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ABSTRACT

This paper reports recent work to determine useful infor-
mation about component-level HVAC electrical loads�not
from submeters, which are accurate, rarely installed, and rela-
tively expensive, but instead from one or more centralized
locations in a building�s electrical distribution system. The
work includes laboratory tests with real-building data and
field tests made with low-cost hardware capable of the rapid
sampling needed for load disaggregation. Results indicate
that building electrical signals are often quite complex, that
individual loads can indeed be detected with reasonable reli-
ability, that more work is required to automate the process of
tuning the detection algorithm, and that there are benefits to
analyzing turn-on/turn-off events at multiple sampling rates to
minimize trade-offs between detection sensitivity and false
alarms.

INTRODUCTION

Accurate and affordable information about HVAC elec-
trical loads is of value to many individuals and organizations
involved in providing HVAC services: facility managers, who
would like to minimize operating costs and the costs and
down-time associated with repairs; electric utilities and
service providers, who need accurate load models to most
economically generate, transmit, and distribute power; and
energy service companies and building owners, who would
like inexpensive means to verify savings from energy-effi-
cient improvements. Electrical-power information can also be
used for power-quality monitoring and for analyzing loads
other than HVAC, including lights and process equipment.

The demands for both reasonable accuracy, suitable for
the task at hand, and moderate cost, in keeping with achievable

benefits, are not easily met. The required accuracy varies with
specific monitoring goals, graduated as follows:

1. detection of on-off switching events, to determine whether
equipment is operating in accordance with the expected
schedule and whether it responds to a control signal;

2. measurement of power magnitudes at the time of on-off
switches and throughout the operating cycle, to compute
energy consumption; and

3. measurement of changes in power or changes in the
frequency of operation of equipment, both relative to
normal operation, as a basis of detecting faulty operation.

The first level can be easily achieved with current trans-
ducers, now in limited use in buildings to effectively provide
an echo of a control signal and thereby verify that a fan or
pump has turned on or off on command. This simple technol-
ogy is not universally applied, suggesting some ambivalence
about cost versus benefit. Going to the second and third levels
requires more expensive power metering rather than binary
(on-off) current information. The third level, fault detection
and diagnosis, also requires development of methods to
analyze changes in electrical-power data and to relate these
changes to normal operating patterns. 

This paper describes recent work on an electrical-load
monitor capable of obtaining electrical-power data at a cost
lower than submeters. This monitor has its origins in residen-
tial buildings, where it was designed to be installed in lieu of
the standard revenue meter and hence did not cross the utility-
customer boundary. In that sense it was not invasive and was
therefore known as a non-intrusive load monitor, or NILM.
The analysis method for the residential meter, detailed in Hart
(1992) and now in commercial production, is based on
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pinpointing the times at which a near-constant series of elec-
trical power measurements changes to another near-constant
series. Changes are characterized by their magnitude in real
and reactive power. Changes of near-equal magnitude and
opposite sign are paired to establish the operating cycles and
energy consumption of individual residential appliances.

This approach faces several limitations in commercial
buildings and, increasingly, in houses:
1. electrical noise generated by power electronics, which

makes it difficult to establish steady-state conditions and,
once steady state is defined, also generates changes in
power that must be analyzed as events even though they are
not of interest;

2. overlapping on-off events that may mask individual
changes; and

3. time-varying electrical power demand by individual
components.
The first two limitations have been overcome in two

ways. First, as described in detail elsewhere (Leeb 1993; Leeb
et al. 1995; Norford and Leeb 1996; Leeb and Kirtley 1996;
Leeb et al. 1998), a method has been developed to measure and
analyze the short-term dynamic electrical pattern associated
with the start-up of a piece of equipment to aid in identifying
this equipment in an environment that is either noisy or rich
with information. This approach computes spectral envelopes
at the fundamental and higher harmonic frequencies, detects
rapid changes in these envelopes, and compares the patterns of
such changes with libraries of known patterns, generated for
either classes of equipment (induction motors, rapid-start
lamps) or individual components (a grinder, for example).
Another approach to analyzing start-up transients as a means
of non-intrusive load detection is presented in Deschizeau et
al. (2000).

Detection and analysis of start-up transients hold the
promise of a powerful approach to fault detection, requiring
only short-term, focused, and robust power analysis rather
than more extended computation of changes in power
consumption under known loading conditions. Recent efforts
in this area rely on submetered rather than centralized power
measurements and are described in Shaw et al. (2002).

Second, a less powerful, more easily implemented, and
ultimately complementary effort detects changes in power
levels in a manner that is similar in spirit to the original resi-
dential concept but more effective in noisy electrical environ-
ments encountered in commercial buildings. Norford and
Leeb (1996) showed examples of how one aspect of this work,
median filtering, can improve signal quality. Abler et al.
(1998) introduced the signal processing algorithms. Work
reported in this paper builds on the initial efforts of Hill
(1995), provides a full discussion of material introduced in
Abler et al. (1998), and presents a significant extension to cope
with signals of interest that are small relative to noise. This
approach has immediate application in a number of areas,
including fault detection and diagnosis, and also provides a

means of triggering the more computationally intensive tran-
sient-event detector.

This paper first describes an appropriate technique for
detecting turn-on/turn-off events in noisy electrical power
signals. The basic method precedes a number of refinements.
The refined approach is then melded with an oscillation detec-
tor, to shield the on-off detector from the impact of oscillatory
power signals and to analyze those oscillations as indicators of
poorly tuned HVAC controllers. Next, the on-off detector is
extended to operate at multiple sampling rates, found neces-
sary in order to reliably discern cycling patterns for a two-
stage reciprocating chiller in a whole-building electrical
signal. Finally, the paper compares centralized power
measurements with submeters, briefly describes the monitor-
ing hardware, and offers conclusions. Most of the data used in
this work were collected at the test building used for an
ASHRAE-sponsored research project on fault detection in
HVAC systems, RP 1020; the test building is described more
fully in Norford et al. (2000, 2002).

BASIC DETECTION ALGORITHM�
GENERALIZED LIKELIHOOD RATIO (GLR)

Figure 1 shows representative electrical-power data
collected at the ASHRAE test building. Electrically noisy
commercial buildings have led to a large number of false
alarms when detecting turn-on/turn-off events via changes in
steady-state power (Norford and Mabey 1992). A statistical
algorithm more reliable and powerful than a simple trigger
based on deviation from the mean has been developed by
extending the generalized likelihood ratio (GLR) (Basseville
and Nikifirov 1993).

The GLR detection algorithm calculates a decision statis-
tic from the natural log of a ratio of probability distributions
before and after a potential change in mean: 

, (1)

where
= sampled variable at time i;
= mean values of the sampled sequence before and 

after the event, respectively;
= probability density function of the sampled sequence 

 about the mean value ;
= detection statistic, which is the log likelihood ratio of 

the joint frequency function for the independent 
variables yi during time j to k about .

The behavior of the detection statistic in the absence or
presence of a step change in electrical power can be easily
understood. Suppose that the function is used to test whether
a chiller of known electrical power has turned on. Before the
event to be tested, power data, collected at a measurement
point that includes electrical service to the chiller, are distrib-
uted about the pre-event mean power level. If the chiller
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does not turn on, the power measurements will not change.
The probability density function (PDF) in the numerator of
Equation 1, which is centered on a post-event mean that
includes the chiller power, will be very small, while the PDF
in the denominator will be much larger, because data points
will still be clustered about the pre-event mean. In other
words, there is a very small probability that the measured
power level would be associated with the operating chiller.
The probability ratio is therefore very small and the log of
the ratio is large and negative. As the magnitude of the
hypothesized change in power decreases, the ratio
approaches a value of 1.0 in the absence of a power change
and the natural log approaches a value of 0. By contrast, if
the chiller turns on, the PDF in the numerator will be large,
because data points will be centered about the hypothesized
mean, and the PDF in the denominator will be small. The
ratio, therefore, is large.

There are two independent variables, the change time and
the mean value after the change, which leads to a double maxi-
mization of the detection statistic :

, (2)

where

= estimate of the upper bound of the ratio of the joint 
frequency function about the post-event mean value 

 for a given pre-event mean , within the 
window [j, k].

sup = supremum, i.e., the least upper bound of  over [j, 
k] about the mean value  with reference to the 
known mean  before the change.

In other words, the event identified by the maximum
probability ratio is found by searching for the time j and the
corresponding average  in each subwindow j-k in the
current detection window 1-k.

In some cases, the minimum magnitude of the change in
power for a given component is known in advance. The mini-
mum value of the change of parameter , designated as Vm,
can be used in the search of , i.e., . Equation
2 can then be rewritten as: 

. (3)

Because noise in electrical power of equipment follows
the normal distribution, according to the central limit theorem
(Rice 1988), noise in the total power data of a system consist-
ing of components independent in power consumption can
also be described by the normal distribution. Therefore, the
deviation of the sampled total power data yi from the calcu-
lated mean  can be represented by the normal distribution,

. Here,  stands for the standard deviation of the
total power data of the monitored system. 

For an independent Gaussian sequence, the probability
density function is

. (4)

The detection statistic can then be derived as 

. (5)

Figure 1 Whole-building electrical power, sampled at 24 Hz. Data were collected at the electrical-service entry to the test
building used in ASHRAE RP-1020.
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Let , the change in mean power signal after
an on-off event. Then

(6)

and

(7)

where  is the value of V at which gk reaches its maximum,

Then gk can be rewritten as

. (8)

If Vm = 0, meaning that a change of mean of any magni-
tude is of interest or no information about the minimum
expected change is available in advance, then 

. (9)

The magnitude of gk increases with the change in power
and the abruptness of the change. A value above a threshold
indicates an on-off event of potential interest.

Training the Parameters of the GLR Algorithm
The GLR detector requires that four parameters be trained

for a given application: 
1. the length of the pre-event averaging window; 
2. the length of the detection window; 
3. the threshold for the detection statistic; and 
4. the standard deviation (or variance) of the power data.

Guidelines follow for selecting the parameters in one or
more of three ways: a priori experience, tuning the parameters
on the basis of one-time measurements, or automatically
adjusting the parameters. The first two guidelines concern the
size of sliding windows, as expressed in a number of samples.
These guidelines have been shown to be reasonable for a range
of sampling rates. Guidelines for the sampling rate itself will
be presented later in this paper.

The Length of the Pre-event Averaging Window.
Because multiple power changes occur in sequence in HVAC
systems, the mean before the change must be continuously
updated with each new data point. The length of the data
window used to estimate the pre-event average power has a

profound impact on the detection statistic. The GLR algorithm
with a short window will yield a large detection statistic when
the incoming data include spikes, which will be a source of
false alarms if the detection statistic exceeds its threshold
value. Further, the GLR algorithm with a short window may
also miss events that occur gradually over several data points.
On the other hand, a GLR detector with a long window will not
find multiple abrupt changes that are close to each other in
time.

On the basis of trial-and-error tuning, the appropriate
length of the pre-event averaging window was 10 data points
for a set of one-minute-averaged data that recorded electrical
power for four air handlers, each consisting of a supply and a
return fan. At the ASHRAE test building, this window was set
to be six data points, sampled at one-second intervals. An esti-
mate of a suitable window length can be made on the basis of
the characteristics of the HVAC components, how often they
are switched on or off, the status of the electrical facility, and
the typical power profile of the system. Observations made in
this research indicate that the upper limit for the length of the
pre-event averaging window should be no longer than the
interval between two major consecutive events. This interval
can be estimated from a basic knowledge of the monitored
HVAC system. Major individual components usually have
minimum on and off times, to protect against deterioration due
to frequent on/off switching. Moreover, systems of compo-
nents are or can be controlled to operate in a sequence with
specified time intervals, as in turning on or off air-handler
fans. Note that this requirement is based in the time domain
and is converted to a number of samples on the basis of the
sampling rate.

As a lower limit, the pre-window should never be shorter
than significant electrical noise spikes and ideally should be
longer than the duration of the start-up period of each single
component in the system. However, this condition cannot
always be met for a real system, because the start-up of a VSD
fan can be as long as 15 minutes while the interval between the
on/off transitions of two components can be shorter than this.
In such cases, other approaches are needed, such as the multi-
rate sampling technique discussed later. Practical experience
has shown that the window should contain at least four data
points. 

Without violation of the above basic rules, the pre-
window should be kept short. If there is a range of possible
intervals between the lower and upper bound, a value at or near
the lower bound should be selected. For a given system, the
window length for detection seems to be consistent across
different seasons and equipment operating conditions, as
demonstrated by extensive tests to detect HVAC equipment
on-off events in the ASHRAE 1020-RP test building (Shaw et
al. 2002; Norford et al. 2000, 2002). 

If the multi-sampling rate detection algorithm (to be
described later) is used, the number of data points in the
window should be determined from the above time-domain
guidelines and the fastest sampling rate. The same number of
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data points are used at all sampling rates in the multi-rate
algorithm.

The Length of the Detection Window. The above basic
limits for the pre-event averaging window also apply for the
post-event detection window�i.e., it should not be longer
than the interval between two consecutive events, never
shorter than a disturbance, and ideally not shorter than the
duration of a start-up transient process. On the other hand,
unlike the pre-event averaging window, which is used to
achieve a stable mean as the reference for coming events, the
post-event detection window is intended to be sensitive to
events yet robust to disturbances. A shorter post-event detec-
tion window is more sensitive to changes than a longer one.
Moreover, to reduce the computing time required to search for
a change in the post-event detection window, its length should
be as short as possible. The appropriate length of the post-
event detection window was found to be 25~50% of the pre-
change average window in order to get a relatively stable yet
sensitive average for detection of on-off events. For the fan
data sampled at one-minute intervals, the detection window
was set to five data points, 50% of the pre-event averaging
window. For the ASHRAE test building, the detection window
was three data points, also 50% of the pre-event averaging
window. 

The Threshold for the Detection Statistic. Literature on
the GLR method describes the detection threshold, a dimen-
sionless quantity, as a trained parameter. The magnitude of an
appropriate detection threshold scales with signal noise, the
minimum signal change of interest (which comes from a
knowledge of rated equipment-power levels), and the abrupt-
ness of potential changes in the system. For detection of on/off
events from the total electrical power of eight fans in a campus
building, the threshold was set to 200 on the basis of on/off
tests. The same threshold was used at the ASHRAE test site.
For general detection applications, this threshold might be set
adaptively during tests designed to determine detection
parameters appropriate for a given HVAC system. The thresh-
old for the detection statistic can be initiated as an arbitrary
small number, for example a magnitude of one, and then
increased until all events of interest are identified with a mini-
mum occurrence of false or missed alarms.

The Standard Deviation of the Power Data. The stan-
dard deviation is an important measure of data quality, which
for HVAC-system electrical-power data may vary rapidly over
time due to noise and changes in power of equipment of inter-
est. In the GLR algorithm, the magnitude of the detection
statistic, as shown in Equation 8 for the case where power
changes of any magnitude are of interest, is inversely propor-
tional to the standard deviation. Therefore, calculation of the
standard deviation becomes a key issue for successful change
detection. The simplest method to determine the standard
deviation is to measure it on a one-time basis during a training
period. However, GLR output based on a fixed standard devi-
ation was rarely fully satisfactory, which prompted one of the
improvements to be discussed in the next section.

The standard deviation is valuable information of itself, in
addition to its impact on the GLR detection statistic. It will
increase noticeably when a fan, pump, or chiller under closed-
loop control is unstable due to poorly selected controller gains.
Norford and Leeb (1996) showed that a poorly tuned chiller
controller could be seen in the electrical signal measured at the
HVAC service entry. Detection of the oscillations can be auto-
mated via calculation of the standard deviation in the data
window.

IMPROVEMENTS TO THE DETECTION ALGORITHM

Resetting the Detector after an On/Off Event Has
Been Detected. Consider a single on/off event, detected by the
GLR algorithm as it works its way through a continuous
stream of data, sliding the pre-event mean window over one
data point at a time and then calculating the detection statistic
for each time in the detection window. When the detection
statistic exceeds the threshold, it is desirable that the alarm be
immediately silenced. That is, a single event should produce
a single needle spike in the detection statistic, because an
alarm of appreciable width can mask subsequent events.
However, close examination of the algorithm reveals that it
can continue to produce alarms as the windows slide through
the data. Only when the windows move entirely past the on/off
event will the alarm necessarily cease. This phenomenon
clearly depends on the length of the windows, the abruptness
of the event, signal noise, and the value assigned to the thresh-
old. While it is possible to adjust window width to account for
this effect, a better strategy is to purge the pre-event mean
window when an alarm first occurs and refill it with new data.
At the time of purge, the detection statistic will immediately
drop down below the threshold. Figure 2 shows a representa-
tive pre-event averaging window, detection window, and reset
window, used to reload the pre-event averaging window. The
length of the reset window is, of course, the same as the pre-
event window. 

Updated Standard Deviation. The standard deviation
can be continuously calculated from data in the pre-event
averaging window. While such an on-line calculation is more
accurate than a single calculation during the GLR setup
period, it was found necessary to limit the range of allowable
values because such extremes unduly influence the magnitude
of the detection statistic. For example, a very steady, noise-
free electrical signal will have a low standard deviation and the
detection statistic will be very large, even for events associated
with very small power changes that are of no interest.   A very
noisy electrical-power signal will cause the detection statistic
to be very small, potentially masking events of interest. 

Limits on the standard deviation were assigned as a frac-
tion of the total power. Tests showed that the standard devia-
tion tends to increase as more equipment is in operation and
the total power increases. Data from a training period were
used to determine the ratio of the measured standard deviation
and the measured total power. During subsequent on-line FDD
tests, the standard deviation was estimated as a product of this
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ratio and the measured total power. This method has given the
most reliable estimate of the standard deviation because it
eliminates the effect of the extreme values of the standard
deviation while incorporating an updated estimate of the stan-
dard deviation in the calculation of the GLR detection statistic.
At the ASHRAE test site, reasonable upper and lower limits
for the standard deviation as fractions of the current power
data were taken to be 10% and 1% respectively. 

Non-Zero Minimum Expected Change. The GLR
equation is easy to implement when the minimum expected
change in power is zero. However, the zero-power minimum
may cause more false alarms than a minimum value assigned
on the basis of knowledge of equipment size. This can be
readily seen from Equation 8: gk increases with decreasing .
In practice, it is often reasonable to find and set some mini-
mum expected change based on the knowledge of the system
and its components. For example, if the NILM were used to
analyze fan performance after a variable-speed-drive retrofit,
the minimum power level of interest would be set by the fans
and would exclude smaller pieces of equipment, such as
chilled-water pumps, as well as unknown disturbances. With
the properly determined minimum expected change Vm, the
detection statistic is insensitive to such disturbances and their
accumulation within one window length, thus making the
detection more reliable. A minimum expected change of 200
W was selected for the ASHRAE test building. 

Median Filter. The performance of the GLR is adversely
affected by signal noise. One way to reduce the impact of noise
is to pre-process the data with a median filter (Karl et al. 1992),
which simply picks the median value of the sequence to repre-
sent the current value. The length of the median filter�s
window should not be shorter than the duration of an electrical
spike, observed in this study to be generally less than five
seconds, and not longer than the interval between two consec-
utive events, selected as 20 seconds. The median filter is
designed for the base sampling rate or interval, in the event
multi-rate sampling is used. For example, if the base sampling

interval is one second, then the number of data points in the
filtering window should be between 5 and 20. The filtered data
are then used for detection with different sampling rates, if
necessary. At the ASHRAE test site, ten data points were
included in the median filter window.

One possible problem with the median filter is that it
masks rapid power oscillations. At the ASHRAE test building,
this potential masking was avoided by using different data
sets, one for change detection with the power data processed
by a median filter and the other for oscillation detection with-
out the median filter.

Combined Detection of On/Off Power Changes and
Power Oscillations. Oscillation of power caused by unstable
control in HVAC systems may degrade equipment and in some
cases increase energy consumption, and is a fault that should
be detected. One of the major characteristics of oscillations is
the deviation of the data from their mean value in a window of
appropriate length. This fault was identified by comparing the
standard deviation of the data against a threshold that was
dynamically adjusted as a fraction of the current power data. 

The key points in designing a GLR detector with oscilla-
tion detection capability are proper thresholds for the detec-
tion statistic and for the standard deviation. Detecting step
changes in power requires an upper threshold for the detection
statistic, HGLR (high value for GLR), and a lower threshold
for the standard deviation, LSTD (lower value for standard
deviation). To detect an on-off event, the GLR detection statis-
tic must exceed HGLR and the standard deviation must be no
larger than LSTD. The oscillation detector relies on an upper
threshold, HSTD, for the standard deviation and a lower
threshold, LGLR, for power changes. The standard deviation
must exceed HSTD and the GLR detection statistic must be no
larger than LGLR. Thresholds established in this manner
eliminate the fuzzy intermediate region where, for example,
fluctuations in power may cause false alarms in the change
detector, and permit a clearer distinction of step changes and

Figure 2 Data windows used with the GLR detection algorithm.
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oscillations. The LGLR and the LSTD were set to be less than
10% of the HGLR and 20% of the HSTD, respectively, and
were trained with measured data to minimize false alarms.
Figure 3 shows data with both on-off events and an unstable
controller, using power data recorded by a NILM installed at
the motor-control center in the ASHRAE test building. During
a period when the supply-fan static-pressure controller gain
was set to produce power oscillations, a chilled-water pump
was turned on at about 3600 seconds. With HGLR= 2500,
LGLR= 250, HSTD= 0.02, and LSTD= 0.004, both events
were alarmed successfully. 

OPERATION OF THE GLR DETECTOR WITH 
MULTIPLE SAMPLING RATES

In spite of the improvements just described, applying the
GLR detector to data sampled at a single rate inevitably
involves a conflict between sensitivity to rapidly occurring
events and susceptibility to false alarms generated by electri-
cal noise. It is therefore worthwhile to explore the benefits of
applying the GLR to a data set sampled at different rates. This
will be done in three steps. First, the rules established above
for determining the sampling rate will be applied and will be
shown to have unavoidable limitations in detecting rapidly
sequenced events. Second, the same rules will be shown to be
unsatisfactory in detecting chiller on/off cycling in a noisy
electrical signal. Third, the GLR detector will be applied at
different sampling rates and the results combined in a way that
overcomes some of these limitations.

Order of Magnitude Analysis of 

Sampling Rate Selection

Selecting a single sampling rate requires considerable
care. An appropriate starting point is to bound the sampling
interval: the upper bound should be less than the shortest time
interval between two consecutive events of interest and the
lower bound should be greater than the time required for the
fastest turn-on event of interest. The need for the upper bound
is clear, but it may lead to sampling rates that leave the GLR
sensitive to noise, as will be discussed shortly. The lower
bound is needed because shorter sampling intervals will make
a step-change take on ramp-like properties and be harder for
the GLR algorithm to detect.

The interval between consecutive events can be very
short, as illustrated with a single day of whole-building data,
taken at the test building used for ASHRAE 1020-RP and
previously shown in Figure 1. The data were collected with
a NILM and were sampled at 24 Hz in the first stage of the
analysis. During a single 30-second period (12300-12330
seconds) three devices were turned on sequentially. (The
identity of these devices is not important for this analysis
and was not determined. The whole-building NILM was
used primarily to detect the reciprocating chiller, and other
events were not classified.) Reducing the sampling interval
from 60 to 10, 1, and finally 0.125 seconds improved the
resolution. Figure 4 shows this progression.

The three turn-on events were taken to be a single step
change at a sampling interval of 60 seconds. With the
sampling interval reduced to 10 seconds, the events were
shown as single data points of different magnitude, discernible
to the eye but not to the detection algorithm. When the
sampling interval was reduced to 1 second (not shown in

Figure 3 Total electrical power of the HVAC system in a test building, showing oscillations indicative of an unstable
supply-duct static-pressure controller as well as an on-off switching event. 
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Figure 4 because it nearly overlapped data taken at 0.125
second intervals), the first and second events could be clearly
recognized by eye and by the detection algorithm as well. The
last event was discernible to the eye but not to the detection
program, which needed an appropriate stream of data samples
to build up the GLR detection statistic. The last event
remained ambiguous to the program until the sampling rate
was increased to 8 Hz, i.e., an interval of 0.125 seconds. 

At the ASHRAE test building, the duration of the fastest
turn-on event was 0.125 second and the shortest time interval
between events was 1.25 seconds. As just shown, a sampling
interval of 0.125 second was needed to produce enough data
points to distinguish start-up transitions separated by 1.25
seconds. But subsequent tests to detect cycling of a recipro-
cating chiller showed that the false alarm rate increased dras-
tically when the sampling interval dropped below one second.
Because the three unknown start-up signals were not of inter-
est and reliable detection of the chiller was central to the
research, the minimum sampling interval was set to one
second. Events spaced more closely than the sampling rate
were unavoidably missed or misinterpreted. Such events
seem to happen by coincidence and are not often seen in an
HVAC system. In tests to date, there was generally an interval
of not less than 10 seconds between on- and off-transitions for
such coupled equipment as supply and return fans associated
with the same air handler. The slower sampling rate not only
reduced false alarms but also reduced the execution time of
the GLR detector. This was important when the GLR detector
was operated with multiple sampling rates as detailed later.
The running time of the detector, as implemented on a
personal computer with a clock speed of 233 MHz, was
reduced from 90 minutes at an 8 Hz sampling rate to five
minutes at a 1 Hz sampling rate for the evaluation of a single

day�s test, making the detector more desirable for on-line
detection with comparable computers.

Detection of On/Off Changes with a 
Single Sampling Rate

Different sampling rates were used to examine power data
for six days from the ASHRAE test building, with the goal of
detecting reciprocating-chiller cycling. Figure 5 illustrates the
first seven hours of the total power data on a single day. Figure
6 shows chiller power as measured with a submeter as well as
GLR detection output for the chiller for a single sampling rate
of 1 Hz. Note from Figure 5 that it is not easy to visually distin-
guish the chiller cycles from the whole-building power signal.
The first chiller cycle, aligned with data from the submeter, is
readily discerned. Most of the following events are obscured
by other events of equal or greater magnitude. 

The GLR detector identified all 13 start-up events from
the 1 Hz samples but missed four of the shut-down events,
which were masked by concurrent events. Other sampling
intervals, including 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40, 50,
and 60 seconds, were also tested. However, all those sampling
intervals produced results similar to those shown in Figure 6.
With any one single sampling interval, the detector was not
able to find all the on/off switches correctly. However, it was
possible to visually identify all of the events by matching the
on�s and off�s among outputs with different sampling rates. In
this case, on/off matching among the outputs with the
sampling rates of 1, 2, and 5 seconds identified all the on/off
switches without any false alarms or missing events. Such
other combinations as 1, 2, and 10 seconds were also success-
fully used for the matching. Similar detection patterns with
single sampling rates were found with the remaining five

Figure 4 Power data sampled at three different intervals during a period of 120 seconds when three events occurred,
demonstrating the significantly different data patterns fed to the detector due to the varying sampling intervals.
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Figure 5 Whole-building power data from the ASHRAE 1020-RP test site, sampled at 24 Hz and plotted at 10-second
intervals. The time period is about seven hours.

Figure 6 Submetered chiller electrical power and the on/off cycles detected by the GLR algorithm as changes in the
building�s total power data sampled at 1 Hz over the same time period as in Figure 5.
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days� data. This prompted an effort to automate the process of
matching events detected at different sampling rates.

Detection of On/Off Changes of 
Specific Equipment by Automatic Matching 
Among Multiple Sampling Intervals 

The basic GLR detector was extended to analyze data at
multiple sampling rates. Each sampled series with a specified
integer-sampling interval between the lower and upper limits
was supplied to the GLR detector. For the ASHRAE test build-
ing, an acceptable maximum value for the sampling rate was
about an order of magnitude longer than the minimum value.
Specifically, the minimum sampling interval was one second
and the maximum was set to be 30 seconds. 

Once an event was found by the detector, the power
change was calculated as the difference between the mean in
the post-event window and that in the pre-event window. The
mean in the pre-event window is the average of data in the
whole window, while that in the post-event window is calcu-
lated with the data from the point where the event is found to
the end point of the window. The detected power changes for
each sampling interval were sorted by the time of the changes,
assigned to the equipment with that magnitude, and matched
with the output from other sampling intervals. Matching of
events involved the time of event and the sign (positive for on-
transitions and negative for off-transitions) and the magnitude
of the changes. 

Upper and lower limits need to be trained for the magni-
tude of change or set adaptively (Hart 1992). Such limits can
be trained by applying the detector to data collected during one
day�s operation. For the detection shown in Figure 6, for
example, data during the first seven hours of a normal opera-
tion day will suffice for training. At some time point, if a posi-
tive change within the given limits is found, then the next
negative change within the magnitude limits seen by any of the
employed sampling rates will be assigned to the positive
change and an on/off cycle is recorded. 

Data filtering criteria may be applied to specific equip-
ment to reduce the false alarm rate. This is helpful when the
power of a component of interest is similar to that of other
equipment, as is the case at the test building (Figure 5). For the
chiller, for example, these criteria include the minimum off-
time between cycles, which is typically set within the chiller
controls to prevent unnecessary equipment cycling, and the
minimum expected on-time. These limits were incorporated in
the chiller-detection algorithm. Such filtering criteria are
based on normal, not faulty, chiller operation. The above
�minimum� criteria can be used for the detection and diagno-
sis of such faults as short cycles or prolonged operation time.
This can be done with two different output files, one using the
�minima� for filtering and the other using them for fault detec-
tion and diagnosis. If an excessive number of equipment
cycles is detected in an unfiltered data stream, then there is
either a fault or there are other components of comparable
magnitude. If the power magnitudes of different equipment
are distinct from each other, then these �minima� will not be

needed for filtering and can be limited to detection of cycling
faults.

The multiple-sampling-rate GLR approach has proved to
be very useful in coping with electrical-power complexities
not found in residential buildings. First, start-up and shut-
down events vary in their apparent abruptness, as a function of
the equipment (soft-start motors, for example) and as influ-
enced by changes in other loads. In the ASHRAE test building,
VAV air-handler fans have a very slow start-up signature
because they are controlled by variable-speed drives. With the
multi-rate sampler, these start-up transients can be detected, as
was shown for the VAV fans in the test building. Detecting the
fans required that the maximum sample interval be increased
from 30 seconds to 10 minutes. At the other end of the
sampling-rate spectrum, abrupt shut-down transients are diffi-
cult to detect when masked by gradual changes in power
drawn by other equipment. In these cases, the fast samplers
included in the multi-rate algorithm work best. Second, as
shown in Figures 7 and 8, power oscillations characteristic of
a poorly tuned controller were more reliably detected via anal-
ysis of data sets taken at multiple rates. This approach tends to
mitigate the problem of picking a sampling rate appropriate
for detection of oscillations at an unknown frequency.

SUMMARY OF TRAINING GUIDELINES
Guidelines for training the GLR detector, presented in

detail above, are summarized as follows:
1. Record electrical power for the circuits monitored by the

NILM for one day under typical operating conditions. The
sampling rate should be between 1 and 10 Hz for common
HVAC systems.

2. Locate the events from the abrupt changes in the total
power data and estimate the fastest and the slowest events. 

3. Determine the base sampling rate for detection. The base
sampling rate will be used as the fastest sampling rate if
multi-rate sampling is employed. Therefore, power data
sampled at this rate should be used to discern by eye each
event of interest. 

4. Determine the window lengths. The length of the detection
window should contain at least two data points. It should
not be longer than the interval between two consecutive
events and never shorter than a disturbance. The length of
the pre-event window is 2~4 times longer than the detection
window. The length of the post-event window is the same as
that of the pre-event window.

5. Calculate and estimate the standard deviation of the power
data as a fraction of the current total power data for the
detection, f. The lower/upper limits of the standard devia-
tion can be set at 1~2 magnitudes lower/higher than the esti-
mated value f.

6. Estimate the threshold for the detection statistic. A reason-
able base value for the threshold is 1/f 2. The threshold can
then be trained by adjusting this value until all events of
interest can be seen by the detector, with a minimum
number of false alarms.
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It should be noted that exact values are not expected for
the above parameters due to the statistical properties of the
detection method. Slightly different combinations of these
parameters may yield equally acceptable detection output.

The detector developed in this research has been success-
fully applied to another test site. With the above basic rules and
guidelines, the training process for the parameters became
much easier. Because the rules for the window lengths are for
common HVAC systems, the same window lengths were used
and the training was confined to determination of the thresh-
olds for the detection statistic and the standard deviation. On/
off events at this site were more abrupt than at the ASHRAE
test building, in part because there were no variable-speed
drives, and the detector produced satisfactory results while
operating at a single sampling rate. 

COMPARISON OF ON/OFF CHANGE DETECTION 
WITH CENTRALIZED AND SUBMETERED 
POWER DATA

A well-trained GLR detector will detect a high percentage
of on/off events of interest, with a minimum number of false
alarms. However, such performance does not necessarily
mean that power changes can be quantified with sufficient
precision to detect potentially faulty conditions. Table 1 and
Figures 9-11 compare the GLR with single and multi-rate
sampling against data from electrical submeters at the
ASHRAE test building. During this five-hour test period,
which started at 19:44 and included normal equipment oper-
ation and the end-of-day shut-down sequence, there were 17
on-off switching events for two hot-water pumps, two supply
fans, and two return fans, among a total of six fans and 10
pumps served by the monitored circuits. 

Figure 7 Motor-control-center electrical-power data from the ASHRAE test site, taken over a 24-hour period beginning
at 8 p.m. The controller gain for the supply fan in one of three VAV air handlers in the building (and monitored
by the NILM on the motor-control center) was increased at about 7:25 a.m. to the point where the fan control
was unstable.

Figure 8 Detection of the unstable supply-fan controller via calculation of the standard deviation with data sampled from
the motor control center at two different intervals, 1 and 5 seconds, combined and shown in different time
sections of 24-hour operation. 
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With Single Sampling Interval
Of the 17 events, 15 were found with different levels of

error and the remaining 2 were missed. Table 1 and Figure 10
show that the quality of the detection depended on the magni-
tude of the change relative to the total power as well as the
current data trend. For example, when water pump B turned
off at 20:34 and the change in power of �244 W was less than
5% of the total power, the error was about 150%, relative to the
submetered change in power. However, when the supply fan
for AHU-A turned off at 21:55 and the power change of -1400
W was about 25% of the total power, the error was less than
0.3%, again relative to the submetered power. When the

change magnitude was very small, the detector was not able to
find the event at all, including the missed event at 21:56 when
the return fan for AHU-A was turned off with a power change
of only �82 W. 

The shorter the time interval between two changes, the
more difficult it was to find the changes, especially small ones.
This is simply because as a steady-state detector, the GLR
needs some time for the effect of the former event to die out
in order to find the subsequent change. The smaller the magni-
tude of the change, the longer the time interval needed to
detect it. This is demonstrated by the output at 20:21 for the
turnoff of pump A. With a magnitude of -275 W, the event was

TABLE 1  
ON-OFF POWER CHANGE DETECTION FOR A MOTOR CONTROL CENTER SERVING FANS AND 

PUMPS IN A TEST BUILDING, AS COMPARED WITH SUBMETERED DATA

Time ON/OFF Equipment Submeter (W)

 NILM - GLR 

 Single Interval Multiple Interval

Power (W) Error (%) Power (W) Error (%)

20:10 Loop-B hot water pump�OFF �405 �502 19.3 �400.6 1.1

20:19 Loop-B hot water pump�ON 264 249 6.0 284.1 7.1

20:21 Loop-A hot water pump�OFF �275 Not found �279.0 1.4

20:25 Loop-A hot water pump�ON 252 313 19.5 226.5 11.2

20:34 Loop-B hot water pump�OFF �244 �98 149.0 �476.1 48.8

20:44 Loop-B hot water pump�ON 232 497 53.3 230.4 0.7

21:02 Loop-B hot water pump�OFF �309 �346 10.7 -281.6 9.7

21:14 Loop-B hot water pump�ON 267 171 56.1 252.1 5.9

21:29 Loop-B hot water pump�OFF �202 �11 1736.4 �171.5 17.8

21:47 Loop-B hot water pump�ON 237 289 18.0 257.2 7.9

21:55 AHU-A supply fan�OFF �1400 �1396 0.3 �1410.9 0.8

21:56 AHU-A return fan�OFF �82 Not found Not found

22:00 AHU-B supply fan�OFF
AHU-B return fan�OFF

�430 �274 56.9 �485.1 11.4

22:06 Loop-B hot water pump�OFF �300 �242 24.0 �243.2 23.4

22:26 Loop-A hot water pump�OFF �264 �283 6.7 �244.4 8.0

23:40 Loop-A hot water pump�ON 342 373 8.3 220.1 55.3

00:33 Loop-B hot water pump�ON 295 494 40.3 450.5 34.5
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Figure 9 Electrical power data collected at the motor-control center in the ASHRAE 1020-RP test building, taken over
a five-hour interval beginning at 7:40 p.m. that includes the normal evening shutdown period. Seventeen on-
off transitions are included in the data. 

Figure 10 Comparison of centralized and submetered power monitoring in the ASHRAE 1020-RP test building, with
analysis of data taken at a single sampling rate of 0.1 Hz. 

Figure 11 Comparison of centralized and submetered power monitoring in the ASHRAE test building, with analysis of
data taken at multiple sampling rates. Power monitoring is improved relative to analysis of data at a single
sampling rate of 0.1 Hz. 
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still missed because it was masked by gradual changes in elec-
trical power due to the previous off-transition and to noise,
which can be seen in Figure 9. 

With Multiple Sampling Intervals
The multiple-sampling-rate approach has been shown to

improve both the detectability of events and the resolution of
the associated change in electrical power. This can be demon-
strated by running the detector with multiple sampling inter-
vals through the same five-hour data set used to evaluate the
single-sampling-rate algorithm and plotted in Figure 9. As
shown in Figure 11, the multiple-sampling-rate detector iden-
tified 16 of 17 on/off events, one of which was undetectable
with the single-sampling-rate approach. Moreover, for almost
all events the detector estimates a change in power that is
closer to the submeter measurements than was the case for the
single-sampling-rate algorithm, as listed in Table 1.

Under a few circumstances, the detection error for the
multi-rate sampler was larger than that for the single sampling
rate. With the lowered threshold of the detection statistic for
multiple rates (the lowest value among the different sampling
rates), the data pattern for reset of the detection window is
different from any single sampling rate with a higher thresh-
old, and this causes some variation of the change magnitude.
But the occurrence of such problems is rare because the multi-
rate detection is virtually a vote among different sampling
intervals.

The major issue to be addressed in the near future for the
multi-rate detection is to develop an appropriate algorithm to
automatically calculate or select the �optimal� change value
among different sampling intervals, i.e., the value that is clos-
est to the real change. This might be realized by averaging,
voting, or sorting among given sampling intervals on the basis
of observations with more testing data.

DESCRIPTION OF NILM HARDWARE
A block diagram of the non-intrusive load monitor instal-

lation at the test facility used in ASHRAE RP-1020 appears in
Figure 12. In addition to the conventional NILM-style connec-
tions at the main panel (for remote1) and the motor control
center (for remote2), selected loads associated with air-
handling unit B and the chiller were individually measured.
With the connections shown in Figure 12, remote1 measured
spectral envelopes (i.e., power envelopes for the fundamental
and higher harmonic signals) for the entire building and
remote2 measured spectral envelopes for the motor control
center. Remote1 and remote2 shared the task of collecting data
from individual loads.

The hardware platform for the prototype event detector
consisted of a personal computer working in tandem with a
digital signal processor (DSP). Custom software was written
for the circuit board that included the DSP to compute esti-
mates of the spectral or Fourier components of observed
current waveforms in real time. The board provided the DSP
chip, a 16-bit, 2-channel analog-to-digital converter (ADC),

a 16-bit, 2-channel digital-to-analog converter (DAC), off-
chip memory for temporary storage, an off-chip flash
PROM for permanent storage, and a convenient program-
debugging interface. The DSP communicated data to the
host PC over a parallel port. The host PC processed the
spectral information to provide load recognition and other
value-added services such as critical load diagnostics.
Because this prototype was PC-based, it was possible to
provide these services and deliver information remotely. 

The computers labeled remote 1 and remote 2 in Figure 12
operated at 200 MHz and were equipped with 32 MB memory
and approximately 1 GB hard drives. Both machines were
equipped with a network interface card, a data acquisition
card, and the DSP card. The computers ran a highly stable,
open-source, free operating system and were remotely main-
tained by secure shell over the Internet. Stability is a key
consideration for any system that must operate remotely in the
field. At the test site, both systems operated without any direct
intervention for over two years of constant use. During active
testing, data collected over 24-hour periods were accumulated
and compressed at the on-site computers and were automati-
cally transmitted at night to laboratory computers, where
NILM data were maintained on an FTP site for retrieval and
analysis. 

The NILM was conceived as a means of reducing the
cost of obtaining electrical-power data, and it is worth
making a rough assessment of costs and benefits relative to
currently available metering technologies. The costs can be
compared with conventional AC watt transducers, which
require a voltage tap and current transducers on the input side
and produce as output a low-voltage or current signal propor-
tional to power. Both the NILM and a watt transducer require
a personal computer to collect data. This computer can stand
alone as an independent data logger or can be the same
personal computer used for an energy management system.
Both the NILM and a watt transducer require an A/D board to
digitize analog information for the PC. This information is
voltage and current data for the NILM and the power data for
the watt transducer. Both the NILM and the watt transducer
require current transducers and a voltage tap. The NILM can
use the same PC, A/D board, current transducers, and voltage
tap as the watt transducer. The NILM eliminates the watt
transducer itself, performing the convolution of current and
voltage in software, but requires an inexpensive voltage
transducer ($25 for a research-grade transducer and a fraction
of that for a transducer of adequate bandwidth) to lower the
line voltage to a level appropriate for the A/D converter. The
cost of the NILM is therefore comparable to a submeter, even
if the goal is to monitor a single load. Multiple loads require
multiple watt transducers, each with current transducers. A
single-phase watt transducer with current transducer costs
about $250-300. There were six loads of prime interest at the
motor-control center in the ASHRAE test building: three
supply fans and three chilled-water pumps. The costs are
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comparable for the first fan and the NILM saves the $1250-
1500 required for the remaining two fans and three pumps.

More testing is required to determine whether the
NILM can consistently produce power data of accuracy suit-
able for its intended use. Until these tests are done, subme-
tered data remain the standard. But the NILM should not be
evaluated as a trade-off between cost and measurement
accuracy. It is a flexible platform that generates a data
stream far richer than a submeter produces and that can
analyze that data in ways limited only by the imagination of
an engineer and skill of a programmer. For example, the
power harmonics it calculates can be used for power-qual-
ity assessments and for identifying loads that generate
certain harmonics. It can analyze very rapid start-up tran-
sients (Shaw et al. 2002) as a means of detecting faults in
equipment performance and can detect power oscillations
that are associated with actuator wear. 

CONCLUSIONS

In principle, low-cost information about individual elec-
trical components in a building can be obtained via careful
analysis of power measurements at central locations within the
building, notably the electrical service entrance and motor-
control centers that supply power to HVAC components.
Visual analysis of electrical power sampled at appropriate
speeds shows step changes that can be associated with equip-
ment of interest. The development of a reliable automatic
detector suitable for use in noisy and complex electrical envi-
ronments has involved selection of the basic statistical
approach, development of guidelines for tuning the detector,
and innovations that improve performance (enhanced sensi-
tivity to signals of interest and rejection of electrical noise).
Further work has extended the detection approach to identify
sustained power oscillations, indicative of poorly tuned
controllers, as well as step changes, and to operate on data

Figure 12 Electrical schematic showing location of the two NILM meters at the test building. Sensors labeled
LA55-P, LA305-P, and LT505-S are 50A, 300A, and 500A Hall-effect current sensors. LV25-P is an
isolated voltage sensor.
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sampled at multiple rates, in order to fill in missing events and
reject false alarms that may be generated from a single data set.
Test results show that the centralized or non-intrusive load
monitor can detect all on-off events of interest in some data
sets from real buildings and that further work is required to
automate the process of tuning detector parameters. With
other data sets, the detector detected most, but not all, events.
Further testing in other buildings is required, particularly to
evaluate and automate the steps needed to tune the detector. In
recent years of development, the detector's capabilities have
been enhanced while the hardware cost has decreased, encour-
aging future development.
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DISCUSSION
Rick Danks, Masa Glenn Research Center, Cleveland,
Ohio: 1) Was the power distribution checked for integrity to
avoid false readings due to loose connections, etc.? 2) Can this
system distinguish between system problems (some listed
above) and equipment problems?
Leslie K. Norford: The power-distribution system in the test
building was very well maintained and of recent vintage. It
was inspected visually during the installation of the two
centrally located power monitors but was not subjected to
other tests. The monitors are capable of detecting a side vari-
ety of problems but must be programmed accordingly. A
reasonable analogy is that of a spot light that must be pointed
in the right direction to reveal an object of interest, in contrast
with a flood light that requires less tuning but reveals less
detail. The monitors can be used to detect and diagnose such
system problems as voltage sags due to start-up of large
components, which may cause other equipment to abruptly
shut down. With one-time measurements of impedances in the
building electrical system, the monitor can estimate the volt-
age distortion at any point in the building. At the equipment
level, the monitor can detect faulty electrical contactors.
Grant Wichenko, Appin Associates, Winnipeg, Canada:
1) Have you used power quality monitoring? 2) What can be
determined with you system that you cannot get with a normal
DDC system? 3) What resolution do you need to make sense
of the data?
Norford: The electrical monitoring system we describe takes
current and voltage measurements at high speed, calculates
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harmonics of real and reactive power, and is capable of power-
quality monitoring. A normal Building Energy Management
System (BEMS) is not used for detection and diagnosis of
HVAC faults. Extensive recent research, inside and outside
ASHRAE, is producing FDD techniques that could be
included in a BEMS. Our approach makes use of electrical-
power data and could be used in lieu of or in addition to
approaches that make use of thermofluid data (temperatures
and flows). Further, our system is capable of finding some
faults, such as misalignment in a motor-belt fan system, that
thermal modeling would probably not detect.

Equipment-specific energy consumption is also impor-
tant to building operators. In a conventional system, it is
necessary to install expensive watt meters on each component
of interest, an approach that is rarely taken due to cost. We are

conducting field tests to determine whether we can provide an
acceptable estimate of equipment-specific power via high-
speed monitoring from a single point, a less expensive alter-
native.

The resolution required to make sense of the data depends
on the application. We sample the current 128 times per line
cycle, or 7,680 Hz. From these current data, we calculate real
and reactive power and the fundamental and higher harmonics
and produce a data stream at 120 Hz. We have down-sampled
these data to obtain data at 1-10 Hz for FDD, based on step-
changes in electrical power that indicate whether or not a
pump, fan, or chiller has turned on or off. More fruitfully, we
use the higher-speed data stream to resolve the start-up tran-
sients of motor-driven loads. These transients are very short,
on the order of a second.
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