


Learning from Ulam 
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w A "LITTLE INVENTION" , 

. . 
Fig. 1. K. Kuratowski posed the following 
problem to his calculus class: Over a non- 
negative, decreasing function on the posi- 

tive part of the real line, construct a step 

function with steps of equal depth. Prove 
that the area of the shaded regions between 

the two functions is finite. Ulam's solution 
was to move each shaded region into the 
first column, the area of which is finite. 

alized Bernstein's Theorem." That short 
paper solves a problem posed by Kura- 
towski. It belongs to the theory of jigsaw 
puzzles (also called the theory of equiva- 
lence by finite decomposition) and is one 
of the earliest applications of graphs in 
set theory. It appears in the 1974 vol- 
ume Stanislaw Ularn: Sets, Numbers, and 
Universes, which contains more than half 
of Ulam's hundred or so then-published 
papers. We can learn a lot from that vol- 
ume. I will try to describe some of what I 
have learned, but first let me record some 
memories from our numerous conversa- 
tions over the years. 

Ulam liked to consider amusing objects 
and processes. It didn't matter to him 
whether or not they were real or imagi- 
nary, but they had to be intrinsically inter- 
esting, not just tools. Consequently most 
of his work has a directness similar to 
the directness of an observation of na- 
ture. That distinguishes his work from the 
majority of mathematical papers, which 
elaborate existing theories. In fact, in his 
later life he became quite critical of such 
mathematical investigations, which he re- 
garded as too abstruse or unimaginative. 
He would even remark that the study of 
specific subjects, such as advanced chap- 
ters of algebra, algebraic topology, or 
analysis, was motivated by the history of 
mathematics rather than by the interest or 
notoriety of their problems. I would reply 
that mathematics is also an art, motivated 
by its internal beauty, and that only per- 

sistent study may reveal that beauty. He 
would agree only that his opinion was not 
easy to interpret correctly. In the end I 
am sure that there is wisdom in what he 
said, if only because he discovered sev- 
eral facts that are fundamental to mod- 
em mathematical culture, and I can hardly 
imagine discoveries of that nature in the 
areas he was criticizing. 

Measurable Cardinals 

I will now try to tell you about one of 
Ulam's important discoveries. It pertains 
to the foundations of mathematics and to 
the theory of large cardinal numbers. To 
give it the proper perspective, let me re- 
call that Euclid was the first to organize 
the mathematics of his time into an ax- 
iomatic theory. That means he started 
from certain basic principles called ax- 
ioms that he accepted without proof, and 
from them he obtained by pure deduction 
all the mathematical knowledge of his 
time. The system of Euclid became the 
accepted definition of mathematics until 
the time of Newton and Leibnitz. Af- 
ter the discovery of calculus, it became 
apparent that the development of math- 
ematics within the system of Euclid is 
very unwieldy, and the system had to be 
abandoned. For a few centuries mathe- 
matics was in a sense unruly. Axiomatic 
organization returned to it around the turn 
of this century with the discoveries of 
Frege, Cantor, and Zermelo. Frege de- 

veloped logic, Cantor invented and de- 
veloped set theory, and Zerrnelo gave ax- 
ioms for Cantor's set theory. Soon it be- 
came clear that all modem mathematics 
can be smoothly developed within set the- 
ory. Gradually it also became apparent 
that there is a whole hierarchy of larger 
and larger set theories, and one of the best 
ways to classify them is to see how large 
are the infinite cardinal numbers that can 
be shown to exist in those theories. (By 
a famous definition of Cantor, two sets A 
and B,  finite or infinite, have the same 
cardinal number if and only if there ex- 
ists a one-to-one function mapping A onto 
B). One might think that very large cardi- 
nal numbers are rather exotic and abstract 
objects whose existence is not of great 
mathematical interest. But by a famous 
theorem Godel proved in 1931 (the so- 
called second incompleteness theorem), it 
follows that the larger the cardinal num- 
ber whose existence can be proven in a 
given set theory, the more theorems can 
be proved in that theory, even theorems 
pertaining to such elementary operations 
as the addition and multiplication of inte- 
gers. This fact was not yet known at the 
time Ulam made his discovery. His mo- 
tivation was different-he was attracted 
by the mystery of the very large cardinal 
numbers for its own sake. Let me try to 
explain his theorem. 

The smallest infinite cardinal number 
is called No (aleph zero). It is the cardi- 
nality of the set of integers. Clearly No 
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has the following property: If we mul- the Ai's are disjoint. 
tiply less than No cardinal numbers each Ulam considered special measures that 
of which is less than Ho, then the prod- satisfy some additional conditions: 
uct is also less than No. Well, of course, 
this tells only that the product of finitely 
many integers is finite. Thus we can say CI:  /^(A) = 0 whenever A consists of just 
that No is inaccessible by products. This one element of X; 
property is also called strong inaccessibil- 
ity: Uo is strongly inaccessible. Are there Cz: p(X) = 1 (that is, the measure of the 
any cardinal numbers larger than No (such whole space is 1); and 
cardinals are called uncountable) that are 
also strongly inaccessible? It turns out CT,: 0 is the set of all subsets of X. 
that this problem cannot be solved. The 
axioms of set theory do not imply the 
existence of such cardinals, and one can Measures that satisfy Co, C l ,  C2, and 
only postulate their existence as an ax- CT, are called universal measures. Read- 
iom, which is what Felix Hausdorff did. ers familiar with Lebesgue's measure may 
Indeed, a set theory in which we accept recall that it is not a universal measure 
this axiom is stronger (in the sense that it since the collection f2 on which it is de- 
gives rise to more theorems of arithmetic) fined is not the set of all subsets of [0,1]. 
than the original set theory of Cantor and On the other hand, Lebesgue's measure is 
Zermelo. invariant under translations, whereas the 

To explain the work of Ulam we need set X is just an abstract set without any 
the concept of a measure. For a set of transformations upon which p could be 
points on the plane, area is a measure, and assumed to be invariant. Even in this ab- 
for a set of points in three-dimensional stract setting it is very difficult to con- 
space, volume is a measure. In general struct a universal measure. For example, 
given any set X, a measure is a function if X is countable, no such measure exists 
p that attaches to subsets of X some non- since condition Ci plus countable addi- 
negative numbers in such a way that the tivity forces p,(X) to equal 0, contrary to 
following condition is satisfied: c2 . 

Ulam proved two fundamental results 
about universal measures. The first tells 

Co: If A and B are disjoint subsets of X,  that no universal measure exists for many 
then u(A U B) = p(A) + p(B). uncountable sets. In particular, for many 

consecutive cardinals larger than No (for 
example, N1, N 2 , .  . . , No;, . .), sets 

There are many variants of the concept of those cardinalities do not have univer- 
of measure. The version that is the most sal measures. 
important for mathematical analysis says To explain Ulam's second result, we 
that p(A) must be defined for all subsets A restrict the concept of universal measure 
of X that are in a collection fl of subsets still further by adding the following con- 
such that 0 is closed under countable dition: 
unions and complementations. That is, 
if A; G fl for i = 1,2, .  . ., then the union 
of the A;'s is in 0, UF1 A; E 0, and if C4: p(A) = 0 or p(A) = 1 for all subsets 
A, E 0 ,  then its complement, or X -A,, A of X .  
is in fl. Moreover the measure p must 
be countably additive; that is, if A; E 0 ,  
then p (\J  ̂ A;) = ^(A;), provided The cardinal number of a set that has a 

countably additive measure satisfying Cl , 
C2, C3. and CA is called an Ulam cardi- 
nal. Again, we can ask whether any Ulam 
cardinals exist. Ulam's famous theorem 
is that if such a cardinal does exist, then 
it is strongly inaccessible. This result im- 
plies that if we consider two set theories, 
one in which we assume the existence of 
uncountable strongly inaccessible cardi- 
nals and the second in which we assume 
the existence of Ulam cardinals, then the 
second theory is at least as strong as the 
first. Today we know many interesting 
theorems that follow from postulating the 
existence of Ulam cardinals. In partic- 
ular, thirty years after Ulam's paper on 
measurable cardinals. William Hanf and 
Alfred Tarski proved that the least un- 
countable strongly inaccessible cardinal 
is smaller than the least Ulam cardinal. 
Thus a set theory in which Ulam cardi- 
nals exist is strictly stronger than one in 
which only uncountable strongly inacces- 
sible cardinals exist. Many more results 
of this sort have been discovered since. 
The theory of large cardinals has become 
very rich, but Ulam's paper remains one 
of its keystones. 

Ergodic Theory and Topology 

Between 1929 and 1938 Ulam pub- 
lished about twenty papers. What dis- 
tinguishes those from the papers of other 
members of the Polish school before 1939 
was his interest in topological groups, es- 
pecially the groups of homeomorphisms 
of spheres. 

A homeomorphism of a space X is a 
transformation of X onto itself that is one- 
to-one and continuous and whose inverse 
is also continuous. Of course such trans- 
formations constitute a group under com- 
position. It is not obvious how to intro- 
duce a natural topology or even metriza- 
tion into such a group. The following 
formula was often proposed (for exam- 
ple, it appears in Banach's classic book 
Thkorie des Operations Linkaires): The 
distance between two homeomorphisms f 
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and g of a compact space X,  Dist(f , g), 
is given by 

Dist(f,g) = max dist(f ( x ) , ~ ( x ) ) +  
x EX 

a x  dist (f -'(x),g-'(x)) , 
.Â¥ ex 

where dist denotes the distance in X .  
The surprising property of this formula 

is that it converts the space of homeo- 
morphisms of X into a complete met- 
ric space. In other words, if a sequence 
of homeomorphisms satisfies the condi- 
tion of Cauchy, then it has a limit that 
is a homeomorphism. The fact that the 
space of homeomorphisms can be treated 
as a complete metric space is very im- 
portant because for such spaces there ex- 
ist very natural definitions of largeness or 
smallness of subsets. The small ones are 
called meager (or of the first category) 
and the large ones comeager (or com- 
plements of meager). These topological 
concepts were invented by Baire. Sev- 
eral brilliant applications of these notions 
were made by Banach and Mazur. A very 
famous one was made by John C. Oxtoby 
and Ulam around 1941. Let me try to de- 
scribe it here. 

Take a glass of water, gently stir its 
contents, and let the water stop moving. 
Each particle of water has an initial and 
final position. The operation has thus 
defined a transformation of the interior 
of the glass into itself. Since water is 
viscous, this transformation is continuous 
and its inverse is also continuous. So we 
have here a homeomorphism. Moreover, 
since water is incompressible, the home- 
omorphism is volume-preserving. Home- 
omorphisms with that property constitute 
a complete subspace of the space of all 
homeomorphisms. If our transformation 
had been a simple rotation, then the alti- 
tudes of the particles of water and their 
distances from the central axis of the glass 
would not have changed. Many parts of 
the water would have remained invari- 
ant; that is, such parts would have been 
mapped into themselves. Even if we had 

applied the rotation many times, the wa- 
ter would never have been mixed. Are 
there any volume-preserving homeomor- 
phisms that do mix? Such transforma- 
tions, which are called ergodic, or met- 
rically transitive, must exist if the er- 
godic hypothesis of statistical mechan- 
ics is correct. However, the existence 
of such transformations had remained an 
open question since the work of Poincark 
and G. D. Birkhoff. Oxtoby and Ularn, in 
their paper entitled "Measure-Preserving 
Homeomorphisms and Metrical Transitiv- 
ity," showed not only that such home- 
omorphisms exist but also that the set 
of ergodic homeomorphisms is comea- 
ger, that is, large in the sense of cat- 
egory. More precisely, any homeomor- 
phism of that comeager set has the prop- 
erty that its application to any proper part 
of our glass of water deflects its bound- 
ary (Fig. 2). Thus the homeomorphism 
mixes the water in the sense that no part 
returns to its initial position. The Oxtoby- 
Ulam theorem remains one of the high 
points of the mathematical theory con- 
cerning ergodic properties of dynamical 
systems. The introduction to their paper, 
excerpted on the following page, explains 
the connection to the ergodic hypothesis. 
(These excerpts may be better understood 
after reading "The Ergodic Hypothesis: 
A Complicated Problem of Mathematics 
and Physics," as well as the section enti- 
tled Problem 2. Geometry, Invariant Mea- 
sures, and Dynamical Systems in the arti- 
cle "Probability and Nonlinear Systems," 
all in this issue.) 

We must caution, however, that appli- 
cation of mathematical theorems to the 
real world is sometimes a delicate prob- 
lem. As you know, a sequence of heads 
and tails obtained by consecutive tosses 
of a fair coin has the property that the 
frequency of heads converges to 112 as 
the number of tosses becomes large. One 
can say (and prove in precise mathemat- 
ical terms) that if we choose a sequence 
at random from the space of all such se- 
quences, then, with probability 1, the lim- 

EFFECT OF AN ERGODIC 
TRANSFORMATION 

Fig. 2. If h is an ergodic transformation, 
every surface S separating the water is de- 

flected by h from its original position. 

iting frequency of heads in this sequence 
is 112. Unfortunately, in another sense, 
namely that of category, almost all se- 
quences (namely a comeager set) do not 
have any limiting value for the frequency 
of heads! So the very sense in which 
almost all volume-preserving homeomor- 

Los Alamos Science Special Issue 1987 



Learning from Ulam 

phisms of a cube are ergodic suggests the 
physically false result that almost all se- 
quences of heads and tails lack a well- 
defined frequency of heads. Can we then 
trust the theorem of Ulam and Oxtoby 
as an expression of the truth of the er- 
godic hypothesis in physics? Stan and I 
often discussed this question. We thought 
that the answer is yes, but what is really 
needed is a new theorem in which almost 
all, in the sense of category, is replaced 
by some other more reliable sense. (I 
have outlined an idea of such a new the- 
orem or conjecture in two papers in Jour- 
nal of Symbolic Logic, one in volume 46 
(198 1) and the other in volume 5 1 (1 986), 
but I do not know how to prove it. 

Ularn and J6sef Schreier obtained an- 
other interesting result about the group of 
homeomorphisms of a spherical surface. 
They proved that there exist two special 
homeomorphisms such that every home- 
omorphism in the group can be approx- 
imated with arbitrary accuracy (relative 
to the distance defined above) by appro- 
priate iterative compositions of those two 
homeomorphisms and their inverses. 

Kuratowski and Ulam proved an ex- 
tension of the theorem of Fubini to the 
context of Baire's category that is often 
very useful. 

An interesting feature of Ulam's work 
followed from his great ability to col- 
laborate with others. Almost all of his 
papers are co-authored with other math- 
ematicians or physicists. He had many 
ideas, and he was very successful in stir- 
ring the imagination and enthusiasm of 
others. His most important collaborators 
were J6sef Schreier, John C. Oxtoby, and 
C. J. Everett. He invented a large number 
of original problems, some of which were 
solved by other mathematicians and even 
became famous theorems. One such con- 
jecture was proved by K. Borsuk and is 
known today as the theorem on antipodes 
(the two points at the opposite ends of a 
diameter of a sphere are called antipodes 
of each other). It is sometimes called 
the ham-and-cheese sandwich theorem. It 

tells the following: For every continu- 
ous mapping of the spherical surface into 
the plane, there exist antipodes that are 
mapped into the same point on the plane. 
This theorem is equivalent to the follow- 
ing statement. Given three bodies (say 
ham, cheese, and bread), one can find a 
single plane that divides each body into 
two parts of equal volume. (Each body 
may consist of disjoint pieces, as does the 
bread in a sandwich, and the bodies may 
overlap, as shown in Fig. 3a.) Another 
equivalent statement is that at any time 
antipodal points can be found on the earth 
where the temperature and the barometric 
pressure are the same (Fig. 3b). 

(' 
' IMPLICATIONS OF THE 
BORSUK-ULAM THEOREM 

Fig. 3. You can divide the volumes of any 
three bodies in half with a single plane 

, (not shown) even when the bodies inter- 
sect. (b) You can always find antipodes 
on the earth with the same pressure and 

. temperature. 
t 

Topics in Biology and 
Some Applications of Computers 

I began to collaborate with Stan Ulam 
in 1969 when he invited me to the Uni- 
versity of Colorado in Boulder. We spoke 
frequently about the problems of the orga- 
nization and function of the human brain 
and the structure of memory. He pre- 
sented his ideas on this subject in the 
talk "Reflections on the Brain's Attempts 
to Understand Itself," which is posthu- 
mously published in this issue. 

We also talked often about the problem 
of accumulation of mutations in a given 
species. As a result of our discussions I 
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tricd Transitivity" 

I n the study of dynamical systems one 
is led naturally to the consideration of 
measure-preserving transformations. 

A Hamiltonian system of I n  differen- 
tial equations induces in the phase 
of the system a measure-preserving flow, 
that is, a one-parameter group of trans- 
formations that leave invariant the In- 
dimensional measure. . . . If the differ- 
ential equations are sufficiently regular 
the flow will have corresponding prop- 
erties of continuity and differentiability. 
Thus the study of one-parameter contin- 
uous groups of measure-preserving auto- 
morphisms of finite dimensional spaces 
has an immediate bearing on dynamics 
and the theory of differential equations. 

In statistical mechanics one is espe- 
cially interested in time-averaging prop- 

m. In the classical theory 

ise conditions un- 

c theorem of Birichoff. This estab- 

tions, and showed that if we neglect sets 
of measure zero, the interchange of time- 
and space-averages is permissible if and 
only if the flow in the phase space is met- 
rically transitive. A transformation or a 
flow is said to be metrically transitive if 
there do not exist two disjoint invariant 
sets both having positive measure. Thus 
the effect of the ergodic theorem was to 
replace the ergodic hypothesis by the hy- 
pothesis of metrical transitivity. 

Nevertheless, in spite of the simplifica- 
tion introduced by the ergodic theorem, 
the problem of deciding whether partic- 
ular systems are metrically transitive or 
not has proved to be very difficult. . . 

. . .The known examples of metrically 
transitive continuous flows are all in man- 
ifolds, indeed in manifolds of restrict 
topological type, either toruses or m m -  
folds of direction elements o 
of negative curvature. An 
problem in ergodic theory 
existence question-can a metrically tran- 
sitive continuous flow exist in an arbitrary 
manifold, or in any q x ~ e  that is not a 
manifold? In the present paper we shall 
obtain a complete answer to this ques- 

on the topological level, for 
ion three or more. It 
only condition that 

d is a trivially nec- 
essary kind of connectedness. In 
dm, there exists a metrically tra 
continuous flow in 

tern, 

cause it involved a topalogic 

arbitrarily close to all 
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proposed to study the "genealogical dis- 
tance" d(a ,  b) between two individuals a 
and b, which is defined as follows. Count 
the number of ancestors of a that are not 
ancestors of b, and add to it the number 
of ancestors of h that are not ancestors 
of a .  Assume that the size of the popu- 
lation is constant in time, that mating is 
random, and that a and b belong to the 
same generation. Ularn soon discovered 
by experimenting on a computer that un- 
der those conditions the expected value 
of d (a ,  b) is twice the size of the popu- 
lation. Later Joseph Kahane and Robert 
Man- proved this conjecture (Journal of 
Combinatorial Theory, Series A, volume 
13 (1972)). The smallness of this ex- 
pected distance suggests that all profitable 
mutations are soon present in all individ- 
uals of subsequent generations. 

Ulam liked to invent problems that 
could-be studied by means of electronic 
computers. He was the first to realize that 
computers are ideal tools for watching the 
evolution of patterns governed by simple 
laws. He proposed many experiments of 
this type, the most famous of which is re- 
ported in the paper of Ferrni, Pasta, and 
Ulam on dynamical evolution governed 
by nonlinear laws. Later he invented var- 
ious simple rules to produce crystal-like 
growths in space. He also observed sim- 

ple cases of "wars" between growing pop- well-developed mathematics. Few math- 
ulations of crystals or cells. Nowadays ematicians have the intelligence or the 
many such processes are being investi- courage that Ulam had to think about im- 
gated; Conway's "game of life" is a popu- portant problems irrespective of whether 
lar example. It is hoped that this approach their solutions are in sight. But this is the 
will help us to understand certain quali- only course that can lead to outstanding 
tative features of natural evolution. For achievements. 
example, one can replace the complicated 
rules of chemistry governing real life by 
simpler rules and, through numerical sim- 
ulation, watch the ways in which the pat- 
terns (objects) yielded by these rules grow 
and compete in complicated and surpris- 
ing ways. (In my own work I am try- 
ing to explain human thought and leam- 
ing, which we so often discussed together, 
by applying local rules of interaction that 
may define interesting processes. It is al- 
ready known that the computations going 
on in the cerebral cortex are local in some 
sense.) 

I have tried to give you glimpses of 
certain works of Stan Ulam. Of course, 
in this short article I have discussed only 
those that seem to me the most important 
or with which I was the most familiar. 

Every creative mathematician must al- 
low his imagination to flow in a free 
way. I think that Ulam did this more 
than others. He was drawn to work upon 
problems that suggested essentially new 
ideas and avoided the attractive pull of 
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