Status of heavy-ion-beam-driven high energy density physics and fusion*

Presented by B. Grant Logan on behalf of the U.S. Heavy Ion Fusion Science Virtual National Laboratory (LBNL, LLNL, and PPPL)

Fusion Power Associates Annual Meeting and Symposium Hilton Garden Inn Livermore, California 3-4 December, 2008

* This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 by the Lawrence Berkeley National Laboratory, under Contract No. DE-AC52-07NA27344 by the Lawrence Livermore National Laboratory, and under Contract Number DE-AC02-76CH03073 by the Princeton Plasma Physics Laboratory.

1

The Heavy Ion Fusion Science Virtual National Laboratory

Advances in U.S. Heavy Ion Fusion Science support a sequence of heavy-ion-beam-driven facilities for HEDP <u>and</u> ...exploiting the intrinsic high efficiency of velocity ramped-heavy ion beams for direct drive

Anders, A.¹, Barnard, J. J.², Bieniosek, F.M.¹, Briggs, R.J.¹, Cohen, R.H.², Davidson, R.C., ³ Dorf, M.³, Efthimion, P.C. ³, Faltens, A.¹, Friedman, A.²,
Greenway, W.G.¹, Gilson, E.P.³, Grisham, L.³, Grote, D.P.², Haber, I.⁵, Henestroza, E.¹, Jung, J-Y.¹, Kaganovich, I.³, Kisek, R.⁵, Kwan, J.W.¹, Lee, E. P.¹, Leitner M.¹, Lidia, S.M.¹, Logan, B.G.¹, Lund S.M.², Moir, R.W.², Molvik, A.W.¹, More, R.M.¹, Ni, P.A.¹, Perkins, L. J.², Qin, H.³, Rose, D.V.⁴, Roy, P.K.¹, Startsev, E.A.³, Seidl, P.A.¹, Sharp, W.M.², Vay, J-L.¹, Waldron, W.L.¹, Welch, D.R.⁴, Yu, S. S.¹

1. Lawrence Berkeley National Laboratory

2. Lawrence Livermore National Laboratory

3. Princeton Plasma Physics Laboratory

4. Voss Scientific, Inc.

5. University of Maryland

The Heavy Ion Fusion Science Virtual National Laboratory

Scientific objectives and key features of a sequence of heavy-ion-beam driven facilities for high energy density physics and fusion

HEDP/Inertial Fusion Energy	Ion	Linac	Ion	Beam	Target	Range	Energy
Science Objective		voltage	energy	energy	pulse	-microns	density
(Facility)		- MV	- MeV	- J	- ns	(in)	$10^{11} J/m^3$
Beam compression physics,	K+	0.35	0.35	0.001-	2-3	0.3/1.5	0.04
diagnostics. Sub-eV WDM.				0.003		(in solid/	to
(NDCX-I) (1 beam)						20% Al)	0.06
Beam acceleration and target	Li ⁺¹ ,	3.5 -	3.5 -	0.1 -	1-2	7 - 4	0.25
physics basis for IB-HEDPX.	or	5	15	0.28	(or 5 w	(in solid	to
(NDCX-II) (1 beam)	Na ⁺³				hydro)	Al)	1
User facility for heavy-ion	Na ⁺¹	25	25 –	3 –	0.7	11 - 8	2.2
driven HEDP.	or		75	5.4	(or 3 w	(in solid	То
(IB-HEDPX) (1 beam)	K ⁺³				hydro)	Al)	5.8
Heavy-ion direct drive	Rb ⁺⁹	156	1000	2x7.5	2 - 4	1000	18
implosion physics.				(kJ)		(in solid	
(HIDDIX) (2 beams)						Z=1)	
Heavy ion fusion test facility -	Rb ⁺⁹	156	1000	300 to	12 - 24	1000	90
-high gain target physics.				1500		(in solid	
(HIFTF) (40-200 beams)				(kJ)		Z=1)	

Ranges given in table reflect options under study

Table 4.1, page 43 of an HIF White Paper available upon request

Recent innovations, together with NIF ignition, support a new vision for heavy ion fusion:

- Heavy ion beam intensity increases > 1000X with velocity increasing in time with space charge neutralized by background plasma.
 [Neutralized Drift Compression Experiment (NDCX): P. K. Roy, et. al. Phys. Rev. Lett. 95, 234801 (2005), and J.E. Coleman et al., in Proc. of the 2007 Particle Accelerator Conf., Albuquerque, NM, 2007(IEEE catalog# 07CH37866, USA, 2007). Time-dependent chromatic focusing correction experiment planned in NDCX next year].
- High coupling efficiency of heavy ion beam direct drive in ablative rocket regime (also uses beam velocity increasing in time).
 [B. G. Logan, L. J. Perkins, and J. J. Barnard, Phys. Plasmas 15, 072701 (2008)].
- Beam spot rotation on target with helical RF-beam perturbations upstream [B. Sharkov (Russia), S. Kawata (Japan), H. Qin (USA)]→ enables direct drive with only 4 polar angles @<1% non-uniformity for direct drive [J. Runge, Germany].
- New agile on/off valve technology for liquid jets adapted to provide thick liquid protection for direct drive chambers. [R. Moir, LLNL, 1999 HYLIFE note and recent advances-see http://videos.komando.com/2008/08/19/water-painting/].

Breakthrough: Compression of intense velocity-chirped ion beams in plasma*. Now, radial and temporal compression \rightarrow > 2000 X n_{beam}

NDCX-I WARM DENSE MATTER TARGET CHAMBER Target Manipulator 0 and Hexapod Gate Valve Light Collection System Ion Beam 220 **Final Focus** Solenoid Four FCAPS **Plasma Injectors** 9 mm PPPL The Heavy Ion Fusion Science Virtual National Laboratory

BERKELEY LAB

Ultra-fast optical pyrometer for experiments at NDCX

We plan to assemble NDCX-II with largely existing equipment, enabling higher energy WDM and planar direct drive hydro coupling experiments

NDCX-II would increase beam energy on target <u>100 times</u> → enables HEDP-WDM and direct drive hydro-coupling experiments. →Integrated Beam High Energy Density Physics Experiment: there are enough ATA accelerator modules to build a longer, 25 MV IB-HEDPX

The Heavy Ion Fusion Science Virtual National Laboratory

Induction cells for NDCX-II are available from LLNL's decommissioned ATA facility

<u>Heavy-Ion Direct-Drive Implosion Experiment (HIDDIX)</u>: use two
 5 kJ-scale linacs with RF wobblers to drive cryo capsule implosions for benchmarking ion hydro-codes for heavy ion direct drive fusion.
 → Provides a new accelerator tool to explore polar direct drive hydro physics with heavy ion beams, in parallel with NIF operation.

Following our success in velocity-chirp compression of intense ion beams to few-nanosecond pulses in plasmas,

we have another powerful fusion idea which also uses ion velocities increasing in time:

12/7/08

Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

B. G. Logan,¹ L. J. Perkins,² and J. J. Barnard² ¹Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Lawrence Livermore National Laboratory, Livermore, California 94550, USA

(Received 16 May 2008; accepted 4 June 2008; published online 9 July 2008)

Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work. © 2008 American Institute of Physics. [DOI: 10.1063/1.2950303]

John Nuckolls (April 2008) : "This is a real advance! Now, how are you going to exploit it? Can you apply this high coupling efficiency to reduce drive energy to <u>much less than 1 MJ?</u>"

NIF-scale capsules prototype central ignition for the smallest DT heavy-ion fusion test facility (HIFTF) and for follow-on T-lean power plant (HIFPP)

with ablator mass = 10 X ignition assembly mass (like NIF). →HIFTF tests incipient burn waves into DD fuel layer for HIFPP.

	NIF baseline	HIFTF (DT) (planned)	HIFPP (T-lean power plant)
Outer radius	1.2 mm	2 mm (TBD-Lasnex)	$5 \text{ mm} (M_o/M_f=10, \text{ Tabak dd core})$
Energy into capsule	200 kJ (300eV	250 kJ (heavy ions	1.4 MJ (heavy ions
	x-rays)	2→10 mg/cm ² ranges)	4→20 mg/cm ² ranges)
Ignition masses	0.24 mg DT core	0.24 mg DT core	0.24 mg DT core ← equal
(at stagnation)	+0.21 mg Be outer	+0.21 mg D outer	+6.5 mg D outer
Imp. Velocity;	3.7 e7 cm/s	~3.9 e7 cm/s	3.3 e7 cm/s (Tabak dd model)
Coupling efficiency	15%	17% (1-D Lasnex)	25% (analytic model)
Fuel assem. energy	30 kJ (16 in DT)	30 kJ (16 in DT, 14 in D)	350 kJ (in D+DT spark)
Rho-r	1.85 g/cm ²	1.2 - 1.8 g/cm ² (TBD)	8.1 g/cm ² (not inc. outer shell)
Fusion yield	20 MJ (DT)	>12 MJ (DT-26% plasma)	100 MJ (DD-DT→92% plasma w/
-		(TBD-Lasnex)	K-LiH-Pb converter shell)
13			

The Heavy Ion Fusion Science Virtual National Laboratory

rerrer

Option for a 5 kJ linac module for a 60-peak-beam HIFTF driver : Induction acceleration efficiency 13% (@ 640 A/beam), Modest linac length and cost (100-m linac @ q = 9, 1.5 MV/m). Manageable beam perveance K~10⁻³, injector source I_s<1 A @ q=1. 1 GeV Rubidium⁺⁹ beam linac module with two stages of beam stripping.

→Uses rapid combined bunch compression and acceleration
 →Uses rapid combined bunch compression and acceleration
 with downstream beam manipulations to be tested on NDCX-I&II
 →Two of these drive test implosions in HIDDIX; 64 for peak drive for HIFTF.

Concept for a small heavy-ion fusion test facility (HIFTF): polar direct drive

Conclusion: a sequence of cost effective heavy ion beam experiments and facilities can provide the basis for an attractive new vision for heavy ion fusion energy. More work is needed on:

- Beam brightness, neutralization, collective effects, stripping.
- More implosion calculations in the ramped ion energy, $v_b > v_{eth}$ regime.
- Development of RF wobblers and time-dependent focus control for hollow-beam spots.
- 2-D and 3-D symmetry and Rayleigh Taylor stability studies.
- Pulsed liquid jet control for direct-drive chamber protection.
- MHD conversion efficiency experiments using surrogate arc-jet plasma sources.

 \rightarrow We have workable designs for indirect drive HIF @ 7 MJ driver. The road to realize heavy ion direct drive fusion may be long, but the potential for very high coupling efficiency to reduce driver cost makes the effort worthwhile.

Backup slides

NIF ignition, *if successful*, will validate 15% *hydro-coupling efficiency* in ablative capsule drive (capsule gain <u>100 with 200 kJ x-ray absorbed</u>).
→Idea for an HIFTF test facility: 1 mm radius Be

LASNEX giving the same coupling efficiency, could <u>200 kJ</u> of ions absorbed (300 kJ incident with spill) with same power vs time and the <u>right range</u> into H/DT ablators get gain >50?

	alleria ignileri earipai
Parameter	Be(285) "current best calc'
Absorbed energy (kJ)	203
Laser energy (kJ) (includes ~8% backscatter)	1300
Coupling efficiency	0.156
Yield (MJ)	19.9
Fuel velocity (10 ⁷ cm/sec)	3.6 8
Peak rhoR (g/cm²)	1.85
Adiabat (P/P _{FD} at 1000g/cc)	1.46
Fuel mass (mg)	0.238
Ablator mass (mg)	4.54
Ablator mass remaining (mg)	0.212
Fuel kinetic energy (kJ)	16.1

HYDRA simulations of NDCX-I planar targets predict temperatures of a few tenths of an eV.

Simulation assumptions: Ion energy: 350 keV Energy fluence: 0.1 J/cm² Spot radius: 0.5 mm Pulse duration: 2ns FWHM Total energy deposited: 0.8 mJ Peak current: 1 A (40 times compression) Total charge: 2.3 nC

First attempt to make a hole in gold foil target using NDCX-I beam was successful (August 2008)

before

20

The Heavy Ion Fusion Science Virtual National Laboratory

A first solenoid-focused induction accelerator for intense ion beams-NDCX-II will pioneer studies of accel-decel injection, combined rapid bunch compression with acceleration, and solenoid transport limits.

The Heavy Ion Fusion Science Virtual National Laboratory

NDCX-II <u>solenoid</u> <u>transport</u> will explore velocity spread, halo, and e-cloud limits.

21

NDCX II can explore improvement in hydro-coupling efficiency with increasing ion range, either ramped or double pulse.

[Simulations by Siu Fai Ng & Simon Yu (CUHK), Seth Veitzer (Tech-X), John Barnard (LLNL)]

Oblique ion illumination with beam spot rotation (*RF* **wobblers**) can enhance ablative-stabilization and lengthen pressure gradient scale lengths behind the ablation front

Density <u>Un-perturbed ablator</u> gradient

g-Acceleration, Gradient Te,

Perturbed ablator. Oblique ion rays may ablate high density spikes faster when ion range >

Projection of many overlapping hollow beams onto a spherical ablator leads to mostlyoblique rayillumination in the foot pulse, and smoother.

 $\lambda_{RT} \rightarrow$ improved ablative stabilization.

<u>RF</u> wobblers useful for beam smoothing, focus zooming & RT control (GSI, ITEP, **PPPL (Hong Qin)**

Ablative stabilization of high-k RT modes depends on local electron temperature gradients from peak beam deposition to ablation front

Ion versus laser beams-for the same PdV work at the ablation front: → *ion beam energy deposited closer to ablation front (<u>higher coupling efficiency</u>) → <i>steeper pressure gradients behind ablation front (<u>higher g driving RT for ions</u>)*

Jakob Runge, a German Fulbright summer student at LBNL, has developed a Mathematica model to explore the question: what minimum number of polar angles of annular ring arrays with beams *using hollow rotated beam spots* would be needed to achieve less than 1% non-uniformity of deposition?

Beam filamentation (Weibel) instability should be investigated with *rotating helical beams* during NDC

To compact beamline service and maintenance, dipole magnets bend 128 driver beams total from two beamline arrays into plasma-neutralized drift compression lines directed to final focus into the direct drive chamber:

Heavy-ion direct drive LASNEX runs (June 2007) by John Perkins (LLNL) found high target gains \geq 50 at 1MJ with low range ions (a) <u>high</u> coupling efficiency (16%) (published Phys. of Plasmas 15, 072701 2008)

Analytic calculations estimate higher efficiencies (20-25%) substituting H for DT ablators, ramping up ion K.E. in time.

¹LLNL presentation, "Implementing Ion Beams in Kull and Hydra," T. Kaiser, G. Kerbel, M. Prasad

A MathCAD model and LASNEX use the same ion ray dE/dx formulary as in the HYDRA ion package documentation

 $\frac{Z_{eff}}{R^3} \left\{ (Z_r - \overline{Z}) \log \Lambda_s + \overline{Z} G(\beta / \beta_r) \log \Lambda_r \right\}$ ρ_T = target density in g/cm^3 , A_T = target atomic weight Z_r = target atomic number, \overline{Z} = target ionization state $\Lambda_{B} = \frac{2m_{r}c^{2}\beta^{2}}{\overline{l}}, \quad \Lambda_{F} = \frac{m_{r}c^{2}\beta^{2}}{\hbar\omega_{r}}, \quad G(x) = erf(x) - x \, erf'(x) = 1 \text{ for } x >> 1$ \bar{I} = average ionization potential = .01Z₇ keV (Bloch' s rule) $\omega_p = \text{plasma frequency} = \sqrt{4\pi e^2 n_e / m_e} = 56416 \sqrt{n_e} / \text{sec}$ $\hbar \omega_p = (3.7e - 14) \sqrt{n_e} \text{ keV}, n_e = \text{electron density in } 1/cm^3 = \overline{Z}N_0 \rho_T / A_T$ Ion Beam : $\beta = v/c$, $\gamma = \frac{1}{\sqrt{1-\beta^2}} = 1 + \frac{E}{Mc^2}$ E =Kinetic Energy of Ion Beam in keV, $Mc^2 = \text{Ion Beam Rest Energy} = A_{hashraw}$ (9.3e5) keV $m_c c^2 = \text{Electron Rest Energy} = 511 \, keV$ Betz Empirical $Z_{eff} = Z_{ionBrave} \left[1 - \exp(-137 \beta_{eff} / Z_{ionBrave}^{.69}) \right]$ $\beta_{eff}^{2} = \beta^{2} + \beta_{e}^{2}$, with $\gamma_{e} = \frac{1}{\sqrt{1 - \beta^{2}}} = 1 + \frac{kT_{e}}{m_{e}c^{2}}$

This Chandrasekhar function G (x=ion/electron speed) explains why the range increased 4X during the drive to enable high coupling efficiency in Perkins' LASNEX run.

150 100 50 8.0 0.5	1.0 1.5 2.	LASNEX 1-D design for 250 kJ HIF IF heavy ion direct drive in progress (John Perkins, 8-08) Next iteration for HIFTF target Higher energy Rb ⁺⁹ ions ramped 100-200 \rightarrow 400-950MeV NIF-scale capsule with graded DT \rightarrow DD \rightarrow H ablator (More ablator mass \rightarrow lower aspect ratio) DT gas \leftarrow expected gain > 50 for HIFTF @ lower			
D	river energy (MJ)		3.7e7 implosion	velocity like NIF	
	NIF Ignition Baseline	1 st HIFTF example HI Direct Drive	HI Direct Drive MJ-Class	HI Direct Drive Shock Ignited	
Drive type	Laser indirect drive → x-rays at 285eV	HI direct drive 50MeV Ar (foot) 100MeV (main)	HI direct drive 50MeV Ar	HI direct drive + HI shock ignition	
Drive energy (MJ)	1.3	0.25	1.0	1.0 (assembly) +0.3 (shock)	
Yield (MJ)	20	7.0	50	199	
Gain	15	28	50	153	
rhoR (g/cm2)	1.8	1.04	1.24	2.25	
Peak velocity (cm/s)	3.7e7	5.2e7 (too high!)	4.44e7 (too high)	2.2e7	
Drive efficiency	0.023	0.17	0.15	0.086 (but low velocity!)	
30 The	Heavy Ion Eusion Science	co Virtual National Labo	vratory		

The Heavy Ion Fusion Science Virtual National Laboratory I

BERKELEY LAB

High ρr + target shells capture >90% of fusion yield as 3 eV plasma \rightarrow 30X more energy per kg than chemical combustion with 15 x higher plasma temperatures \rightarrow 100X more power density (~ σu^2) than "old" MHD, \rightarrow 30X more kWe per ton power density than conventional steam-turbine generators \rightarrow 10X lower balance of plant costs!

[B.G. Logan, Fusion Engineering and Design 22, 151,1993]

The Heavy Ion Fusion Science Virtual National Laboratory

12/7/08

New <u>pulsed-jet</u> valve capability would enable thick liquid Flibe protection like HYLIFE to be adapted to *direct drive chambers*

[R. Moir, LLNL, 1999 HYLIFE note.

Water fountain pictures from http://videos.komando.com/2008/08/19/water-painting/].

12/7/08

The Heavy Ion Fusion Science Virtual National Laboratory

Driver ion beam space charge is neutralized by a cold Hydrogen gas puff pre-ionized by 24-low energy beams (1A, 1 MeV Na⁺¹)

 \rightarrow This pre-ionization approach can be tested on HCX at LBNL

Pre-ionization steps to neutralize foot and peak driver beam space charge

- 1. Cryo-capsule target injected @ 50-100 m/sec (may need some reflective coating or frost layer to avoid pre-heat in 600 deg C, 10¹³ cm⁻³ Flibe vapor)
- 2. A few ms before arrival of cryo-capsule target at chamber center, a pre-injected 1 mg H₂ pellet is vaporized by a low energy laser into 100 deg K gas cloud.
- 3. H₂ gas cloud expands to chamber wall, presenting H and e⁻ densities= 10X the peak driver beam charge densities occurring at peak drive (6e16 cm⁻³ at center to 6e14 cm⁻³ at final focus radii
- 4. 24 pre-ionizer beams fire 1 μ s to ionize (<<1 %) H₂ gas to electron densities > 2-3 X the foot beam charge densities.
- 5. Foot beams further ionize the remaining H₂ neutrals to 10X the subsequent peak driver beam densities.

Advanced fuel HIF Power Plant (HIFPP) using direct drive compression of DD fuel with DT spark plug. 1.4 m radius chamber **1.6 MJ direct drive: Foot-64 beams** ~20-40 MV K⁹⁺ Peak-128 beams ~100-200 MV Rb⁹⁺ 100 MJ DD/DT yield **1.5 Blanket energy M** 3.4 Hz, $\eta_d \sim 13\%$ driver $\eta_{conv} = 0.7 [0.5 \text{ MHD} +$ 0.4 thermal bottom] 357 MW_e gross -42 MW_e linac driver -8 MW_e all magnets -7 MW_e liquid pumps = 300 MW_e net power

Future studies should consider options to use multiple-beam induction linacs (more efficient with <u>shared cores</u>, <u>but with added vacuum drift lines</u>)

The Heavy Ion Fusion Science Virtual National Laboratory

SUMMARY	POWER PLANT	DEMO		Summary of cost
T-lean fuel energy at ignition	1 MJ	0.2 MJ		Summary of Cost
Energy delivered to ablation front	$E_{da}(1.5,1) = 2.55$	$E_{da}(1.5, 0.2) = 0.49$	MJ	_ model for
Capsule implosion efficiency Overall coupling efficicency	$\eta_{c}(1.5,1)=0.39$	$\eta_{c}(1.5,0.2)=0.41$		reference CFAR
beam-to-fuel corrected for parasitic loss on ablation plasma	$\eta_{\rm dfA}=0.25$	$\eta_{dfB} = 0.23$		power plant and
H ₂ ablation front temperature	$T_{ex}(1.5,1) = 26.3$	$T_{ex}(1.5, 0.2) = 36$	eV	DEMO updated
Fusion yield	$Y_{f}(1.5, 1) = 494$	$Y_{f}(1.5, 0.2) = 43$	MJ	for T-lean targets.
Driver energy	$1 \eta_{dfA}^{-1} = 4.06$	$0.2 \cdot \eta_{dfB}^{-1} = 0.85$		Liquid shell implosion velocity v _s =6 m/s
Driver efficiency	$\eta_{dA} := 0.4$	$\eta_{dB} := 0.2$	2	
Driver electric input energy/pulse	$1 \cdot \eta_{dA}^{-1} \cdot \eta_{dfA}^{-1} = 10.1$	$0.2 \cdot \eta_{dB}^{-1} \cdot \eta_{dfB}^{-1} = 4.3$	4	Chamber radius (m)
Target gain	$Y_{f}(1.5, 1) \cdot \eta_{dfA} \cdot 1^{-1} = 122$	$Y_{f}(1.5, 0.2) \cdot \eta_{dfB} \cdot 0.2^{-1} = 51$	4. rcaj	Gross electric power (G
Fusion energy conversion eff. (lowest CoE for Demo requires	$\eta_{\mathbf{MHD}} := 0.65$.n.MHD.:= 0.4	$RR(rca_i, v_s)^{3}$ 0.7. Pth _i	····
to get 0.65 conversion overall)	^ lowest CoE this case	ηMHDsteam := 0.05	1000 2	
Gross electric output (per pulse)	$W_{e}(0.65, 1.5, 1) = 278$	$W_{e}(0.65,1.5,0.2)=20.5$	1	Pulse repetition rate (Hz)
Net electric output per pulse, inc 5 % aux	$W_{netA} = 254$	$W_{netB} = 15.2$		
Pulse repetition rate	$RR_A := 6$ thigher jet	RR _B := 8	0 ¹ 10	1.10^3 1.10^4
Net electric power	$P_{netA} = 1522$ velocities	$P_{netB} = 122$		Yfus _i T-lean target fusion yield (MJ)>
Driver direct cost	$C_{driver}(\eta_{dfA}, 1) = 528$	$C_{driver} \big(\eta_{dfB} , 0.2 \big) = 111$	(E	-HIFPP -HIFPP 1st gen) (2nd gen) _=1.4 MJ E=8.5 MJ
Vessel direct cost	$C_{vessel}(1.5,1) = 59$	$C_{vessel}(1.5, 0.2) = 8.5$	M\$	If ren rate cannot be
Balance-of-Plant direct cost	$C_{mhdBoP}(1522) = 104$ C_{mhdP}	$BoP(122) + C_{steamBoP}(122) = 6$	54 M\$	maintained at 6 Hz with faster
Other direct costs	$\underline{C}_{other}(\underline{1522}) = 103$	C _{other} (122) = 38	M\$	jets in larger chambers, then
Cost of Electricity, inc.	$CoE_A = 29.4$	$CoE_B = 125$ mil	lls/kW _e hr	this inset figure shows higher
targets and O&M>	may meet affordable CoE al for 10 billion people	L-> total capital < 1 B\$ for DEI net power and tritium produc	MO for tion	achievable.
Jo The Hea	avy Ion Fusion Science \	/irtual National Labora	atory	

Summary of cost model for reference CFAR power plant and **DEMO** updated for T-lean targets. Liquid shell implosion velocity v_s=6 m/s Chamber radius (m) Gross electric power (GWe) •••. Pulse repetition rate (Hz)

mm BERKELEY LAS

Recent theory progress in the VNL supports our understanding of NDCX experiments and gives us the tools we need in neutralized beam compression and focusing for HEDP and heavy ion fusion.

Physics of Ion Beam Pulse Neutralization in Solenoidal Magnetic Field I.D. Kaganovich, M. Dorf, E. A. Startsev, R. C. Davidson, A. B. Sefkow

Princeton Plasma Physics Laboratory, USA lon beam propagation through a background plasma along a solenoidal magnetic field:

Waves Excitation and the Electrostatic Plasma Lens Effect

Dynamics of electromagnetic two-stream interaction processes during longitudinal and transverse compression of an intense ion beam pulse propagating through background plasma.*

Edward Startsev and Ronald C. Davidson

Conclusions

- Neutralized drift compression can reach 300x300 = 10⁵ combined longitudinal and transverse compression,
 - 1000 compression was achieved,
 - further progress requires better alignment of radial and longitudinal focal planes and optimization.
- $\alpha = \omega_{ce}/2\beta\omega_{pe}$ determines the properties of the plasma response to the charge bunch moving along the magnetic field
- M. Dorf, I. Kaganovich, E. Startsev, R. Davidson
 - $\alpha < 1$: response is paramagnetic; electric field is defocusing
- \bigcirc $\langle \alpha > 1$: response is diamagnetic; electric field is focusing
 - α=1: large amplitude waves (Helicon branch) are excited

Conclusions, part I

- It is found that the longitudinal beam compression strongly modifies the space-time development of the electrostatic two-stream instability.
- In particular, the dynamic compression leads to a significant reduction in the growth rate of the two-stream instability compared to the case without an initial velocity tilt by a factor

 $G_{max}/G_{max}^{notilt}\sim (\omega_{pb}/\omega_{pe})^{1/3}\ll 1$

- The number of e-foldings is proportional to the number of beam-plasma periods $1/\omega_{pb}$ during the compression time T_f .
- The two-stream instability is complectly mitigated by the effects of dynamical beam compression when $\omega_{pb}T_f<\sim$ 1.

37

Acknowledgements:

Thanks to all who have worked on heavy ion fusion, still on-going, but in particular:

- To all those in the VNL who have made neutralized drift compression, a key enabling technique for HEDP and HIF, today a reality (in no particular order): Larry Grisham, Dale Welch, Adam Sefkow, Prabir Roy, Enrique Henestroza, Ron Davidson, Peter Seidl, Josh Coleman, Eric Gilson, Phil Efthimion, Matthaeus Leitner, Will Waldron, John Barnard, Alex Friedman, Bill Sharp, Hong Qin, Igor Kaganovich, Ed Startsev, and many others.
- To Dick Briggs and Ed Lee, who advocated and defined the modular solenoid approach to HIF more than 10 years ago, in 1997, and to Wayne Meier, for systems analysis of the approach.
- To Simon Yu, who organized modular solenoid driver studies in 2002-2003, and implemented elements of the approach in NDCX-I and in initial plans for NDCX-II.
- To Ralph Moir, who gave us an idea on how to apply liquid jets to protect direct drive chambers.
- To George Caporaso, who supported our efforts through the VNL PAC, and gave us the 40 ATA modules that will allow us to build NDCX-II for first direct drive experiments at a low cost.
- To Matthaeus and Daniela Leitner, who made us aware of possibilities for high-q ion sources using high-powered gyrotrons, and the related Russian work.
- To Roger Bangerter, who urged another, closer look at 6-D phase space constraints in our work.
- Last but not least: To our US target experts who have given us a great gift of research opportunity and guidance in re-considering heavy ion direct drive:

John Perkins, John Nuckolls, Max Tabak, Dave Bailey, Craig Sangster, and to our international colleagues who have encouraged us to pursue heavy ion direct drive: Masakatsu Murakami, Dieter Hoffmann, Naeem Tahir, Claude Deutsch, Juergen Meyer-Ter-Vehn, Boris Sharkov, Shigeo Kawata, and Roberto Piriz.

(Our apologies to any we may have forgotten to include here)

I NE HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LADORATORY

