\rm b}^- \rightarrow {\rm J}/\psi \Xi^-$

Full decay chain: $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}$ $\Xi \rightarrow \Lambda \pi$ $\Lambda \rightarrow p\pi$

- Ξ^- is charged long lived particle
 - \Rightarrow challenges to work with it
 - At DØ low efficiency of default software
 - At CDF vertexting software needed modifications
- In addition, can be tracked in silicon detector (CDF) HADRON07, Frascati

$\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}$ search

Candidates / 1 MeV/c²

- Both experiments have clear Ξ[−] signal
- Ξ^- candidates are combined with J/ψ to form Ξ_b^- candidates
- Selection
 - Main selection by momenta, vertexing quality and decay time
 - DØ develops selection based on wrong-sign data and signal MC
 - CDF reuse B^+ selection for B_c search with Ξ^- treated as track

$\Xi_{\mathbf{b}}^{-} \rightarrow \mathbf{J}/\psi \Xi^{-} \operatorname{Result}$

- DØ made extensive check with no signal in
 - Wrong-sign Λπ
 combinations
 - Ξ^- sidebands
 - J/ψ sidebands
- CDF has signal also in decay $\Xi_b^- \to \Xi_c^0 \pi^-$
- DØ lifetime distribution consistent with expectation
- ⇒ Signal consistent with $\Xi_b^- \rightarrow J/\psi\Xi^-$ decay

- Last year and half very productive in heavy quark spectroscopy
- For *b*-mesons
 - Observation of narrow B_s^{**}
 - Updates of B^{**} analyzes with first measurement of the Γ(B₂^{*})
- For b-baryons
 - Observation of charged Σ_b , Σ_b^*
 - Observation of Ξ_b^-
- Both Tevatron experiments contribute to this enormous increase of knowledge
- Personal believe, that we can still provide some more information from spectroscopy of heavy quark hadrons

References

- B_c: http://www-cdf.fnal.gov/physics/new/bottom/070712.blessed-bc-mass/
- B**
 - DØ: hep-ex/0705.3229
 - CDF: http://www-cdf.fnal.gov/physics/new/bottom/070726.blessed-bss/
- **B**_s**
 - DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B31/
 - CDF: http://www-cdf.fnal.gov/physics/new/bottom/060720.blessed-BsSS_public/
- Σ_b: arXiv:0706.3868 [hep-ex]
- **•** Ξ_b
 - **DØ:** Phys. Rev. Lett. 99 , 1052001 (2007)
 - CDF: Phys. Rev. Lett. 99, 052002 (2007)

Tevatron

- $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Peak luminosity $\approx 3 \cdot 10^{32} \, cm^{-2} s^{-1}$
- around 2.7 fb⁻¹ per experiment collected from around 3.2 fb⁻¹ delivered

Experiments

- Excellent momentum and mass resolution
- Tracking at trigger level
- Particle identification

- Excellent muon coverage
- Very strong in semileptonic and J/ψ decays

$\mathbf{B_c} \to \mathbf{J}/\psi\pi$

- Selection derived and fix on 360 pb⁻¹
- As dataset grows, signal more significant
- Around 1 fb⁻¹ enough to claim observation
- Previous result: $N_s = 45 \pm 9$ $M(B_c) = 6276.5 \pm$ $4.0(\text{stat}) \pm 2.7(\text{sys})$ Significance > 6σ
- Now update with doubled dataset

CDF B_s^{**} **Q** distributions

- Peak positions and width are consistent between two channels
- Background shapes are practically same

CDF B_s^{**} **p-Value**

CDF B_s^{**} Likelihood profiles

B^{**} in 370 pb⁻¹ at CDF

New result:

- B_2^* 5739.9^{+1.7} +0.5 MeV/ c^2 B_2 5739.9^{+1.7} +0.5 MeV/ c^2
- B_1 5725.3^{+1.6} +0.8 MeV/ c^2

Old result:

- B_2^* 5738 ± 5 ± 1 MeV/ c^2
- B_1 5734 ± 3 ± 2 MeV/ c^2

Background estimation

- Do blind search
- Fix all backgrounds before looking to signal region
- Shapes
 A_b sideband
 PYTHIA MC
 B miss-reconstructed data
- Relative normalization according to Λ_b mass fit
- Determined background describes data well

- Repeat fit with alternative hypothesis
 - Single peak left out
 - Only one peak in each charge combination
 - No peak, pure background
- Derived from $\Delta(-\ln \mathcal{L})$

	p-Value	σ		p-Value	σ
No peak	$< 8.3 \cdot 10^{-8}$	> 5.2	No Σ_b^-	$3.2 \cdot 10^{-4}$	3.4
2 peaks	$9.2 \cdot 10^{-5}$	3.7	No Σ_b^+	$9.0 \cdot 10^{-3}$	2.4
			No Σ_b^{*-}	$6.4 \cdot 10^{-4}$	3.2
			No Σ_b^{*+}	$6.0 \cdot 10^{-4}$	3.2

- \Rightarrow Significance more than 5 σ for 4 peaks
- \Rightarrow Evidence for three out of four individual peaks

$\Xi_{\rm b}$ mass comparison

$\Xi_{\rm b}$ DØ checks

