FPCP 2007, Bled

New Heavy Quark Baryons

Michal Kreps University of Karlsruhe

Why heavy baryon spectroscopy

- Heavy Quark mesons are QCD analog of "hydrogen atom"
 - $\rightarrow\,$ Starts to be very sensitive test of various model in non-perturbative regime of QCD
 - \rightarrow Lot of information in charm sector
 - \rightarrow Bottom sector starts to speak up as well
- Heavy Quark baryon are next interesting laboratory
 - \rightarrow Heavy quark light diquark is basic picture
 - \rightarrow Another sensitive test of models
 - $\rightarrow\,$ Still many things to observe in charm sector
 - \rightarrow In bottom sector only Λ_b directly seen
- Discovery of new particles is exciting and fun

Where to study heavy baryons

- Everywhere where we produce them and have detector to detect them
- Current results come from
 - \rightarrow B-factories (Belle, *BABAR*)
 - + Have large amount of data
 - + Clean environment
 - Bound to charm sector
 - \rightarrow Tevatron (CDF)
 - Difficult environment from $p\overline{p}$ collisions
 - Only now starts to have reasonable amount of data for b-baryons
 - + Can do all b-hadrons

Directly observed states

Listed in PDG 2006 Listed in PDG 2006, but new results Not in PDG 2006, covered here

- 287 fb⁻¹ of data
- *p* D⁰ final state
- $D^0 \rightarrow K\pi, D^0 \rightarrow K\pi\pi\pi$
- PRL 98, 012001 (2007)

- $553 \, \text{fb}^{-1}$ of data
- Confirmation in $\Lambda_c^+ \pi^+ \pi^-$
- $\Lambda_c^+ \pi^{\pm}$ consistent with Σ_c (2455)
- hep-ex/0608043

- $\Lambda_c(2880)$ known state, but pD^0 decay is new
- $\Lambda_c(2940)$ observed for the first time
- Significance 7.5 σ at BABAR and 6.2 σ at Belle
- Mass and width consistent between experiments

	State	Mass [MeV/ c^2]	Width [MeV/c ²]
BABAR	Λ _c (2880)	$2882\pm0.1\pm0.5$	$5.8\pm1.5\pm1.1$
Belle	Λ _c (2880)	$\textbf{2881.2}\pm\textbf{0.2}\pm\textbf{0.4}$	$5.5\pm0.7\pm1.1$
BABAR	Λ _c (2940)	$2939.8 \pm 1.3 \pm 1.0$	$17.5\pm5.2\pm5.9$
Belle	Λ _c (2940)	$\textbf{2938.0} \pm \textbf{1.3}^{\textbf{+2.0}}_{-4.0}$	13 ⁺⁸ ⁺²⁷ ₋₅ ⁻⁷

- To learn more, both experiments do further studies
 - \rightarrow BABAR checks isospin partners
 - $\rightarrow\,$ Belle studies resonant substructure of decay and angular distributions

 $\Lambda_{c}^{+}(2880), \Lambda_{c}^{+}(2940)$

- \rightarrow If $\Sigma_c \Rightarrow$ also $\Sigma_c^{++} \rightarrow D^+p$ $D^+ \rightarrow K\pi\pi$
- \rightarrow No resonant structure seen
- \Rightarrow Both states are Λ_c 's
- 3 Λ_c states predicted ≈ 2940 MeV/c^2
 - $J^{P} = (1/2)^{+}, (1/2)^{-}, (3/2)^{-}$

Migura et al, Eur.Phys.J. A28 (2006) 41

- The $\Lambda_c(2880)^+$ is near a predicted $(3/2)^-$ state.
- Details PRL 98, 012001 (2007)

$\Lambda_{\rm c}^+(2880)$

Fit Λ_c (2880) yield in bins of $M(\Lambda_c^+\pi^\pm)$

Details: hep-ex/0608043

- Significance of $\Lambda_c(2880) \rightarrow \Sigma_c(2520)\pi$ 3σ with syst.
- $\Gamma(\Sigma_c(2455)\pi)/\Gamma(\Lambda_c\pi\pi) = 40.4 \pm 2.1 \pm 1.4\%$
- $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Lambda_c\pi\pi) =$ 9.1 ± 2.5 ± 1.0%
- $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Sigma_c(2455)\pi) = 22.5 \pm 6.2 \pm 2.5\%$

 $\Lambda_{c}^{+}(2880)$

- Fit $\Lambda_c(2880)$ mass distribution in angular bins and subtract non-resonant contribution
- χ^2/ndf .: 46.7/9 (J = 1/2); 35.1/8 (J = 3/2); 12.1/7 (J = 5/2)
- From χ^2 difference exclude J = 1/2 (J = 3/2) by 5.5 σ (4.8 σ)
- HQS expectations for $\Gamma(\Sigma_c(2520)\pi)/\Gamma(\Sigma_c(2455)\pi)$: 140% ($J^P = 5/2^-$) and 23 - 36% ($J^P = 5/2^+$)

New Heavy Quark Baryons – p. 10

- Uses 462 fb^{-1} of data
- $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ decay
- Signal events:
 - $\Xi_c^+(2980)$ 405.3 ± 50.7
 - $\Xi_c^+(3077)$ 326.0 ± 39.6
 - $\Xi_c^0(2980)$ 42.3 ± 23.8
 - $\Xi_c^0(3077)$ 67.1 \pm 19.9
- Significance:
 - **Ξ**⁺_c(2980) 5.7σ
 - $\Xi_c^+(3077)$ 9.2 σ
 - $\Xi_c^0(2980)$ 1.5 σ
 - $\Xi_c^0(3077)$ 4.4 σ

 $\Xi_{\rm c}(2980), \Xi_{\rm c}(3077)$

- Using 289 fb⁻¹ of data BABAR confirms Belle's observation
- Study only $\Lambda_c^+ K^- \pi^+$ with $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays
- Observes two structures in mass difference spectra
- Number of signal events $\Xi_c^+(2980)$ 284 ± 45 ± 46 $\Xi_c^+(3077)$ 204 ± 35 ± 12
- Significance
 - **Ξ**⁺_c(2980) 7.0 σ
 - **Ξ**⁺_c(3077) 8.6 σ
- Details in hep-ex/0607042

 $\Xi_{\rm c}(2980), \Xi_{\rm c}(3077)$

- 2D fit to $M(\Lambda_c^+\pi^+)$ and $M(\Lambda_c^+K^-\pi^+)$
- Fit for resonance substructure of Ξ_c decays
- Allow for Σ_c states also in background

BABAR and Belle measure consistent masses and widths			
	State	Mass [MeV/ c^2]	Width [MeV/c ²]
Belle	Ξ ⁰ _c (2980)	$\textbf{2977.1} \pm \textbf{8.8} \pm \textbf{3.5}$	43.5 (fixed)
Belle	Ξ ⁺ _c (2980)	$\textbf{2978.5} \pm \textbf{2.1} \pm \textbf{2.0}$	$43.5\pm7.5\pm7.0$
BABAR	Ξ ⁺ _c (2980)	$\textbf{2967.1} \pm \textbf{1.9} \pm \textbf{1.0}$	$\textbf{23.6} \pm \textbf{2.8} \pm \textbf{1.3}$
Belle	$\Xi_{c}^{0}(3077)$	$\textbf{3082.8} \pm \textbf{1.8} \pm \textbf{1.5}$	$5.2\pm3.1\pm1.8$
Belle	∃ ⁺ _c (3077)	$\textbf{3076.7} \pm \textbf{0.9} \pm \textbf{0.5}$	$\textbf{6.2} \pm \textbf{1.2} \pm \textbf{0.8}$
BABAR	∃ ⁺ _c (3077)	$3076.4\pm0.7\pm0.3$	$\textbf{6.2} \pm \textbf{1.6} \pm \textbf{0.5}$

BABAR adds resonant substructure		
$\Xi_{c}^{+}(2980) \rightarrow \Sigma_{c}^{++}(2455)K^{-}$	$132\pm31\pm5$	4.9 σ
Ξ_c^+ (2980) $ ightarrow \Lambda_c^+ K^- \pi^+$	$152\pm37\pm45$	4.1 σ
$\Xi_c^+(3077) \to \Sigma_c^{++}(2455)K^-$	$87\pm20\pm4$	5.8 σ
$\Xi_c^+(3077) o \Sigma_c^{++}(2520) K^-$	$82\pm23\pm6$	4.6 σ
$\Xi_c^+(3077) ightarrow \Lambda_c^+ K^- \pi^+$	$\textbf{35}\pm\textbf{24}\pm\textbf{1}$	1.4 σ

- State seen by CLEO in 1999 [PRL 82, 492(1999)]
- Seen and studied in $\Xi_{\pmb{c}}^{\prime} \to \Xi_{\pmb{c}} \gamma$ decay
- Not confirmed since then
- It is lightest state above ground state
- BABAR uses both cc events and B decays of 232 fb⁻¹ of data
- $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$
- $\Xi_c^0 \rightarrow \Xi^- \pi^+$
- Details in hep-ex/0607086

- $c\overline{c}$ cross section $\sigma(e^+e^- \rightarrow \Xi_c^{'+}X) \times \mathcal{B}(\Xi_c^{'+} \rightarrow \Xi^-\pi^+\pi^+) = 141 \pm 24 \pm 19 \,\mathrm{fb}$ $\sigma(e^+e^- \rightarrow \Xi_c^{'0}X) \times \mathcal{B}(\Xi_c^{'0} \rightarrow \Xi^-\pi^+) = 70 \pm 11 \pm 6 \,\mathrm{fb}$ $\sigma(e^+e^- \rightarrow \Xi_c^0X) \times \mathcal{B}(\Xi_c^0 \rightarrow \Xi^-\pi^+) = 388 \pm 39 \pm 41 \,\mathrm{fb}$
- B production rate $\mathcal{B}(B \to \Xi_c^{'+}X) \times \mathcal{B}(\Xi_c^{'+} \to \Xi^- \pi^+ \pi^+) = (1.69 \pm 0.17 \pm 0.10) \cdot 10^{-4}$ $\mathcal{B}(B \to \Xi_c^{'0}X) \times \mathcal{B}(\Xi_c^{'0} \to \Xi^- \pi^+) = (0.67 \pm 0.07 \pm 0.03) \cdot 10^{-4}$ $\mathcal{B}(B \to \Xi_c^0X) \times \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (2.11 \pm 0.019 \pm 0.25) \cdot 10^{-4}$
- From helicity angle J = 1/2, higher spin cannot be excluded

 $\Omega^*_{\mathbf{c}} o \Omega_{\mathbf{c}} \gamma$

- Ω_c^* last unobserved ground state charm baryon
- BABAR search uses 231 fb⁻¹ data
- Ω_c reconstructed in channels: $\Omega^- \pi^+$; $N = 156 \pm 15$ (a) $\Omega^- \pi^+ \pi^0$; $N = 92 \pm 26$ (b) $\Omega^- \pi^+ \pi^- \pi^+$; $N = 23 \pm 10$ (c) $\Xi^- K^- \pi^+ \pi^+$; $N = 34 \pm 15$ (d) $\Omega^- \to \Lambda K^-$, $\Xi^- \to \Lambda \pi^-$, $\Lambda \to p\pi^-$
- Combine Ω_c with γ

Details in PRL 97, 232001 (2006)

 $\Omega^*_{\mathbf{c}}
ightarrow \Omega_{\mathbf{c}} \gamma$

- Use $\Delta M = M_{\Omega_c \gamma} M_{\Omega_c}$ for better resolution
- (a) $\Delta M = 69.9 \pm 1.4 \pm 1.0 \text{MeV}/c^2$ $N = 39^{+10}_{-9} \pm 6$; significance 4.2σ
- (b) $\Delta M = 71.8 \pm 1.3 \pm 1.1 \text{MeV}/c^2$ $N = 55^{+16}_{-15} \pm 6$; significance 3.4 σ
- (c) $\Delta M = 69.9 \text{MeV}/c^2$ (fixed) $N = -5 \pm 5 \pm 1$;
- (d) $\Delta M = 69.4^{+1.9}_{-2.0} \pm 1.0 \text{MeV}/c^2$ $N = 20 \pm 9 \pm 3$; significance 2.0 σ
 - $\rightarrow \ {\mbox{Channels consistent}} \\ \Rightarrow \ {\mbox{combine them}} \\$

 $\Omega^*_{\mathbf{c}} \to \Omega_{\mathbf{c}} \gamma$

- Fit with Crystal ball function for signal with fixed shape parameters
- $\Delta M = 70.8 \pm 1.0 \pm 1.1 \, \mathrm{MeV}/c^2$
- $N = 105 \pm 21 \pm 6$
- 5.2 σ significance

Predictions for ΔM (MeV/ c^2)

- **•** HQET 80
- Lattice QCD 90
- Non-relativistic
 Quark Model 50-73

$\Sigma_{\rm b}$ expectations

- Up to now Λ_b only directly observed *b*-baryon
- Lack of the experimental result mainly due to the statistics
- Tevatron experiments start to have enough statistics to search for other *b*-baryons
- Decay via p-wave π

.

-(*)+

	$ ightarrow$ $3/2^+$ (Σ_b^*)
Σ _b : bqq	$J^P = S_Q + S_{qq}$
	\rightarrow 1/2 ⁺ (Σ_b)

$\Sigma_b^{(*)-}$ ddb	Property	Expectation (MeV/ c^2)	
$\Sigma_b^{(*)0}$ under	$m(\Sigma_b) - m(\Lambda_b)$	180 — 210	
Σ_b^{\prime} UOD	$m(\Sigma_b^*) - m(\Sigma_b)$	10 — 40	
$\overline{\Sigma}^{(*)0}$ decays through π^0	$m(\Sigma_b^-) - m(\Sigma_b^+)$	5 — 7	
can't be seen at CDF	$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	pprox 8, $pprox$ 15	

$\Lambda_{\rm b}$ and sample composition

Background estimation

- Do blind search
- Fix all backgrounds before looking to signal region
- Shapes
 Λ_b sideband
 PYTHIA MC
 B miss-reconstructed data
- Relative normalization according to Λ_b mass fit
- Determined background describes data well

Unblinded $\Sigma_{\rm b}$ Q-distribution

- Data indicate two peaks for each charge
- Do unbinned maximum likelihood fit
- Fit for Q values and number of events

$\Sigma_{\rm b}$ Fit result

- Mass differences (MeV/ c^2)
- → $m(\Sigma_b^-) m(\Lambda_b) m(\pi) =$ 55.9 ± 1.0(stat) ± 0.1(sys)
- $\rightarrow m(\Sigma_b^+) m(\Lambda_b) m(\pi) =$ $48.4^{+2.0}_{-2.3}(\text{stat}) \pm 0.1(\text{sys})$
- $\rightarrow m(\Sigma_b^*) m(\Sigma_b) =$ $21.3^{+2.0}_{-1.9} (\text{stat})^{+0.4}_{-0.2} (\text{sys})$
- Signal events
- $\rightarrow N(\Sigma_b^+) = 29^{+12.4}_{-11.6} (\text{stat})^{+5.0}_{-3.4} (\text{sys})$ $\rightarrow N(\Sigma_b^-) = 60^{+14.8}_{-13.8} (\text{stat})^{+8.4}_{-4.0} (\text{sys})$ $\rightarrow N(\Sigma_b^{*+}) = 74^{+17.2}_{-16.3} (\text{stat})^{+10.3}_{-5.7} (\text{sys})$ $\rightarrow N(\Sigma_b^{*-}) = 74^{+18.2}_{-17.4} (\text{stat})^{+15.6}_{-5.0} (\text{sys})$

$\Sigma_{\rm b}$ Significance

New Heavy Quark Baryons - p. 26

- Repeat fit with alternative hypothesis
 - Single peak left out
 - Only one peak in each charge combination
 - No peak, pure background
- Derived from $\Delta(-\ln \mathcal{L})$

Hypothesis	$\Delta(-\ln \mathcal{L})$	Hypothesis	$\Delta(-\ln \mathcal{L})$
Null	44.7	No Σ_b^-	10.4
2 peaks	14.3	No Σ_b^+	1.1
		No Σ_b^{*-}	10.1
		No Σ_b^{*+}	9.8

- \Rightarrow Significance more than 5 σ for 4 peaks
- \Rightarrow Evidence for three out of four individual peaks

Details at

http://www-cdf.fnal.gov/physics/new/bottom/060921.blessed-sigmab

Conclusions

- Last year very rich for Heavy Quark Baryons
- Several new baryon states in charm sector discovered $\Lambda_c^+(2940), \Xi_c^{+,0}(2980), \Xi_c^{+,0}(3077)$ and Ω_c^*
- Several refined measurements in charm sector
- Charged Σ_b states discovered in bottom sector
- ⇒ Our knowledge about Heavy Quark Baryons increased
- $\rightarrow\,$ I'm convinced this was not our last word on the topic