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Abstract— In this paper, we present a two-stage approach
to robustly detect people and vehicles in static images using
extended histogram of oriented gradient (HOG) and SVM for
classification. The first stage is focus of attention generation, in
which possible people and vehicle locations are hypothesized.
This step uses stereo cue and generates potential target locations
using some prior knowledge about what people and vehicle may
look like in the depth map of the whole scene. The second stage
is hypothesis verification. In this stage, all the hypothesis are
verified by a strong classifier using extended HOG feature and
SVM, which is robust to the wide range of variations of poses and
viewpoints within people and vehicles. By adaptively combining
the two stages, the final system achieves both speeding up and
performance improvement. The system has been tested on some
challenging datasets and illustrates good performance.

I. INTRODUCTION

Automatic object detection and classification is a key en-
abler for applications in robotics, navigation, surveillance, or
automated personal assistance. On the other hand, automatic
object detection is a difficult task. The main challenge is the
amount of variation in visual appearance. An object detector
must cope with both the variation within the object category
and the diversity of visual imagery that exists in the world at
large. For example, cars vary in size, shape, color, and in small
details such as the headlights, grille, and tires. The lighting,
surrounding scenery, and an object’s pose affect its appearance.
A car detection algorithm must also distinguish cars from all
other visual patterns that may occur in the world, such as
similar looking rectangular objects.

The common approach to automatic object detection is
shifting a search window over an input image and categorizing
the object in the window with a classifier. To speed up the
system without losing classification performance, one can
exploit the following two characteristics common to most
vision-based detection tasks: First, the vast majority of the
analyzed patterns in an image belong to the background class.
For example, the ratio of non-face to face patterns in the tests
in [8] is about 50,000 to 1. Second, many of the background
patterns can be easily distinguished from the objects. Based
on these two observations, object detection is always carried
out in a two-stage scheme as illustrated in Figure 1: First,
all the regions in the image that potentially contain the target
objects are identified. This is what we call “focus of attention’s
mechanism”. Second, the selected regions are verified by a

classifier.
Numerous approaches to focus of attention generation have

been proposed in the literature. Most of them fall into one
of the following three categories: (1) knowledge-based, (2)
stereo-based, and (3) motion-based. Knowledge-based meth-
ods make use of our knowledge about object shape and color
as well as general information about the context. For instance,
the prior knowledge that vehicles are symmetric about the
vertical axis has been used in vehicle detection approaches
using the intensity or edge map in [1], [2]. Stereo-based
approaches usually employ the Inverse Perspective Mapping
(IMP) [3] to estimate the locations of vehicles, people, and
obstacles in images. One specific example is the work by
Bertozzi et al. [4], in which the IMPs are computed from
the left and right images respectively and compared with each
other. Based on the comparison, the objects that were not on
the ground plane can be easily found. With this information,
the free space in the scene can be determined at the same time.
Most motion-based methods detect objects such as vehicles,
people, and obstacles using optical flow. However, generating
a displacement vector for each pixel is time-consuming and
also impractical for a real-time system. To attach this problem,
some discrete methods use image features such as color blobs
[5] or local intensity minima and maxima [6] as the basic unit
and have produced some better results.

A number of different approaches to hypothesis verification
that use some form of learning have been proposed in the
literature. In these approaches, the characteristics of the object
class are learned from a set of training images which should
capture the intra-class variabilities. Usually, the variability of
the non-object class is also modelled to improve performance.
First, each training image is represented by a set of local
or global features (e.g. Harr wavelet, SIFT, Shape Context)
[8], [9], [16], [17] into some underlying configuration (e.g.
“bag of features”, constellation model) [10], [11], [12], [13],
[14]. Then, the decision boundary between the object and
non-object classes is learned either by training a classifier
(e.g., Adaboost, Support Vector Machine, Neural Network
(NN)) or by modelling the probability distribution of the
features in each class (e.g., using the Bayes rule assuming
Gaussian distributions) [8], [11], [10]. These methods differ
on the details of the features and decision functions, but
more fundamentally they differ in how strictly the geometry
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Fig. 1. Overview of the two-stage system for object detection.

of the configuration of parts constituting an object class is
constrained.

Following the two-stage paradigm discussed above, we have
built a system as illustrated in Figure 1 to stably detect
standing people and vehicles over a wide range of viewpoints.
The rest of paper is organized as follows: Section II presents
focus of attention generation using stereo cue; Section III
details the hypothesis verification with HOG-Based SVM;
Section IV describes some implementation issues and a series
of experiments; Section V concludes the paper.

II. FOCUS OF ATTENTION USING STEREO CUE

To generate focus of attention for the target objects in the
scene, we use a stereo matching algorithm [7] to get the depth
map of the scene. One example pair of left image and right
image, and the depth map computed from this stereo pair are
shown in Figure 2. In the depth map, red color implies closer
points and blue to green implies further points.

Fig. 2. Compute depth map from the stereo images.

After getting the depth map of the scene, we can further
align it with the ground plane with the help of the IMU
attached with the stereo system, which gives us the pitch angle.
Then we can remove the ground plane from the depth map.
For the remaining depth map, we project it to the XZ plane and
represent it with a uniform grid. For each cell in this grid, we
compute the hight and pixel density to get the “height map”
and “occupancy map” as illustrated in Figure 3 (a) and (b)
respectively. Then we compute the response of a predefined

Fig. 3. Generate target hypothesis based on the height map and occupancy
map.

adaptive Gaussian kernel on the “occupant map”. Finally, we
choose peaks with local maximum response as the target object
position hypothesis. An example result of this process is shown
in Figure 3. Note that the algorithm has discovered relatively
compact vertical objects.

III. CLASSIFICATION BY HOG-BASED SVM

We develop separate classifiers for each object class that are
each specialized to one specific aspect or pose. For example,
we have one classifier specialized to front/rear view of people
and one that is specialized to side view of people. We apply
these view-pose-based classifiers in parallel and then combine
their results. If there are multiple detections at the same or
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adjacent locations, the system selects the most likely one
through non-maximum suppression.

We empirically determined the number of views/poses to
model for each object. For people we use two view-based
detectors: front/rear and side view, as shown in Figure 4. For
cars we use eight detectors, which are specialized to each of
the eight aspects shown in Figure 5.

Each of these detectors is not only specialized in orientation,
but is trained to find the object only at a specified size within
a rectangular image window. Therefore, to be able to detect
the object at any position within an image, we re-apply the
detectors for all possible positions of this rectangular window.
Then to be able to detect the object at any size we iteratively
resize the input image and re-apply the detectors in the same
fashion to each resized image.

Fig. 4. Examples poses for people.

To build each view-pose-based classifier, we extend the
histogram of oriented gradient (HOG) [15] representation and
use support vector machines (SVM) as the classifier [20], [21].
Unlike some commonly used representations, the extended
histogram of oriented gradient gives good generalization by
grouping only perceptually similar images together. With a
support vector machine, this gives rise to a decision function
that discriminates object and non-object patterns reliably in
images under different kinds of conditions and results good
performance on some challenging datasets.

Fig. 5. Example viewpoints for vehicles.

A. Object Class Representation

1) HOG feature: Histogram of oriented gradient (HOG) is
an adaptation of Lowe’s Scale Invariant Feature Transforma-
tion (SIFT) approach to wide baseline image matching [16]
with local spatial histogramming and normalization. In this
work, HOG is used to provide the underlying image patch
descriptor for matching scale invariant key points. SIFT-style
approaches perform remarkably well in this application.

A HOG feature is created by first computing the gradient
magnitude and orientation at each image sample point in
a region around an anchor point. The region is split into
NxN subregions. An orientation histogram for each subregion
is then formed by accumulating samples within the subre-
gion, weighted by gradient magnitudes. Concatenating the
histograms from all the subregions gives the final HOG feature
vector as illustrated in Figure 6.

Fig. 6. HOG feature computation and structure.

2) Extend HOG by Incorporating Spatial Locality: The
standard HOG feature only encodes the gradient orientation
of one image patch, no matter where this orientation is from
in this patch. Therefore, it is not discriminative enough if the
spatial property of the underlying structure of the image patch
is crucial. This is especially true for highly structured objects
like vehicles. To incorporate the spatial property in HOG
feature, we add one distance dimension to the angle dimension
in the binning of all the pixels within each subregion. The
distance is relative to the center of each subregion. The new
binning process is illustrated in Figure 7.

3) Dense Grid Representation: Following [15], we divide
the image window into small spatial regions, which consists of
a number of subregions (or cells). For each cell we accumulate
a local 1-D histogram of gradient directions over the pixels of
the cell. The combined histogram entries form the representa-
tion. For better invariance to illumination, shadowing, etc., it
is also useful to contrast-normalize the local responses before
using them. This can be done by accumulating a measure
of local histogram over somewhat larger spatial regions (or
blocks) and using the results to normalize all of the cells in
the block.

B. SVM Classifier

In this paper we choose the support vector machine [20],
[21] as the classifying function. The Support Vector Machine

(
(a) b)

Fig. 7. Binning both distance and gradient direction for the pixels in each
sub-region to compute the extended HOG feature. (a) sample image patch.
(b) distance and direction ranges to do the binning.
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(SVM) is a statistical learning method based on the structure
risk minimization principle. It’s efficiency has been proved in
many pattern recognition applications [20], [22], [23]. In the
binary classification case, the objective of the SVM is to find
a best separating hyperplane with a maximum margin.

The form of a SVM classifier is:

y = sign(
N∑

i=1

yiαiK(x, xi) + b),

where x is the feature vector of an observation example, y ∈
{+1,−1} is a class label, xi is the feature vector of the ith

training sample, N is the number of training samples, and
K(x, xi) is the kernel function. Through the learning process,
α = {α1, α2, ..., αN} is computed.

One distinct advantage this type of classifiers has over
traditional neural networks is that support vector machines
achieve better generalization performance. While neural net-
works such as multiple layer perceptrons (MLPs) can produce
low error rate on training data, there is no guarantee that this
will translate into good performance on test data. Multiple
layer perceptrons minimize the mean squared error over the
training data (empirical risk minimization) where support vec-
tor machines use an additional principal called structural risk
minimization [21]. The purpose of structural risk minimization
is to give an upper bound on the expected generalization error.

Compared with the popular Adaboost classifiers, SVM is
slower in test stage. However, the training of SVM is much
faster than that of Adaboost classifiers.

IV. EXPERIMENTS

A. Training

Our people training database contains images of 2000
standing people with various aspects, poses, and illumination
conditions. Some of these images are from the public down-
loadable MIT people dataset and INRIA people dataset, while
the rest are taken by ourselves. The resolution of each image
is 64x128. For the vehicle training data, we collected 1000
images with 128x64 resolution and containing four types of
vehicles (sedan, minivan/SUV, pick-up truck and U-Haul type
truck) across a wide range of viewpoints. We also generate
some rendered vehicle images, some of which are shown in
Figure 8, by 3D vehicle models and use them as training
data. Using this type of virtual training data is crucial since
sometimes it is too time consuming or even impossible to get
normal training data covering all possible pose-view variations
for some object classes. The performance of vehicle classifier
trained using these rendered images is tested in Section IV-D.

Fig. 8. Samples of rendered vehicle images.

One very important issue in the classifier training for one
object class is how to select effective negative training sam-
ples. As negative training samples include all kinds of images,
a prohibitively large set is needed in order to be representative,
which would also require infeasible amount of computation in
training. To alleviate this problem, a bootstrapping method,
proposed by Sung and Poggio [24], is used to incrementally
train the classifier as illustrated in Figure 9.

Fig. 9. The bootstrap training diagram.

All the view-pose-based SVM classifiers for each object
class are trained separately, but with the same negative training
samples. In this way, their outputs can compete with each
other to remove multiple detections through non-maximum
suppression.

B. Detection

As each specific view-pose-based classifier for every object
class is designed on an image window with specific size
(64x128 for people, 128x64 for vehicle), it implicitly requires
that the to-be-detected objects lie roughly within a specific
window in the testing images. To detect all the objects ap-
pearing at different scales in the test image, we build an image
pyramid by successively up sampling and/or down sampling
the test image by a factor of 1.2 till all the objects in the test
image are scaled to the image window size at some layer in
the pyramid.

C. Evaluation of Detection Results

Evaluation of detection results was performed using ROC
curve analysis. The output required to generate such curves
is a set of bounding boxes with corresponding “confidence”
values, with large values indicating high confidence that the
detection corresponds to an instance of the object class of
interest. Figure 10 shows some example ROC curves, obtained
by applying a set of thresholds to the confidence output by the
SVM classifier. On the x-axis is plotted the average number of
false alarms on one image; on the y-axis is detection rate. The
ROC curve makes it easy to observe the tradeoff between the
two; some thresholds may have high detection rate but more
false alarms, while other thresholds may give more balanced
performance.

To generate the ROC curves, we also need a criteria to
evaluate the detection output. Judging each detection output
by a method as either a true positive (object) or false positive
(non-object) requires comparing the corresponding bounding
box predicted by the method with ground truth bounding boxes
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of objects in the test set. To be considered a correct detection,
the area of overlap αovlp between the predicted bounding box
Bp and ground truth bounding box Bgt was required to exceed
50% by the formula used in [25],

αovlp =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
.

In [25], the threshold of 50% was set low to account for
inaccuracies in bounding boxes in the ground truth data. This
inaccuracy of ground truth is due to some ambiguities, for
example defining the bounding box for a highly non-convex
object, e.g. a side view of a motorbike or a car with an
extended radio aerial.

D. Performance of People and Vehicle Classifier
To test the performance of the trained classifier for people,

we apply it to one people dataset selected from INRIA people
database and PSACAL database [26]. This people dataset
consists of 800 images and most people in the images are
standing or walking. The performance curve of the people
classifier is shown in Figure 10 (a).

To test the performance of the trained classifier for vehicle,
we apply it to two vehicle datasets. The first one is the UIUC
dataset [11], which consists of 278 images of vehicles in side-
view. The second one consists of 600 images selected from
PSACAL database [26] and vehicles appear in any poses in
the images. The performance curves of the vehicle classifier
on these two datasets are shown in and Figure 10 (b) and (c)
respectively.

In all the above testing, we search the whole image without
using any focus of attention. Some typical results for these
two classifiers on the three datasets are shown in Figure 11
and Figure 12 respectively.

We also test the performance of classifiers using the ren-
dered images as training data. To do this, we use the rendered
vehicle images to train a vehicle classifier and apply it to
the selected PASCAL dataset. The performance curves of this
classifier and then one using normal images as training data are
shown in Figure 10 (d) together for comparison, from which
we can see that the classifier using rendered images as training
data can achieve compatible performance.

E. Performance of the final two-stage system
To test the performance of the two-stage system, we apply it

on 100 images that contain both standing people and vehicles
spanning a variety of viewpoints. To show the performance
improvement achieved by incorporating the first stage of
focus of attention generation by stereo cue, we compare the
performance of the system by turning on and off the first stage.
In Figure 13 (a), we show the two ROC curves corresponding
to turning on and off the first stage in the system for people
detection. From these two comparisons, we can clearly see that
the focus of attention generation stage helps a lot to reduce
false alarms. Figure 13 (b) shows the same case for vehicle
detection. Some typical detection results in this testing are
shown in Figure 14 and Figure 15 for people detection and
vehicle detection respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a two-stage approach to robustly
detect standing people and vehicles over a wide range of view-
points. The first stage is focus of attention generation, in which
possible people and vehicle locations are hypothesized. This
step uses stereo cue and generates potential target locations
using some prior knowledge about what people and vehicle
may appear in the depth map of the whole scene. The second
stage is hypothesis verification. In this stage, all the hypothesis
are verified by a strong classifier using extended HOG feature
and SVM, which is robust to the wide range of variations of
poses and viewpoints within people and vehicles.

Although the current two-stage system works reasonably
well, the process to manually separate the training samples into
pre-defined intra-class categories based on their view/pose is
too time consuming and inherently ambiguous. In addition, the
errors caused by improperly defined categories and incorrectly
assigned labels will eventually be propagated into the final
classifier and deter the object detection performance. Recently,
we have proposed a novel computational framework that
unifies automatic categorization, through training of a classifier
for each intra-class exemplar, and the training of a strong
classifier combining the individual exemplar-based classifiers
with a single objective function [27]. We are working to
incorporate the current classifiers into the unified framework
to dramatically reduce the training time and improve the per-
formance. Furthermore, we are also working on incorporating
motion and video constraints in classification. Increasing the
number of detectable object classes to a large set is also a
goal.
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(c) (d)
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on selected dataset from PASCAL database with two classifiers using normal vehicle images and rendered vehicle images as training data respectively.

Fig. 11. People Detection Results Without focus of attention Stage
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Fig. 12. Vehicle Detection Results Without focus of attention Stage. (a) Results on UIUC dataset. (b) Results on selected dataset from PASCAL database.
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Fig. 13. (a) ROC curve for people detection with and without using stereo cue to generate focus of attention. (b) ROC curve for vehicle detection with and
without using stereo cue to generate focus of attention.
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(a) (b)

(c) (d)

Fig. 14. (a),(b) Focus of attention for people by stereo cue. (c),(d) Final People Detection Results.

(a) (b)

(c) (d)

Fig. 15. (a), (b) Focus of attention for vehicle by stereo cue. (c), (d) Final Vehicle Detection Results.
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