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What is probability?

Laplace v. Pascal

Classical (combinatorial) probability
Is this a winning hand in cards?

Frequentist probability
Is this fertilizer any good?

Subjectivist probability
Is O.J. guilty?   Does God exist?



Some (e.g., Cox 1946, Lindley 1982) argue  probability 
is the only consistent calculus of uncertainty

Subjectivists showed probability provides the consistent 
calculus for propagating rational subjective beliefs

If you're rational and you're forced to bet, probability is the only 
way to maintain your rationality
But being rational doesn't imply an agent has to bet on every 
proposition

Just because it would be consistent doesn't mean we 
should use beliefs in risk analysis

Only the frequentist interpretation seems proper in risk 
analysis

Risk analysis

Incertitude

All we know about A is that it's between 2 and 4
All we know about B is that it's between 3 and 5
What can we say about A+B?

Modeling this as the convolution of independent 
uniforms is the traditional probabilistic approach  
but it underestimates tail risks

Probability has an inadequate model of ignorance



Two great traditions

Probability theory
    What we think is likely true

Interval analysis
    What we know to be false

We need an approach with the best 
features of each of these traditions

Generalization of both  

Probability bounds analysis gives the same 
answer as interval analysis does when only 
range information is available

It also gives the same answers as Monte Carlo 
analysis does when information is abundant

Probability bounds analysis is a generalization 
of both interval analysis and probability theory



Probability bounds analysis

Distinguishes variability and incertitude
Makes use of available information
All standard mathematical operations
Computationally faster than Monte Carlo
Guaranteed to bound answer
Often optimal solutions

Very intrusive (requires coding into software)
Methods for black boxes need development

Consistent with probability

Kolmogorov, Markov, Chebyshev, Fréchet

Same data structures used in Dempster-Shafer theory 
and theory of random sets, except we don't use 
Dempster's Rule

Similar spirit as robust Bayes analysis, except updating 
is not the central concern

Closely allied to imprecise probabilities (Walley 1992), 
but not expressed in terms of gambles

Focus is on convolutions



Possible even when estimates are impossible
Results are rigorous, not approximate
Often easier to compute (no integrals)
Very simple to combine
Often optimally tight
95% confidence not as good as being sure
Decisions need not require precision

(after N.C. Rowe)

Why bounding?

What is a probability box?
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Interval bounds on a cumulative 
distribution function (CDF)



Duality

Bounds on the probability of a value
likelihood the value will be 15 or less is between 0 and 25%

Bounds on the value at a probability 
95th percentile is between 40 and 60
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Probabilistic arithmetic

P-box for the random variable A

0

.2

.4

.6

.8

1.

0 1 2 3 4 5
Value of random variable A

P-box for the random variable B

0 1 2 3 4 5 6 7
Value of random variable B

C
u

m
u

la
ti

ve
 p

ro
b

ab
ili

ty

We want to "add" A and B together,
i.e., compute bounds on the distribution 
of the sum A+B
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B ∈ [3, 5]
q2 = 1/3

B ∈ [4, 6]
q3 = 1/3

B ∈ [2, 4]
q1 = 1/3

A ∈ [1, 2]
p1 = 1/3

A ∈ [2, 4]
p2 = 1/3

A ∈ [3, 5]
p3 = 1/3

A + B
indep.

A+B ∈ [5, 9]
prob = 1/9

A+B ∈ [4, 8]
prob = 1/9

A+B ∈ [6, 10]
prob = 1/9

A+B ∈ [5, 9]
prob = 1/9

A+B ∈ [4, 7]
prob = 1/9

A+B ∈ [5, 8]
prob = 1/9

A+B ∈ [6, 10]
prob = 1/9

A+B ∈ [7, 11]
prob = 1/9

A+B ∈ [3, 6]
prob = 1/9

To convolve A and B, just take the Cartesian product

Sum under independence

P-box for A +B  assuming independence
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What of other dependencies?

Independent
Perfectly positive (maximal correlation)
Opposite (minimal correlation)
Positively associated
Negatively associated
Particular correlation coefficient
Nonlinear dependence (copula)
Unknown dependence

B ∈ [3, 5]
q2 = 1/3

B ∈ [4, 6]
q3 = 1/3

B ∈ [2, 4]
q1 = 1/3

A ∈ [1, 2]
p1 = 1/3

A ∈ [2, 4]
p2 = 1/3

A ∈ [3, 5]
p3 = 1/3

A + B
perfect

A+B ∈ [5, 9]
prob = 0

A+B ∈ [4, 8]
prob = 0

A+B ∈ [6, 10]
prob = 0

A+B ∈ [5, 9]
prob = 1/3

A+B ∈ [4, 7]
prob = 0

A+B ∈ [5, 8]
prob = 0

A+B ∈ [6, 10]
prob = 0

A+B ∈ [7, 11]
prob = 1/3

A+B ∈ [3, 6]
prob = 1/3



P-box for A +B assuming perfect dependence
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Sum under perfect dependence

Conjunction

Disjunction

Fréchet inequalities

))Pr(),min(Pr()&Pr()1)Pr()Pr(,0max( GFGFGF ≤≤−+
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No dependence assumption

Interval estimates of probability don't reflect 
that sum must equal one
Resulting p-box would be too fat
Linear programming needed for optimal 
answer using this approach

Frank, Nelsen and Schweizer (1987) give a 
way to compute the optimal answer directly

Best-possible answer

P-box for A +B  without making any 

assumption about dependence
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Numerical example
We want bounds on A+B+C+D but have only
partial information about the variables:

Know the distribution of A, but not its parameters.
Know the parameters of B, but not its shape.
Have a small data set of samples values of C.
D is well described by a precise distribution.

What can we say if we assume independence?
What can we say if we don't make this assumption?

Sum of four p-boxes
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Summary statistics of risk

Summary Independence General
95th %-ile [ 2.1, 2.9]  [ 1.3, 3.3]
median [ 1.4, 2.4]  [ 0.79, 2.8]
mean [ 1.4, 2.3]  [ 1.4, 2.3]
variance [ 0.086, 0.31] [ 0, 0.95]

How to use output p-boxes

When uncertainty makes no difference 
(because results are so clear), bounding gives 
confidence in the reliability of the decision

When uncertainty swamps the decision, 
(i) use results to identify inputs to study better, 
(ii) use other criteria within probability bounds



Seven challenges in risk analysis

1. Input distributions unknown
2. Large measurement error
3. Censoring
4. Small sample sizes
5. Correlation and dependency ignored
6. Model uncertainty
7. Backcalculation very difficult

For each challenge, we give a poor but commonly used 
strategy, the current state-of-the-art strategy, and the 
probability bounding strategy.

1. Input distributions unknown

Default distributions
Maximum entropy criterion
Probability boxes



Probability boxes

min max
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(lognormal with 
interval parameters)
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{mean, minimum}
{mean, maximum}
{mean, variance}
{mean, standard deviation}
{mean, coefficient of variation}
{min, mean, standard deviation}
{max, mean, standard deviation}
{shape=symmetric, mean, variance}
{shape=symmetric, mean, standard deviation}
{shape=symmetric, mean, coefficient of variation}
{shape=positive, mean, standard deviation}
{shape=unimodal, min, max, mean, variance}

Constraints yield p-boxes

{minimum, maximum}
{minimum, maximum, mean}
{minimum, maximum, median}
{minimum, maximum, mode}
{minimum, maximum, quantile}
{minimum, maximum, percentile}
{minimum, maximum, mean = median}
{minimum, maximum, mean = mode}
{minimum, maximum, median = mode}
{minimum, maximum, mean, standard deviation}
{minimum, maximum, mean, variance}

Best-possible bounds are known for these 
sets of constraints:

New (possibly non-optimal) p-boxes can 
be constructed by intersection 
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Chebyshev

When parameters are estimates

Shown are the best-possible lower bounds on the CDF when the mean and standard deviation 
are estimated from sample data with varying sample size n.  When n approaches infinity, the 
bound tends to the classical Chebyshev inequality. (Saw et al. 1986 Amer. Statistician  38:130) 

Bernoulli
beta
binomial
Cauchy
chi squared
custom
delta
discrete uniform
Dirac
double exponential
empirical
exponential
extreme value

F
gamma
Gaussian
geometric
Gumbel
histogram
Laplace
logistic
lognormal
logtriangular
loguniform
normal
Pareto

Pascal
Poisson
power function
Rayleigh
reciprocal
rectangular
Student's t
trapezoidal
triangular
uniform
Wakeby
Weibull
X²

Named distributions

Any parameter for these distributions can be an interval



2. Large measurement error

Measurement error ignored
Sampled from in a second-order simulation
Probability boxes

P-box from measurements

Form the p-box as two cumulative 
distribution functions, one based on the 
left endpoints, and one based on the 
right endpoints.  If  measurement errors  
are large, the p-box will be wide.

The data are represented as triangles 
distributed along the x-axis.  The peaks are 
the best estimates as point values, and the 
triangle bases are the plus- minus ranges 
associated with the measurements.

The dotted green line marks the 
associated empirical distribution 
function (EDF).  



3. Censoring

Substitution methods
Distributional and "robust" methods
Probability boxes

P-box under censoring

Suppose the red triangles represent data that 
were identified as left-censored, i.e., the lab 
said they might actually be zeros. 

The resulting bounds are trivial to compute.  
All the left endpoints of censored data are 
just zero.  The right endpoints are the 
respective detection limits (which may be 
variable).



Censoring

Current approaches
Break down when censoring prevalent
Cumbersome with multiple detection limits
Need assumption about distribution shape
Yield approximations only

P-box approach
Works regardless of amount of censoring
Multiple detection limits are no problem
Need not make distribution assumption
Uses all available information
Yields  rigorous answers

4. Small sample sizes

"Law of small numbers" (Tversky and Kahneman 1971)

Use confidence intervals in 2-D simulation
Use confidence intervals to form p-boxes



Saw et al. (1986) and similar constraint p-boxes

Asymptotic theory of extreme values 

Komogorov-Smirnov confidence intervals
These are bounds on the distribution as a whole
Distribution-free (but does assume iid)

EDF(x) ± Dmax(α, n)
Compatible with p-boxes including measurement error

Extrapolating a subpopulation

P-box with sampling error

With only 15 data points, we'd expect low 
confidence in the empirical distribution 
function (dotted green line).  The 95% KS 
confidence limits are shown in solid blue.  
As the number of samples becomes large, 
the confidence limits converge.



5. Correlations & dependencies

Assume all variables are mutually independent
Wiggle correlations between -1 and +1
Dependency bounds analysis

Dependency bounds analysis
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A B AB

This was a problem of Kolmogorov, only recently solved.
The bounds are rigorous and pointwise best possible.



Wiggling correlations insufficient
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If we vary the correlation coefficient between -1 and +1 with currently used 
correlation simulation techniques, the risk curve would range between the 
"perfect" and the "opposite" curves below.  Dependency bounds analysis 
shows the actual distribution must be somewhere inside the "general" 
bounds, and these bounds are known to be best possible.

6. Model uncertainty

"My model is correct"
QA, stochastic mixtures and Bayesian averaging
Stochastic envelopes



Battery of checks

Generic checks
Dimensional and unit concordance
Feasibility of correlation structure
Consistence of independence assumptions
Single instantiations of repeated variables

Checks against domain knowledge
For instance, in ecological risk analysis...

Population sizes nonnegative
Trophic relations influence bioaccumulation
Food web structure constrained 

Stochastic mixture is the traditional way to 
represent doubt about model form
Can incorporate judgements about 
likelihoods of different models
Easy to use in Monte Carlo simulation

Averages together incompatible theories
Can underestimate true tail risks

Doubt about mathematical form



Stochastic envelope

I
II

 

 

Models I and II make 
different predictions 
about some PDF

1

0

I or II

P-box capturing the 
model uncertainty
It can even handle 
non-stationarity!

7. Backcalculation

Revert to deterministic use of point estimates
Trial-and-error simulation strategies
Deconvolution of p-boxes



Inverting the defining equation

dose = body mass
conc intake×

conc = intake
dose body mass×

Planned dose Body mass

Intake Concentration
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Naive Monte Carlo
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Large doses in the realized distribution 
(arising from the allowed distribution of 
concentrations) are more common than 
were originally planned. 

Trial and error Monte Carlo
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By trial and error, you may be able to 
find a distribution of concentrations that 
yields something close to the planned 
distribution of doses.  This is not always 
possible however.



 

Intake / Body mass
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Dose
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Backcalculation using probability bounds

Concentration
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Then any concentration distribution 
falling inside this region is certain to 
satisfy the dose constraint

Suppose regulators say the 
dose distribution must lie 
within this region
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Suppose this is the 
distribution of intake 
over body mass (it 
could be a p-box too)
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In fact, any concentration distribution 
within the region will yield a dose 
distribution lying within the stipled 
area, well within the limits defined 
by the regulators.



Backcalculation

Aside from a few special cases, Monte Carlo methods 
(including LHS) cannot generally be used to get the 
target distribution
Trial-and-error can work but may be impractical
To get the right answer directly, you need deconvolution
But known algorithms have terrible numerical problems
When given arbitrary inputs such as might be defined 
by regulatory constraints, they usually crash
P-boxes are a far more natural way to express 
regulatory constraints
Because their interval nature relaxes the numerical 
problems, solutions are also easier to obtain

Advantages of p-boxes

Marries interval analysis and probability
Models both interactions and ignorance
Respects both variability and incertitude
Handles uncertainty about

plus-minus ranges, censoring, sampling error,
distribution shapes,
correlations and dependencies,
model form
nonstationarity

Backcalculation is straightforward
Simple to use and describe



Disadvantages of intervals

Same as a (formal) worst case analysis

Often criticized as hyperconservative

Cannot take account of distributions

Cannot take account of correlations and 
dependencies

Doesn't express likelihood of extremes

Disadvantages of probability

Requires a lot of information, or else    
subjective judgement

Confounds variability with incertitude

Cannot handle shape or model uncertainty

Backcalculation requires trial and error



Disadvantages of 2nd order MC

Can be daunting to parameterize

Displays can be ugly and hard to explain

Some technical problems 
(e.g., when uniform's max<min)

Expensive calculation (squared effort) 

Cannot handle shape or model uncertainty

Does not handle incertitude correctly

Cumbersome in a backcalculation

Disadvantages of p-boxes

A p-box can't show what's most likely 
within the box...no shades of gray or 
second-order information

Optimal answers may be hard to get 
when there are repeated variables or 
when dependency information is subtle

Propagation through black boxes needs 
development 

Contradicts traditional attitudes about 
the universality of pure probability



Present work on ASCI contract

Representation of information
How do we get p-boxes?  Where do they come from?

Aggregation methods
How do we combine estimates from multiple sources?

Propagation through black boxes
Can we apply the method to arbitrary engineering problems?
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