
Autonomous Mobile Robot Control Based on
White Blood Cell Chemotaxis

Matthew D. Onsum and Adam P. Arkin

1 Department of Mechanical Engineering, University of California, Berkeley,
2 Department of Bioengineering, University of California, and Physical Biosciences

Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute,
1 Cyclotron Road, MS 3-144, Berkeley, CA 94720-1770

Abstract. This paper presents a biologically inspired algorithm to con-
trol an autonomous robot tracking a target. The algorithm is designed
to mimic the behavior of a human neutrophil, a type of white blood cell
that travels to sites of infection and digests bacterial antagonists. Neu-
trophils are known to be highly sensitive to low levels of chemical stimuli,
robust to noise, and are capable navigating unknown terrain, all qualities
that would be desired in an autonomous robot. In this paper we model a
neutrophil as a collaborative control system, demonstrate the robustness
of this algorithm, and suggest a computationally cheap method of imple-
mentation. Our simulations show that the performance of the robot is
unaffected by constant disturbances and it is robust to random noise lev-
els up to 5 times the tracking signal. Additionally, we demonstrate that
this algorithm, as well the current models of neutrophil chemotaxis, are
equivalent to a sensor fusion problem that optimizes directional sensing
in the presence of noise.

1 Introduction

This paper presents a collaborative control algorithm based on the behavior of
a neutrophil, a class of white blood cell. Created in the bone marrow, these
cells passively travel through the blood stream, until they sense the chemical
traces of an invading bacteria. At this point, they leave the blood stream, crawl
through the endothelial cells to the site of infection and digest the intruder.
Figure 1 shows a neutrophil about to digest a bacterium [11]. The ability of a
neutrophil to move up a chemical gradient is referred to as chemotaxis. While
this behavior is remarkable it is believed that the underlying mechanisms are
simple, that is, there is not a high level algorithm or form of intelligence within
the cell. It is more likely that there is a combination of simple controls [5][9].
Despite this assumed simplicity, it is believed that through the evolutionary
process these cells have been optimized for their task [9]. This optimal design
is what we attempt to reproduce here. The main contributions of this paper
are 1.) we extend the work of Goldberg and Chen [2] by deriving a relationship
for the performance/robustness tradeoff that was hinted at in their analysis
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Fig. 1. A Neutrophil tracking a bacterium [11], and a schematic diagram of a trans-
membrane receptor

of collaborative control systems 2.) we show that current neutrophil sensing
models are a special case of an optimal sensor fusion problem 3.) we suggest
a computationally fast method for implementing this algorithm. Before going
into our analysis and simulations, we review some of the observed behavior in
neutrophils and collaborative control and elucidate how the two relate.

1.1 Neutrophil Review

This section presents a simplified view of the neutrophil sensory and actuation
system. Trans-membrane receptors are evenly distributed around the periphery
of the cell: their function is to transmit information from the environment to
within the cell [8]. When a receptor binds to a signalling chemical it will initi-
ate a series of chemical reactions that instruct the cell to move in the direction
of the activated receptor. Figure 1 shows a schematic diagram of a transmem-
brane receptor with a bound chemical stimulus. Since there are many receptors
(around 10,000) there is a competition as to which direction to move. This com-
petition results in a net motion towards the target since the receptors reading
the strongest signal (hence closer to the target) will “pull” harder than recep-
tors reading a weaker signal. This sort of sensing scheme can be thought of as
a vector sum: the true signal is proportional to the sum of the sensed signal at
each receptor times its normal vector.

We hypothesize that this vector sum approach to signal evaluation makes the
cell robust to noise. For example, if the chemical concentration is constant than
each receptor detects the same signal, and each pulls with same force; therefore
the cell will have no net motion. This is consistent with what is observed in the
cell– it will only respond to a chemical gradient [13] [14]. Therefore a cell can
adapt to any constant level of chemical stimulus and similarly, it is able to reject
any constant noise or bias in its environment or sensing pathways. In the case of
non-deterministic noise, there will not be perfect noise rejection, but one would
expect some filtering or partial noise subtraction. This point was explored with
our model.

In addition to noise-robustness, neutrophils have been observed to be very
sensitive to changes in chemical stimulus. In fact, it has been shown that they
respond to chemical gradients as low as a 2% difference across their length [3]
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[14]. This has led many investigators to conclude that there must be some in-
ternal amplification within the cell. One hypothesis in that there is receptor
coactivation, which means that when one receptor becomes active it sequesters
important signalling chemicals towards its neighbors, thus making them more
sensitive. The net effect of receptor coactivation is to make the up-gradient re-
ceptors more sensitive then the down-gradient receptors, which some authors
refer to as “frontness” and “backness”, respectively.

1.2 Collaborative Control Review

In collaborative control systems multiple sources share control of a single robot
[2]. A source is an element that relates information about the environment and
current state of the robot with the robot’s objective and produces a control
output. Sources can take many forms. The robot can be controlled by multiple
sensors (sensor fusion), control processes (subsumption) or human operators.
Essentially, collaborative control is an average control based on many sources
trying to accomplish the same task. In fact, this is where we see the principle
advantage: in a noisy environment the average control will be better than a
single control. This advantage arises from the Central Limit Theorem and good
engineering sense: multiple measurements will give you a better approximation
of the “true signal” [2].

1.3 The Connection

We assume that the cell’s ability to detect the direction of a chemical gradient
arises from the collaboration of its receptors. Each receptor measures the signal
and tries to move the cell in its normal direction. The sum of these controls results
in the motion of the cell. As discussed above this “vector sum” methodology will
be immune to constant noise. Furthermore, in our simulations we show that
while it cannot completely reject random noise, it is able to track and pursue
a target in the presence of high noise to signal ratios. We also demonstrate the
advantages of source coactivation, which we formulate as an optimal direction
sensing problem.

2 Related Work

The study of neutrophil chemotaxis is an active field, yet much about this system
remains unknown. Current work focuses on understanding the chemical reactions
that relate external stimulus to motion. This is important in understanding and
preventing cancer metastasis as well as for engineering drugs that will cause an
optimal immune response. The fundamental work on chemotaxis was done by
Sally Zigmond in the 1970’s [13] and an excellent review of recent work can be
found in [14]. Current models of receptor coactivation and its relationship to
signal amplification can be found in [3] [4]. The connection between neutrophil
chemotaxis and cancer is discussed in [8] and good introductory papers on using
engineering approaches in biology are [5] [9].
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Much of the inspiration for this work came from Goldberg and Chen’s anal-
ysis of collaborative control systems [2]. This paper is an excellent introduction
to the field and formalizes a measure of robustness due to failing sources. Gerkey
[1] attempted to refute the results of Goldberg and Chen, but their results were
inconclusive. After careful examination of both papers, it is apparent that their
disagreement stems from a misunderstanding of Goldberg and Chen’s perfor-
mance metric. Specifically, Goldberg’s metric did not take into account the speed
of the robot, where the robot in [1] traveled at a constant velocity.

3 Results

This section analyzes the robustness and performance properties of collabora-
tive control systems. We first consider a system similar to that of Goldberg and
Chen [2] and extend their work by formulating the robustness property that was
hinted at in their paper. Next we derive a robustness/performance relationship
for a collaborative control system by recasting the problem as a constrained
optimization. Finally we show that our formulation of the collaborative control
problem can be related to current neutrophil models. This relationship is impor-
tant for two reasons: our robustness/performance analysis applies to neutrophils
(this has not been shown in the literature) and second, the neutrophil models
provide us with a computationally cheaper algorithm then our optimization.

3.1 Noise Robustness in Distributed Sensing Systems

Derivation. Figure 2 shows a schematic diagram of our proposed system. A
robot of unit diameter has N sources distributed around its periphery (dark
circles in the figure). Each source senses the local concentration of the surround-
ing chemical field. The outputs of the individual sensors are then combined (eg,
averaged) and sent to the robot’s actuators.

Fig. 2. Schematic diagram of simulation: A circular robot combines the input from its
N sensor into a single signal that is then sent an actuator
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We start by defining the output of each individual sensor, si:

si = (gi + νi)−→ni (1)
νi ∼ N (m, σ) (2)

where gi is the chemoattractant concentration, νi is sensor noise, −→ni is the out-
ward pointing normal vector at the ithsensor. We assume that the noise on each
sensor, νi is an independent normally distributed random variable with mean m
and variance σ (equation 2). Our problem to combine the sensors readings so
that that our robot moves in the correct direction. A simple and obvious scheme
is to add the sensor readings; the resulting vector, −→s , gives the direction and
magnitude of the sensed signal. That is:

−→s =
N∑

i=1

(gi + νi)−→ni (3)

=
N∑

i=1

gi
−→ni +

N
2∑

i=1

ξi
−→ni (4)

ξi ∼ N (0, 2σ) (5)

For large N equations 4 and 5 become:

lim
N→∞

−→s = ∇g + µ (6)

µ ∼ N

([
0
0

]
, πσI2

)
(7)

where I2 is the two dimensional identity matrix. Equations 6 and 7 show that
for many sensors, −→s approximates the gradient of the external field plus a zero
mean gaussian noise process. This is significant because it shows that the vector
sum of the sensors will cancel out any constant disturbances. In this sense,
our collaborative control strategy acts as a high-pass filter. We now show the
effectiveness of this control strategy with simulations.

Simulation. Our simulation consists of a circular robot with unit radius moving
in a linear chemical gradient. The task of the robot is to move 10 units up-
gradient (the positive y-direction) of its starting point, and its performance P
is measured by the ratio of the minimum path length, Lmin, to its total path
length, L. That is,

P =
Lmin

L
(8)

The signal the robots senses is described by equation 3, where g linearly increases
in the y-direction with unity slope. At each time step, the robot calculates −→s and
then moves in that direction 1 unit. Clearly, any deviation from a straight path
will decrease the value of P. Figure 3 shows the performance of the algorithm
described by equation 3 for various levels sensor noise. The noise added to each
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Fig. 3. Performance degradation as a function of random noise-to-signal ratio (NSR)
for the algorithm described in equation 3. The red dashed line is taken from 300
experiments and the solid blue line a polynomial fit to the data

sensor is νi ∼ N
(
0, NSR2

)
. Remarkably, the robot is able to reliably accomplish

its task (although with diminishing performance)until the NSR ≈ 4. At this
point, the robot is no longer able to distinguish between sensor noise and the
true signal and therefore its motion appears brownian.

3.2 Improving Performance

While the algorithm presented above proved to be robust, it is also very
conservative– it equally weights the signal from each sensor even though some
will have a better NSR then others. In particular, the up-gradient sensors will
have have a lower NSR then the down-gradient sensors and therefore they should
contribute more to the estimated signal. So instead of taking a vector-sum of
the sensor readings, we propose taking a weighted average, where the weighting
will be a function of the NSR.

Derivation. We begin by defining our signal s and weighting vector w ∈ R
N

s = wT (g + ν) (9)
N∑

i=1

wi = 1 (10)

where g, ν ∈ R
N are the detected signal and noise vectors, respectively. (We

have dropped the vector notation for s and will now assume that we are in polar
coordinates with the origin at the cell’s center.) Our new problem is to choose w
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such that we maximize the detected signal in the correct direction. We formulate
this optimization as

ŵ = arg max
w

(E [s]2 − var(s)) (11)

The first term on the right in equation 11 causes w to be high near sensors
receiving a high signal, and the second term penalizes the objective function
when the variance in the noise is high. Therefore, if there is high uncertainty in
the sensor reading then second term in equation 11 prevents the weighting of
noisy sensors.

After some manipulation, equation 11 can be put in the following quadratic
form:

ŵ = arg max
w

(wT Aw) (12)

A = ggT − σIN (13)
σ = NSR2 (14)

This can be solved analytically with the Lagrange Dual Function.

ŵ = A−1λe (15)

λ =
1

eT R−1e
(16)

where e ∈ R
N is a vector of ones. However this formulation allows for negative

values of wi because A is sign indefinite. This is not useful for our application
so we solve equation 12 numerically with the added constraint wi ≥ 0.
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Fig. 4. Polarity vector w as noise variance, σ, increased from 1 → 300



16 M.D. Onsum and A.P. Arkin

Simulation Figure 4 shows how the weighting vector w changes with increasing
noise level, σ = 1 → 300 (the values are evenly spaced on a log scale), and g is a
linear gradient with unity slope. For small σ, w heavily weights the sensors near
the highest value of g and as σ increases, w weights the sensors evenly.
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Fig. 5. Performance degradation as function of random noise-to-signal ratio (NSR) for
the algorithm described in equations 10 and 12. The red dashed line is taken from 300
experiments and the solid blue line a polynomial fit to the data
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Fig. 6. Amplification as a function of σ

We tested this new algorithm using the same simulation strategy as in sec-
tion 3.1, except that at each time step w is recalculated. Figure 5 shows the
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performance of this algorithm with increasing NSR. In this case w was calcu-
lated assuming σ = 16 so that the algorithm would be robust to NSR = 4.
Comparing figures 3 and 5 shows that our new algorithm improved performance
for NSR = 1 → 4 and that it did not fail until after NSR ≈ 5. When we opti-
mized for NSR ≥ 10, which results in a “flat” w, the performance of the system
was similar to 3, and when we optimized for NSR < 10 all of our results looked
very similar to figure 5.

In addition to improving noise robustness, the asymmetric weighting of the
sensors amplifies the detected signal. We define amplification as the ratio of s
from equation 10 to the slope of the gradient (in this case the slope is one).
Figure 6 quantifies the signal amplification for different w vectors, where w is
parameterized by the noise variance σ. As would be expected from equation 10,
a highly asymmetric w will give a higher amplification since up-gradient sensors
make a larger contribution to s, and as σ → ∞ the amplification will go to
one. Our performance simulations did not include the effect of the amplification
since the speed of the cell was held constant. This was done so that we could
directly assess the effect of w on direction sensing and not on the speed of
the robot. However, we include the results of figure 6 to demonstrate that the
signal amplification discussed in [13] and [14] could come from the weighted
collaboration of the cell’s sensors.

3.3 Connection to Neutrophil Models

In the formulation above we showed that the preferential weighting of sensors
leads to increased performance and noise robustness of a gradient sensing robot.
The models of [3], [10], and [7] describe the dynamics and asymmetric distribu-
tion of PH (Pleckstrin Homology) proteins in chemotaxing Eukaryotes (specif-
ically neutrophils and Dictyostelium discoideum). The PH proteins accumulate
at the front or up-gradient region of the cell membrane and it is thought that
this makes the front more sensitive to chemical stimuli then the back. Their
models differ in how this asymmetry of proteins evolve and how the dynamics
relate to the known biochemistry. However, their models are similar in that when
presented with a temporarily stable gradient the distribution of PH proteins is
similar to our calculated w vector (with slight modification to their parameters
we can make them equivalent). Therefore the performance and robustness re-
sults of our algorithm can be directly applied to their models. In this sense, their
models are a special case of our optimal sensing formulation.

Additionally, this similarity leads to a novel way of implementing our algo-
rithm on an autonomous robot. Instead of computing the optimal w vector at
each time point, we can design a circuit for each sensor that mimics these neu-
trophil models. For example, each sensor could be given the following dynamics:

dai

dt
= gi − kaa (17)

dbi

dt
= ksgi − kbb (18)
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Fig. 7. Schematic diagram of proposed circuit for computing wi

dwi

dt
= ai − 1

N

N∑
i=1

bi − kwwi (19)

Equation 19 describes how the the weight, wi, on each sensor changes as a
function of a and b. We refer to a as the “activator” dynamics– ai increases with
increasing gi which in turn increases wi. We refer to b as the “global inhibitor”– it
subtracts off the mean value of the received signal for all wi. The interplay of the
activator and global inhibitor leads to an asymmetric distribution of wi’s. The
constants, kx, are design variables that will affect the dynamics and distribution
of w. This method of sensor weighting can be implemented in hardware with
7 op-amps (3 integrators and 4 gains) per sensor and one summing circuit (for
computing the mean). Figure 7 shows the configuration of this circuit. Clearly
this will be a much faster method of computing w then by solving the quadratic
optimization problem.

4 Conclusions and Future Work

This paper has presented and analyzed a biologically inspired algorithm for col-
laborative control. We have evaluated the algorithm’s performance and noise
robustness and have suggested how to implement the algorithm with hardware.
We have also shown how current neutrophil models are similar to our formula-
tion, which suggests that neutrophils are robust to noise in their signaling path-
way. Our next task will be to evaluate how the dynamics of w and the resulting
amplification effect the performance of a robot in an obstacle field. Preliminary
results show that if w has fast dynamics (that is, can quickly redistribute) the
robot is better at avoiding obstacles but it is more sensitive to noise.
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