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The ischemic etiology of heart failure is an independent prognostic factor associated with worse long-term
outcome. Recent evidence indicates a role for genetic susceptibility to ischemic heart failure. The authors sys-
tematically reviewed all known case-control studies that investigated the association between genetic variants and
ischemic heart failure. Twenty-two articles, which examined 24 gene polymorphisms, were identified. In 22 poly-
morphisms, the variant form had a functional effect. Twenty-two polymorphisms were variants of genes involved in
the maladaptive neurohormonal activation. Seven polymorphisms (ACE I/D, AGT M235T, ADRA2C Del322-325,
ADRB2 Arg16Gly, ADRB2 Gln27Glu, EDN1 Lys198Asn, VEGF G-405C) showed a significant association in in-
dividual studies. Five polymorphisms (ACE I/D, ADRB1 Arg389Gly, ADRB2 Arg16Gly, ADRB2 Gln27Glu, TNF
G308A) were examined by more than one study, and meta-analyses were performed. The meta-analyses showed
no significant sign of heterogeneity. In all settings, there was no significant association, except for polymorphism
ADRB2 Arg16Gly under a recessive model (fixed-effects odds ratio ¼ 1.32, 95% confidence interval: 1.05, 1.65).
Taking into account that ischemic heart failure is a complex disease with multifactorial etiology, a minor contributing
pathogenetic role of the investigated gene polymorphisms cannot be totally excluded. Case-control studies that
investigate gene-gene and gene-environment interactions might further elucidate the genetics of ischemic heart
failure.

epidemiology; heart failure, congestive; meta-analysis; myocardial ischemia; polymorphism, genetic; variation
(genetics)

Abbreviations: CI, confidence interval; HWE, Hardy-Weinberg equilibrium; IHF, ischemic heart failure; SNP, single nucleotide
polymorphism.

Editor’s note: This paper is also available on the website
of the Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/).

Heart failure is a complex clinical syndrome that can re-
sult from any structural or functional cardiac disorder that
impairs the ability of the ventricle to fill with or eject blood

(1). Heart failure is a relatively common disorder, and the
diagnosis is clinical (2). Patients with heart failure are clas-
sified broadly into two groups on the basis of the etiology of
the left ventricular dysfunction: patients with ischemic (40–
74 percent) and nonischemic (26–35 percent) heart disease
(3–5). Ischemic etiology has been shown to be indepen-
dently associated with worse long-term outcome in heart
failure patients in a variety of studies (6, 7). Clinically,
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patients are classified as having heart failure of ischemic
etiology on the basis of a history of myocardial infarction
or on objective evidence of coronary artery disease such as
angiography or functional testing, although a more stan-
dardized definition for ischemic heart failure (IHF) has been
proposed for use in research (8).

Although significant progress has been made in eluci-
dating the genetics of coronary artery disease/myocardial
infarction with a large number of family-based (whole-
genome scans) and association studies (9–11), the evidence
for a genetic basis of IHF susceptibility is limited (12).
Nevertheless, a genetic basis could be indicated by the eth-
nic diversity in disease prevalence (13), the interindividual
variability in IHF susceptibility (14, 15), the familial clus-
tering of heart failure (16), and the experimental data from
animal models (17, 18).

The genetic association studies of IHF under the ‘‘candi-
date gene’’ approach have produced inconclusive or incon-
sistent results so far. To address this issue, we reviewed the
literature for genetic studies investigating the association
of genetic variation with the risk of developing clinically
evident IHF.

MATERIALS AND METHODS

Selection of studies

Literature for this review was systematically identified
by searching PubMed (National Library of Medicine,
Bethesda, Maryland) for all English-language articles pub-
lished up to November 2006 related to IHF and genetic poly-
morphisms. As search criteria, we used combinations of the
following terms: ‘‘ischemic heart failure,’’ ‘‘IHF,’’ ‘‘ischemic
cardiomyopathy,’’ ‘‘heart failure,’’ ‘‘cardiac failure,’’ ‘‘car-
diomyopathy,’’ ‘‘polymorphism,’’ ‘‘gene variant,’’ ‘‘genetic
variant,’’ ‘‘susceptibility,’’ and ‘‘genetic association study.’’
Bibliographies in articles provided further references.

Our review included genetic association studies fulfilling
the following inclusion criteria: 1) providing cases with
clinically diagnosed IHF and controls free of heart failure,
2) providing information on genotype frequency or risk es-
timates, 3) using validated molecular methods for genotyp-
ing, and 4) including subjects who were human. Studies
investigating progression, severity, phenotype modification,
response to treatment, or survival were excluded from our
study. Case reports, editorials, and review articles were also
excluded. Finally, family-based studies were excluded be-
cause of different design settings (19).

Data extraction

From each study, the following information was ex-
tracted: first author, journal, year of publication, ethnicity
of the study population, demographics, definition of cases
and controls, matching, blinded genotyping, validity of the
genotyping method, and number of cases and controls for
each genotype. The frequencies of the alleles and the geno-
typic distributions were extracted or calculated for both the
cases and the controls. The two investigators independently

extracted data, discussed all disagreements, and reached
consensus on all items.

Data synthesis

In this review, the associations are indicated as odds ratios
with the corresponding 95 percent confidence intervals.
When more than one genetic association study investigated
the same polymorphism, a meta-analysis of published re-
sults was carried out. The meta-analysis examined the over-
all association of the allele contrast and the recessive and
dominant models for the allele of interest. For a polymor-
phism with two alleles (A and a), the allele contrast is de-
fined as *a vs. *A, the recessive model for allele a is defined
as aa vs. Aa þ AA, and the dominant model is defined as
aa þ Aa vs. AA (20, 21). In the meta-analysis, then, pooled
odds ratios were estimated based on the individual odds
ratios produced by the individual studies. Heterogeneity be-
tween studies was tested by using the Q statistic, a weighted
sum of squares of the deviations of individual study odds
ratio estimates from the overall (pooled) estimate (22, 23). If
p < 0.10, then heterogeneity was considered statistically
significant. Heterogeneity was quantified with the I2 metric,
which is independent of the number of studies in the meta-
analysis. I2 takes values between 0 percent and 100 percent,
with higher values denoting a greater degree of heterogene-
ity (19, 24).

The pooled odds ratio was estimated by using fixed-
effects (Mantel-Haenszel) and random-effects (DerSimonian
and Laird) models (25). Random-effects modeling assumes a
genuine diversity in the results of various studies, and it
incorporates into the calculations a between-study variance.
Hence, when there is heterogeneity between studies, the
pooled odds ratio is preferably estimated by using the
random-effects model (26). Studies with controls not in
Hardy-Weinberg equilibrium (HWE; p � 0.05) (27) were
subjected to a sensitivity analysis (26, 28). Analyses were
performed by using Meta-Analyst (Joseph Lau, Tufts-New
EnglandMedical Center, Boston, Massachusetts), StatsDirect
(Microsoft Corporation, Redmond, Washington), and CVF90
with the IMSL library (26, 29, 30).

RESULTS

The literature review identified 693 titles in PubMed that
met the search criteria. The abstracts of these articles were
independently read by the two investigators to assess their
appropriateness for this review. The results were compared,
and disagreements were resolved by consensus. Sixty-four
articles remained after abstract selection. The full articles
for the remaining studies were evaluated for compliance
with the inclusion criteria. Data from 22 articles describing
37 studies that investigated the association between poly-
morphisms and IHF met the inclusion criteria (31–52), and
they were included in our review. The diagnosis criteria
were similar in the reviewed studies, although not standard-
ized ((8), table 1). Overall, 17 candidate genes and 24 poly-
morphisms were found to have been investigated in
association with IHF (table 2).
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Table 1 shows the study characteristics and the results of
association between the different polymorphisms and the
risk of IHF for each individual study. Table 2 shows gene
polymorphism characteristics. Table 3 shows the meta-
analysis results. In summary, seven genetic polymorphisms
(angiotensin-converting enzyme insertion/deletion (ACE I/D),
angiotensinogen (AGT) M235T, a2C subtype-adrenergic
receptor (ADRA2C) Del322-325, b2-adrenergic receptor
(ADRB2) Arg16Gly, ADRB2 Gln27Glu, endothelin-1
(EDN1) Lys198Asn, and vascular endothelial growth factor
(VEGF)G-405C) showed significant association (31, 36, 37,
40, 41, 46). The genotype distribution in controls was not in
HWE in three studies (37, 39, 40), whereas, in 10 studies
(31, 38, 43, 48–50), information was not provided. The
genotyping personnel were reported to be blinded to pheno-
type in four studies (33, 36, 52), and the reliability of the
genotyping procedure was controlled in nine studies (33, 35,
36, 41, 45, 47).

A meta-analysis was performed for polymorphisms ACE
I/D (31–35), b1-adrenergic receptor (ADRB1) Arg389Gly
(37, 39), ADRB2 Arg16Gly (39, 40), ADRB2 Gln27Glu
(39, 40), and tumor necrosis factor-a (TNF) G-308A (42,
44). Overall, only one polymorphism, ADRB2 Arg16Gly,
was found to have a significant association with IHF in
the meta-analysis. The results from the remaining studies
were very consistent, with only the ACE I/D polymorphism,
when examined under the recessive model, showing signif-
icant heterogeneity. The results from each individual meta-
analysis are described below. We now analyze and further
discuss the findings for each gene polymorphism in turn.

Candidate genes and biologic mechanisms

The high allele frequency of the studied genes (table 2)
suggests low genotype relative risk. Such genes may contrib-
ute to the development of heart failure only in conjunction
with exogenous and endogenous exposures (53). Suscepti-
bly genes can be identified by studying the biochemical or
physiological pathways postulated to be involved in heart
failure pathophysiology.

IHF begins with an initial myocardial insult, for example,
myocardial infarction, which sets into motion a destructive
cycle in which the remaining normal myocardium under-
goes changes in cell metabolism and morphology, leading to
hypertrophy and fibrosis (54). Alternatively, chronic, low-
grade myocardial ischemia may also result in such changes
(55). These cellular changes gradually alter the ultrastructural
properties of the ventricle through a process called remodel-
ing. Although remodeling initially occurs as an adaptive
response to improve cardiac performance, over time, the
response becomes counterproductive and maladaptive (54).
A key mediator of this process is the neurohormonal acti-
vation, including regulators such as the renin-angiotensin-
aldosterone system, the sympathetic nervous system, growth
factors, and inflammatory molecules. Considering the
fundamental role of neurohormonal factors in the patho-
physiology and progression of cardiac dysfunction and re-
modeling, variants of neurohormonal genes are logical
candidate genes in heart failure (12).

The genes identified by the literature search can be clas-
sified in five main categories: renin-angiotensin-aldosterone
system, sympathetic nervous system, genes encoding
growth factors or endothelial proteins, inflammatory genes,
and miscellaneous genes.

For 22 of the studied polymorphisms, functional implica-
tions are reported in the literature (table 2). In two cases, the
polymorphisms were not functional (endothelin A receptor
(EDNRA) C69T, VEGF C-590T), but even nonfunctional
polymorphisms are likely to be in linkage disequilibrium
with causative alleles (56). The reference single nucleotide
polymorphism (SNP) identification numbers (rs numbers)
from the Database of Single Nucleotide Polymorphisms
(57), the chromosomal gene position, the nucleotide base
change, the average heterozygosity, and the amino acid sub-
stitution for each polymorphism are shown on table 2.

Renin-angiotensin-aldosterone system

The role of the renin-angiotensin-aldosterone system in
heart failure is well known (58). Angiotensin-converting
enzyme catalyzes the production of angiotensin II and the
degradation of bradykinin. A functional intronic I/D poly-
morphism of the ACE gene has been studied for several
cardiovascular-renal outcomes (59–61). Five case-control
studies to date have addressed whether the variant form of
the ACE gene alters the risk of IHF. Raynolds et al. (31)
reported the only, to date, positive association. Two small-
scale studies were conducted among Chinese subjects, but
no increased risk of IHF under any model was found (32,
35). However, in Chinese, the frequency of the DD ACE
genotype is lower than in other populations; thus, any neg-
ative conclusion could be due to low statistical power (62).
One study in Turks (33) and one in Whites (34) also failed to
show a significant genetic effect.

Overall, the meta-analysis of the five published studies
(31–35) for the recessive model showed high heterogeneity
(p¼ 0.09; I2 ¼ 0.51), which is attributable mainly to Whites
(p ¼ 0.01; I2 ¼ 0.85) since there is no significant sign of
heterogeneity (p � 0.10; I2 ¼ 0) for East Asians. Then,
overall and for Whites, the random-effects odds ratios were
0.95 (95 percent confidence interval (CI): 0.60, 1.52) and
1.16 (95 percent CI: 0.40, 3.37), respectively; for East
Asians, the fixed-effects odds ratio was 0.67 (95 percent
CI: 0.30, 1.50). The allele contrast and the dominant model
consisted of four studies (32–35) because one study of
Whites (31) did not provide enough data. For these models,
the analysis showed no significant sign of heterogeneity over-
all, and the associations were not significant. In a sensitivity
analysis (exclusion of the study with no information on
HWE) (31), the pattern of results was not altered (table 3).

Angiotensinogen is the precursor of the hormone angio-
tensin II. Two functional SNPs of the AGT gene, a nonsy-
nonymous SNP designated as M235T (63) and a promoter
SNP symbolized as G-6A (64, 65), have been investigated in
a heart failure cohort of 158 White cases (60 percent ische-
mic) and 200 controls (36). The results were significant for
only M235T because the estimated odds ratio under the
allele contrast model in the entire heart failure group was
1.35 (95 percent CI: 1.1, 1.6).
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TABLE 1. Studies of genetic polymorphisms and ischemic heart failure

First
author, year

(reference no.)

Study area,
ethnicity

Cases: no. (no. of
males/no. of females,
mean age in years

(standard deviation)),
diagnosis criteria*

Controls: no. (no. of
males, no. of females,
mean age in years

(standard deviation)),
matching, diagnosis

criteriay

Gene
(polymorphism)z

Genotype
distribution:

mtmt/mtwt/wtwt§
Association Comparison OR§ 95% CI§ HWE§

Raynolds,
1993 (31)

United States,
Whites

n ¼ 102 (96/6, 53.7
(0.8)), criteria: 1

n ¼ 79 (50/29,
33 (1.8)), no,
criteria: i

ACE (I/D) Cases: N/A§;
controls: N/A

Yes DD vs. DI/II 2.01 1.1, 3.7 No

DD/DI vs. II N/A N/A

DD vs. DI N/A N/A

*D vs. *I N/A N/A

Sanderson,
1996 (32)

Hong Kong,
Chinese

n ¼ 53 (39/14, 64
(12)), criteria: 1

n ¼ 183 (106/77,
40 (12)), no,
criteria: ii

ACE (I/D) Cases: 6/21/26;
controls: 24/88/71

No DD vs. DI/II 0.83 0.4, 1.9 Yes

DD/DI vs. II 0.67 0.4, l.2

DD vs. DI 1.02 0.4, 2.5

*D vs. *I 0.76 0.5, 1.2

Akbulut,
2003 (33)

Turkey, Turks n ¼ 84 (68/16, 59.5
(10.4)), criteria: 2

n ¼ 125 (105/20,
57.2 (10.5)),
no, criteria: iii

ACE (I/D) Cases: 28/41/15;
controls: 43/59/23

No DD vs. DI/II 0.95 0.5, 1.7 Yes

DD/DI vs. II 1.04 0.5, 2.1

DD vs. DI 0.94 0.5, 1.7

*D vs. *I 0.99 0.7, 1.5

Covolo,
2003 (34)

Italy, Whites n ¼ 107 (nr§),
criteria: 3

n ¼ 230 (115/115,
62.4 (7.8)), age
matched,
criteria: ii

ACE (I/D) Cases: 31/57/19;
controls: 86/105/39

No DD vs. DI/II 0.68 0.4, 1.2 Yes

DD/DI vs. II 0.95 0.5, 1.7

DD vs. DI 0.66 0.4, 1.1

*D vs. *I 0.83 0.6, 1.1

Huang,
2004 (35)

China, Chinese n ¼ 26 (nr),
criteria: 1

n ¼ 102 (nr), no,
criteria: ii

ACE (I/D) Cases: 2/14/10;
controls: 17/48/37

No DD vs. DI/II 0.40 0.1, 1.9 Yes

DD/DI vs. II 0.91 0.4, 2.2

DD vs. DI 1.05 0.4, 2.9

*D vs. *I 0.79 0.4, 1.5

Goldbergova,
2003 (36)

Czech Republic,
Whites

n{ ¼ 158 (nr),
criteria: 4

n ¼ 200 (nr, 54
(nr)), no,
criteria: ii

AGT (M235T) Cases: 37/83/38;
controls: 37/100/63

Yes TT/MT vs. MM 1.33 0.8, 2.1 Yes

*T vs. *M 1.35 1.1, 1.6

AGT (G-6A) Cases: 37/53/68;
controls: 38/89/73

No AA/AG vs. GG 0.76 0.5, 1.2 Yes

*A vs. *G 0.96 0.8, 1.1

Small,
2002 (37)

United States,
Whites

n{ ¼ 81 (nr),
criteria: 4

n ¼ 105 (nr), no,
criteria: ii

ADRA2C
(Del322-325)

Cases: 6/5/70;
controls: 2/4/99

Yes DelDel vs.
wtwt/wtDel

3.94 0.5, 31.1 No

*Del vs. *wt 2.97 2.0, 4.4

United States,
Blacks

n{ ¼ 78 (nr),
criteria: 4

n ¼ 84 (nr), no,
criteria: ii

Cases: 41/14/23;
controls: 14/41/29

Yes DelDel vs.
wtwt/wtDel

5.65 2.7, 11.9 Yes

*Del vs. *wt 2.29 1.9, 2.7

United States,
Whites

n{ ¼ 81 (nr),
criteria: 4

n ¼ 105 (nr), no,
criteria: ii

ADRB1
(Arg389Gly)

Cases: 43/34/4;
controls: 63/34/8

No ArgArg vs.
GlyGly/GlyArg

0.80 0.4, 1.7 Yes

*Arg vs. *Gly 0.89 0.7, 1.1

United States,
Blacks

n{ ¼ 78 (nr),
criteria: 4

n ¼ 84 (nr), no,
criteria: ii

Cases: 23/36/19;
controls: 23/48/13

No ArgArg vs.
GlyGly/GlyArg

0.90 0.4, 1.8 Yes

*Arg vs. *Gly 0.87 0.7, 1.1

Metra,
2006 (38)

Italy, Whites n ¼ 126 (nr),
criteria: 4

n ¼ 230 (nr), no,
criteria: ii

ADRA2C
(Del322-325)

Cases: N/A;
controls: N/A

No DelDel vs.
wtwt/wtDel

1.0 0.4, 2.5 N/A

*Del vs. *wt N/A N/A

ADRB1
(Arg389Gly)

Cases: N/A;
controls: N/A

No ArgArg vs.
GlyGly/GlyArg

0.8 0.5, 1.2 N/A

*Arg vs. *Gly N/A N/A

4
K
its
io
s
a
n
d
Z
in
tz
a
ra
s



Covolo,
2004 (39)

Italy, Whites n ¼ 130 (nr),
criteria: 4

n ¼ 230 (nr), no,
criteria: ii

ADRB1
(Arg389Gly)

Cases: 60/55/11;
controls:
122/90/18

No ArgArg vs.
GlyGly/GlyArg

0.8 0.5, 1.2 Yes

*Arg vs. *Gly 0.86 0.6, 1.2

ArgGly vs. GlyGly 1.3 0.8, 2.1

ArgArg vs. GlyGly 1.0 0.4, 2.3

ADRB2
(Arg16Gly)

Cases: 49/56/21;
controls:
81/115/34

No GlyGly/GlyArg vs.
ArgArg

0.87 0.5, 1.6 Yes

*Gly vs. *Arg 1.17 0.8, 1.6

GlyGly vs. ArgGly 1.24 0.8, 2.0

GlyGly vs. ArgArg 0.98 0.5, 1.9

ADRB2
(Gln27Glu)

Cases: 16/52/58;
controls:
31/79/120

No GluGlu/GlnGlu vs.
GlnGln

1.28 0.8, 1.9 No

*Glu vs. *Gln 1.13 0.8, 1.6

GluGlu vs. GlnGlu 0.78 0.4, 1.6

GluGlu vs. GlnGln 1.1 0.5, 2.5

Leineweber,
2006 (40)

Germany, Whites n{ ¼ 520,
(380/140, 59
(11)), criteria: 4

n ¼ 328
(216/112, 31 (11)),
no, criteria: ii

ADRB2
(Arg16Gly)

Cases: 216/215/89;
controls:
108/170/50

Yes GlyGly/GlyArg vs.
ArgArg

1.36 0.9, 2.0 Yes

*Gly vs. *Arg 2.35 1.3, 4.1

GlyGly vs. ArgGly 1.58 1.2, 2.1

GlyGly vs. ArgArg 1.12 0.7, 1.7

ADRB2
(Gln27Glu)

Cases: 108/224/188;
controls:
51/162/115

Yes GluGlu/GlnGlu vs.
GlnGln

0.95 0.7, 1.3 No

*Glu vs. *Gln 1.09 0.6, 1.9

GluGlu vs. GlnGlu 1.53 1.0, 2.3

GluGlu vs. GlnGln 1.29 0.9, 1.9

ADRB2
(Thr164Ile)

Cases: 0/10/510;
controls: 0/7/321

No ThrIle vs. ThrThr 0.89 0.3, 2.4 N/A

*Ile vs. *Thr 0.90 0.7, 1.2

Colombo,
2006 (41)

Italy, Whites n{ ¼ 122 (nr),
criteria: 2

n ¼ 216 (nr),
age matched,
criteria: iv

EDN1
(Lys198Asn)

Cases: 16/46/60;
controls: 7/72/114

Yes AsnAsn vs. LysLys 4.34 1.7, 11.1 Yes

AsnAsn vs.
LysLys/Lys Asn

4.01 1.6, 10.1

*Asn vs. *Lys 1.64 1.1, 2.4

EDNRA
(C69T)

Cases: 8/49/65;
controls: 15/87/114

No CC vs. TT/CT 0.94 0.4, 2.3 Yes

*C vs. *T 0.98 0.7, 1.4

Holweg,
2005 (47)

The Netherlands,
Whites

n ¼ 167
(156/11, 51.1
(7.6)), criteria:4

n ¼ 169 (nr), no,
criteria: v

HMOX1
(GT)n

Cases: 63/79/25;
controls: 64/85/20

No LL/LS§ vs. SS{ 0.76 0.4, 1.4 Yes

*L vs. *S 0.93 0.7, 1.3

van der Meer,
2005 (46)

The Netherlands
and United
Kingdom, mixed

n ¼ 417 (nr),
criteria: 2

n ¼ 187(nr), age
and sex matched,
criteria: ii

VEGF
(G-405C)

Cases: 55/189/173;
controls: 24/75/88

Yes CC/CG vs. GG 1.25 0.9, 1.8 Yes

*C vs. *G 1.32 1.0, 1.7

VEGF
(C-460T)

Cases: 98/212/103;
controls: 53/89/45

No TT/CT vs. CC 0.87 0.6, 1.3 Yes

*T vs. *C 1.13 0.9, 1.4

Kubota,
1998 (44)

United States,
mixed

n{ ¼ 124 (nr),
criteria: 4

n ¼ 139 (nr), age
matched,
criteria: ii

TNF (G-308A) Cases: 8/57/164;
controls: 3/38/98

No AA/AG vs. GG 0.95 0.6, 1.5 Yes

AA vs. AG/GG 1.64 0.4, 6.3

*A vs. *G 1.00 0.7, 1.5

LTA (G-252A) Cases: 103/102/24;
controls: 65/58/16

No AA/AG vs. GG 1.11 0.6, 2.2 Yes

*A vs. *G 0.98 0.7, 1.4

Table continues
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TABLE 1. Continued

First
author, year

(reference no.)

Study area,
ethnicity

Cases: no. (no. of
males/no. of females,
mean age in years

(standard deviation)),
diagnosis criteria*

Controls: no. (no. of
males, no. of females,
mean age in years

(standard deviation)),
matching, diagnosis

criteriay

Gene
(polymorphism)z

Genotype
distribution:

mtmt/mtwt/wtwt§
Association Comparison OR 95% CI HWE

Densem,
2002 (43)

United Kingdom,
Whites

n ¼ 106 (nr),
criteria: 4

n ¼ 212 (nr), no,
criteria: ii

TNF (G-308A) Cases: N/A;
controls: N/A

No AA/AG vs. GG N/A N/A N/A

*A vs. *G 0.95 0.5, 1.9

Alikasifoglu,
2003 (42)

Turkey, Turks n{ ¼ 63 (nr),
criteria: 1

n ¼ 93 (60/33, 56.2
(9.1)), sex and
age matched,
criteria: ii

TNF (G-238A) Cases: 2/15/46;
controls: 3/22/68

No AA/AG vs. GG 0.86 0.4, 1.8 Yes

*A vs. *G 1.00 0.5, 1.9

TNF (G-308A) Cases: 3/16/44;
controls: 4/20/69

No AA/AG vs. GG 1.24 0.6, 2.5 Yes

AA vs. AG/GG 0.99 0.2, 4.6

*A vs. *G 1.19 0.6, 2.2

Holweg,
2001 (45)

The Netherlands,
Whites (>95%)

n ¼ 144
(135/9, 50.8
(7.7)), criteria:4

n ¼ 94 (49/45,
36.7 (10.3)),
no, criteria: ii

TGFB1
(Leu10Pro)

Cases: 14/70/60;
controls: 14/43/37

No ProPro/LeuPro
vs. LeuLeu

0.91 0.5, 1.5 Yes

*Pro vs. *Leu 0.85 0.6, 1.2

TGFB1 (Arg25Pro) Cases: 3/18/123;
controls: 0/15/79

No ProPro/ArgPro
vs. ArgArg

0.89 0.4, 1.8 Yes

*Pro vs. *Arg 1.04 0.5, 2.1

Bijlsma,
2001 (48)

The Netherlands,
Whites

n ¼ 35 (nr),
criteria: 4

n ¼ 29, (nr), no,
criteria: vi

IL10 (G-1082A) Cases: N/A;
controls: N/A

No *A vs. *G 1.54 0.8, 3.1 N/A

IL10(C-592A) Cases: N/A;
controls: N/A

No *C vs. *A 1.16 0.6, 2.1 N/A

Bijlsma,
2002 (49)

The Netherlands,
Whites

n ¼ 35 (nr),
criteria: 4

n ¼ 36, (nr), no,
criteria: vi

IL4 (C-590T) Cases: N/A;
controls: N/A

No *T vs. *C 0.64 0.3, 1.3 N/A

Kruger,
2005 (51)

Germany,
Whites

n ¼ 51
(nr, 62 (3)),
criteria: 5

n ¼ 100, (nr), age
and sex matched,
criteria: ii

CD14 (C-260T) Cases: 7/25/19;
controls:
28/40/32

No TT/CT vs. CC 0.79 0.4, 1.6 Yes

*T vs. *C 0.66 0.4, 1.2

Kolek,
2005 (50)

United States,
mixed

n ¼ 605 (nr),
criteria: 5

n ¼ 605 (nr),
no, criteria: iii

AMPD (C34T) Cases: N/A;
controls: N/A

No TT/CT vs. CC 0.87 0.4, 1.8 N/A

n ¼ 605 (nr),
criteria: 5

n ¼ 433 (nr), no,
criteria: iv

Cases: N/A;
controls: N/A

No TT/CT vs. CC 0.94 0.5, 1.9 N/A

Nakatani,
2005 (52)

Japan, Japanese n ¼ 70 (nr),
criteria: 6

n ¼ 2,389 (nr),
no, criteria: vii

SLC6A4 (I/D) Cases: 47/22/1;
controls:
1,533/754/102

No DD/DI vs. II 3.08 0.4, 22.4 Yes

*D vs. *I 1.23 0.8, 1.9

* Diagnosis criteria for ischemic heart failure: 1) history of myocardial infarction or severe coronary artery disease on arteriogram, left ventricular ejection fraction (LVEF) <40% and left ventricular enlargement on

echocardiogram; 2) New York Heart Association class II–IV functional capacity, LVEF <40%, coronary stenosis >50% for at least one vessel on arteriogram; 3) LVEF <40%, structured questionnaire for the definition

of the heart failure cause; 4) nonspecified ischemic etiology definition; 5) New York Heart Association class II–III functional capacity, LVEF <35%, coronary stenosis >0% for at least one vessel on arteriogram; and

6) new-onset ischemic heart failure cases in a cohort of myocardial infarction survivors (Osaka Acute Coronary Insufficiency Study).

y Diagnosis criteria for controls: i) actual or prospective heart donors with normal donor-screening echocardiograms and normal coronary arteriograms; ii) healthy subjects, randomly selected, without evidence of

heart disease; iii) patients with stable angina pectoris with angiographic evidence of coronary stenosis >50% for at least one vessel, LVEF �40%; iv) hospitalized patients with normal arteriogram and LVEF >50%;

v) cardiac donors with no transplant coronary artery disease; vi) cardiac donors without transplant rejection; and vii) myocardial infarction survivors who did not develop postmyocardial infarction heart failure in a

12-month follow-up period.

z Defined in the Materials and Methods section of the text.

§ mt, mutant type; wt, wild type; OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium; N/A, not available; nr, not reported; L, long allele (>27 repeats); S, short allele (�27 repeats).

{ Heart failure population including all etiologies, but ischemic etiology is the leading cause and the authors state that there is no difference in genotype distribution between the heart failure etiologies.
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TABLE 2. Genetic polymorphisms investigated in relation to ischemic heart failure risk

dbSNP* rs no. Geney
Chromosomal

position
Base changez

Average
heterozygosity
(standard error)

Amino acid change§ Detection method Functional effect (reference no.)

rs4646994 ACE 17q23 Intron 16: 287 base
pair insertion/deletion

0.460 (0.136) None PCR{ fragment size Increased plasma ACE levels (59, 60)

rs699 AGT 1q42-43 Exon 2: C704T 0.469 (0.121) Met235Thr RFLPs{: creates AspI site Increased AGT levels (63)

rs5051 AGT 1q42-43 Promoter: G-6A 0.304 (0.244) None RFLPs: creates BstNI site Affected promoter activity (64, 65)

rs2234888 ADRA2C 4p16.1 Exon 1: in-frame
12-nucleotide
(GGGGCGGGGCCG)
deletion in
nucleotide 964

N/A{ Positions 322–325:
deletion Gly-Ala-
Gly-Pro

RFLPs: loss of a NciI site Substantial loss of agonist-mediated
receptor function-enhanced
presynaptic release of
norepinephrine (68)

rs1801253 ADRB1 10q24-q26 Exon 1: G1165C 0.427 (0.177) Arg389Gly RFLPs: creates BcgI site Threefold higher maximal isoproterenol-
stimulated levels of adenylate
cyclase activities (69)

rs1042713 ADRB2 5q31-q32 Exon 1: A46G 0.488 (0.078) Arg16Gly RFLPs: creates BsrD I site Controversial data regarding down-
regulation, desensitization (72, 73)

rs1042714 ADRB2 5q31-q32 Exon 1: C79G 0.368 (0.221) Gln27Glu RFLPs: creates Fnu4H I site Resistance to down-regulation (71)

rs1800888 ADRB2 5q31-q32 Exon 1: C740T 0.007 (0.059) Thr134Ile SSOP{ Signaling defects (75)

rs5370 EDN1 6p24.1 Exon 5: G61T 0.346 (0.231) Lys198Asn RFLPs: creates Cac8 I site Higher plasma levels of endothelin
(77, 78)

rs5333 EDNRA 4q31.23 Exon 6: C69T 0.464 (0.129) None (synonymous) SSOP No functional studies available

rs361525 TNF 6p21.3 Promoter: G-238A 0.127 (0.218) None RFLPs: creates BamHI site Greater transcription rate (89)

rs1800629 TNF 6p21.3 Promoter: G-308A 0.161 (0.233) None RFLPs: loss of NcoI site Greater transcription rate, higher
constitutive and inducible levels (90)

rs4986978 LTA 6p21.3 Intron 1: G252A 0.010 (0.069) None RFLPs: loss of NcoI site High tumor necrosis factor-a
production (91)

rs1982073 TGFB1 19q13 Exon 1: T869C 0.397 (0.202) Leu10Pro SSOP High TGF b production in vitro (94)

rs1800471 TGFB1 19q13 Exon 1: G915C 0.112 (0.209) Arg25Pro SSOP High TGF b production in vitro (95)

rs2010963 VEGF 6p21.3 Promoter: G-405C 0.460 (0.136) None RFLPs: loss of BsmFI site Lower VEGF production (85, 86)

rs833061 VEGF 6p21.3 Promoter: C-460T 0.214 (0.247) None RFLPs: loss of BsrUI site Unlikely (85, 86)

rs3074372 HMOX1 22q12 Promoter: (GT)n
repeats

N/A None PCR fragment size No. of repeats is inversely related to
the activity (82)

rs1800896 IL-10 1q31-q32 Promoter: G-1082A 0.417 (0.186) None SSOP Low IL-10 production (99)

rs1800872 IL-10 1q31-q32 Promoter: C-592A 0.467 (0.124) None SSOP Low IL-10 production (98)

rs2243250 IL-4 5q31.1 Promoter: C-590T 0.500 (0.012) None SSOP Increases promoter strength (97)

rs17602729 AMPD 1p13-p21 Exon 2: C34T 0.069 (0.172) Gln12 - nonsense
(termination)

RFLPs: creates NspI site Severely truncated protein that
loses its catalytic activity (103)

rs5744455 CD14 5q31 Promoter: C-260T 0.315 (0.241) None SSOP Enhanced transcriptional activity (101)

rs4795541 SLC6A4 17q11.2-q12 Promoter: 44 base pair
insertion/deletion

N/A None PCR fragment size Reduced transcriptional activity (106)

* dbSNP, Database of Single Nucleotide Polymorphisms. Bethesda, Maryland: National Center for Biotechnology Information, National Library of Medicine. (dbSNP Build ID: 126).

Available at the following website: http://www.ncbi.nlm.nih.gov/SNP/.

y Defined in the Materials and Methods section of the text.

z Base change symbolized as locus: wild-type allele, nucleotide position, mutant allele. The nucleotide substitution for promoter polymorphism is symbolized as number of nucleotides

before the transcription initiation site.

§ Amino acid substitution for nonsynonymous polymorphisms symbolized as wild-type amino acid (three-letter coding), amino acid position, mutant amino acid (three-letter coding).

{ PCR, polymerase chain reaction; RFLPs, restriction fragment length polymorphisms; N/A, not available; SSOP, sequence specific oligonucleotide probing.
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Sympathetic nervous system

The pathophysiological relevance of a- and b-adrenergic
receptors (a-AR and b-AR, respectively) and the benefit of
antiadrenergic strategies in heart failure have been thoroughly
studied (66, 67). Two case-control studies (37, 38) have in-
vestigated an in-frame deletion (symbolized Del322-325)
(68) in the gene coding ADRA2C for susceptibility to IHF.
Under the recessive model, a positive association was found
by Small et al. (37) for Black subjects only, because the re-
spective odds ratio was 5.65 (95 percent CI: 2.67, 11.95).

A nonsynonymous functional SNP of the b1-AR gene
(ADRB1), symbolized Arg389Gly (69), has been genotyped
by three case-control studies (37–39). All of them report
lack of association of the Arg389Gly polymorphism with
IHF, although two (38, 39) possibly used a completely over-
lapping set of White cases. The meta-analysis of two studies
(37, 39) showed no significant sign of heterogeneity (p �
0.10), and the allele contrast, the recessive model, and the
dominant model produced no significant results (table 3).

Three nonsynonymous functional SNPs of the b2-AR gene
(ADRB2), designated Arg16Gly, Gln27Glu, and Thr134Ile
(66, 70–75), have been investigated for a potential role in
IHF risk (39, 40). Covolo et al. (39) studied the possible as-
sociation of the Gly16Arg and Gln27Glu polymorphisms
with IHF, but no significant effect was observed. Leineweber
et al. (40) genotyped the three aforementioned SNPs
in a heart failure cohort consisting of 80 percent IHF cases.
A positive association for *Gly under the allele contrast and
a marginal association of Glu homozygotes versus hetero-
zygotes were found. The meta-analysis for the Arg16Gly
polymorphism showed no significant sign of heterogeneity
(p � 0.10; I2 � 12) and that the recessive model reaches
marginal significance with a fixed-effects odds ratio equal to
1.32 (95 percent CI: 1.05, 1.65) (table 3). The meta-analysis
for the Gln27Glu polymorphism showed no significant sign
of heterogeneity (p � 0.10; I2 � 7), and the allele contrast,
the recessive model, and the dominant model produced no
significant results (table 3).

Growth factors and endothelial proteins

A multitude of data suggests that the endothelin system is
intricately involved in the pathophysiology of heart failure
(76). A functional nonsynonymous SNP (Lys198Asn) of the
EDN1 gene (77, 78), and a nonfunctional synonymous SNP
(C69T) (79) of the endothelin A receptor gene (EDNRA),
have been genotyped by Colombo et al. (41) in 122 White
heart failure (79 percent ischemic) cases and 216 controls.
In comparison with that for Lys homozygotes, the odds ratio
for heart failure associated with the AsnAsn genotype was
4.34 (95 percent CI: 1.7, 11.1).

Heme oxygenase-1 is a rate-limiting enzyme in heme
degradation, leading to the generation of by-products that
exert potent antiproliferative and antiinflammatory effects
(80, 81). A functional promoter dinucleotide repeat poly-
morphism [(GT)n] (82) of the heme oxygenase-1 gene
(HMOX1) was investigated in relation to IHF (47). No as-
sociation was found for the long (>27 repeats) or the short
(�27 repeats) version of this polymorphism.

Vascular endothelial growth factor plays a key role in
angiogenesis and endothelial integrity and seems to be in-
volved in the microvasculature abnormalities in heart failure
(83, 84). Two functional promoter SNPs (G-405C and C-
460T) (85, 86) of the VEGF gene have been examined by
van der Meer et al. (46) in 417 IHF patients enrolled in the
Metoprolol CR/XL Randomized Intervention Trial in Heart
Failure study (5) and in 187 healthy controls. Only a mar-
ginal association for the �405C allele was obvious under
the allele contrast.

Inflammatory genes

Evidence is accumulating that inflammation plays an im-
portant role in the development of left ventricular remodel-
ing (87, 88).

The gene for proinflammatory cytokine tumor necrosis
factor-a (TNF) is arranged in tandem with the tumor necro-
sis factor-b or lymphotoxin alpha (LTA) gene. Three genetic
association studies of Whites (42–44) have shown lack of
association of IHF with two functional promoter SNPs
(G-238A and G-308A) (89, 90) of the TNF gene and a func-
tional intronic SNP (G252A) (91) of the LTA gene. Accord-
ingly, the meta-analysis of two published studies of the TNF
G308A polymorphism (42, 44) showed no significant sign of
heterogeneity (p � 0.10; I2 ¼ 0), and the allele contrast, the
recessive, and the dominant model produced no significant
results (table 3).

Transforming growth factor-beta (TGFb) is a multifunc-
tional cytokine involved in the production and degradation
of the extracellular matrix, important during the healing
process after myocardial infarction and the transition from
stable hypertrophy to heart failure (92, 93). Investigation of
two functional nonsynonymous SNPs (Leu10Pro and
Arg25Pro) (94, 95) of the TGFB1 gene in 144 heart trans-
plant recipients with IHF and 94 healthy controls has shown
no significant results (45).

Interleukin 4 (IL-4) and interleukin 10 (IL-10) are antiin-
flammatory cytokines that inhibit the synthesis of proinflam-
matory cytokines (96). Three published studies by the same
group of investigators in the Netherlands examined whether
genetic variability in the IL-4 and IL-10 genes affects individ-
ual susceptibility to IHF (48, 49). One promoter SNP (C-590T)
for IL-4 (97) and two promoter SNPs (G-1082A and C-592A)
for IL-10 (98, 99) were examined, but no positive association
was reported. Cluster of differentiation (CD) surface mole-
cules mediate cell activation and signaling (100). The func-
tional promoter SNP (C-260T) of the CD14 gene (101) was
genotyped by Kruger et al. (51) in 51 IHF cases and 100
healthy controls, but no increased risk of IHF was found.

Miscellaneous genes

Kolek et al. (50) hypothesized that carriers of the C34T
nonsense mutation of the adenosine monophosphate deam-
inase gene (AMPD1) might have a relative advantage, since
this mutation results in a beneficial increase in the cardio-
protective molecule adenosine (102–104). They genotyped
605 IHF patients in the Beta-Blocker Evaluation of Sur-
vival Trial compared with two control groups from the

8 Kitsios and Zintzaras



Intermountain Heart Collaborative Study Registry. No pro-
tective effect of the C34Tmutation was detected for carriers
when compared with both the first and the second control
groups.

The serotonin transporter is considered one of the deter-
minants of depressive symptoms, which is an independent
predictor of increased morbidity and mortality in patients
with acute myocardial infarction (105). Nakatani et al. (52)
published a cohort study from the Osaka Acute Coronary
Insufficiency Study group, in which they investigated the
influence of a functional I/D polymorphism of the serotonin
transporter gene (SLC6A4) (106). The D allele did not con-
fer an increased risk of developing new-onset heart failure in
myocardial infarction survivors within 1 year of follow-up.

Interactions

As with other complex traits, development of IHF is
likely determined by several genes that act collectively,
and allelic variants at different genes may have either addi-
tive or contrasting effects (epistasis) (56, 107). Additionally,
there are several possible interactions between genetic poly-
morphisms and effect modifiers such as age, gender, treat-
ment, hypertension, or other environmental factors (108).

Gene-gene interactions. Four studies (37–39, 41) inves-
tigated possible gene-gene interactions. Small et al. (37) exam-
ined the possible interaction of the ADRA2C, Del322-325,
and ADRB1 Arg389Gly polymorphisms. In Black subjects,
homozygosity for *Del322-325 and *Arg was associated
with a substantially increased risk of heart failure, and the
estimated odds ratio was 10.11 (95 percent CI: 2.11, 48.53).
A possible biologic explanation for this synergistic effect is
that the combination of receptor variance results in increased
synaptic norepinephrine release and in enhanced receptor
function at the cardiomyocyte (37). The lack of association
of this combined genotype in Whites was reported by two
studies (37, 38). Covolo et al. (39) investigated the possibility
of an interaction between the ADRB1 and ADRB2 poly-
morphisms, that is, whether homozygosity for ADRB1*Arg
combined with the ADRB2 *Gly*Gln haplotype confers an
increased risk. Despite their negative findings, these should
be carefully interpreted because the per-stratum sample size
and the associated statistical power are reduced when the
number of examined genes is increased (109).

Colombo et al. (41) investigated the potential synergistic
effect between the genes of the endothelin system signal
transduction pathway. A two-locus analysis indicated that
homozygosity for EDN1 AsnAsn and EDNRA TT was asso-
ciated with a substantially increased risk of heart failure
because the odds ratio was 8.6 (95 percent CI: 1.5, 48.1).

Gene-environment interactions. The conflicting results
among studies investigating genetic polymorphisms and
the risk of IHF may be due to the lack of information on
the possible interactionswith environmental factors. Akbulut
et al. (33) used coronary artery disease patients without
heart failure as controls, but there was a significant differ-
ence in the positive history of myocardial infarction be-
tween the cases and the controls (p < 0.05). Because the
ACE DD genotype was not associated with an increased risk
of myocardial infarction (p¼ 0.6), theDD genotype was not

overrepresented in cases because of the positive history of
myocardial infarction. The presence of hypertension could
promote the progression of heart failure. However, Small
et al. (37) demonstrated that the distribution of the risk-
associated dual genotype (*Del322-325 and *Arg) was not
different between hypertensive and normotensive heart fail-
ure cases (chi-square ¼ 0.34, p ¼ 0.95). Goldbergova et al.
(36) detected an increased risk of the G-6A polymorphism
of the AGT gene, only after adjustment for sex. Furthermore,
for women carrying the combined genotype GGMT for the
AGT gene, the odds ratio was 15.5 (95 percent CI: 1.86,
129.42) in contrast to the nonsignificant odds ratio observed
for men. Such a sex-specific influence could result from the
effect of steroid hormones, which affect AGT expression in
a variety of tissues (110).

DISCUSSION

Understanding the role that genes play in developing IHF
is essential to creating more effective screening tests for
predicting which individuals are at risk of developing the
disease, to implementing appropriate early-intervention pre-
ventive and therapeutic strategies, and to developing gene
therapy approaches in the future (111). So far, IHF genetic
association studies have been highly inconsistent. The com-
plex nature of heart failure implies that, for individual poly-
morphisms, associations are likely to be modest (12). To
detect such modest genetic effects, a series of important
research priorities must be implemented.

Power improvement

There is clearly a loss of statistical power when the ge-
netic effect is reduced (107). Most of the studies we ana-
lyzed included few cases and controls and consequently did
not have adequate power to detect a modest genetic effect.
Apart from the need for larger sample sizes, selecting cases
that are genetically loaded may also improve power. By
selecting cases with very early onset disease and a strong
family history, cases will be weighted toward those individ-
uals whose disease has a strong genetic etiology (112).

Stratification

Small et al. (37) were able to detect the strongest to-date
genetic association in Blacks, but not in Whites. Lack of
stratification in this study could have led to blurring of the
genetic effect. On the contrary, there is serious concern
about the possible effects of population stratification on
the results of case-control studies (113). Unequal genetic
admixture in the control and patient populations can result
in spurious associations. An approach proposed to minimize
this potential problem is to measure and adjust for genetic
markers not linked to the disease under investigation (114).

Prospective design

All the analyzed studies except for one (52) were of case-
control design and were retrospective. If a genetic variant
not only significantly increases the risk of IHF but also
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influences survival, it is possible that risk-allele carriers will
have advanced heart failure and die prematurely, leading to an
underrepresentation of the risk genotype at the time of enroll-
ment (115). Consequently, prospective studies are needed.

Case selection

The inclusion criteria for cases could also be another
source of bias. Firstly, all studies except for one (40) in-
cluded cases with impaired systolic function only. However,
there are accumulating data indicating that as much as
50 percent of heart failure is associated with a normal left
ventricular ejection fraction (116). Additionally, myocardial
hibernation could introduce an issue of misclassification
because revascularization could improve, and even normal-

ize, left ventricular ejection fraction and heart failure symp-
toms in patients with hibernating myocardium (117).

Standardization of the definition of IHF based on angio-
graphic criteria, as proposed by Felker et al. (8), could limit
variability in defining etiologic subgroups in heart failure
cohorts.

Appropriateness of controls

The majority of the control groups consisted of healthy or
nonischemic and non–heart failure subjects. However, the
absence of coronary artery disease in controls could lead to
spurious associations. The use of two control groups, with
and without coronary artery disease as in the study by Kolek
et al. (50), establishes the appropriate contrast to detect
a possibly true genetic effect.

TABLE 3. Odds ratios with the corresponding 95% confidence intervals and heterogeneity tests results (I 2, Q test) for genetic

contrasts of ACE I/D, ADRB1 Arg389Gly, ADRB2 Arg16Gly, ADRB2 Gln27Glu and TNF G308A polymorphisms* for ischemic heart

failure

Polymorphism Population
Fixed effects Random effects No. of studies

(reference no.)
I 2 (%)

p value,
Q testORy 95% CIy OR 95% CI

ACE I/D

*D vs. *I All 0.85 0.69, 1.05 0.85 0.69, 1.05 4 (32–35) 0 0.84

East Asians 0.77 0.53, 1.12 0.77 0.53, 1.12 2 (32, 35) 0 0.94

Recessive model All 0.94 0.70, 1.27 0.95 0.60, 1.52 5 (31–35) 51 0.09

Sensitivityz 0.76 0.54, 1.07 0.77 0.55, 1.08 4 (32–35) 0 0.71

Whites 1.02 0.70, 1.50 1.16 0.40, 3.37 2 (31, 34) 85 0.01

East Asians 0.67 0.30, 1.50 0.70 0.31, 1.56 2 (32, 35) 0 0.44

Dominant model All 0.86 0.61, 1.21 0.86 0.61, 1.21 4 (32–35) 0 0.77

East Asians 0.73 0.44, 1.21 0.73 0.44, 1.21 2 (32, 35) 0 0.56

ADRB1 Arg389Gly

*Arg vs. *Gly All 0.87 0.69, 1.10 0.87 0.69, 1.10 3 (37, 39) 0 0.99

Whites 0.87 0.66, 1.14 0.87 0.66, 1.14 2 (37, 39) 0 0.89

Recessive model All 0.85 0.62, 1.15 0.85 0.62, 1.15 3 (37, 39) 0 0.67

Whites 0.79 0.56, 1.12 0.79 0.56, 1.12 2 (37, 39) 0 0.86

Dominant model All 0.82 0.50, 1.34 0.81 0.49, 1.35 3 (37, 39) 0 0.37

Whites 1.06 0.55, 1.04 1.05 0.54, 2.03 2 (37, 39) 0 0.44

ADRB2 Arg16Gly

*Gly vs. *Arg Whites 1.03 0.81, 1.30 1.03 0.81, 1.30 2 (39, 40) 0 0.78

Recessive model Whites 1.32 1.05, 1.65 1.31 1.03, 1.67 2 (39, 40) 12 0.29

Dominant model Whites 0.89 0.66, 1.21 0.90 0.66, 1.21 2 (39, 40) 0 0.82

ADRB2 Gln27Glu

*Glu vs. *Gln Whites 1.07 0.84, 1.37 1.07 0.84, 1.33 2 (39, 40) 0 0.68

Recessive model Whites 1.28 0.95, 1.72 1.27 0.93, 1.74 2 (39, 40) 7 0.30

Dominant model Whites 1.03 0.82, 1.29 1.03 0.82, 1.29 2 (39, 40) 0 0.40

TNF G308A

*A vs. *G All 1.04 0.77, 1.39 1.04 0.77, 1.39 2 (42, 44) 0 0.86

Recessive model All 1.40 0.52, 3.79 1.39 0.51, 3.81 2 (42, 44) 0 0.71

Dominant model All 1.03 0.70, 1.52 1.03 0.70, 1.52 2 (42, 44) 0 0.53

* Defined in the Materials and Methods section of the text.

y OR, odds ratio; CI, confidence interval.

z Exclusion of a study with no data on Hardy-Weinberg equilibrium (31).
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HWE and genotyping

In the studies with the controls not in HWE (37, 39, 40),
the lack of HWE indicates genotyping errors, population
stratification, and selection bias (118). In addition, lack of
HWE in a population implies continued selection, migra-
tion, mutation, and absence of random mating (119, 120).
Thus, the validity of the genotyping method, and the selec-
tion of controls, are questioned (119, 121). Furthermore, the
lack of reporting blindness in genotyping personnel in
33 studies (31, 32, 34, 35, 37–51) and the possible lack of
a validated genotyping procedure in 28 studies (31, 32, 34,
37–40, 42–44, 46, 48–52) could be potential sources of
biases.

Candidate gene selection

In addition to candidate gene approaches, genomic or
proteomic expression analyses can assist in the selection
of candidate variants by ranking those genes that appear to
be the most active in the disease process (107, 122). Recent
studies have identified gene expression profiles that could
accurately distinguish ischemic and nonischemic cardiomy-
opathy (123). This overlapping of independent sources of
information has been termed ‘‘genomic convergence’’ and is
expected to provide new insights into the cellular mecha-
nisms involved in cardiac dysfunction (124).

Gene-environment interactions

Many environmental factors have been associated with in-
creased risk of IHF, such as age, obesity, hypertension, myo-
cardial infarction, anemia, diabetes mellitus, hyperlipidemia,
and thyroid disorders, while a number of pharmacological and
nonpharmacological interventions have been shown to alter
the natural history of the syndrome (125). Despite difficulties
in study design and assessment of the exposures, such param-
eters should be incorporated in future studies (126).

Gene-gene interactions

The search for susceptibility loci has probably been com-
plicated by the increased number of contributing loci and
susceptibility alleles (127). Elucidating the pathogenesis of
the disorder would demand investigation of association for
many variants of genes that constitute distinct pathophysi-
ological pathways (128).

Large-scale genetic association studies and
meta-analyses

IHF cases are usually aged (table 1), which means that
recruiting large numbers of affected sib pairs or family trios,
needed for wide-genome scans and family-based associa-
tion studies, might be problematic (10, 129). Consequently,
elucidating the genetics of IHF largely relies upon designing
and undertaking rigorous genetic association studies. More-
over, future studies should be planned with the idea of their
being incorporated into other similar studies in a meta-
analysis. The opportunities offered by a meta-analysis are
enhancement of power; the ability to place each study in the

context of all others, particularly early spurious results; and
the possibility of examining why studies reach different
conclusions (120).

In summary, there is no evidence of strong association
between genetic variants and the risk of developing IHF in
the individual studies and meta-analyses. These findings sug-
gest that the risk of IHF is not related to genes or that research
to date has been insufficient to identify such associations.
However, conclusions reached in the present analysis were
based on relatively small numbers of studies and partici-
pants for each gene polymorphism, and their interpreta-
tion has to be cautious. Taking into account that IHF is
a complex disease with multifactorial etiology, a minor con-
tributing pathogenetic role of the investigated gene polymor-
phisms in specific cases, and in cooperation with other
factors, cannot be totally excluded. Therefore, the relation
between genetic variation and IHF still remains an unresolved
issue. The results of long-term prospective and case-control
studies (118, 130), designed to investigate gene-gene and
gene-environment interactions, and utilizing the vast amount
of data produced by genomic studies (122) might produce
more conclusive claims about the genetics of IHF.
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