Probability bounding

Scott Ferson Applied Biomathematics

100 North Country Road, Setauket, New York 11733 scott@ ramas.com, 631-751-4350, fax -3435

What is probability?

- Laplace v. Pascal
- Classical (combinatorial) probability Is this a winning hand in cards?
- Frequentist probability Is this fertilizer any good?
- Subjectivist probability

Is O.J. guilty? Does God exist?

Risk analysis

- Some (e.g., Cox 1946, Lindley 1982) argue probability is the only consistent calculus of uncertainty
- Subjectivists showed probability provides the consistent calculus for propagating rational subjective beliefs
- If you're rational and you're forced to bet, probability is the only way to maintain your rationality
-But being rational doesn't imply an agent has to bet on every proposition
- Just because it would be consistent doesn't mean we should use beliefs in risk analysis
- Only the frequentist interpretation seems proper in risk analysis

Incertitude

All we know about A is that it's between 2 and 4 All we know about B is that it's between 3 and 5 What can we say about $A+B$?

Modeling this as the convolution of independent uniforms is the traditional probabilistic approach but it underestimates tail risks

Probability has an inadequate model of ignorance

Two great traditions

Probability theory
 What we think is likely true

Interval analysis

What we know to be false

We need an approach with the best features of each of these traditions

Generalization of both

- Probability bounds analysis gives the same answer as interval analysis does when only range information is available
- It also gives the same answers as Monte Carlo analysis does when information is abundant
- Probability bounds analysis is a generalization of both interval analysis and probability theory

Probability bounds analysis

- Distinguishes variability and incertitude
- Makes use of available information
- All standard mathematical operations
- Computationally faster than Monte Carlo
- Guaranteed to bound answer
- Often optimal solutions
- Very intrusive (requires coding into software)
- Methods for black boxes need development

Consistent with probability

- Kolmogorov, Markov, Chebyshev, Fréchet
- Same data structures used in Dempster-Shafer theory and theory of random sets, except we don't use Dempster's Rule
- Similar spirit as robust Bayes analysis, except updating is not the central concern
- Closely allied to imprecise probabilities (Walley 1992), but not expressed in terms of gambles
- Focus is on convolutions

Why bounding?

- Possible even when estimates are impossible
- Results are rigorous, not approximate
- Often easier to compute (no integrals)
- Very simple to combine
- Often optimally tight
- 95% confidence not as good as being sure
- Decisions need not require precision
(after N.C. Rowe)

What is a probability box?

Interval bounds on a cumulative distribution function (CDF)

Duality

- Bounds on the probability of a value
likelihood the value will be 15 or less is between 0 and 25%
- Bounds on the value at a probability

95th percentile is between 40 and 60

Probabilistic arithmetic

P-box for the random variable B

We want to "add" A and B together,
i.e., compute bounds on the distribution
of the sum $A+B$

To convolve A and B, just take the Cartesian product

$A+B$ indep.	$A \in[1,2]$ $p_{1}=1 / 3$	$A \in[2,4]$ $p_{2}=1 / 3$	$A \in[3,5]$ $p_{3}=1 / 3$
$B \in[2,4]$ $q_{1}=1 / 3$	$A+B \in[3,6]$ $\operatorname{prob}=1 / 9$	$A+B \in[4,8]$ $\operatorname{prob}=1 / 9$	$A+B \in[5,9]$ $\operatorname{prob}=1 / 9$
$B \in[3,5]$ $q_{2}=1 / 3$	$A+B \in[4,7]$ $\operatorname{prob}=1 / 9$	$A+B \in[5,9]$ $\operatorname{prob}=1 / 9$	$A+B \in[6,10]$ $\operatorname{prob}=1 / 9$
$B \in[4,6]$ $q_{3}=1 / 3$	$A+B \in[5,8]$ $\operatorname{prob}=1 / 9$	$A+B \in[6,10]$ $\operatorname{prob}=1 / 9$	$A+B \in[7,11]$ $\operatorname{prob}=1 / 9$

Sum under independence

P-box for $A+B$ assuming independence

What of other dependencies?

- Independent
- Perfectly positive (maximal correlation)
- Opposite (minimal correlation)
- Positively associated
- Negatively associated
- Particular correlation coefficient
- Nonlinear dependence (copula)
- Unknown dependence

$A+B$ perfect	$A \in[1,2]$ $p_{1}=1 / 3$	$A \in[2,4]$ $p_{2}=1 / 3$	$A \in[3,5]$ $p_{3}=1 / 3$
$B \in[2,4]$ $q_{1}=1 / 3$	$A+B \in[3,6]$ $\operatorname{prob}=1 / 3$	$A+B \in[4,8]$ $\operatorname{prob}=0$	$A+B \in[5,9]$ $\operatorname{prob}=0$
$B \in[3,5]$ $q_{2}=1 / 3$	$A+B \in[4,7]$ $\operatorname{prob}=0$	$A+B \in[5,9]$ $\operatorname{prob}=1 / 3$	$A+B \in[6,10]$ $\operatorname{prob}=0$
$B \in[4,6]$ $q_{3}=1 / 3$	$A+B \in[5,8]$ $\operatorname{prob}=0$	$A+B \in[6,10]$ $\operatorname{prob}=0$	$A+B \in[7,11]$ $\operatorname{prob}=1 / 3$

Sum under perfect dependence

P-box for $\boldsymbol{A}+\boldsymbol{B}$ assuming perfect dependence

Fréchet inequalities

- Conjunction

$$
\max (0, \operatorname{Pr}(F)+\operatorname{Pr}(G)-1) \leq \operatorname{Pr}(F \& G) \leq \min (\operatorname{Pr}(F), \operatorname{Pr}(G))
$$

Disjunction
$\max (\operatorname{Pr}(F), \operatorname{Pr}(G)) \leq \operatorname{Pr}(F \vee G) \leq \min (1, \operatorname{Pr}(F)+\operatorname{Pr}(G))$

No dependence assumption

- Interval estimates of probability don't reflect that sum must equal one
- Resulting p-box would be too fat
- Linear programming needed for optimal answer using this approach
- Frank, Nelsen and Schweizer (1987) give a way to compute the optimal answer directly

Best-possible answer

Numerical example

We want bounds on $A+B+C+D$ but have only partial information about the variables:

Know the distribution of A, but not its parameters.
Know the parameters of B, but not its shape.
Have a small data set of samples values of C.
D is well described by a precise distribution.

What can we say if we assume independence?
What can we say if we don't make this assumption?

Sum of four p-boxes

$A=\{$ lognormal, mean $=[.5, .6]$, variance $=[.001, .01]\}$
$B=\{\min =0, \max =.4$, mode $=.3\}$
$\mathrm{C}=\{\mathrm{d} \neq \mathrm{a}=(.2, .5, .6, .7, .75, .8)$
$\mathrm{D}=\{$ shape $=$ uniform min $=0, \mathrm{max}=1\}$

Under independence

Summary statistics of risk

Summary	Independence	General
95th \%-ile	$[2.1,2.9]$	$[1.3,3.3]$
median	$[1.4,2.4]$	$[0.79,2.8]$
mean	$[1.4,2.3]$	$[1.4,2.3]$
variance	$[0.086,0.31]$	$[0.0 .95]$

How to use output p-boxes

When uncertainty makes no difference (because results are so clear), bounding gives confidence in the reliability of the decision

When uncertainty swamps the decision,
(i) use results to identify inputs to study better,
(ii) use other criteria within probability bounds

Seven challenges in risk analysis

1. Input distributions unknown
2. Large measurement error
3. Censoring
4. Small sample sizes
5. Correlation and dependency ignored
6. Model uncertainty
7. Backcalculation very difficult

For each challenge, we give a poor but commonly used strategy, the current state-of-the-art strategy, and the probability bounding strategy.

1. Input distributions unknown

- Default distributions
- Maximum entropy criterion
- Probability boxes

Probability boxes

(lognormal with

Constraints yield p-boxes

Best-possible boundsareknown for these sets of constraints

\{minimum, maximum
\{minimum, maximum, mean\}
\{minimum, maximum, median\}
\{minimum, maximum, mode\}
\{minimum, maximum, quantile\}
\{minimum, maximum, percentile\}
\{minimum, maximum, mean = median $\}$
\{minimum, maximum, mean $=$ mode \}
\{minimum, maximum, median $=$ mode $\}$
\{minimum, maximum, mean, standard deviation\}
\{minimum, maximum, mean, variance\}
\{mean, minimum $\}$
\{mean, maximum
\{mean, variance\}
\{mean, standard deviation\}
\{mean, coefficient of variation\}
\{min, mean, standard deviation\}
\{max, mean, standard deviation\}
\{shape=symmetric, mean, variance\}
\{shape=symmetric, mean, standard deviation\}
\{shape=symmetric, mean, coefficient of variation\} \{shape=positive, mean, standard deviation\}
\{shape=unimodal, min, max, mean, variance\}

When parameters are estimates

Shown are the best-possible lower bounds on the CDF when the mean and standard deviation are estimated from sample data with varying sample size n. When n approaches infinity, the bound tends to the classical Chebyshev inequality. (Saw et al. 1986 Amer. Statistician 38:130)

Named distributions

Bernoulli	F	Pascal
beta	gamma	Poisson
binomial	Gaussian	power function
Cauchy	geometric	Rayleigh
chi squared	Gumbel	reciprocal
custom	histogram	rectangular
delta	Laplace	Student's t
discrete uniform	logistic	trapezoidal
Dirac	lognormal	triangular
double exponential	logtriangular	uniform
empirical	loguniform	Wakeby
exponential	normal	Weibull
extreme value	Pareto	X² 2

Any parameter for these distributions can be an interval

2. Large measurement error

- Measurement error ignored
- Sampled from in a second-order simulation
- Probability boxes

P-box from measurements

Thedta are representedastriangles distributed dongthex-axis. Thepeaksare the best estimates as point values, and the triangebaesarethe plus minus ranges msodited with the meesurements.

Thedotted grean linemarks the asocited empirica distribution fundion (EDF).

Formthep-box astwo cumuldive distributionfunctions, onebased onthe left endpoints, and one based on the right endpoints. If meesurement errors arelarge, thep-box will bewide

3. Censoring

- Substitution methods
- Distributional and "robust" methods
- Probability boxes

P-box under censoring

Censoring

Current approaches

- Break down when censoring prevalent
- Cumbersome with multiple detection limits
- Need assumption about distribution shape
- Yield approximations only

P-box approach

- Works regardless of amount of censoring
- Multiple detection limits are no problem
- Need not make distribution assumption
- Uses all available information
- Yields rigorous answers

4. Small sample sizes

■ "Law of small numbers" (Tversky and Kahneman 1971)

- Use confidence intervals in 2-D simulation
- Use confidence intervals to form p-boxes

Extrapolating a subpopulation

- Saw et al. (1986) and similar constraint p-boxes
- Asymptotic theory of extreme values
- Komogorov-Smirnov confidence intervals
- These are bounds on the distribution as a whole
- Distribution-free (but does assume iid)
- $\operatorname{EDF}(x) \pm \mathrm{D}_{\max }(\alpha, n)$
- Compatible with p-boxes including measurement error

P-box with sampling error

With only 15 dtapoints, wedd exped low confidencein theempirica distribution function (dottedgreen line). The95\%KS confidencelimits areshown in solid blue As thenumber of samples becomeslarge,

5. Correlations \& dependencies

- Assume all variables are mutually independent
- Wiggle correlations between -1 and +1
- Dependency bounds analysis

Dependency bounds analysis

This was a problem of Kolmogorov, only recently solved.
The bounds are rigorous and pointwise best possible.

Wiggling correlations insufficient

If we vary the correlation coefficient between -1 and +1 with currently used correlation simulation techniques, the risk curve would range between the "perfect" and the "opposite" curves below. Dependency bounds analysis shows the actual distribution must be somewhere inside the "general" bounds, and these bounds are known to be best possible.

6. Model uncertainty

- "My model is correct"
- QA, stochastic mixtures and Bayesian averaging
- Stochastic envelopes

Battery of checks

- Generic checks
- Dimensional and unit concordance
- Feasibility of correlation structure
- Consistence of independence assumptions
- Single instantiations of repeated variables
- Checks against domain knowledge

For instance, in ecological risk analysis...

- Population sizes nonnegative
- Trophic relations influence bioaccumulation
- Food web structure constrained

Doubt about mathematical form

- Stochastic mixture is the traditional way to represent doubt about model form
- Can incorporate judgements about likelihoods of different models
- Easy to use in Monte Carlo simulation
- Averages together incompatible theories
- Can underestimate true tail risks

Stochastic envelope

Models I and II make
different predictions about some PDF

P-box capturing the model uncertainty It can even handle non-stationarity!

7. Backcalculation

- Revert to deterministic use of point estimates
- Trial-and-error simulation strategies
- Deconvolution of p-boxes

Inverting the defining equation

dose $=\frac{\text { conc } \times \text { intake }}{\text { body mass }}$ conc $=\frac{\text { dose } \times \text { body mass }}{\text { intake }}$

Naive Monte Carlo

Trial and error Monte Carlo

Backcalculation

- Aside from a few special cases, Monte Carlo methods (including LHS) cannot generally be used to get the target distribution
- Trial-and-error can work but may be impractical
- To get the right answer directly, you need deconvolution
- But known algorithms have terrible numerical problems
- When given arbitrary inputs such as might be defined by regulatory constraints, they usually crash
- P-boxes are a far more natural way to express regulatory constraints
- Because their interval nature relaxes the numerical problems, solutions are also easier to obtain

Advantages of p-boxes

- Marries interval analysis and probability
- Models both interactions and ignorance
- Respects both variability and incertitude
- Handles uncertainty about
- plus-minus ranges, censoring, sampling error,
-distribution shapes,
- correlations and dependencies,
-model form
-nonstationarity
- Backcalculation is straightforward
- Simple to use and describe

Disadvantages of intervals

- Same as a (formal) worst case analysis
- Often criticized as hyperconservative
- Cannot take account of distributions
- Cannot take account of correlations and dependencies
- Doesn't express likelihood of extremes

Disadvantages of probability

- Requires a lot of information, or else subjective judgement
- Confounds variability with incertitude
- Cannot handle shape or model uncertainty
- Backcalculation requires trial and error

Disadvantages of 2nd order MC

- Can be daunting to parameterize
- Displays can be ugly and hard to explain
- Some technical problems
(e.g., when uniform's max<min)
- Expensive calculation (squared effort)
- Cannot handle shape or model uncertainty
- Does not handle incertitude correctly
- Cumbersome in a backcalculation

Disadvantages of p-boxes

- A p-box can't show what's most likely within the box...no shades of gray or second-order information
- Optimal answers may be hard to get when there are repeated variables or when dependency information is subtle
- Propagation through black boxes needs development
- Contradicts traditional attitudes about the universality of pure probability

Present work on ASCI contract

- Representation of information

How do we get p-boxes? Where do they come from?

- Aggregation methods

How do we combine estimates from multiple sources?

- Propagation through black boxes

Can we apply the method to arbitrary engineering problems?

For further information

- Ferson, S. and L.R. Ginzburg. 1996. Different methods are needed to propagate ignorance and variability. Reliability Engineering and Systems Safety 54:133-144.
- Ferson, S. 1996. What Monte Carlo methods cannot do. Human and Ecological Risk Assessment2:990-1007.
- Ferson, S. and T.F. Long. 1997. Deconvolution can reduce uncertainty in risk analyses. Risk Assessment: Measurement and Logic, M. Newman and C. Strojan (eds.), Ann Arbor Press.
- Ferson, S. 2001. Probability bounds analysis solves the problem of incomplete specification in probabilistic risk and safety assessements. Risk-Based Decision Making in Water Resources IX, Y.Y. Haimes, D.A. Moser and E.Z. Stakhiv (eds.), American Society of Civil Engineers, Reston, Virginia, page 173-188.
- Ferson, S. 2001. Checking for errors in calculations and software: dimensional balance and conformance of units. Accountability in Research: Policies and Quality Assurance 8:261-279.
- Ferson, S., L.R. Ginzburg and H.R. Akçakaya. Whereof one cannot speak: when input distributions are unknown. Risk Analysis [to appear].

