RHIC Heavy Ion Operations

Todd Satogata F. Pilat, W. Fischer, T. Roser, J. Alessi, M. Blaskiewicz

DOE RHIC Program Science and Technology Review July 6, 2005

- > FY05 Cu-Cu Run Summary
- Achieved Parameters and Status
- > Operations Efficiency
- > Luminosity Improvements

- > All experiments had a successful $\sqrt{s}=200$ GeV/n Cu-Cu run
- Delivered 15 nb⁻¹ with 200 GeV/n top energy collisions
 - More than twice the large-experiment goal of 7 nb⁻¹
 - Exceeded maximum luminosity projections
- > Setup and ramp-up time with beam was 2.5 weeks
 - Significantly shorter than planned 4 weeks
- > Multiple successful lower-energy runs with Cu-Cu
 - Successful 2 week run at \sqrt{s} = 62.4 GeV/n medium energy
 - Setup in only 2 days
 - Successful 1 day run at \sqrt{s} = 22 GeV/n injection energy

Run-5 Heavy Ion Chronology

Aug 16	Choice of ion
Sep 7	Start cool-down to 80K
Nov 15	Start injector setup for Cu
Nov 18	Start cool-down to 4K
Nov 22	Beam circulating in injection in blue (54 min)
Dec 1	Bus shorts discovered in yellow ring
Dec 4-21	Warm-up, repair, cool-down
Dec 23-25	Restart beam ops, blue ramps 95% trans
or Dec 28	Setup-starts, both beams – yellow obstruction
Dec 31	Both rings at store
≥ →Jan 4	Ramp-up starts, overnight collisions
→Jan 11	\sqrt{s} = 200 GeV/n physics starts
Mar 7-22	\sqrt{s} = 62 GeV/n setup (2.5 days) and physics run
Mar 23	\sqrt{s} = 22 GeV/n injection energy run

(calendar) time at store: 53% Cu-cu ZDC cross section measured at 2.6 barn

July 6, 2005

NATIONAL LABORATOR

T. Satogata - RHIC Heavy Ion Performance

- > Factors for exceeding performance
 - Average luminosity prediction (8x10²⁷ cm⁻² s⁻¹) and slope were quite accurate
 - Beta squeeze from 1m to 0.85 m (measured 1.1 m to 0.89 m)
 - In-run optimization of intensity and number of bunches
 - Luminosity ramp-up faster than projection model
 - · Achieved peak luminosity about 2 weeks into run
- Luminosity dents
 - January snowstorm
 - Access + winter power dip
 - Access + series of equipment failures
 - Reviewing access and maintenance schedules with experiments to minimize program impact

RHIC Run 5 Delivered \sqrt{s} = 62 GeV/u Cu-Cu Luminosity

Days into the run (to 03/22/05)

- > All experiments had successful Cu-Cu low-energy runs
 - Low energy (LE) 62.4 GeV/n and injection energy 22 GeV/n
- > Observables

Time at store	HE: 53%	LE: 74%
Luminosity lifetime	HE: 3.5 hours	LE: 6 hours
Time between stores	HE: 75 minutes	LE: 30 minutes

- Variables: Machine Parameters
 - Number of bunches
 - Transmission
 - Bunch Intensity
 - β*
 - Energy (\sqrt{s})

37-41 (limited by pressure rise) 85-95% HE: 41×4.5×10° LE: 37×3.8×10° HE: 0.85m LE: 3m HE: 200 GeV/n LE: 62.4 GeV/n

RHIC Availability and Time in Store

Weekly Cu-Cu Luminosity and Physics Time

Run5 Cu-Cu 100 GeV Delivered Integrated Luminosity by Week

BROOKHAVEN NATIONAL LABORATORY

July 6, 2005

T. Satogata - RHIC Heavy Ion Performance

10

5-Year RHIC Performance

Mode	No of bunches	Ions/bunch [10 ⁹]	β* [m]	L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store} ^{ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store peak} [cm ⁻² s ⁻¹]
Au-Au design	56	1.0	2	2×10 ²⁶	8×10 ³⁰	31×10 ³⁰
d-Au [Run-3]	55 (110)	120d/0.7Au	2	3×10 ²⁸	6×10 ³⁰	24×10 ³⁰
Au-Au [Run-4]	45	1.1	1	4 ×10 ²⁶	16×10 ³⁰	58×10 ³⁰
Cu-Cu [Run-5]	36	4.5	0.85	80×10 ²⁶	32×10 ³⁰	79 ×10 ³⁰
Au-Au enhanced	112	1.0	1	8×10 ²⁶	32×10 ³⁰	124×10 ³⁰

For √s=200 GeV/n Au-Au, the enhanced luminosity goal (c. 2008, before electron cooling) is

$$L_{\text{store ave}} = 8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$$

- Beam-Beam (maximize bunch intensity)
 - Excellent Cu injector intensity performance (5x10⁹ ions/bunch)
 - Cu-Cu FY05 operated near beam-beam limit
- Electron cloud pressure rise (maximize bunch number)
 - Pressure rise in IR10 after rebucketing \$\$\Rightarrow\$43x43 bunches
 - Transition pressure rise at IR4 ⇒ 45x45 bunches
- Intrabeam scattering (IBS)
 - Longitudinal cooling, debunching
 stochastic cooling
 - Transverse cooling, luminosity lifetime ⇒ electron cooling
- Experiment backgrounds
 - Improve shielding, collimation efficiencies
- > Operational efficiency
 - Expect only small improvements from time in store
 - About 55% of calendar time in Au-Au, Cu-Cu, pp
 - Expect to reach peak performance 2-4 weeks into run

- All operationally relevant dynamic pressure rise effects in RHIC can be explained with electron clouds
 - Abnormally large beam losses also lead to desorption and unacceptable vacuum pressure rise
 - Particularly problematic with short bunch lengths (transition, rebucketing)
- > Electron cloud driven pressure rises have been observed
 - With all species (Au, d, p, Cu)
 - In warm and cold regions
 - At injection, transition, and store
- Countermeasures include
 - Warm areas: NEG pipe installation, baking
 - Cold areas: Pre-pumping before cooldown

July 6, 2005

NEG pipes clearly benefit RHIC operations (pumping, low SEY) 57 m installed in 2003 195 m installed in 2004 (shown) 15 warm sections, mostly Q3-Q4 All NEG tubes are baked at 100C for > 40 hours activated at 250 C for 1 hour

Another ~150 m planned in 2005 21 warm sections

IR10, BO3, YI3, BI4, YO4, YI11, YO12

All NEG-coated beam tubes for 2005 shutdown installation are in hand

NEG Beam tube Locations for Run 2005					
Sect #	L(m)	S(m)	Sect #	L(m)	S(m)
YO1	3.95	48 - 52	BO7	5.2	39 - 44
	1.7	57 - 59		3.1	44 - 47
	5.2	60 - 65		5.2	49 - 54
	4.05	66 - 70		5.2	54 - 59
YI2	1.23	39 - 40	YO8	5.2	39 - 44
	1.61	41 - 43		3.1	44 - 47
	5.2	44 - 49		5.2	49 - 54
	1.45	49 - 51		5.2	54 - 59
	4.93	56 - 61	BI8	1.24	39 - 40
	5.2	61 - 66		5.2	42 - 47
	1.9	70 - 72		1.78	48 - 50
BO2	3.95	48 - 52		4.17	52 - 56
	1.7	57 - 59	BI9	10.4	40 - 50
	5.2	61 - 66		5.2	50 - 55
YO4	5.2	62 - 67		5.2	56 - 61
	1.94	67 - 70		5.2	61 - 66
BI5	5.2	39 - 44		5.2	66 - 71
	3.1	44 - 47	BO10	3.41	59 - 62
	5.2	49 - 54	YI10	20.8	45 - 66
	5.2	54 - 59		5.2	40 - 45
YI6	4.14	39 - 43		5.2	66 - 71
	2.77	45 - 48	BO11	5.2	40 - 45
	5.2	49 - 54		5.2	45 - 50
	5.2	54 - 59		5.2	50 - 55
IP6	2.79	4 - 7		5.2	56 - 61
	2.79	4 - 7		5.2	61 - 66
IP12	5.2	2 - 7		5.2	66 - 71
	3.7 2 - 5 NEG beam tubes for Run 2004				

Cu Stochastic Cooling

- Signal suppression extends well beyond the 10 MHz cavity bandwidth
- > Cooling loop is closed, kicker voltage sufficient for 100 GeV/n beams
- > Plan to build an operational 16-cavity system for yellow for FY06

Advantages of EBIS for RHIC HI

- Lower operating cost
- Produce any ion species
- Fast switching between species
- Higher Au injection energy into Booster
- Short Booster transfer line
 (30m)
- No stripping needed before Booster
- Few-turn injection
- Higher intensities with future improvements

- > FY05 Cu-Cu run delivered 15 nb⁻¹ at \sqrt{s} = 200 GeV/n
 - Exceeded maximum luminosity projections of 13.5 nb⁻¹
- > Setup and ramp-up time with beam only 2.5 weeks
 - Significantly shorter than planned 4 weeks
- > Multiple successful lower-energy runs with Cu-Cu
 - Successful 2 week run at \sqrt{s} = 62.4 GeV/u medium energy
 - Successful 1 day run at \sqrt{s} = 22 GeV/u injection energy
- > Luminosity limitations and plans
 - Pressure rise in interaction regions, potentially cold bore
 - Cold-bore pumping upgrade, 150m additional NEG pipe
 - Emittance growth from IBS
 - Stochastic cooling, electron cooling
 - EBIS improves the flexibility of RHIC HI program

NEG and Anti-Grazing Ridge Study

