
BIOLOGICAL INSPIRATION FOR COMPUTING 247

247

8

Biological Inspiration for Computing

Chapters 4-7 address ways in which computer science and engineering can assist in the pursuit of a
broadly defined research agenda in biology. This chapter suggests how insights from the biological
sciences may have a positive impact on certain research areas in computing, although the impact of this
reversed direction is at present much more speculative.1

8.1 THE IMPACT OF BIOLOGY ON COMPUTING

8.1.1 Biology and Computing: Promise and Skepticism

Today’s computer systems are highly complex and often fragile. Although they provide high de-
grees of functionality to their users, many of today’s systems are also subject to catastrophic failure,
difficult to maintain, and full of vulnerabilities to outside attack. An important goal of computing is to
be able to build systems that can function with high degrees of autonomy, robustly handle data with
large amounts of noise, configure themselves automatically into networks (and reconfigure themselves
when parts are damaged or destroyed), rapidly process large amounts of data in a massively parallel
fashion, learn from their environment with minimal human intervention, and “evolve” to become better
adapted to what they are supposed to do.

There is little doubt that such computer systems with these properties would be highly desirable.
Although the development of such systems is an active area of computer science research today (in-
deed, the Internet itself is an example of a system that is capable of operating without centralized
authority and reconfiguring itself when parts are damaged), computer science researchers are working
to develop new such systems, and the prospect of looking outside the existing computer science toolbox
for new types of hardware, software, algorithms, or something entirely different (and unknown) is
increasingly attractive.

One possible area of research focuses on a set of techniques inspired by the biological sciences,
because biological organisms often exhibit properties that would be desirable in computer systems.

1A popularized account of biological inspiration for computing is N. Forbes, Imitation of Life: How Biology Is Inspiring Comput-
ing, MIT Press, Cambridge, MA, 2004.

248 CATALYZING INQUIRY

They function with high degrees of autonomy. Some biological entities—such as neurons in a brain—
can configure themselves automatically into networks (and reconfigure themselves to some degree
when parts are damaged or destroyed). Sensory systems rapidly pick out salient features buried in large
amounts of data. Many animals learn from their environment and become better adapted to what they
are supposed to do. All biological organisms have mechanisms for self-repair, and all multicellular
organisms grow from an initial state that is much less phenotypically complex than their final states.

Carver Mead once noted that “engineers would be foolish to ignore the lessons of a billion years of
evolution.” The solutions that nature has evolved to difficult engineering problems are, in many cases,
far beyond present-day engineering capability. For example, the human brain is not fast enough to
process all of the raw sensory data detected by the optic or auditory nerves into meaningful informa-
tion. To reduce processing load, the brain uses a strategy we know as “attention” that focuses on certain
parts of the available information and discards other parts. Such a strategy might well be useful for an
artificial machine processing a large visual field. Studies of the way in which humans limit their atten-
tion has led to computational models of the strategy of shifting attention. Such models of biological
systems are worth studying even if they appear intuitively less capable than computation, if only for the
fact that no machine systems exist that can function as autonomously as a housefly or an ant.

On the other hand, biological organisms operate within a set of constraints that may limit their
suitability as sources of inspiration for computing. Perhaps the most important constraint is the fact that
biological organisms emerge from natural selection and the evolutionary process. Because selection
pressures are multidimensional, biological systems must be multifunctional. For example, a biological
system may be able to move, but it has also evolved to be able to feed itself, to reproduce, and to defend
itself. The list of desirable functions in a biological system is long, and successfully mimicking biology
for one particular function requires the ability to separate nonrelevant parts of the system that do not
contribute to the desired function. Furthermore, because biological systems are multifunctional, they
cannot be optimized for any one function. That is, their design always represents a compromise be-
tween competing goals. Organisms must be adequately (rather than optimally) adapted to their envi-
ronments. (The notion of “optimal design” is also somewhat problematic in the context of stochastic
real-world environments.) Also, optimal adaptation to any one environment is likely to disadvantage
an organism in a significantly different environment, and so adequately adapted organisms tend to be
more robust across a range of environments.

The evolutionary process constrains biological solutions as well. For example, biological systems
inevitably include vestiges of genetic products and organs that are irrelevant to the organism in its
current existence. Thus, biological adaptation to a given environment depends not only on the circum-
stances of the environment but also on its entire evolutionary history—a fact that may well obscure the
fundamental mechanisms and principles in play that are relevant to the specific environment of interest.
(This point is a specific instantiation of a more general phenomenon, which is that our understanding of
biological phenomena will often be inadequate to provide detailed guidance in engineering a computa-
tional device or artifact.)

A corollary notion is that nature may evolve different biological mechanisms to solve a given
problem. All of these mechanisms may enable the organism to survive and even to prosper in its
environment, but it is far from clear how well these mechanisms work relative to one another.2 Thus,
which one of many biological instantiations is the most appropriate model to mimic remains an impor-
tant question.

Finally, there are only a few examples of successful biologically inspired computing innovations.
Thus, the jury is still out on the ultimate value of biology for computing. Rather than biology being
helpful across the board to all of computing, the committee believes that biology’s primary relevance
(at least in the short term) is likely to be to specific problem areas within computing that are poorly

2For example, fish and squid use different mechanisms to propel themselves through the water. Which mechanism is better
under what circumstances and for what engineered artifacts is a question for research to answer.

BIOLOGICAL INSPIRATION FOR COMPUTING 249

understood, or for which the relevant underlying technologies are too complex or unwieldy, and in
providing approaches that will address parts of a solution (as described in Section 8.1.2). Neverthe-
less, the potential benefits that biology might offer to certain problem areas in computing are large,
and it is worth exploring different approaches to exploit these benefits; this is the focus of Sections 8.2
to 8.4.

8.1.2 The Meaning of Biological Inspiration

What does it mean for something to be biologically inspired? It is helpful to consider several
possible interpretations. One interpretation is that significant progress in computing can occur only
through the application of principles derived from the study of biology. This interpretation, offered
largely as a strawman, is absurd—there are many ways in which computing can progress without the
application of biologically derived principles.

A second, somewhat less grandiose and more reasonable interpretation is that significant progress
in computing can occur through the application of principles derived from the study of biology. That is,
a biological system may operate according to principles that have applicability to nonbiological com-
puting problems. By studying the biological system, one may be able to derive or understand the
relevant principles and use them to help solve a nonbiological problem. It is this interpretation—that
biology is relevant to computing only when principles emerge directly from a study of biological
phenomena—that underlies many claims of biological relevance or irrelevance to computing.

A third interpretation is that certain aspects of biology are analogous to aspects of computing,
which means that insights from biology are relevant to aspects of computing. This is the case, for
instance, when a set of principles or paradigms turns out to have strong applicability both to a biological
system or systems and to interesting problems in computing. These principles or paradigms may have
had their intellectual origin in the study of a biological or a nonbiological system.

When their origin is in a biological system, this interpretation reduces to the second interpretation
above. What makes the case of an origin in a nonbiological system interesting is that the principles in
question may be more manifestly obvious in a biological context than in a nonbiological context. That is,
the principles and their application may most easily be seen and appreciated in a biological context,
even if they did not initially originate in a biological context. Moreover, the biological context may also
provide a source of language, concepts, and metaphors that are useful in talking about a nonbiological
problem or phenomenon.

For this report, the term “inspiration” will be used in its broadest sense, that is, the third interpreta-
tion above, but there are three other points to keep in mind:

• Biological inspiration does not mean that the weaknesses of biology must be adopted along with
the strengths. In some cases, it may be possible to overcome problems found in the actual biological
system when the principles underlying them are implemented in engineered artifacts.

• As noted in Chapter 1, even when biology cannot provide insight into potential computing
solutions, the drive to solve biological problems can still inspire interesting, relevant, and intellectually
challenging research in computing—so biology can serve as a useful and challenging problem domain
for computing.3

3For example, IBM used the problem of protein folding to motivate the development of the BlueGene/L supercomputer.
Specifically, the problem was formulated in terms of obtaining a microscopic view of the thermodynamics and kinetics of the
dynamic protein-folding process over longer time scales than have previously been possible. Because this project involved both
computer architecture and the exploration of algorithmic alternatives, the applications architecture was structured in such a way
that subject experts in molecular simulation could work on their applications without having to deal with the complexity of the
parallel communications environment required by the underlying machine architecture (see BlueGene/L Team, “An Overview

250 CATALYZING INQUIRY

• Incomplete (and sometimes even incorrect) biological understandings help to inspire different
and useful approaches to computing problems. Important and valuable insights into possible ways to
solve a current problem have been derived from biological models that were incomplete (as in the case
of evolutionary programming) or even inaccurate (as in the case of immunologically based computer
security).

On the other hand, it must be understood that the use of a biological metaphor to inspire new
approaches to computing does not necessarily imply that the biological side is well understood, whether
or not the metaphor leads to progress in computing. That is, even if a biological metaphor is applicable
and relevant to a computing problem, this does not mean that the corresponding biological phenomena
can necessarily be understood in computational terms.

For example, although researchers use the term “genetic algorithms” to describe a class of algo-
rithms using operators that have a similar flavor to evolutionary genetic operators such as mutation or
recombination to search a solution space stochastically, the definition and implementation of these
genetic operators does not imply a fundamental understanding of biological evolutionary processes.
Similarly, although the field of “artificial neural networks” is an information-processing paradigm
inspired by the parallel processing capabilities and structure of nerve tissue, and it attempts to mimic
learning in biology by learning to adjust “synaptic” connections between artificial processing elements,
the extent to which an artificial neural network reflects real neural systems may be tenuous.

8.1.3 Multiple Roles: Biology for Computing Insight

Biological inspiration can play many different roles in computing, and confusion about this multi-
plicity of meanings accounts for a wide spectrum of belief about the value of biology for developing
better computer systems and improved performance of computational tasks. One point of view is that
only a detailed “ground-up” understanding of a biological system can result in such advances, and
because such understanding is available for only a very small number of biological systems (and “very
small” is arguably zero), the potential relevance of biology for computing is small, at least in the near
term.

A more expansive view of biology’s value for computing acknowledges that detailed understand-
ing is the key for a maximal application of biology to computing, but also holds that biological meta-
phors, analogies, examples, and phenomenological insights may suggest new and interesting ways of
thinking about computational problems that might not have been imagined without the involvement of
biology.4 From this perspective, what matters is performance of a task rather than simulation of what a
biological system actually does, though one would not necessarily expect initial performance models

of the BlueGene/L Supercomputer,” presented at Supercomputing Conference, November 2002, available at http://sc-2002.org/
paperpdfs/pap.pap207.pdf). Other obvious problems inspired by biology include computer vision and artificial intelligence. It is
also interesting to note this historical precedent of biological problems being the domain in which major suites of statistical tools
were developed. For instance, Galton invented regression analysis (correlation tests) to study the relation of phenotypes between
parents and progeny (see F. Galton, Natural Inheritance, 5th Edition, Macmillan and Company, New York, 1894). Pearson in-
vented the chi-square and other discrete tests to study the distribution of different morphs in natural populations (see K.
Pearson, “Mathematical Contributions to the Theory of Evolution, VIII. On the Inheritance of Characters Not Capable of Exact
Quantitative Measurement,” Philosophical Transactions of the Royal Society of London, Series A 195:79-150, 1900). R.A. Fisher in-
vented analysis of variance to study the partitioning of different effects in inheritance (see R. Fisher, “The Correlation Between
Relatives on the Supposition of Mendelian Inheritance,” Transactions of the Royal Society of Edinburgh 52:399-433, 1918).

4An analogy might be drawn to the history of superconducting materials. A mix of quantum principles, phenomenology, and
trained experience has led to superconducting materials with ever-higher transition temperatures. (Indeed, the discovery of
superconducting materials preceded quantum mechanics by more than a decade.)

BIOLOGICAL INSPIRATION FOR COMPUTING 251

based on biological systems to function more effectively than models constructed using more tradi-
tional techniques.

One of biology’s most important roles is that it can serve as an existence proof of performance—that
some desirable behavior is possible. The reasoning is that if a biological system can do something
interesting, why can’t an artificial system to the same thing? Birds fly, so why shouldn’t people or
constructed artifacts be able to fly? Many biological behaviors and functions would be desirable in a
computing context, and biological systems that exhibit such behavior demonstrate that this behavior is
possible.5

Existence proofs are important in engineering. For example, in the view of many nuclear scientists
associated with the Manhattan Project, the information that was most critical to the Soviet develop-
ment effort was not a secret gained through espionage, but rather the fact that a nuclear explosion was
possible at all—and that fact was reported in every major newspaper in the world.6 In other words, it
is one thing to work toward a goal that may well be impossible to achieve and an entirely different
psychological matter to work toward a goal whose achievement is known—with certainty—to be
possible.

An example of using a biological metaphor for understanding some dimension of computing re-
lates to computer security. From many centuries of observation, it is well known that an ecology based
on a monoculture is highly vulnerable to threats that are introduced from the outside. With this insight
in mind, many expert observers have used the term “monoculture” to describe the present-day security
environment for desktop computers in which one vendor dominates the operating system market. This
report does not take a position on whether such a characterization is necessarily accurate,7 but the point
is that the metaphor, used in this manner, can determine the terms of discussion and thus provide a
useful way of looking at the issue.

Despite its conceptual value, an existence proof does not speak directly to how to build the artifact
so that it does the same thing. That is, existence proofs do not necessarily provide insight about con-
struction or creation. Diversity as a strategy for survival does not necessarily indicate how much or
what kinds of diversity would be helpful in any given instance. Similarly, aerodynamics is a body of
theory that explains the flight of birds, and also enables human beings to design airplanes, but a study
of birds did not lead to the airplane. For construction or creations, a deeper understanding of biology is
required. Knowing what kind of deeper understanding is possible potentially leads to at least three
additional roles for biology:

• Biology as source of principles. Nature builds systems out of the same atoms that are available to
human engineers. If a biological system can demonstrate a particular functionality, it is because that
system is built according to principles that enable such functionality. The hope is that upon close
examination, the physical, mathematical, and information-processing principles underlying the inter-
esting biological functionality can be applied through human engineering to realize a better artificial
system. Note also that in some cases, the actual principles underlying some biological functionality may
be difficult to discern. However, plausibility counts for a great deal here, and biology may well provide
inspiration for engineered artifacts if human beings propose a set of plausible principles that govern the
behavior of interest in an actual organism, even if those principles, as articulated, turn out not to have a
biological instantiation in that organism. (Note that in this domain the division between “applying

5An accessible and more extended discussion of these ideas can be found in J. Benyus, Biomimicry: Innovation Inspired by Nature,
William Morrow, New York, 1997.

6D. Holloway, Stalin and the Bomb: The Soviet Union and Atomic Energy, 1939-1956, Yale University Press, New Haven, 1994.
7For example, it may be that even though the number of operating system platforms is small compared to the number of

desktop computers in use, different computer configurations and different operational practices might introduce sufficient
diversity to mitigate any system-wide instabilities. Furthermore, replication has many other advantages in the computer context,
such as easier interoperability.

252 CATALYZING INQUIRY

biological principles to information processing” and “understanding biological information process-
ing” is least meaningful.)

• Biology as implementer of mechanism. Nature also implements mechanisms to effect certain func-
tions. For example, a biological organism may implement an algorithm that could be the basis of a
solution to a computing problem of interest to people. Or, it may implement an architecture or a way to
organize and design the structural and dynamic relationships between elements in a complex system,
knowledge of which might greatly improve the design of an engineered artifact. In this category are the
neural network architecture as inspired by the activation model of dendrites and axons in the brain,
evolutionary computation as driven by genomic changes and selection pressures, and the use of
electroactive polymers as actuator mechanisms for robots, inspired by the operation of animal muscles
(rather than, for example, gears). (Note that implementations of biological mechanisms tend to be easier
to identify and extract for later use when they involve physical observables—and so mechanisms
underlying sensors and locomotion have had some nontrivial successes in their application to engi-
neered artifacts.)

• Biology as physical substrate for computing. Computation can be regarded as an abstract or a physi-
cally instantiated form. In the abstract, it is divorced from anything tangible. But all real-world compu-
tation requires hardware—a device of some kind, whether artificial or biological—and given that bio-
logical organisms are functional physical devices, it makes sense to consider how engineered artifacts
might have biological components. For example, biology may provide parts that can be integrated into
engineered devices. Thus, a sensitive chemical detection system might use a silk moth as the sensor for
chemicals in the air and thus instrument the moth to appropriate readouts. Or a small animal might be
used as the locomotive platform for carrying a useful payload (e.g., a camera), and its movements might
be teleoperated through electrodes implanted in the animal by a human being viewing the images sent
back by a camera.

These three different roles are closely connected to the level(s) of abstraction appropriate for think-
ing about biological systems. For some systems and phenomena of interest, a very “bottom-up” per-
spective is warranted. In the same way that one needs to know how to use transistors to build a logic
gate for a silicon-based computer, one needs to know how neurons in the brain encode information in
order to understand how a neural implant or prosthetic device might be constructed. For other systems
and phenomena, architecture provides the appropriate level of abstraction. In this case, understanding
how parts of a system are interconnected, the nature of the information that is passed between them,
and the responses of those parts to such information flows may be sufficient.

Another way of viewing these three roles is to focus on the differences between computational
content, computational representation, and computational hardware. Consider, for example, a catenary
curve—the shape that a cable suspended at both ends takes when subjected to gravity.

• The computational content is specified by a differential equation and the appropriate boundary
conditions. Although the solution is not directly apparent from the differential equation, the differential
equation implies a specific curve that represents the answer.

• The computational representation refers to how the computation is actually represented—in
digital form (as bits in a computer), in analog form (as voltages in an analog computer), in neural form
(as how a calculus student would solve the problem), or in physical form (as the string or cable being
represented).

• The computational hardware refers to the physical device used to solve the equation—the digital
computer, the analog computer, the human being, or the cable itself.

These three categories correspond roughly and loosely to the three categories described above: content
as source of principles, representation as implementer of mechanism, and hardware as physical substrate.
The remaining sections of this chapter describe some biological inspirations for work in computing.

BIOLOGICAL INSPIRATION FOR COMPUTING 253

8.2 EXAMPLES OF BIOLOGY AS A SOURCE OF PRINCIPLES FOR COMPUTING

8.2.1 Swarm Intelligence and Particle Swarm Optimization

Swarm intelligence is a property of systems of nonintelligent, independently acting robots that
exhibit collectively intelligent behavior in an environment that the robots do sense and can alter.8 One
form of swarm intelligence is particle swarm optimization, based on the flocking of birds.9

The canonical example of flocking behavior is a flight of birds wheeling through the sky, or a school
of fish darting through a coral reef. Somehow, myriad not-very-bright individuals manage to move,
turn, and respond to their surroundings as if they were as a single, fluid organism. Moreover, they seem
to do so collectively, without a leader: biologists armed with high-speed video cameras have shown that
the natural assumption—that each flock or school has a single, dominant individual that always ini-
tiates each turn just a fraction of a second before the others follow—is simply not true.

The first known explanation of the leaderless, collective quality of flocking or schooling behavior
emerged in 1986. This explanation used swarms of simulated creatures—“boids”—that could form
surprisingly realistic flocks if each one simply sought to maintain an optimum distance from its neigh-
bors. The steering rules of the so-called Reynolds simulation were simple:10

• Separation: steer to avoid crowding local flock mates.
• Alignment: steer toward the average heading of local flock mates.
• Cohesion: steer toward the average position of local flock mates.

These rules were entirely local, referring only to what an individual boid could see and do in its
immediate vicinity;11 none of them said, “Form a flock.” Yet the flocks formed every time, regardless of
the starting positions of the boids. These flocks were able to fly around obstacles in a very fluid and
natural manner. Sometimes the flock would even break into subflocks that flowed around both sides of
an obstacle, rejoining on the other side as if the boids had planned it all along. In one run, a boid
accidentally hit a pole, fluttered around for a moment, and then darted forward to rejoin the flock as it
moved on.

Today, the Reynolds simulation is regarded as one of the best and most evocative demonstrations of
emergent behavior, in which complex global behavior arises from the interaction of simple local rules. The
approach embodied in the simple-rule/complex-behavior approach has become a widely used tech-
nique in computer animation—which was Reynolds’ primary interest in the first place.12

8T. White, “Swarm Intelligence: A Gentle Introduction with Applications,” PowerPoint presentation, available at http://
www.sce.carleton.ca/netmanage/tony/swarm-presentation/tsld001.htm.

9Bird flocks are an example of complex, adaptive systems. Among the many other examples that scientists have studied are the
world economy, brains, rain forests, traffic jams, corporations, and the prehistoric Anasazi civilization of the Four Corners area.
Complex adaptive systems are similar in structure and behavior even if they differ in their superficial manifestations. For
example, complex adaptive systems are massively parallel and involve many quasi-independent “agents” interacting at once.
(An agent might be a single firm in an economy, a single driver on a crowded freeway, and so on.) Each of them is adaptive,
meaning that the agents that constitute them are constantly responding and adapting to each other. And each of them is
decentralized, meaning that no one agent is in charge. Instead, a complex system’s overall behavior tends to emerge spontane-
ously from myriad low-level interactions.

10C.W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer Graphics 21(4):25-34, 1987, available
at http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/ and http://www.red3d.com/cwr/papers/1987/SIGGRAPH87.
pdf. An updated discussion, with many pictures and references to modern applications, can be found in C.W. Reynolds, “Boids:
Background and Update,” 2001, available at http://www.red3d.com/cwr/boids/.

11More precisely, each boid had global information about the physical layout of its environment, including any obstacles, but it
had no information about its flock mates, except for those that happened to come within a certain distance that defined its local
neighborhood.

12The first Hollywood film to use a version of Reynolds’ boids software was Tim Burton’s Batman Returns (1992), which
featured swarms of animated bats and flocks of animated penguins. Since then it has been used in films such as The Lion King
(1994) and many others (see http://www.red3d.com/cwr/boids/).

254 CATALYZING INQUIRY

A second simulation of flocking behavior, developed in 1990, employed the Reynolds’ rules (though
they were independently developed) and also incorporated the influence of “dynamic forces” on the
behavior of the simulated creatures.13 These dynamic forces would allow the creatures to be attracted
toward a convenient roosting point, say, or a particularly rich cornfield. As a result, the flock would
turn and head in the direction of a cornfield as soon as it was placed into view, with various subgroups
swinging out and in again until finally the whole group had landed right on target.

These two models are direct ancestors of the particle swarm optimization (PSO) algorithm, first
published in 1995.14 The algorithm substitutes a mathematical function for the original roosts and
cornfields, and employs a conceptual swarm of bird-like particles that swoop down on the function’s
maximum value, even when the function has many local maxima that might confound more standard
optimization algorithms.

The essential innovation of the PSO algorithm is to scatter particles at random locations throughout
a multidimensional phase space that represents all the arguments to the function to be maximized. Then
the algorithm sets the particles in motion. Each particle evaluates the function as it flies through phase
space and keeps trying to turn back toward the best value that it has found so far. However, it is
attracted even more toward the best value that any of its neighboring particles have found. So it
inexorably begins to move in that direction—albeit with a little built-in randomness that allows it to
explore other values of the function along the way. The upshot is that the particles quickly form a flock
that flows toward a point that is one of the highest function values available, if not the highest.

The PSO algorithm is appealing for both its simplicity—the key steps can be written in just a few
lines of computer code—and its effectiveness. In the original publication of the PSO algorithm, the
algorithm was applied to a variety of neural network problems, and it was found to be a very efficient
way to choose the optimum set of connection weights for the network.15 Since then, the basic technique
has been refined and extended to systems that have discrete variables, say, or that change with time. It
also has been applied to a wide variety of engineering problems,16 such as the automatic adjustment of
power systems.17

The PSO algorithm is biologically inspired in the sense that it is a plausible account of bird flocking
behavior. However, it is not known whether birds, in fact, use the PSO algorithm to fly in formation.

Swarm algorithms have the virtues of simplicity and robustness, not to mention an ability to func-
tion without the need for centralized control. For this reason, they may find their most important
applications in, say, self-healing and self-organizing communications networks or in electrical power
networks that could protect themselves from line faults and reroute current around a broken link “on
the fly.”18

On the other hand, simple rules are not automatically good. Witness army ants, which are such
obsessive self-organizers that the members of an isolated group will often form a “circular mill,” follow-

13F.H. Heppner and U. Grenander, “A Stochastic Nonlinear Model for Coordinated Bird Flocks,” The Ubiquity of Chaos, S.
Krasner, ed., AAAS Publications, Washington, DC, 1990.

14J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” pp. 1942-1948 in Proceedings of the IEEE International Conference
on Neural Networks, IEEE Service Center, Piscataway, NJ, 1995; R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Morgan
Kaufman, San Francisco, CA, 2001.

15See Section 8.3.3.2 for further discussion.
16A good sense of current activity in the field can be gleaned from the programs and talks at the 2003 IEEE Swarm Intelligence

Symposium, April 24-26, 2003, available at http://www.computelligence.org/sis/index.html. Extensive references to PSO can
be found at “Welcome to Particle Swarm Central,” 2003, available at http://www.particleswarm.info. This site also contains a
number of links to online tutorials and downloadable PSO code.

17K.Y. Lee and M.A. El-Sharkawi, eds., Modern Heuristic Optimization Techniques with Applications to Power Systems, John Wiley
and IEEE Press, New York, March 2003.

18E. Bonabeau, “Swarm Intelligence,” presented at the O’Reilly Emerging Technology Conference, April 22-25, 2005, Santa
Clara, CA. Powerpoint presentation available at http://conferences.oreillynet.com/presentations/et2003/Bonabeau_eric.ppt.

BIOLOGICAL INSPIRATION FOR COMPUTING 255

ing one another around and around and around until they die from starvation.19 Such blind-leading-
the-blind behaviors are an ever-present possibility in swarm intelligence; the trick is to find simple rules
that minimize the chances of that happening.

A closely related challenge is to find ways of designing emergent behavior, so that the swarm will
produce predictable and desirable results. Today, swarm algorithms are based on the loose and impre-
cise specification of a relatively small number of parameters—but it is almost certainly true that engi-
neered artifacts that exhibit complex designed behavior will require the tight specification of many
parameters.

This point is perhaps most obvious in the cooperative construction problem, where the rule sets that
produce interesting, complex structures are actually very rare; most self-organized structures look more
like random blobs.20 The same problem is common to all collective behaviors; finding the right rules is
still largely a matter of trial and error—not least because it is in the very nature of emergence for a
simple-seeming change in the rules to produce a huge change in the outcome. Thus, in their efforts to
find the right rules, researchers may well seek to develop procedures that will find in the right rules
rather than trying to find them directly themselves. This point is discussed further in Section 8.3.1.

8.2.2 Robotics 1: The Subsumption Architecture

One approach to robotic design is based on the notion that complex and highly capable systems are
inherently expensive, and hence fewer can be built. Instead, this approach asserts the superiority of
using large numbers of individually smaller, less capable, and inexpensive systems.21 In 1989, Brooks
and Flynn suggested that “gnat robots” might be fabricated using silicon micromachining to fabricate
freely movable structures onto silicon wafers. Such an approach potentially allows sensors, actuators,
and electronics to be embedded on the same silicon substrate. This arrangement is the basis for Brooks’
subsumption architecture, in which low-level functionality can be used as building blocks for higher-
level functionality.

Robots fabricated in this manner could be produced by the thousands, just as integrated circuits are
produced today—and thus become an inexpensive, disposable system that does its work and need not
be retrieved. For applications such as exploration in hostile environments, the elimination of a retrieval
requirement is a significant cost savings.

To the best of the committee’s knowledge, no self-propelled robots or other operational systems
have been built using this approach. Indeed, experience suggests that the actual result of applying the
swarm principle is that one highly capable robot is not replaced by many robots of lesser capability, but
rather one such robot. This suggests that real-world applications are likely to depend on the ability to
fabricate many small robots inexpensively.

A key challenge is thus to develop ways of assembling microrobots that are analogous to chip
fabrication production lines. One step toward meeting this challenge has been instantiated in a concept
known as “smart dust,” for which actual prototypes have been developed. Smart dust is a concept for a

19B. Hölldobler and E.O. Wilson, The Ants, Belknap Press of Harvard University Press, Cambridge, MA, 1990, pp. 585-586. In a
famous account published in 1921, the entomologist William Beebe described a mill he saw in the Amazonian rain forest that
measured some 360 meters across, with each ant taking about 21/2 hours to complete a circuit. They kept at it for at least 2 days,
stumbling along through an ever-accumulating litter of dead bodies, until a few workers finally straggled far enough from the
trail to break the cycle. And from there, recalled Beebe, the group resolutely marched off into the forest. See W. Beebe, Edge of the
Forest, Henry Holt and Company, New York, 1921.

20But then, so do most insect nests. Honeycombs, wasps’ nests, and other famous examples are the exception rather than the
rule.

21R.A. Brooks and A.M. Flynn, “Fast, Cheap and Out of Control: A Robot Invasion of the Solar System,” Journal of the British
Interplanetary Society 42:478-485, 1989.

256 CATALYZING INQUIRY

highly distributed sensor system.22 Each dust mote has sensors, processors, and wireless communica-
tions capabilities and is light enough to be carried by air currents. Sensors could monitor the immediate
environment for light, sound, temperature, magnetic or electric fields, acceleration, pressure, humidity,
selected chemicals, and other kinds of information, and the motes, when interrogated, would send the
data over kilometer-scale ranges to a central base station, as well as communicate with local neighbors.

This architecture was the basis of an experiment that sought to track vehicles with an unmanned aerial
vehicle (UAV)-delivered sensor network.23 The prototype sensors were approximately a cubic inch in
volume and contained magnetic sensors for detecting vehicles (at ranges of about 10 meters), a micropro-
cessor, radio-frequency communications, and a battery or solar cell for power. With six to eight air-
delivered sensor motes landed diagonally across a road at about 5-meter intervals, the sensor network was
able to detect and track vehicles passing through the network, store the information, and then transfer
vehicle track information from the ground network to the interrogating UAV and then to the base camp.

The subsumption architecture also asserts that this robust behavior can emerge from the bottom
up.24 For example, in considering the problem of an autonomously functioning vehicle (i.e., one that
drives itself), a series of layers can be defined that

• Avoid contact with objects (whether the objects move or are stationary),
• Wander aimlessly around without hitting things, and
• Explore the world by seeing places in the distance that look reachable and heading for them.

Any given level contains as a subset (subsumes) the lower levels of competence, and each level can
be built as a completely separate component and added to existing layers to achieve higher levels of
competence. In particular, a level 0 machine would be built that simply avoided contact with objects. A
level 1 machine could be built by adding another control layer that monitors data paths in the level 0
layer and inserts data onto the level 0 data paths, thereby subsuming the normal data flow of level 0.
More complex behavior is thus built on top of simpler behaviors.

Brooks claims that the subsumption architecture is capable of accounting for the behavior of insects,
such as a house fly, using a combination of simple machines with no central control, no shared representa-
tion, slow switching rates, and low-bandwidth communication. This results in robust and reliable behavior
despite its limited sensing capability and an unpredictable environment, because individual behaviors can
compensate for each others’ failures, resulting in coherent and emergent behavior despite the limitations of
the component behaviors. A number of robots have been built using subsumption architectures. Of particu-
lar note is Hannibal,25 a hexapod with more than 100 physical sensors and 1,500 augmented finite-state
machines grouped into several dozen behaviors split over eight on-board computers.26

8.2.3 Robotics 2: Bacterium-inspired Chemotaxis in Robots27

The problem of locating gradient sources and tracking them over time is an important problem in
many real-world contexts. For example, fires cause temperature gradients in their immediate vicinity;

22See, for example, http://robotics.eecs.berkeley.edu/~pister/SmartDust/.
23See http://robotics.eecs.berkeley.edu/~pister/29Palms0103/.
24R.A. Brooks and A.M. Flynn, “Fast, Cheap and Out of Control,” 1989.
25C. Ferrell, “Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators,” Ph.D. thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1993.
26A finite-state machine is a machine with a finite number of internal states that transitions from one state to another on the

basis of a specified function. That is, the argument of the function is the machine’s previous state, and the function’s output is its
new state. An augmented finite-state machine is a finite-state machine augmented with a timer that forces a transition after a
certain time.

27Material in Section 8.2.3 is based on excerpts from A. Dhariwal, G.S. Sukhatme, and A.A.G. Requicha, “Bacterium-inspired
Robots for Environmental Monitoring,” International Conference on Robotics and Automation, New Orleans, LA, April 2004.

BIOLOGICAL INSPIRATION FOR COMPUTING 257

chemical spills lead to chemical concentration gradients in the soil and/or water; ecosystems host
gradients of light, salinity, and pH. In many cases, the source intensity of these gradients varies with
time (e.g., because of movement of the source), and there may be multiple sources for any given
characteristic (e.g., two fires causing a complex temperature gradient).

Autonomous detection, location, and tracking of gradient sources would be very helpful for those
trying to study or respond to the environment. Using robots, an environmental scientist might need to
find the source(s) of a given toxic chemical, whereas a firefighter might need to locate the source(s) of a
fire in order to extinguish it.

Noting that other approaches for locating and tracking gradient sources were primarily useful in
static or quasi-static environments, and inspired by biological studies of how bacteria are attracted to
gradient sources of nutrition, Dhariwal et al.28 sought to develop a strategy for finding gradient sources
that worked well with sources that are small, weak, mobile, or time-varying in intensity. Specifically,
their algorithm is based on the repetition of a straight-line run for a certain time, followed by a random
change in direction that sets up the direction for a new run. If the bacterium senses a higher concentra-
tion in its immediate environment, the run length is longer. Thus, although the bacterium still under-
goes a random walk, it is a random walk biased in the direction of the gradient source.

This algorithm is also well suited for implementation in a simple robot. That is, only the last sensor
reading must be stored, and so memory requirements are lower. Because only one computation has to
be done (a comparison between the present and the previous sensor reading), processing requirements
are minimal.

Dhariwal et al. compared the performance of this algorithm with a simple gradient descent algo-
rithm. They found that for single, weak sources, the simple gradient algorithm displayed better perfor-
mance. However, the bacterium-inspired algorithm displayed better performance in locating and track-
ing multiple and/or dissipative sources and in covering the entire area in which the gradient can be
found.

8.2.4 Self-healing Systems

In the past few years, the term “self-healing” has become a fashionable object of study and interest
in the academic and research computer science communities29 and in the marketing materials of infor-
mation technology (IT) companies such as IBM,30 Microsoft,31 Sun,32 and HP.33 Despite (or because
of?) this level of interest, there is no commonly accepted definition of “self-healing” or agreement of
what functionality it encompasses or requires.

28A. Dhariwal, G.S. Sukhatme, and A.A.G. Requicha, “Bacterium-inspired Robots for Environmental Monitoring,” IEEE Inter-
national Conference on Robotics and Automation, New Orleans, LA, April 25-30, 2004, available at http://www-lmr.usc.edu/~lmr/
publications/Icra04bact.pdf.

29Workshop on Self-healing, Adaptive and Self-managed Systems (SHAMAN), June 23, 2002, available at http://www.cse.
psu.edu/~yyzhang/shaman/proc.html; ICSE 2003 Workshop on Software Architectures for Dependable Systems, May 2003 (for
more information, see http://www.cs.kent.ac.uk/events/conf/2003/wads/); David Garlan, Self-healing Systems Course, #17-
811, Carnegie Mellon University seminar, Spring 2003 (for more information see http://www-2.cs.cmu.edu/~garlan/17811/);
D. Garlan, J. Kramer, and A. Wolf, eds., Proceedings of the First Workshop on Self-healing Systems, ACM Press, New York, 2002.

30M. Hamblen, “IBM to Boost Self-healing Capabilities in Tivoli Line,” Computerworld, April 4, 2003, available at http://
www.computerworld.com/softwaretopics/software/story/0,10801,80050,00.html.

31"Windows 2000 Professional: Most Reliable Windows Ever,” December 5, 2000, available at http://www.microsoft.com/
windows2000/professional/evaluation/business/overview/reliable/default.asp.

32"Sun and Raytheon Create Open, Adaptive, Self-healing Architecture for DD 21,” available at http://wwws.sun.com/
software/jini/news/Jini-Raytheon.pdf.

33"HP Delivers Self-healing and Virtual Server Software to Advance the Adaptive Enterprise,” press release, May 6, 2003,
available at http://www.hp.com/hpinfo/newsroom/press/2003/030506c.html.

258 CATALYZING INQUIRY

In fact, many of the techniques described as self-healing are familiar to the decades-old hardware
field of reliable systems, also known as fault tolerance or high availability. These techniques, such as
fault detection, fault masking, and fault tolerance, are in common use when designing hardware to
improve the reliability and availability of large systems. This is most likely because hardware designers,
unlike software programmers, long ago accepted the unavoidable reality that components of their
designs will fail at some point. (It also helps immeasurably that hardware failures are often easier to
characterize than software failures.) In areas with extremely high demands for reliability, such as
aerospace or power plants, these fault-tolerance techniques have become quite sophisticated, as have
mechanisms for testing system operation. The oldest and most accepted use of the term self-healing is
found in networking;34 networks from the original ARPANET (and even the public switched telecom-
munications network) to modern peer-to-peer embedded networks are self-healing in the sense that
traffic is routed around unresponsive nodes.

In contrast, until quite recently, software quality has focused on producing bug-free products, by an
intensive effort of careful design, code review, and extensive prerelease testing. However, when bugs
do occur, software typically has no ability to detect or react to them, or to continue to operate. This was
a workable strategy for much of the history of modern software, but the continuing rise of the complex-
ity of software applications has made formal review or correctness proofs inadequate to provide mini-
mum levels of reliability.35

This rise in complexity and the resulting rise in human cost of configuration and maintenance of
software applications has spurred interest in self-healing, hoping to shift much of the burden of this
configuration and maintenance back to the software. The idea is that, like its biologically analogous
namesake, a self-healing system would detect the presence of nonfunctioning (or, more challengingly,
malfunctioning) components and initiate some response to continue proper overall functionality, pref-
erably without any centralized or external force (such as a system administrator) required. The most
common implementation today seems to be one of reconfiguration: if a fault is detected, a spare hard-
ware component is brought into play. This is “healing” only in the loosest sense, although it certainly is
a valid fault tolerance technique. However, it doesn’t translate well to software-only failures.

None of the systems that describe themselves as self-healing (such as Microsoft Windows 2000, IBM
DB/2, or Sun’s Jini) seem to actually employ biological principles, other than in the grossest sense of
having redundancy. However, one research project that is inspired very explicitly by biology is Swarm
at the University of Virginia.36 The Swarm programming model defines units as individual cells, which
can both reproduce through cellular division and die. Additionally, they can emit signals at various
strengths and respond to the aggregate strength of signals in the environment. For example, a system
set to grow to a certain size would start with a single cell that emitted a small amount of signal and with
a program set to reproduce if the aggregate signal was at a certain threshold. Until the total amount of
signal exceeded that threshold, the cells would continue to divide, but they would stop once the
threshold was exceeded. If cells were to fail or otherwise be deleted, other cells would respond by
dividing again to bring the signal back to the threshold. This is indeed a primitive form of self-healing.
However, this programming model is unlikely to catch on for complex tasks without significant higher-
level abstractions available.

34W.D. Grover, “The Self-healing Network: A Fast Distributed Restoration Technique for Networks Using Digital Cross-
connect Machines,” Proceedings of the IEEE Global Telecommunications Conference, Tokyo, 1987, pp. 1090-1095.

35In his lecture on receiving the ACM Turing Award in 1980, C.A.R. Hoare said, “There are two ways of constructing a
software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.” Lecture available at http://www.braithwaite-lee.com/opinions/p75-
hoare.pdf.

36G. Selvin, D. Evans, and L. Davidson, “A Biologically Inspired Programming Model for Self-healing Systems,” Proceedings of
the First Workshop on Self-Healing Systems, November 2002, available at http://www-2.cs.cmu.edu/~garlan/woss02/.

BIOLOGICAL INSPIRATION FOR COMPUTING 259

8.2.5 Immunology and Computer Security37

The mammalian immune system is an information processor—this is clear from its ability to distin-
guish between self and nonself. (Section 5.4.4.3 provides a brief introduction to the immune system.)
Some have thus been drawn to the architecture of the immune system as a paradigm of information
processing that might be useful in solving a variety of different computational problems. Immunologi-
cal approaches have been proposed for solving problems in computer security, semantic classification
and query, document and e-mail classification, collaborative filtering problem, and optimization.38 This
section concentrates on computer security applications.

8.2.5.1 Why Immunology Might Be Relevant

Computer and network security is intended to keep external threats at bay, and this remains an
intellectually challenging problem of the highest order. It is useful to describe two general approaches
to such security problems. The first, widely in use today, is based on the notion of what might be called
environmental control—the idea that by adequately controlling the environment in which a computer
or network functions, better security can be obtained. The computer or network environment is defined
broadly, to include security policy (who should have what rights and privileges), resources (e.g., pro-
grams that provide users with computing or communications capability), and system configuration. In
support of this approach, a number of reports39 cite security problems that arise from flaws in security
policy, bugs in programs, and configuration errors and argue that correcting these flaws, bugs, and
errors will result in greater security.

A complementary approach is to take as a given the inability to control the computing or network
environment.40 This approach is based on the idea that computer security can result from the use of
system design principles that are more appropriate for the imperfect, uncontrolled, and open environ-
ments in which most computers and networks currently exist. Note that there is nothing mutually
exclusive about the two approaches—both could be used in the design of an effective overall approach
to system or network security.

For inspiration in addressing problems in computer security, some researchers have considered the
immune system and the unpredictable and largely hostile environment in which it functions.41 That is,
the unpredictable pathogens to which the immune system must respond are analogous to some of the
threats that computer systems face, and the principles underlying the operation of the immune system
may provide new approaches to computer security.

8.2.5.2 Some Possible Applications of Immunology-based Computer Security

A variety of loose analogies between computer security and immunology are intuitively obvious,
and there is clearly at least a superficial conceptual connection between the protection afforded to

37The discussion in Section 8.2.5 owes much to Stephanie Forrest of the University of New Mexico.
38For a view of the immune system as information processor, see S. Forrest and S. Hofmeyr, “Immunology as Information

Processing,” Design Principles for Immune Systems and Other Distributed Autonomous Systems, L.A. Segal and I.R. Cohen, eds.,
Oxford University Press, 2000. For an overview of various applications of an immunological computing paradigm, see
www.hpl.hp.com/personal/ Steve_Cayzer/downloads/030213ais.ppt and references therein.

39National Research Council, Cybersecurity Today and Tomorrow: Pay Now or Pay Later, National Academy Press, Washington,
DC, 2002.

40This discussion is based on A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a Computer Immune System,” Proceedings
of the 1997 Workshop on New Security Paradigms, ACM Press, Langdale, UK, 1998, pp. 75-82.

41One of the first papers to suggest that self-nonself discrimination, as used by the immune system might be useful in computer
security was by S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself Discrimination in a Computer,” Proceedings of the
1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 202-212. This
paper focused mainly on the issue of protection against computer viruses but set the stage for a great deal of subsequent work.

260 CATALYZING INQUIRY

human beings by the immune system and computer security. The following examples are adapted from
Somayaji et al.:42

• Protecting active processes on a single host. For this application, a computer running multiple pro-
cesses might be conceptualized as a multicellular organism (in which each process is analogous to a
cell). An adaptive immune system could be a detector process that queried other processes to see
whether they were functioning normally. If not (i.e., if the detector process found “nonself” in its
probes), the adaptive system could slow, suspend, kill, or restart the misbehaving process. One ap-
proach to detection (positive detection) is based on the establishment of a profile of observed normal
behaviors and using that profile to notice when a program behaves abnormally.43

• Protecting a network of computers. For this application, each computer in a network might be
conceptualized as a cell in an individual. Each process would still be considered as a cell, but now an
individual is a network of computers. (Another possible analogy for the network of computers is that
each computer represents a single organism and population-level protections are achieved by the col-
lective group through independence, diversity, and sharing of information.) An adaptive detector pro-
cess could be implemented as described above, with the added feature that these detectors could
migrate between computers, thereby enabling all computers on the network to benefit from the detec-
tion of a problem on one of them.

• Protecting a network of disposable computers. This application is similar to that described above,
with the addition that when an anomaly is detected, the problematic machine can be isolated, rebooted,
or shut down. If the true source of the anomaly were outside the network, a detector process or system
could stand in for the victimized machine, doing battle with the malicious host and potentially sacrific-
ing itself for the good of the network. Note that this application requires that hosts be more or less
interchangeable—otherwise the network could not afford the loss of a single host.

8.2.5.3 Immunological Design Principles for Computer Security

The immune system exhibits a number of characteristics—one might call them design principles—
that could reasonably describe how effective computer security mechanisms might operate in a com-
puter system or network. (As in Section 5.4.4.3, “immune system” is understood to mean the adaptive
immune system.) For example, the immune system is:44

• Distributed, in the sense that it has no central point of control. Instead, the components of the
immune system interact locally to mount responses to foreign pathogens (e.g., pathogen detectors
[lymphocytes] operate locally to flag the presence of pathogens). By contrast, a computer system based
on centralized control is vulnerable to “decapitation”—a successful attack on the point(s) of centralized
control renders the system entirely useless.45

• Diverse, in the sense that because of the ways in which pathogen detectors are produced, each
individual human being can detect a somewhat different set of pathogens—a diversity that protects

42A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a Computer Immune System,” Proceedings of the 1997 Workshop on New
Security Paradigms, ACM Press, Langdale, UK, 1998, pp. 75-82.

43An alternative approach is to use a randomly generated detector or set of detectors, living for a limited amount of time, after
which it would be replaced by another detector. Detectors that proved particularly useful during their lifetimes (e.g., by detect-
ing new anomalies) could be given a longer life span or allowed to spawn related processes. This approach has been used by
Forrest et al. in the development of a network intrusion detection system known as LISYS.

44This discussion of the immune system is based on S. Forrest and S. Hofmeyr, “Immunology as Information Processing,”
Design Principles for Immune Systems and Other Distributed Autonomous Systems, L.A. Segal and I.R. Cohen, eds., Oxford University
Press, New York, 2001.

45A distributed, mobile agent architecture for security was also proposed in M. Crosbie and G. Spafford, “Active Defense of a
Computer System Using Autonomous Agents,” Technical Report 95-008, Department of Computer Science, Purdue University,
1995.

BIOLOGICAL INSPIRATION FOR COMPUTING 261

the species as a whole. By contrast, computer system monoculture (i.e., lack of diversity) implies that
systems share vulnerabilities, and a successful attack on one system is likely to succeed on other
systems as well.46

• Autonomous, in the sense that it classifies and eliminates pathogens and repairs itself by replacing
damaged cells without the benefit of any centralized control mechanism. Given the growing security
burden placed on today’s computer systems and networks, it will be increasingly desirable for these
system and networks to manage security problems with minimal human intervention.

• Tolerant of error, in the sense that some mistakes in identification of pathogens (false positives or
false negatives) are not generally fatal and do not cause immune system collapse, although they can
cause lingering autoimmune disease. Such tolerance is in part the result of a multilayered design of the
immune system, in which multiple, independently architected layers of defense (“defense in depth”)
operate to provide levels of protection that are not achievable by any single mechanism.47 Computer
systems are often not so tolerant, and small errors or problems in some part of a system can lead to
significant malfunctions.

• Dynamic, in the sense that pathogen detectors are continually being produced to replace those
that are (routinely) destroyed. These detectors, circulated through the body, provide whole-body pro-
tection and may be somewhat different in each new generation (in that they respond to different
pathogens). Because these detectors turn over, the immune system has a greater potential coverage. By
contrast, protection against computer viruses, for example, is based on the notion that all threat viruses
are known—and most antiviral systems are unable to cope with a new virus for which no signature is
known.

• Capable of remembering (adaptable), in the sense that the immune system can learn about new
pathogens and “remember” how it coped with one pathogen in order to respond more effectively to a
future encounter with the same or a similar pathogen. It can also “forget” about nonself entities that are
incorporated into the body (e.g., food gets turned into body parts). Computer systems must also adapt
to new environments, as for example, when new software is added legitimately, as well as identify new
threats.

• Imperfect, in the sense that individual pathogen detectors do not identify pathogens perfectly, but
rather respond to a variety of pathogens. Greater specificity is obtained through redundant detection of
a pathogen using different detector types. By contrast, computer security systems that look for precise
signatures of intruders (e.g., viruses) are easily circumvented.

• Redundant, in the sense that multiple and different immune system detectors can recognize a
pathogen. Pathogens generally contain many parts, called epitopes, that are recognized by immune
system detectors; thus, failure to recognize one epitope is not fatal because many others are available for
recognition.

• Homeostatic, in the sense that the immune system can be regarded as one mechanism through
which the human body seeks to maintain a stable internal state despite a changing environment. A
computer system can be designed to autonomously monitor its own activities, routinely making small
corrections to maintain itself in a “normal” state, even in the face of wide variations in inputs, such as
those caused by intruders.48

At a deeper level, it is instructive to ask whether the particular methods by which the immune
system achieves these characteristics (implements these design principles) have potential relevance to
computer security. To address this issue, deeper and more detailed immunological knowledge is neces-
sary, but some work has been done in this area and is described below.

46For more discussion of this point, see Computer Science and Telecommunications Board, National Research Council, Com-
puters at Risk: Safe Computing in the Information Age, National Academy Press, Washington, DC, 1991.

47This point suggests that detection mechanisms are biased to be more tolerant of false negatives than false positives, because
threats that are unaffected by one layer (i.e., false negatives) might well be intercepted by another.

48A. Somayaji and S. Forrest, “Automated Response Using System Call Delays,” Journal of Computer Security 6:151-180, 1998.

262 CATALYZING INQUIRY

8.2.5.4 An Example: Immunology and Intruder Detection

To detect pathogens, the immune system generates detectors that can bind to pathogens, and only
to pathogens (i.e., do not bind to self). (A detector binding to a pathogen is the marker of a detection
event.) To vastly simplify a complex process, the immune system first generates detectors at random.
Through a process known as tolerization, detectors that bind to self are destroyed, leaving only detec-
tors that bind to nonself at the end; these detectors are called mature. Mature detectors are released
throughout the body; if they do not bind to a nonself entity in some period of time (several days?), they
are destroyed (self-destruct?). Those that do bind to nonself entities are regarded as activated detectors.
However, an activated detector must receive a second, independent signal (created by the binding of
another type of detector to the same pathogen costimulation) to become capable of surviving for a long
period of time. These long-term survivors are memory detectors that enable subsequent immune re-
sponses to be generated much more rapidly and are the basis for long-term immunity. (Memory detec-
tors have lifetimes that range from days to the lifetime of an organism, and the underlying mechanisms
governing their lifetimes are not well understood.)

In the context of computer security, Forrest and Hofmeyr have described models for network
intrusion detection and virus detection.49 In the network intruder detection example, self is defined
through a set of “normal” connections in a local area network. Each connection is defined by a triplet
consisting of the addresses of the two parties in communication with each other and the port over which
they communicate (a total of 49 bits), and the set of all triplets (normal triplets) generated during a
training period represents, by definition, normal operation of the network.

When the network operates outside the training period, the intrusion detection system generates
random detector strings that are 49 bits in length. Matches are declared according to an “r-contiguous-
bit” rule—a match is deemed to exist if a random detector string matches some normal triplet in at least
r contiguous bit positions. In this phase (the maturation phase), detector strings that match some normal
triplet are eliminated, leaving only mature detectors that have not matched any normal triplet.

Mature detectors—which might match an abnormal triplet that arises as the result of a network
intrusion—are then exposed to the nontraining network operation. If a mature detector matches some
triplet found in the nontraining network operation, such a match is potentially a sign of network
intrusion (which would be indicated by an unusual pair of systems communicating over an unusual
port). If a mature detector does not match any such triplet in a given period of time, it too is elimi-
nated.50 The remaining detectors—activated detectors—are now fully capable of signaling the presence
of abnormal triplets.

However, as a further guard against false positives, the system invoked a mechanism inspired by
immunological costimulation. Costimulation reduces the likelihood that a pathogen will be indicated
when there is no pathogen. After negative selection of lymphocytes occurs, the remaining now-mature
lymphocytes are likely to bind to nonself entities encountered. However, before the lymphocytes are
“promoted” to memory cells, they must be activated by a costimulatory signal indicating that the
substances to which they bind are in fact pathogens. This costimulatory signal is generated indepen-
dently and reduces the incidence of pathogen detectors that are overly sensitive (and hence the likeli-
hood of autoimmune reactions).

The intrusion detection system implements a costimulatory mechanism as the requirement of a
human confirmation of behavior flagged as potentially anomalous—that is, it presents matches sig-
naled by an activated detector to a human operator for confirmation. If the system receives human
confirmation within a fixed amount of time, the activated detector responsible for the warning is made

49S. Forrest and S. Hofmeyr, “Immunology as Information Processing,” Design Principles for Immune Systems and Other Distrib-
uted Autonomous Systems, L.A. Segal and I.R. Cohen, eds., Oxford University Press, New York, 2001.

50In fact, the mature detector is eliminated if it does not exceed some parametrically set threshold (the activation threshold) for
the number of matches to abnormal triplets.

BIOLOGICAL INSPIRATION FOR COMPUTING 263

into a memory detector (with an indefinite lifetime and a subsequent activation threshold of 1). How-
ever, if human confirmation is not forthcoming, the detector responsible is eliminated.

An intrusion detection product based on this approach was introduced in early 2003.51 The real-
world success of this product remains to be seen.

8.2.5.5 Interesting Questions and Challenges

8.2.5.5.1 Definition of Self Any paradigm for computer security that is based on the differentiation of
self from nonself must imply some operational definition of self that represents normal and benign
operation. It is clear that a good definition is matched to the signature of the threat being defended
against, and hence the designer must be able to answer the question, “How would I know my system
were under attack?” Thus, self might be definable in terms of memory access patterns on a single host,
TCP/IP packets entering and leaving a single host, the collective behavior of a local network of comput-
ers, network traffic through a router, instruction sequences in an executing or stored program, se-
quences of system calls, user behavior patterns, or keyboard typing patterns.52

At the same time, computer security must account for the fact that “self” on a computer system,
even one that has not been subject to threat or intrusion, changes over time. New users are added, new
software is added, and files are created, deleted, and modified in the course of normal activity, even
though all such activities may also occur in the course of an attack. That is, the notion of self must be
dynamically modifiable.

These points suggest that better insights into characterizing threat signatures dynamically would be
helpful if immunological approaches are to be used to enhance computer security.

8.2.5.5.2 More Immunological Mechanisms Another intellectual challenge is to incorporate more of
what is known about immunology into computer security. Thus, it is interesting to consider how a
number of immunological mechanisms known today might be useful in making the analogy closer,
using the functions and design principles of these specific mechanisms within the general context of an
immunologically based approach to computer security. One such mechanism is antigen processing and
the major histocompatibility complex (MHC). Some pathogens have the ability to “hide” within cells
generally recognized as self. Because lymphocytes can detect antigens only by binding to them, they are
unable to detect pathogens inside friendly cells. Molecules from the MHC have the ability to bring key
parts of such pathogens to the surface of those cells, thereby enabling the lymphocytes to detect them.
Moreover, each individual has a different set of MHC molecules; hence the kinds of hidden pathogens
that can be brought to a cell’s surface are different for different individuals, providing an important
immunological diversity in the population as a whole.

An analogous mechanism was implemented in the intrusion detection system described above. Just
as certain pathogens are able to hide within cell interiors to avoid detection, the use of detectors that can
match a number of subsets of nonself patterns (so that fewer detectors are needed) implies that there
exist some nonself patterns for which no detectors can be generated. In other words, a detector capable
of matching such nonself patterns would also match some patterns found in self. Furthermore, as the
number of nonself patterns that can be recognized by a single detector increases, the number of prob-
lematic nonself patterns also increases. Because they result from the structure of the set of self patterns,
dynamic change in the detectors cannot find them.

A solution that proved to be effective at reducing the overall number of holes (i.e., gaps in coverage)
is multirepresentation—different representations are used for different detectors. One way of achieving

51See http://www.sanasecurity.com.
52S. Forrest, S.A. Hofmeyr, and A. Somayaji, “Computer Immunology,” Communications of the ACM 40(10):88-96, 1997.

264 CATALYZING INQUIRY

this is for each detector to have a randomly generated permutation rule, according to which all data
path triples are permuted before being matched against the detector. This effectively changes the struc-
ture of the self set for each detector, with the result that different detectors will be subject to different
holes. Consequently, where one detector fails to detect a nonself triple, another may succeed.
Multirepresentation was particularly effective at reducing the number of holes when the nonself pat-
terns were similar to self patterns. To deal with this problem, the bits in a given triplet of connection
triplets were randomly permuted before presentation to detectors, just as the specific MHC molecules
that are operating to bring pathogens to the surface are probabilistically determined (with respect to an
averaging over the population).

8.2.5.6 Some Possible Difficulties with an Immunological Approach

Although these analogies have appeal, it remains to be seen how far they can be pushed. Given that
the immune system is a very complex entity whose operation is not fully understood, a bottom-up
development of a computer security system based on the immune system is not possible today. The
human immune system has evolved to its present state due to many evolutionary accidents as well as the
constraints imposed by biology and chemistry—much of which is likely to be artifactual and mostly
irrelevant to the underlying principles that the system embodies and also to the design of a computer
security system. Further, the immune system is oriented toward problems of survival. By contrast, com-
puter security is traditionally concerned with confidentiality, accountability, and trustworthiness—and
the relevance of immunological processes to confidentiality and accountability is entirely unclear today.

8.2.6 Amorphous Computing

An area of research known as amorphous computing seeks to understand how to obtain “coherent
behavior from the cooperation of large numbers of unreliable parts that are interconnected in unknown,
irregular, and time-varying ways.”53 This work, inspired by observations of cooperative and self-
organizing biological phenomena, seeks to identify the engineering principles that can be used to
observe, control, organize, and exploit the behavior of cooperating multitudes for human purposes such
as the design of engineered artifacts.

An individual entity in a collection of cooperating multitudes has the following characteristics:

• It is inexpensive, in the sense that it is easy to create large numbers of them. For all practical
purposes, each entity is identical to every other one.

• It is locally guided or programmed. That is, the guidance or programming is carried by the entity
“on-board” rather than being resident elsewhere in the overall system. As a consequence of fabrication,
the guidance or programming aboard any given entity is identical to that aboard every other entity.

• It communicates with nearby entities, but in a stochastic manner without the need for precise
interconnections and testing. Note also that the ability to function in a stochastically connective environ-
ment implies that the overall macrosystem is robust in the face of damaged or nonoperational compo-
nents. Furthermore, by eliminating the need for precision interconnections, these entities can reduce the
enormous costs usually associated with interconnection in traditional forms of assembly, costs that are
generally higher than those associated with individual elements.

• It interacts with its environment locally, so that the entity is directly knowledgeable about some
aspect of its immediate environment but not about anything more global. To the extent that an indi-
vidual entity gains global knowledge about the environment, it is as the result of a self-organizing
process that develops such information and transmits it to all entities in the system. Similarly, any on-
board effectors affect only the immediate environment.

53See http://www.swiss.ai.mit.edu/projects/amorphous/.

BIOLOGICAL INSPIRATION FOR COMPUTING 265

These characteristics are easily obtained by biology and are increasingly true for certain artifacts
that result from today’s chip fabrication technologies. A metaphor with some resonance is that of
“paintable” computers—a paint that can be applied to a surface, in which are suspended millions of
computing and MEMS-like entities that communicate with each other and interact with the surface on
which they are painted. (MEMS is an acronym for microelectromechanical systems.)

The vision presented by Abelson et al.54 is that smart materials may reduce the need for strength
and precision in mechanical and electrical apparatus, through the application of computation. For
example, coating a building or a bridge with “smart paint’’ may enable it to report on traffic loads and
wind loads, to monitor the integrity of the structure, to resist buckling, or to heal small cracks by shifting
material around. A different kind of smart paint may make it possible to build clean rooms with “active
skins,” lined with cilia that can push dirt and dust into a corner for removal. Still other paints may
enable walls that sense vibration or actively cancel noise. “Smart dust,” with light sensors in each
particle, could be spread over a wide area to recognize shadows or other traffic passing overhead.

In short, the hope is to create systems with unprecedented responsiveness to their environment.
Abelson et al. further argue that the study of amorphous computing has implications for software
design in a more general sense. Specifically, a software problem has long been recognized—the depen-
dence of greater functionality of software on increasingly complex software packages and systems.
Today, software is mostly developed “by hand,” and each line is individually coded. One obtains a high
degree of detailed control in this manner, but reliably abstracting the higher-level behavior of a software
system so developed is highly problematic. Principles of amorphous computing may enable a more top-
down specification of systems that more closely tracks how humans define the functionality they wish
to obtain from software.

Amorphous computing may be applicable to fabrication as well. For example, consider amorphous
computing entities that are capable of some mechanical interaction with the substrate on which they are
painted (e.g., they might expand or contract in certain directions). Nagpal has demonstrated the feasi-
bility of an amorphous computing substrate that is capable of pattern formation (Box 8.1); if the entities
making up this formation have the mechanical property described, it is conceivable that they might be
able to warp a sheet onto which they were painted into a three-dimensional structure.

It is also conceivable that the vision described in amorphous computing and other approaches to
that area could be extended so that appropriately configured microentities could be programmed to
self-assemble into useful physical structures on the nanoscale. These structures might be useful to end
users in and of themselves, or might serve as nanofabrication machinery that could construct other
structures useful to the end user. In particular, the large macromolecules involved in the biochemistry
of life—specifically protein molecules—demonstrate the ability to configure themselves into structures,
and some research seeks to co-opt biochemical machinery to assemble structures designed for entirely
human purposes (as described in Section 8.4.3).

8.3 BIOLOGY AS IMPLEMENTER OF MECHANISMS FOR COMPUTING

8.3.1 Evolutionary Computation55

8.3.1.1 What Is Evolutionary Computation?

Evolutionary computation is inspired by genetics and evolutionary events.56 Given a particular
problem for which a solution is desired, evolutionary computation requires three components:

54H. Abelson, T.F. Knight, G.J. Sussman, et al., “Amorphous Computing,” available at http://www.swiss.ai.mit.edu/projects/
amorphous/white-paper/amorph-new/amorph-new.html.

55The discussion in Section 8.3.1 owes much to Melanie Mitchell, now at Portland State University in Oregon.
56Evolutionary computation is a generic name for techniques that are based loosely on evolutionary principles. There are a

number of variants, including evolutionary programming, evolution strategies, genetic programming, and genetic algorithms,
which have somewhat different emphases but share the generic approach.

266 CATALYZING INQUIRY

• A population of candidate solutions to the problem. For example, these candidate solutions may
be a sequence of amino acids that can fold into some protein, a computer program, some encoding of the
design for something, or some set of rules in a production system.

• A “fitness” metric by which the “goodness” of a candidate solution can be evaluated. For ex-
ample, if the program was intended to model the output of some designer circuit, the fitness metric
might be based on the performance of a candidate program acting on a test case. That is, given the test
case, the fitness metric would be the deviation of the output of the program from a known, appropriate
answer. Programs that minimized this deviation would be more fit.

Box 8.1
Pattern Formation Using Identical Autonomous Agents

In a 2001 Ph.D. thesis, Nagpal describes a language for instructing a sheet of identically programmed, flexi-
ble, and randomly but densely distributed autonomous agents (“cells’’) to assemble themselves into a prede-
termined global shape, using only local interactions. A wide variety of global shapes and patterns can be
synthesized (patterns including flat layered shapes, all plane Euclidean constructions, and a variety of tessel-
lation patterns) using only local interactions between identically programmed deformable cells. That is, the
global shape results from a coordinated set of local shape changes in individual cells. Despite being pro-
grammed identically, each cell deforms in its own individualized manner, depending on the behavior and
state of its neighbors. (The governing structural metaphor is that of epithelial cells, which generate a wide
variety of structures: skin, capillaries, and many embryonic structures (gut, neural tube) through the coordinat-
ed effect of many cells changing their individual shape.)

The global shape is specified as a folding construction on a continuous sheet, using a small set of axioms, simple
initial conditions (edges and corners of the sheet), and two types of folds. From an engineering standpoint, the
significance of global shape description is that a process that is inherently local can be harnessed to produce a
shape of known configuration. This differs significantly from approaches based on cellular automata, in which
the local-to-global relationship is not well understood and there is no framework for constructing local rules to
obtain any desired pattern (and patterns “emerge” in a non-obvious way from the local interactions).

In this formalism, the specific global shape desired uniquely determines the program executed by all cells. The
cellular program is based on several (biologically inspired) primitives for interacting with the cell’s local
environment. A cell can change the local environment in ways that create the equivalent of chemical gradi-
ents, query its local neighborhood and collect information about the state of local companions (e.g., collect
neighboring values of a gradient), broadcast messages to all the cells in its local neighborhood, invert its
polarity, connect with neighbors in physical contact to establish communication (thus allowing multiple
layers of the sheet to act as a single fused layer), and fold itself along a particular orientation by calling the
local fold within its program with two arguments: a pair of neighbors and a cell surface.

Each cell has limited resources and reliability. All cells execute the same program and differ only in a small
amount of local dynamic state. The cell program does not rely on regular cell placement, global coordinates,
or synchronous operation. Robustness against a small amount of random cell death is achieved by depending
on large and dense cell populations, using average behavior rather than individual behavior, trading off
precision for reliability, and avoiding any centralized control. Further, global coordinates are not required,
because cells are able to “discover” positional information. An average cell neighborhood of 15 is sufficient
to reliably self-assemble complex shapes and geometric patterns on randomly distributed cells.

SOURCE: R. Nagpal, “Programmable Self-assembly: Constructing Global Shape Using Biologically-inspired Local Interactions and
Origami Mathematics,” Ph.D. thesis, MIT Department of Electrical Engineering and Computer Science, June 2001.

BIOLOGICAL INSPIRATION FOR COMPUTING 267

• A mechanism (or mechanisms) by which changes to the candidate solutions can be introduced—
portions of different candidate solutions are exchanged, for example, or modified in some small random way.57

With these components in place, an evolutionary process takes place. The set of new solutions is
evaluated for fitness—those with lower fitness scores are thrown out and those with higher scores are
retained. This mutation process is iterated many times, and the result at the end is (supposed to be) a
solution that is much better than anything in the starting set.

Initially demonstrated on the solving of what might be called “toy” problems, evolutionary tech-
niques have been used in a variety of business applications, including scheduling and production
optimization, image processing, engine design, and drug design. Evolutionary computation has also
achieved results that are in some sense competitive with human-developed solutions to quite substan-
tive problems. Competitiveness has a number of possible measures, among them results that are com-
parable to those produced by a succession of human researchers working on a well-defined problem
over a period of years, a result that is equivalent to a previously patented or patentable invention, a
result that is publishable in its own right (i.e., independent of its origins), or a result that wins or ranks
highly in a judged competition involving human contestants.58

Evolutionary computation has demonstrated successes according to all of these measures. For
example, there are at least 21 instances in which evolutionary techniques have led to artifacts related to
previously patented inventions.59 Eleven of these infringe on previously issued patents, and ten dupli-
cate the functionality of previously patented inventions in a non-infringing way. Also, while some of
the relevant patents were issued many years ago (as early as 1917), others were issued as recently as
2001. Some of the inventions created by evolutionary processes include the ladder filter, the crossover
filter, a second-derivative controller, a NAND circuit, a PID (proportional, integrative, and derivative)
controller, a mixed analog-digital variable capacitor circuit, a voltage-current conversion circuit, and a
cubic function generator. They have also created a soccer-playing program that won its first two games
in the Robo Cup 1997 competition and another that ranked in the middle of the field of 34 human-
written programs in the Robo Cup 1998 competition, four different algorithms for the transmembrane
segment identification problem for proteins, and a variety of quantum computing algorithms, and have
rediscovered the Campbell ladder topology for low-pass and high-pass filters.

Evolutionary computation also poses intellectual challenges, as described in the next several
sections.

8.3.1.2 Suitability of Problems for Evolutionary Computation60

Whether or not an evolutionary approach will be successful in solving a given problem is not yet
fully understood. Although many components of a full theory of evolutionary algorithms have been
worked out, there are critical gaps that remain open questions.

It is known that the relationship between the representation of a problem, genetic operators, and the
objective function is the primary determinant of the performance of an evolutionary algorithm. For any
optimization problem, there is always a representation or a genetic operator that makes the optima easy
to find with an evolutionary algorithm.61 In addition, evolutionary algorithms are no better or worse

57In biology, “crossover” refers to the process in which chromosomal material is exchanged between chromosomes during cell
duplication. The exchanged chromosomal material is analogous to portions of the different candidate solutions. “Mutations” are
genetic changes induced as the result of random environmental events.

58See http://www.genetic-programming.org.
59See http://www.genetic-programming.com/humancompetitive.html. More information on these accomplishments can be

found in J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza, Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, Series in Genetic Programming, Volume 5, Springer, New York, 2005.

60Lee Altenberg of the University of Hawaii was a major contributor to Section 8.3.1.2.
61G.E. Liepins and M.D. Vose, “Representational Issues in Genetic Optimization,” Journal of Experimental and Theoretical Artifi-

cial Intelligence 2(2):101-115, 1990.

268 CATALYZING INQUIRY

than any other search algorithm over the space of all problems.62 Therefore, problem-specific knowl-
edge must be incorporated either implicitly or explicitly in an evolutionary algorithm for it to perform
well. Finally, evolutionary algorithms are dynamical systems, and the systems properties necessary to
make them good search algorithms are well characterized.63

The primary question that remains to tie together the above is the following: How—and when—can
knowledge about the problem be translated into representations and genetic operators that produce an
evolutionary algorithm with good performance?

In the absence of this critical link in the theory of evolutionary algorithms, the approach taken by
designers resorts to the empirical: try it out and see if it works. Evolutionary approaches provide the
greatest advantage over other methods in cases where it is not understood how to construct answers
from “first principles” (i.e., logico-deductive procedures), but where approximate solutions can be
refined by variation and testing. Such problems can be characterized as “difficult inverse problems,”
where the inverse refers to finding inputs that produce desired outputs of the system in question.

Moreover, evolutionary techniques tend to work best on problems involving relatively large search
spaces and large numbers of variables that are not well understood. Evolutionary algorithms have been
able to construct and adapt complex neural networks that are intractable analytically or for which
derivative-based back-propagation is inapplicable. Genetic programming has produced complex cir-
cuits that infringe on patented inventions. By contrast, problems involving small search spaces can
usually be searched systematically, and search spaces being well understood generally means that
special-purpose heuristics are available. (For example, the Traveling Salesman Problem is reasonably
well understood, and there are very good special heuristics for solving that problem.)

For problems in which evolutionary techniques are unable to find global optima, they may never-
theless find very good approximations that are robust to wide-ranging initial conditions. Thus, the
solutions generated may be adequate to the task at hand. For this reason, evolutionary techniques may
also be better when data are very noisy or in the presence of a varying fitness function: the algorithm
may rapidly produce approximate solutions that track the changing environment, just as evolving
species can track environmental changes. (An example of a problem calling for a varying fitness func-
tion might be a robot that must learn, online, in a dynamic environment, where the task facing the robot
changes over time.)

8.3.1.3 Correctness of a Solution

One of the most challenging aspects of evolutionary computation is evaluating the correctness of a
solution derived through evolutionary means. Because evolutionary solutions are cumulative, in the
sense that they build on previous solutions, the design process does not have an opportunity to develop
solutions that are clean and elegantly designed from first principles. Human inspection of a solution so
derived is unlikely to yield much insight. Thus, essentially the only way known today to assess the
correctness of such a solution is to subject it to extensive testing. Rather than a human being under-
standing how the solution achieves its goals, the proposed solution convinces a human being that it will
do so.

Note, however, that ascertaining the correctness of any large computational artifact (e.g., a complex
software system or a VLSI chip) depends to a large degree on testing. Of course, because the thought
and decision-making processes of human beings are not available to public inspection, it is only by
observing a human being in action that one develops confidence in the designer’s ability to perform

62D.H. Wolpert and W.G. Macready, “No Free Lunch Theorems for Optimization,” IEEE Transactions on Evolutionary Computa-
tion 1(1):67-82, 1997, available at http://citeseer.ist.psu.edu/wolpert96no.html.

63L. Altenberg, “Open Problems in the Spectral Analysis of Evolutionary Dynamics,” pp. 73-102 in Frontiers of Evolutionary
Computation, A. Menon, ed., Genetic Algorithms and Evolutionary Computation Series, Volume 11, Kluwer Academic Publish-
ers, Boston, MA, 2004.

BIOLOGICAL INSPIRATION FOR COMPUTING 269

appropriately under certain circumstances. Thus, in the limit of increasing complexity, testing an evolu-
tionary solution may resemble the Turing test. (In the Turing test, an outside observer is asked to
distinguish between a human being’s answers to a set of questions and a computer’s answers. The
computer is said to have passed the Turing test if the outside observer is unable to distinguish between
the two.)

 8.3.1.4 Solution Representation

In biological organisms, the genetic code of DNA is subject to changes (e.g., mutation), and the
impact of these changes becomes manifest as the new mutated code is involved in the reproductive
process. That is, the particular DNA sequence of an organism can be said to be biology’s representation
of a “solution” to the problem of adapting the organism to a particular set of evolutionary selective
pressures.

From the standpoint of someone solving a problem with techniques from evolutionary computa-
tion, the question arises as to the analogue of DNA. More formally, how is a solution to a computational
problem to be represented?

In general, the solution to a computational problem is an algorithm. However, an algorithm can be
represented in many different ways. Just as data can be represented as lists of numbers or in graphical
form, computer programs (which embed algorithms) can be represented as “source code” that is read-
able by human beings or as “object code”—the raw ones and zeros of binary computation.

If candidate solutions are to be computer programs, one might imagine that their machine language
representation is an obvious possible representation. However, changing a machine language program
one bit at a time, at random, is highly likely to prevent the (modified) program from running at all
(because previously valid op-codes will be turned into invalid ones), and a nonrunning program is
useless. The same comments apply to the source code of a program. By randomly changing characters
in the source code file, the most likely result is a program that will not compile and therefore cannot be
evaluated in any meaningful way. Thus, attempting to evolve a binary program or the source code of a
program would likely result in an extraordinarily slow rate of evolution.

A more robust way to conduct this process is to impose the constraint that the program must be
executable. Thus, one might insist that the source code of a program be syntactically correct but not place
any limits whatsoever on its semantics (on what it does). For example, statements in a program can be
represented as combinations of functions with various numbers of arguments, and the only require-
ment for syntactic correctness is that a function have the right number of arguments.64 Changes to the
program can be effected by changing the functions and the specific arguments to the functions. The
result, by definition, is a program that is still syntactically correct, still runs, but does not necessarily do
what is desirable. A typical initial program is then created by randomly generating a parse tree. A
population of such parse trees is then subject to crossovers that exchange different parts of the various
parse trees, or mutations that replace one argument or function with a new argument or function.

8.3.1.5 Selection of Primitives

Closely related to the issue of representations is the question of the appropriate semantic primitives
(i.e., the smallest meaningful unit that can be changed). For example, in the representation of programs
as parse trees, the relevant primitives are functions with arguments, and the efficacy of a genetic
algorithm is strongly dependent on the particular set of functions that the evolutionary process can
manipulate.

64This approach is based on parse trees, a way of representing statements in computer programs. See J.R. Koza, Genetic
Programming: On the Programming of Computers by the Means of Natural Selection, MIT Press, Cambridge, MA, 1992.

270 CATALYZING INQUIRY

To illustrate, any computable function can in principle be built from the appropriate combination of
Boolean operators (AND, OR, and NOT). But these functions operate at too low a level to build the kind
of hierarchical structures needed to do anything complicated. It is for this reason that high-level pro-
gramming languages have emerged that are not based on these operators directly. Such languages
allow the creation of many other kinds of structure. For example, a program intended to undertake
financial analysis might benefit from an operator or function that would allow finding the average stock
price for the previous month. If its task were to evolve a program for financial analysis, such functions
might be included in the set of primitives from which an evolutionary process might draw.

One important aspect of the evolutionary approach is the ability to evolve new operators or new
functions that can be used subsequently. In some instances, new structures can emerge spontaneously
that are more or less stable; more frequently, it is possible to insert rules that will prevent such struc-
tures from changing. Alternatively, functions can be defined automatically—the environment provides
slots for function and the ability to call on those function (even if they are no-ops), and the subsequent
evolutionary process fills in those spaces with functions.65

8.3.1.6 More Evolutionary Mechanisms

The model described above is a very crude model of evolution, incorporating only a few bare
essential features. However, biologists have characterized other features of evolution. Two of the most
important with possible application to computing are coevolution and development; these are dis-
cussed below. Other aspects of evolution, such as diploid behavior and sexual selection, do not at this
stage provide obvious new approaches to computing.

8.3.1.6.1 Coevolution Coevolution refers to the biological phenomenon in which two or more species
interact as they evolve. For example, a host may be susceptible to infection by a parasite. The host
evolves some defenses against the parasite, which in turn stimulates the parasite to evolve ways in
which to penetrate or circumvent those defenses. In coevolution, other species—which are also evolv-
ing—constitute part of the environment in which a given species is embedded.

One application of coevolution to evolutionary programming is to allow the evolution of testing
data simultaneously with the solution. Doing so enables the program to account for a wider range of
input. In this case, one fitness function is required for the program to evaluate how well it performs
against a given set of test data, while a different fitness function is needed for the test data to evaluate
how well it breaks the program.66

8.3.1.6.2 Development Development refers to the phenomenon in which biological complexity is shaped
by growth within the organism (what might be called maturation) and the action of environmental
forces on the organism. It is very difficult to create significant complexity using genetic mechanisms
alone. Thus, one intellectual thrust in evolutionary computation focuses on the creation of developmen-
tal mechanisms that can be evolved to better create their own complexity. For example, evolutionary
techniques can be used to evolve neural networks (see Section 8.3.3.2). In designing neural networks,
the problems involve various issues related to the topology and configuration of the network. However,
a grammar can be used to generate structures of interest. (A grammar is a formal system of rules that
can be used to generate far larger structures.) Grammars can evolve as well, with the fitness function
being the complexity of the structures it can generate.

65J.R. Koza, Genetic Programming, 11: Automatic Discovery of Reusable Programs, MIT Press, Cambridge, MA, 1994.
66D. Hillis, “Co-evolving Parasites Improve Simulated Evolution as an Optimization Procedure,” Physica D 42(1-3):228-234,

1990.

BIOLOGICAL INSPIRATION FOR COMPUTING 271

In this case, the goal is to evolve a neural network that has the potential to learn things, rather than
evolving the things themselves that are the object of learning. In the case of a robotic brain, it is too
difficult to anticipate all of the possibilities that might face the robot, and thus it is impossible to develop
a fitness function that fully reflects this diversity. By giving the brain the ability to learn and reason, one
can circumvent this difficulty, and as long as one can develop a fitness function for how well the brain
has learned over some period, evolutionary techniques can be used to evolve a robotic brain. (Note that
the indirect nature of this approach makes it doubly difficult to understand what is going on.)

An example of such work is that of Sims (Box 8.2).

8.3.1.7 Behavior of Evolutionary Processes

Today, those working in evolutionary computation are not able to predict, in general, how long it
will take to evolve some desired solution or determine a priori how large an initial population size
should be, how rapidly mutations should occur, or how often genetic crossovers should take place.
Obviously, all of these parameters have some potential impact on the rate of evolution and how effec-
tive a solution might be. Yet how they should be set and their possible relationship to the nature of a
given problem are, in general, not known, although some intuitions exist in this area.

Box 8.2
Genetic Programming in Animation

In the world of computer graphics and animation, it can be difficult to build virtual creatures that behave in a
realistic manner and simultaneously remain under the user’s direct control. For example, directly controlling
the positions and angles of moving objects such as limbs can result in detailed behavioral control, but likely
at the expense of achieving physically plausible motions. On the other hand, providing a realistic, physics-
based environment in which the relevant dynamics are simulated can result in a higher degree of realism, but
will likely make it difficult to achieve the desired behavior, especially as the entities involved become more
complex.

One way to manage the complexity of control is to optimize the behavior of the creature against some fitness
function. Using evolutionary techniques, it is possible to fabricate creatures that behave realistically without
understanding the procedures or parameters used to generate them. Different fitness functions can represent
different modes of movement (e.g., swimming, walking, jumping, following a source). This approach forces
the user to sacrifice some detailed control, but there is also considerable gain in automating the creation of
complexity—and the user still influences the outcome by specifying the fitness function.

For purposes of animation, a creature is determined by its physical morphology (e.g., size, shape, number of
legs) and the neural system for controlling the relevant muscle forces (the neural system involves sensors that
tell the creature about its immediate environment, effectors that cause motion [analogous to muscles], and
neurons that retain some memory of its previous states). Both morphology and neural system can be evolved,
resulting in a succession of increasingly “fit” creatures that move realistically in a given mode.

In Sims’ work, a developmental process was used to generate the creatures and their control systems. The use
of such a process allowed similar components, including their local neural circuitry, to be defined once and
then replicated, instead of requiring each to be separately specified. Thus, a coded representation—a geno-
type—of a creature was established that uniquely defined the phenotype of that creature—its morphology and
neural system. By evolving the genotype, different phenotypes emerged.

SOURCE: Adapted from K. Sims, “Evolving Virtual Creatures,” Computer Graphics, Annual Conference Series (SIGGRAPH ‘94 Proceed-
ings), July 1994, pp. 15-22.

272 CATALYZING INQUIRY

For example, variation in a species results from mutations (involving random changes to a genome)
and crossovers (involving exchanges of different parts of existing genomes). One hypothesis is that
crossovers result in changes that are much more rapid than those driven by mutation. The argument in
favor of this is that genomic exchange is in some sense enabling an organism to build on stable substruc-
tures. On the other hand, it may be that evolutionary solutions cannot make good use of existing
substructures or that crossover is incapable of integrating existing substructures.

If it is true that evolutionary change is more rapid with crossovers than with mutations, this
suggests that programs designed to evolve genetic programs may wish to emphasize crossover in their
processes for introducing variation.

8.3.2 Robotics 3: Energy and Compliance Management

Biological systems provide an existence proof that self-effected motion is possible. Furthermore,
compared to the locomotion made possible by human engineering, biological mechanisms capable of
locomotion appear to be energetically efficient, possible in a wide variety of physical environments, and
often small in size.

Given these characteristics, it is not unreasonable to ask what lessons biology might hold for the
design of engineered systems for locomotion. For example, one reason that biological systems are
energetically efficient is that they are not rigid, but rather compliant, and often have mechanisms for
energy recovery. That is, these mechanisms store kinetic energy that might otherwise be dissipated,
much as a braking electric car can store in batteries the kinetic energy associated with slowing down. A
kangaroo employs such a mechanism in its tail, which acts as a spring that compresses as the kangaroo
lands from one jump and then assists the kangaroo in pushing off for the next jump. Full has argued that
leg locomotion can be described as a point mass attached to a spring and finds that the ratio of relative
leg stiffness67 to body mass is more or less constant across legged animals spanning a wide range of
size.68 In this context, leg musculature functions not just as a source of power but also as an actuator, a
springy “strut” that participates in energy absorption, storage, and return.

A second example is that many-legged animals demonstrate an inherent dynamic stability. Con-
trary to expectations that locomotion would require complex neural control feedback mechanisms, the
structure of the leg itself and its inherent multifunctionality provide a key aspect of the control of the
system and the combination of stability and forward momentum needed for locomotion. Indeed, analy-
sis of many-legged animals reveals that this inherent stability arises from the production of large lateral
and opposing leg forces when the legs are moving. Modeling these forces as a spring between opposing
legs reveals that the system is highly stable against perturbations—and the leg assembly is capable of
stabilizing itself without any equivalent of neural reflexes at all. Thus, the animal does not need to
devote expensive neurological processing to the supervision of locomotive tasks.

Raibert was one of the pioneers of robotics engineering based on physics-inspired control laws—
one for height, one for pitch, and one for speed. A fundamental insight was that running animals make
use of dynamic stability—a running animal moving forward is out of balance, but legs move forward in
rhythm to break its fall. To model this phenomenon, a one-legged “animal” (the “Planar One-legged
Hopper”) was created. It consisted of a mechanized pogo stick with a three-part control system—one
controlling forward running speed, one controlling body attitude, and one controlling hopping height.
Stepping motion was not programmed explicitly, but rather emerged under the constraints of balance

67Relative leg stiffness is the weight-normalized, size-normalized spring constant of the leg.
68R. Blickhan and R.J. Full, “Similarity in Multilegged Locomotion: Bouncing Like a Monopode,” Journal of Comparative Physi-

ology 173:509-517, 1993; T.M. Kubow and R.J. Full, “The Role of the Mechanical System in Control: A Hypothesis of Self-stabiliza-
tion in Hexapedal Runners,” Philosophical Transactions of the Royal Society of London B 354:849-862, 1999; A. Altendorfer et al.,
“RHex: A Biologically Inspired Hexapod Runner,” Journal of Autonomous Robots 11:207-213, 2002.

BIOLOGICAL INSPIRATION FOR COMPUTING 273

and controlled travel.69 With this basic unit, a two-legged running animal (the Planar Biped) could be
modeled as a body with two pogo sticks working 180° out of phase.70 A four-legged animal could
consist of two two-legged pairs working in opposition (left front and right rear, for example).71

Since Raibert’s pioneering work, these insights have been applicable to the design of other artificial
legged locomotion devices. For example, an autonomous hexapod named “RHex” has a motor associ-
ated with each leg, each of which is springy and is able to turn on its central axis. This design enables
RHex to have self-correcting reflexes that enable it to respond to obstacles without computational
control. Another family of six-legged robots, called the SPRAWL family, is cockroaches. Each leg,
driven by a piston, acts as a spring that enables SPRAWL robots to bounce over objects in their path
without feedback from the environment. Analysis of the force pattern exerted by the legs closely matches
that exerted by a running cockroach.

Other robots are intended to manipulate objects into precise orientations. The traditional way to
build such robots is to build them rigidly, with limb motion effected through motors and gear assem-
blies to increase torque. However, gear assemblies are inherently imprecise, because their very motion
requires some degree of play where the gears meet (i.e., some nonzero compliance). In practice, the
effect of compliance in the gears introduces a noise function that greatly complicates the prediction of
how a limb will move given a certain motor input, and puts limits on the precision with which the final
orientation can be known.

One solution to this problem is to use “direct-drive” motors placed at every joint, thus eliminating
the gears entirely.72 Another solution is based on the deliberate introduction of compliance into a gear
assembly. This solution is based on the observation that humans can effect precise positioning without
precision in their joints. In particular, natural joints are often based on ball-and-socket mechanisms even
when they are intended to exhibit 1 degree of freedom. Soft tissue around and in the ball joint intro-
duces compressive compliance in the joint, allowing it to absorb impact and automatically maintain a
degree of tightness in the joint.

In the robot context, Pratt et al. inserted a spring mechanism into a limb joint so that the response
lags the input.73 This spring adds a large but known compliance in series into the joint (so-called series
elasticity) that is much larger than the unknown compliance of the gears; thus, the gear compliance can
safely be ignored in the prediction of final position. Entirely apart from the increased ease of prediction,
the introduction of series elasticity enables a local response to any sudden changes in loading—during
which time the motors involved can build up torque to handle that load. Other benefits include shock
tolerance, lower reflected inertia, more accurate and stable force control, less damage during inadvert-
ent contact, and energy storage.

8.3.3 Neuroscience and Computing

Natural brains demonstrate an alternative to the traditional von Neumann computing architecture
(i.e., a fully serial information processor); thus, it is natural to consider possible lessons of neuroscience
for computer design. These lessons occur at varying levels of detail.

69See http://www.ai.mit.edu/projects/leglab/robots/2D_hopper/2D_hopper.html; see also M.H. Raibert and H.B. Brown,
Jr., “Experiments in Balance with a 2D One-legged Hopping Machine,” ASME Journal of Dynamic Systems, Measurement, and
Control 106:75-81, 1984.

70See http://www.ai.mit.edu/projects/leglab/robots/2D_biped/2D_biped.html; see also J. Hodgins and M.H. Raibert, “Pla-
nar Biped Goes Head Over Heels,” Proceedings ASME Winter Annual Meeting, Boston, December 1987.

71See http://www.ai.mit.edu/projects/leglab/robots/quadruped/quadruped.html; see also M.H. Raibert, “Four-legged Run-
ning with One-legged Algorithms,” pp. 311-315 in Second International Symposium on Robotics Research, H. Hanafusa and H. Inoue,
eds., MIT Press, Cambridge, MA, 1985.

72H. Asada and T. Kanade, “Design of a Direct-Drive Mechanical Arm,” ASME Journal of Vibration, Stress, and Reliability in
Design 105(3):312-316, 1983.

73G.A. Pratt, M.M. Williamson, P. Dillworth, J. Pratt, K. Ulland, and A. Wright, “Stiffness Isn’t Everything,” preprints of the
Fourth International Symposium on Experimental Robotics, ISER ’95, Stanford, CA, June 30-July 2, 1995.

274 CATALYZING INQUIRY

8.3.3.1 Neuroscience and Architecture in Broad Strokes

The most general lesson is that much of human cognition depends on the ability to ignore most of
the information made available by the senses.74 That is, a very high fraction of the raw information that
is accessible through sight, sound, and so on does not participate directly in the human’s cognitive
processes. Human and mammalian cognition is based on an architecture that involves a flexible, but
low-capacity, working memory and attentional selection mechanisms that place events and objects into
working memory where they become available for cognitive processing.75

This approach of selective attention stands in sharp contrast to traditional algorithms that are
designed with the goal of seeking optimal solutions and based on the use of as much information about
the problem domain as possible. The architecture of biological computation has generally evolved with
a different purpose—the adequate management of a complex, changing, and potentially dangerous
environment in real time (where “adequate” means “provides for survival”).

This architecture is based on a two-track processing arrangement—a very flexible, albeit slow
system that implements consciousness, awareness, and cognition but attends to only few things, and a
large number of online, fast-acting, sensory-motor systems that bypass attention and awareness (e.g.,
eye movements, head and hand movements, posture adjustments, and other reflex and reflex-like
responses).

Koch et al. have investigated the utility of such a strategy in multiple contexts: (1) a saliency-based
visual attention mechanism that selects highly “salient” location in natural images for further process-
ing;76 (2) a competitive, two-person video game in which an algorithm that focuses on a restricted
portion of the playing field outperforms an “optimal” player when a temporal limitation is imposed on
the duration of each move;77 and (3) an algorithm that rapidly solves the NP-complete bin-packing
problem under most conditions.78

8.3.3.2 Neural Networks

Biology affords an alternative computing model that (1) appears well suited for many ill-posed
problems constrained by uncertainty, which is the problem set for which digital machines to date have
been reasonably ineffective; and (2) provides an existence proof that slow and noisy circuits can under-
take very rapid computations of a certain class. Furthermore, it provides huge numbers of working
examples. Although the mechanisms underlying nerve tissue computation are not well understood
despite many decades of study, the fact remains that biology has found incredibly good solutions to
many engineering problems, and these approaches may well serve to inform practical solutions for
engineering problems posed by human beings. Indeed, although biological tissue is not naturally suited
for information processing as understood in traditional terms, the fact that biological tissue can do
information processing suggests that the underlying architectural principles must be powerful indeed.

Neural networks are among the most successful of biology-inspired computational systems and are
modeled on the massively parallel architecture of the brain—and on the brain’s inherent ability to learn

74C. Koch, “What Can Neurobiology Teach Computer Engineers?” January 31, 2001, unpublished paper, available at http://
www7.nationalacademies.org/compbio_wrkshps/Christof_Koch_Position_Paper.doc.

75F. Crick and C. Koch, “Consciousness and Neuroscience,” Cerebral Cortex 8(2):97-107, 1998.
76F. Crick and C. Koch, “Consciousness and Neuroscience,” Cerebral Cortex 8(2):97-107, 1998; L. Itti and C. Koch, “A Saliency-

based Search Mechanism for Overt and Covert Shifts of Visual Attention,” Vision Research 40(10-12):1489-1506, 2000; L. Itti and C.
Koch, “Target Detection Using Saliency-based Attention,” Search and Target Acquisition, RTO Meeting Proceedings 45, NATO,
RTO-MP-45, 2000; L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-based Visual Attention for Rapid Scene Analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 20:1254-1259, 1998.

77J.G. Billock, “Attentional Control of Complex Systems,” Ph.D. Thesis, 2001, available at http://sunoptics.caltech.edu/~billgr/
thesis/thesiscolor.pdf.

78J.G. Billock, D. Psaltis, and C. Koch, “The Match Fit Algorithm: A Testbed for the Computational Motivation of Attention,”
International Conference on Computational Science 2: 208-216, 2001.

BIOLOGICAL INSPIRATION FOR COMPUTING 275

from experience.79 A neural network is a network of nodes and links.80 The nodes, or units, are very
simple processors that correspond to neurons—the brain’s electrically active cells—and are usually
organized in layers, while the links, or connections, are node-to-node data channels that correspond to
synapses—the junctions that convey nerve impulses from one neuron to the next. Each node has an
activation level that corresponds to a neuron’s rate of firing off nerve impulses, while each link has a
numeric weight that corresponds to the strength or efficiency of a synapse.

Digital “activation energy” patterns are presented to the network via the “input layer.”81 From the
input layer, the activation surges through the various intermediate layers automatically, with the flow
being shaped and channeled by the connection strengths in much the same way that the flow of nerve
impulses in the brain is shaped by synapses. Once everything has settled down, the answer can be read
out from the pattern of activation on a set of designated output nodes in the final layer.

This computation-by-network architecture is where parallelism is relevant:82 all of the nodes are
active at once, and the activation can travel on any number of paths simultaneously. It is also the basis
of the system’s ability to learn: since the flow of activation (and, thus, the computation) is shaped by the
connection weights, it can be reshaped by changing the weights according to some form of learning rule.
How the connection weights are modified in response to the input patterns is the content of the learning
rule. This seems similar in some ways to what happens in the cerebral cortex, where knowledge and
experience are encoded as subtle changes in the synaptic strengths. Likewise in a neural network: with
very few exceptions, it will always contain some sort of built-in mechanism that can adjust the weights
to improve its performance.

These brain-like characteristics give neural networks some decided advantages over traditional
algorithms in certain contexts and problem types. Because they can learn, for example, the networks can
be trained to recognize patterns and compute functions for which no rigorous algorithms are known,
simply by being shown examples. (“This is a letter B: B. So is this: B.”) Often, in fact, they can generalize
from the training examples well enough to recognize patterns they’ve never seen before. And their
parallel architecture helps them keep on doing so even in the face of noisy or incomplete data or, for that
matter, faulty components. The multiple data streams can do a lot to compensate for whatever is
missing.

Training a neural network generally involves the use of a large number of individual runs to
determine the best solution (i.e., a specific set of connection weights that enables the network to do its
job).83 Most learning rules have a parameter that controls the rate of convergence between the current
solution and the global minimum and another that controls the degree to which the network will ignore
local minima. Once the network is trained to demonstrate satisfactory performance, it can be presented
with other data.84 With new data, the network no longer invokes the learning rule, and the connection
weights remain constant.

79Note that neural networks are only one approach to the general problem of machine learning. A second general approach
involves what is called statistical learning techniques, so called because they are techniques for the estimation of unknown
probabilistic distributions based on data. These techniques have not, as a rule, been derived from the consideration of biological
systems.

80Useful online tutorials can be found at http://neuralnetworks.ai-depot.com/3-Minutes/ and http://www.colinfahey.com/
2003apr20_neuron/2003apr20_neuron.htm.

81Some of this discussion is adapted from http://www.cs.wisc.edu/~bolo/shipyard/neural/neural.html.
82Note, however, that this does not represent parallelism on the scale of the brain, where the neurons are numbered in the

hundreds of billions, if not trillions. The number of units in a neural network is more likely to be measured in the dozens. In
practice, moreover, these networks are usually simulated on ordinary, serial computers—although for specific applications they
can also be implemented as specialized microchips. (See the online tutorial at http://www.particle.kth.se/~lindsey/
HardwareNNWCourse/home.html.) Still, the parallelism is there in principle.

83Some of this is adapted from http://www.cs.wisc.edu/~bolo/shipyard/neural/neural.html.
84Note that it is possible to “overtrain” a neural network, which means that the network cannot respond properly to anything

but the training data. (This might correspond to rote memorization.) Obviously, such a network is not particularly useful.

276 CATALYZING INQUIRY

Neural networks are most useful for problems that are not amenable to computational approaches
and are constrained by strict assumptions of normality, linearity, variable independence, and so on.85

That is, they work well in classifying objects, capturing associations, and discovering regularities within
a set of patterns where the volume, number of variables, or diversity of the data is very great; when the
relationships between variables are vaguely understood or the relationships are difficult to describe
adequately with conventional approaches; or when the problems in question are ill-posed and involve
high degrees of uncertainty.86 In addition, they are well suited for problems that are subject to distor-
tions in the input data.

Neural networks have been applied to a large number of real-world problems of high complexity,
including the following.87

• Optical character recognition. Commercial OCR (optical character recognition) software packages
have incorporated neural network technology since the mid-1980s, when it significantly increased their
ability to recognize unfamiliar fonts and noisy, degraded documents such as faxes.88 Today, OCR
systems typically use a mix of neural network and rule-based approaches.

• Finance and marketing. Neural networks’ ability to detect unanticipated patterns has made them a
favored tool for analyzing market trends, predicting risky loans, detecting credit card fraud, managing
risk, and many other such tasks in the financial sector.89

• Security and law enforcement. Neural networks’ pattern-detection ability has likewise made them
a useful tool for fingerprint matching, face identification, and surveillance applications.90

• Robot navigation. Neural networks’ ability to extract relevant features from noisy sensor data can
help autonomous robots do a better job of avoiding obstacles.91

• Detection of medical phenomena. A variety of health-related indices (e.g., a combination of heart
rate, levels of various substances in the blood, respiration rate) can be monitored. The onset of a
particular medical condition could be associated with a very complex (e.g., nonlinear and interactive)
combination of changes on a subset of the variables being monitored. Neural networks have been used
to recognize this predictive pattern so that the appropriate treatment can be prescribed.

• Stock market prediction. Fluctuation of stock prices and stock indices is another example of a
complex, multidimensional, but in some circumstances at least partially deterministic phenomenon.
Neural networks are being used by many technical analysts to make predictions about stock prices
based on a large number of factors such as past performance of other stocks and various economic
indicators.

• Credit assignment. A variety of pieces of information are usually known about an applicant for a
loan. For instance, the applicant’s age, education, occupation, and many other facts may be available.
After training a neural network on historical data, neural network analysis can identify the most rel-
evant characteristics and use them to classify applicants as good or bad credit risks.

85This material adapted from http://cfei.geomatics.ucalgary.ca/matlab/ann.html.
86See http://www.cs.wisc.edu/~bolo/shipyard/neural/neural.html.
87See http://www.emsl.pnl.gov:2080/proj/neuron/neural/what.html; see also http://neuralnetworks.ai-depot.com/

Applications.html. Examples in the list below for the topics “detection of medical phenomena” through “engine manage-
ment” are taken from http://www.statsoftinc.com/textbook/stneunet.html#apps.

88See http://www.scansoft.com/omnipage/ocr/. At the time, the state of the art in commercial OCR software was the rule-
based approach, in which a system broke each character image into simple features and then identified the letters by reasoning
about curves, lines, and such. This approach worked well—but only if the fonts were known and the text was very clean.

89See http://neuralnetworks.ai-depot.com/Applications.html; see also http://www.nd.com/ and http://www.walkrich.com/
value_investing/howdo.htm.

90See http://www.neurodynamics.com/.
91See http://ai-depot.com/BotNavigation/Obstacle-Introduction.html.

BIOLOGICAL INSPIRATION FOR COMPUTING 277

• Monitoring the condition of machinery. Neural networks can be instrumental in cutting costs by
bringing additional expertise to scheduling the preventive maintenance of machines. A neural network
can be trained to distinguish between the sounds a machine makes when it is running normally (“false
alarms”) versus those it makes when it is on the verge of a problem. After this training period, the
expertise of the network can be used to warn a technician of an upcoming breakdown, before it occurs
and causes costly unforeseen “downtime.”

• Engine management. Neural networks have been used to analyze the input of sensors from an
engine. The neural network controls the various parameters within which the engine functions, in order
to achieve a particular goal, such as minimizing fuel consumption.

8.3.3.3 Neurally Inspired Sensors

One of the first attempts to draw on the principles underlying biological sensors occurred in the
mid-1980s, when researchers such as Carver Mead and his coworkers at Caltech made their first at-
tempts to create artificial retinas using VLSI technology,92 with hoped-for applications that ranged from
artificial eyes for the blind to better sensors for robots. A second, more recent example of a neurally
inspired sensor is the computational sensor of Brajovic and Kanade.93 Many approaches toward im-
proving machine vision have been based on better cameras with higher resolution and sensitivity, new
sensors such as uncooled infrared cameras, and new recognition algorithms. But standard vision sys-
tems typically have high latency (a long time between registration of the image on the vision system’s
sensors and image recognition), induced by the requirements of transferring large amounts of data from
the sensor to the processor and processing those large amounts of data quickly. In addition, latency
increases more or less linearly with image size. Standard vision systems can also be very sensitive to
small details in the appearance of an object in sensor images. A number of processor-based algorithms
have been developed that adjust for such variations, but they are often complex and ad hoc, and hence
unreliable.

The computational sensor approach borrows biological architectural principles to use low-latency
processing and top-down sensory adaptation as techniques for speeding up vision processes. Computa-
tional sensors are (usually) VLSI circuits that include on-chip processing elements tightly coupled with
on-chip sensors, exploit unique optical design or geometrical arrangement of elements, and use the
physics of the underlying material for computation. The integration of sensor and processor elements
on a VLSI chip enables latency to be reduced by a considerable factor and provides opportunities for
fast processor-sensor feedback in service of top-down adaptation—and computational sensors have
produced an order-of-magnitude improvement in sensing and information processing itself, such as
range sensing, sorting, high-dynamic range imaging, and display.

8.3.4 Ant Algorithms

Ant colonies depend on workers that can collectively build nests, find food, and carry out a multi-
tude of other complex tasks while having little or no intelligence of their own. Further, they must do so
without the benefit of a leader to organize their efforts. They also continue to do so even in the face of
outside disruptions, or the failure and death of individual members, thereby exhibiting a high degree of
flexibility and robustness.

92M.A. Sivilotti, M.A. Mahowald, and C. Mead, “Real-time Visual Computations Using Analog CMOS Processing Arrays,” pp.
295-312 in Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference, P. Losleben, ed., MIT Press, Cambridge, MA,
1987.

93V. Brajovic, “Computational Sensor for Global Operations in Vision,” Ph.D. Thesis, Carnegie Mellon University, Pittsburgh,
PA, 1996.

278 CATALYZING INQUIRY

8.3.4.1 Ant Colony Optimization

Entomologists have devoted a great deal of research to figuring out how the social insects achieve
these feats.94 Their answers, in turn, have led computer scientists to devise a variety of “ant algo-
rithms,” all of which attempt to capture some of those same qualities of bottom-up self-organization,
flexibility, and robustness.95 Ant algorithms are an example of agent-based models—a broad class of
simulations that began to emerge in the early 1990s as researchers tried to model complex adaptive
systems on a computer. The idea was to represent different agents with variables that weren’t just
numbers, as they would be in conventional econometric models, but complex data structures that could
respond and adapt to one another—rather like agents in the real world. (In practice, each agent could be
modeled as an expert system, a neural network, or any number of other ways.)

The first ant-based optimization—the Ant Colony Optimization algorithm—was created in the
early 1990s.96 The algorithm is based on observations of ant foraging, something that ants do with high
efficiency. Imagine that worker ants wandering far from the nest come across a rich food source. Each
ant carrying food back to the nest marks her trail by laying pheromone on the ground. When another
randomly moving ant encounters this previously marked trail, it will follow it with high probability and
reinforce the trail with its own pheromone. This behavior is thus characterized by a positive feedback
loop in which the probability with which an ant chooses a given trail increases with the number of ants
that previously chose the same trail.

Because the first ant to reach the nest will be the one whose path just happens to be the shortest,
there will be a period of time during which the shortest path is the only path to the nest. This fact
provides a “seed” around which further pheromone depositions can occur and collectively converge on
a path that is one of the shortest possible.

The paradigmatic application of this algorithm is the Traveling Salesman Problem. A salesman is
assigned to visit a specified list of cities, going through each of them once and only once before return-
ing to his starting point. In what sequence should he visit them so as to minimize his total distance?

What makes the Traveling Salesman Problem difficult is that there seems to be no guaranteed way
of finding the absolute shortest path other than to check every possible sequence, and the number of
such sequences grows explosively as the number of cities increases, quickly outstripping the computa-
tional ability of any computer imaginable.97 As a result, practical programmers have had to give up on

94See, for example, E.O. Wilson and B. Hölldobler, The Ants, Belknap Press of Harvard University Press, Cambridge, MA, 1990.
95Overviews can be found in E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems,

Oxford University Press, New York, 1999; E. Bonabeau, “Swarm Intelligence,” presented at the O’Reilly Emerging Technology
Conference, available at http://conferences.oreillynet.com/presentations/et2003/Bonabeau_eric.ppt; and E. Bonabeau and G.
Theraulez, “Swarm Smarts,” Scientific American 282(3):72-79, 2000.

96M. Dorigo, “Optimization, Learning, and Natural Algorithms,” Ph.D. Dissertation, Politecnico di Milano, Italy, 1992; M.
Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: An Autocatalytic Optimizing Process,” Technical Report No. 91-016
Revised, Politecnico di Milano, Italy, 1991; M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a Search Strategy,”
Technical Report No. 91-016, Politecnico di Milano, Italy, 1991 (later published as M. Dorigo et al., “The Ant System: Optimiza-
tion by a Colony of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1):29-41, 1996, available at
ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf.); M. Dorigo, T. Stützle, and G. Di Caro, eds., Future Generation
Computer Systems (Special Issues on Ant Algorithms) 16(8), 2000. Dorigo maintains a Web page on ant colony optimization,
including an extensive bibliography (with many papers downloadable), plus links to tutorials and software, available at http://
iridia.ulb.ac.be/~mdorigo/ACO/about.html.

97If there are N cities in the list, then the number of possible routes is on the order of N!—that is, N × (N – 1) × (N – 2). . . . × 2 ×
1. (There are N choices of a place to start, N – 1 choices of a city to visit next, N – 2 choices to visit after that, and so on.) This is
nothing much to worry about for small numbers: 10 cities yield only 10! = 3.628 million paths, which a personal computer could
examine fairly quickly, but 20 cities would yield about 2.4 × 1018 paths—a (very fast) computer that examined one path per
nanosecond would take more than 77 years to get through all of them; and 30 cities (30! = 2.65 × 1032) would keep that same
computer busy for 8 quadrillion years. In computer science, this is a classic example of an NP-complete problem. An NP-
complete problem is both NP (i.e., verifiable in nondeterministic polynomial time) and NP-hard (any other NP problem can be
translated into this problem). In an NP-complete problem, the number of computations required to solve it grows faster than any
power of its size. (“Verifiable in nondeterministic polynomial time” means that a proposed solution to this problem can be
verified in polynomial time on a computer that can execute different instructions depending on its input. Polynomial time means
a time that is proportional to some power of the problem’s size.)

BIOLOGICAL INSPIRATION FOR COMPUTING 279

finding the best solution to the Traveling Salesman Problem and its relatives, and instead look for
algorithms that find an acceptable solution in an acceptable amount of time. Many such algorithms have
been developed over the years, and the Ant Colony Optimization algorithm has proved to rank among
the best—especially after Dorigo and his colleagues introduced several refinements during the 1990s to
improve its scaling behavior.98

Variations of the algorithm have also been developed for practical applications such as vehicle
routing, scheduling, routing of traffic through a data network, or the design of connections between
components on a microchip, and the scheduling of special orders in a factory.99 The technique is
particularly useful in such cases because it allows for very rapid rerouting in the face of unexpected
disruptions in the network. Among the successful commercial applications are plant scheduling for the
consumer products giant Unilever; truck routing for the Italian oil company Pina Petroli; supply chain
optimization and control for the French industrial gas supplier Air Liquide; and network routing for
British Telecom, France Telecom, and MCI.100

8.3.4.2 Other Ant Algorithms

Ant algorithms are based on two essential principles: (1) self-organization, in which global behavior
arises from a myriad of low-level interactions, and (2) stigmergy, in which the individuals interact with
one another indirectly using the environment as an intermediary.101 That is, one individual changes its
surroundings (e.g., by laying a pheromone trail), and other individuals then react to those changes at a
later time. As researchers have looked to other ant colony behaviors for inspiration, moreover, those
same two principles turn up again and again.102 For example:

• Sorting behavior. Certain species of ants apparently have an instinct to keep their surroundings
clean; if dead ants are scattered through the nest at random, the workers will immediately begin moving
all the corpses into neat little piles (albeit piles in random locations). These ants likewise seem to have an
instinct for keeping the brood chambers well organized; if workers are presented with a random jumble
of ants-to-be, they will quickly see to it that the eggs and micropupae are in the center, while the larger
and more developed pupae and larvae are toward the outside where they have more room. Simulated
ants can produce much the same results by following a simple local rule: pick up any item that is
isolated—that is, any item that has no others like it in the neighborhood—and drop it whenever many
of those items are encountered. Picking things up and then dropping them modifies the environment,
while the constant shifting causes the piles and/or broods to self-organize fairly rapidly.

98The algorithm and its refinements are discussed at length in Chapter 2 of E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.

99Many of their key papers are available for downloading at M. Dorigo, “Ant Colony Optimization,” 2003, available at http://
iridia.ulb.ac.be/~mdorigo/ACO/about.html.

100E. Bonabeau, “Swarm Intelligence,” presented at the O’Reilly Emerging Technology Conference, 2003, April 22-25, 2003,
Santa Clara, CA, available at http://conferences.oreillynet.com/presentations/et2003/Bonabeau_eric.ppt.

101E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press,
New York, 1999.

102Among the most notable of these investigators have been entomologist Guy Theraulaz of the French National Center for
Scientific Research (CNRS) and telecommunications engineer Eric Bonabeau, formally of France Telecom. Bonabeau, in particu-
lar, has been among the most active in the promotion and commercialization of ant algorithms, first as head of European
operations for the Santa Fe-based BiosGroup and since 2000 as head of his own company, Icosystem, Inc., of Cambridge,
Massachusetts. Details of the various ant behaviors under study, and the algorithms drawn from them, can be found in E.
Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York,
1999; E. Bonabeau and G. Theraulez, “Swarm Smarts,” Scientific American 282(3):72-79, 2000; and E. Bonabeau, “Swarm Intelli-
gence,” presented at the O’Reilly Emerging Technology Conference, 2003, available at http://conferences.oreillynet.com/
presentations/et2003/Bonabeau_eric.ppt.

280 CATALYZING INQUIRY

• Division of labor. In order to gather food, maintain the nest, defend against predators, and so on,
a colony has to allocate many different tasks among many different ants simultaneously—again, with-
out the benefit of central planning or individual intelligence. In many cases this is done by a physical
caste system, so that workers do certain jobs, soldiers do others, and so on. Yet ants will often allocate
tasks even within a single caste. A simple mechanism that reproduces this behavior is to give each
individual a response threshold for each task: once the stimuli associated with that task pass the
threshold—imagine the smell of accumulating garbage—the individual gets to work. The result is that
individuals with higher and higher thresholds keep pitching in until the stimuli are under control,
leaving everyone else free to engage in tasks for which they have low thresholds.

• Cooperative transport. If a single ant encounters a food item that’s too big for her to carry alone
(e.g., a dead cockroach), she will recruit nest mates via pheromones to help. Now, however, without a
leader or brains, they somehow have to start pulling in the same direction. A simple, two-part rule that
reproduces the observed behavior is (1) if the object is already moving in the direction you’re pulling,
keep pulling, and (2) it’s not moving at all, or is moving in a different direction, reorient yourself at
random and start pulling that way. The result is a sequence in which the ants start out pulling their
burden from every direction at once, to no effect—until suddenly, when enough ants just happen to line
up by accident, a kind of phase transition sets in and the load begins to move.

• Cooperative construction. Many species of social insects can build structures of astonishing com-
plexity: witness the vast, hexagonal combs of the honeybee or the multilayered, intricately swirling
nests of the paper wasp. And yet again, they manage to do so without the benefit of central planning or
individual intelligence. One way to account for such behavior in simulated insects is to equip each
individual with a collection of local rules: in situation 1, take action A; in situation 2, take action B; and
so on. For a wasp carrying a load of wood pulp, say, such a rule might be, “If you’re surrounded by
three walls, then deposit the pulp.” In general, each insect will modify the environment encountered by
the others, and the structure will organize itself in much the same way that the proteins comprising a
virus particle assemble themselves inside an infected cell.

Ant algorithms are conceptually similar to the particle swarm optimization algorithm described in
Section 8.2.1. However, at least in the case of the Ant Colony Optimization algorithm, it is known that
ants really use the algorithm described. For this reason, this algorithm was placed in the category of
biologically inspired mechanisms (rather than principles).

8.4 BIOLOGY AS PHYSICAL SUBSTRATE FOR COMPUTING

8.4.1 Biomolecular Computing

The idea of constructing computer components from single molecules or atoms is the logical, if
distant, end point of the seemingly inexorable miniaturization of chips and has been foreseen at least
since Richard Feynman’s lecture “There’s Plenty of Room at the Bottom” in 1959.103 Molecular comput-
ing would have significant advantages, most obviously minuscule size of the resulting component, but
also a potentially low marginal cost per component and extreme energy efficiency. However, the tech-
nology for the precision placing of single atoms or molecules on a large scale is still in its infancy.

However, there is a significant shortcut available: to use biological molecules, including DNA,
RNA, and various enzymes, as instruments to perform computational tasks. The sophisticated func-
tions of DNA and related molecules, coupled with the existing technological infrastructure for synthe-
sizing, manipulating, and analyzing them found in molecular biology laboratories, make it feasible to
employ them as a universal set of computing components. Also, because the code of DNA is essentially

103R.P. Feynman, “There’s Plenty of Room at the Bottom,” American Physical Society, December 29, 1959; available at http://
www.zyvex.com/nanotech/feynman.html.

BIOLOGICAL INSPIRATION FOR COMPUTING 281

a digital code, particular strands of DNA can be used to code information, and in particular, joinings
and other recombinations of these strands can be used to represent putative solutions to certain compu-
tational problems.

This idea is known variously as DNA computation, molecular computation, and biomolecular
computation (BMC). The use of DNA as a computational system had been discussed theoretically by T.
Head in 1987,104 but the idea leapt into prominence with Len Adleman’s publication in 1994 of a
working experiment (Box 8.3) that solved a seven-node instance of the Hamiltonian path problem, an
NP-complete problem that is a special case of the Traveling Salesman Problem.105

8.4.1.1 Description

Early attention has focused on DNA because its properties are extremely attractive as a basis for a
computational system. First, it offers a digital abstraction: the value of a piece of DNA can be precisely
and only A, G, T, or C. This abstraction is of course quite familiar to the digital abstractions of 0 and 1.
Second, the Watson-Crick complementarity of the bases (A with T, G with C) allows matching opera-
tions, conceptually similar to “if” clauses in programming. Third, DNA’s construction as a string allows
a number of useful operations such as insertion, concatenation, deletion, and appending. Next, billions
of years of evolution have provided a large set of enzymes and other molecules that perform those
operations, some in very specific circumstances. Finally, the last few decades of progress in molecular
biology have created a laboratory and instrument infrastructure for the manipulation and analysis of
DNA, such as the custom synthesis of sequences of DNA, chips that can detect the presence of indi-
vidual sequences, and techniques such as polymerase chain reaction (PCR) that can amplify existing
sequences. Without such an infrastructure (importantly including the existence of a body of trained
laboratory technicians), the use of DNA for computation would be entirely theoretical.

Biomolecular computing provides a number of advantages that make it quite attractive as a poten-
tial base for computation. Most obvious are its information density, about 1021 bits per gram (billions of
times more dense than magnetic tape), and its massive parallelism, 1015 or 1016 operations per sec-
ond.106 Less immediately apparent, but of equal potential importance, is its energy efficiency: it uses
approximately 10–19 joules per operation, close to the information theoretic limit (compared to 10–9

joules per operation for silicon).
One class of biomolecular computing generates witness molecules for all possible solutions to a

problem and then uses molecular selection to sift out molecules that represent solutions to the problem
at hand. This was the basic architecture developed by Adleman (described in Box 8.3), and with an
exponential amount of witness material, this approach can theoretically solve NP-complete problems.
Short sequences of DNA (or RNA) are used to represent data, and these are combined to form longer
strands, each of which represents a potential solution. Obtaining the particular DNA strand that repre-
sents the solution is thus based on laboratory processes that extract the proper DNA strand, and these
laboratory processes are based on the existence of an algorithm that can distinguish between correct and
incorrect solutions.

A further important step was taken in 2001 by Benenson et al., who developed a programmable
finite automaton comprising DNA and DNA-manipulating enzymes that solves certain computational
problems autonomously.107 In particular, the automaton’s “hardware” consisted of a restriction nu-

104T. Head, “Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific Recombinant Behaviors,”
Bulletin of Mathematical Biology 49(6):737-759, 1987.

105L.M. Adleman, “Molecular Computation of Solutions to Combinatorial Problems,” Science 266(5187):1021-1024, 1994.
106It is only the fact of massive parallelism that makes biological computing at all feasible, because biological switching speeds

are diffusion-limited and quite slow.
107Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, “Programmable and Autonomous Computing

Machine Made of Biomolecules,” Nature 414(6862):430-434, 2001.

282 CATALYZING INQUIRY

Box 8.3
Adleman and DNA Computing

Adleman used the tools of molecular biology to solve an instance of the directed Hamiltonian path problem.
A small graph was encoded in molecules of DNA, and the “operations” of the computation were performed
with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying out computa-
tions at the molecular level.

The Hamiltonian path problem is based on finding a special path through an arbitrarily connected set of nodes
(i.e., an arbitrary directed graph). (The adjective “directed” means that the connections between nodes are
unidirectional, so that a path from A to B does not mean necessarily that another connection from B to A
exists.) This path (the Hamiltonian path) is special in the sense that beginning with a specified entering node
and ending with a specified exiting node, a continuous path exists that enters and exits every other node once
and only once. Hamiltonian paths do not necessarily exist for a given directed graph, and their existence may
depend on an appropriate specific choice of entering and exiting nodes.

All known algorithms for determining whether an arbitrary directed graph with designated vertices has a Hamil-
tonian path exhibit worst-case exponential complexity, which means that there are some directed graphs with a
small number of nodes for which this determination would take an impractical amount of computing time.

One method for determining if a Hamiltonian path exists is illustrated in the first column of the table below.

Step Algorithmic Step Biological Equivalent

0 Establish directed graph notation Encode each node and directed node-to-node path as
as problem representation. a specific DNA sequence.

1 Generate all possible paths Combine large amounts of these DNA sequences,
through the graph. and with a sufficiently large quantity, the probability

that all possible paths will be generated is essentially
unity. (In general, these various combinations will
be in length several multiples of a single sequence.)

2 Keep only those paths that begin Use polymerase chain reaction (PCR) that amplifies
with a specified starting and only those molecules encoding paths that begin and
ending node. end with the specified nodes.

3 If the graph has n nodes, Separate only those sequences from step 2 that have
then keep only those paths that enter the correct length (corresponding to the number of
exactly n nodes. nodes in the graph).

4 Keep only those paths that enter Separate the sequences from step 3 that have a
all of the nodes of the graph at subsequence corresponding to each and every node.
least once.

5 If any paths remain, say, “Yes, a Use PCR amplification on the output of step 4, what
Hamiltonian path exists”; remains after step 5 represents the solution to the
otherwise, say “No.” problem.

SOURCE: Adapted from L.M. Adleman, “Molecular Computation of Solutions to Combinatorial Problems,” Science 266(5187):1021-
1024, 1994.

BIOLOGICAL INSPIRATION FOR COMPUTING 283

clease and ligase, while the software and input were encoded by double-stranded DNA. Programming
was implemented by choosing appropriate software molecules. The automaton processed the input
molecule through a cascade of restriction, hybridization, and ligation cycles, producing a detectable
output molecule encoding the automaton’s computational result. However, a finite-state automaton is
not Turing-complete, and the actual demonstration of a Turing-complete biomolecular machine with a
set of primitives sufficient for universal computation has yet to be shown experimentally.108

Since Adleman’s initial publication, researchers have explored many variants of the basic biological
approach. One such variant is the use of RNA, which simplifies the process of removing invalid se-
quences. In this variant, RNA is used for the solution sequences and DNA is used to represent an
element of an invalid solution. Thus, any potential solution that was invalid would be represented by a
DNA-RNA hybridized double strand. A single enzyme, ribonuclease H, destroys all DNA-RNA hy-
bridized pairs, leaving only valid solutions. This is significantly simpler than the use of many, poten-
tially noncompatible enzymes necessary to mark and destroy the appropriate DNA-DNA hybrids in the
traditional method. (In developing an algorithm based on RNA computing for solving a certain chess
problem, Cukras et al.109 found that although the algorithm was able to recover many more correct
solutions than would be expected at random, the persistence of errors continued to present the most
significant challenge.)

Other variants of the process seek to automate or simplify the management of stages of the reac-
tions. In the original experiments, the DNA reactions took place in solution in test tubes or other
containers, with stages of the process controlled by humans—for example, by introducing new en-
zymes, changing the temperature (perhaps to break chemical bonds), or mixing DNA solutions. Some of
these steps can be automated through the use of laboratory robotics. In some variants, DNA strands are
chemically anchored to various types of beads; these beads can be designed with different properties,
such as being magnetic or electrically charged, allowing the manipulation of the DNA strands through
the application of electromagnetic fields. Another solution is to use microfluidic technologies, which
consist of MEMS devices that operate as valves and pumps; a properly designed system of pipettes and
microfluidic devices offers significant advantages by automating tasks and reducing the total volume of
materials required.110

Still another variant is to restrict the chemical operations to a surface, rather than to a three-
dimensional volume.111 In this approach, DNA sequences, perhaps representing all of the solution
space of an NP problem, would be chemically attached to a surface. Challenges in this approach include
the attachment chemistry, addressing particular strands on the surface, and determining whether chemi-
cal attachment interferes with DNA hybridization and enzymatic reactions.

A second class of biomolecular computing begins with an input and a program represented in a
molecular form and evolves the program in a number of steps to process the input to produce an output.
In this approach, the complexity of the problem does not manifest itself in the number of starting
molecules, but rather in the form of the rules provided and the amount of time or number of steps
needed to fully evaluate a particular problem and input. For example, in the programmed mutagenesis
method, DNA molecules that represent rewrite rules are combined with DNA molecules that encode
input data and program. When the combined mixture of these DNA molecules is thermally cycled in the

108However, Rothemund has provided a highly detailed description of a Turing-complete DNA computer. See P.W.K.
Rothemund, “A DNA and Restriction Enzyme Implementation of Turing Machines,” pp. 75-119 in DNA Based Computers: Pro-
ceedings of a DIMACS Workshop, Vol. 27, R.J. Lipton and E.B. Baum eds., DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, Princeton, NJ, 1996.

109A.R. Cukras, D. Faulhammer, R.J. Lipton, and L.F. Landweber, “Chess Games: A Model for RNA Based Computation,”
Biosystems 52(1-3):35-45, 1999.

110A. Gehani and J.H. Reif, “Micro-Flow Bio-Molecular Computation,” BioSystems 52(1-3):197-216, October 1999.
111L.M. Smith, R.M. Corn, A.E. Condon, M.G. Lagally, A.G. Frutos, Q. Liu, and A.J. Thiel, “A Surface-based Approach to DNA

Computation,” Journal of Computational Biology 5(2):255-267, 1998.

284 CATALYZING INQUIRY

presence of DNA polymerase and DNA ligase, the rewrite rules cause new DNA molecules to be
produced that represent intermediate states in a computation. These new DNA molecules can be a very
general function of the beginning mixture of DNA molecules, and a DNA encoding has been discovered
that permits such a system to theoretically implement arbitrary computation.

8.4.1.2 Potential Application Domains

The field of biomolecular computing is still composed of theory and tentative laboratory steps; we
are years away from commercial activity. The results of laboratory experiments are proofs of concept; as
yet, no biomolecular computer has outperformed an electronic computer.

Biomolecular computing is, in principle, well suited for problems that involve “brute force” solu-
tions, in which candidate solutions can be tested individually to see if they are correct. As noted above,
the main application pursued for the first decade of biomolecular computing work is the exhaustive
solution of NP-complete problems. While this has been successful for small numbers of nodes (up to 20),
the fact that it requires exponential volumes of DNA most likely limits the further development of NP-
solving systems (see below for further discussion).

Biomolecular computation also has potential value in the field of cryptography. For example, DNA,
with its incredible information density, could serve as an ideal one-time pad, as a tiny sample could
provide petabytes of data suitable for use for encryption (as long as it was suitably random). More
generally, biomolecules could serve as components of a larger computational system, possibly serving
alongside traditional silicon-based semiconductors. For this, and indeed any biomolecular computing
system, a challenge is the transformation of information from digital representation into biomolecules
and back again. Traditional molecular biological engineering has provided a number of tools for synthe-
sizing DNA sequences and reading them out; however, these tend to be fairly lengthy processes. Recent
advances in DNA chips show the potential for more efficient biodigital interfaces. For example, photo-
sensitive chips will synthesize given sequences of DNA based on optical inputs and, similarly, will
produce optical signals in the presence of certain sequences. These optical signals are two-dimensional
arrays of intensities that can be read by digital image-processing hardware and software. Other ap-
proaches for output include the inclusion of fluorescent materials in the DNA molecules or other
additives that can be detected with the use of microscopy.

A potential component role for biomolecules is as memory. Whereas biomolecular computation
must compete against rapidly improving and increasingly parallel optoelectronic technologies for com-
putation, biomolecular memory is many orders of magnitude superior to conventional magnetic imple-
mentations in terms of density. Although DNA memory is unlikely to be used as the rapid-access read-
write memory of modern computers, its density makes it useful for “black-box” applications that write
a great deal of data, but read only on rare occasions (a fact that would usually tend to increase the
acceptable retrieval time).

One such implementation would use DNA as the storage medium of an associative database. A
DNA strand would encode the information of a specific record, with sequences on that strand repre-
senting attributes of the record and a unique index. Query strings would be composed of the comple-
ment of the desired attribute. Although individual lookups would be slow (limited by the speed of
DNA chemistry), the total amount of information stored would be enormous and the queries would
execute in parallel over the entire database. In contrast, conventional electronic computer implementa-
tions of associative memory require linear time with the size of the database.

Such a DNA database might be most useful as a set of tools to manipulate, retrieve, or analyze
existing biological or chemical substances. For example, special-purpose DNA computers might search
through databases of genetic material. In this model, a large library of genetic material (perhaps repre-
senting DNA sequences of various biological lineages, or of criminals) would be stored in its original
DNA form, rather than as an electronic digital representation. Biomolecular computers would generate
appropriate strands representing a query (matching a sequence found in a new organism, or at a crime

BIOLOGICAL INSPIRATION FOR COMPUTING 285

scene) and, in massively parallel fashion, identify potential matches. This idea could even be extended
to queries of proteins or chemicals, if the appropriate query strand of DNA can be generated.

A separate approach to biomolecular memory uses changes in the sequence of individual strands to
represent bits. Certain enzymes known as site-specific recombinases (SSRs) can (among a set of other
potential modifications) reverse the sequence of the bases between two marker sequences; repeated
application of such an enzyme would flip the sequence back and forth, representing 0 and 1. In this
implementation, a single bit requires a long series of bases; research aims at attaining the far more dense
use of single bases as bits (in fact, as two bits, since each base can have four values).

8.4.1.3 Challenges

Biomolecular computing faces some significant challenges to adoption beyond the laboratory. The
most cited barrier is the exponential doubling of the volume of DNA required to perform exhaustive
search of NP-complete problems, such as done by Adleman (Section 8.4.1.1). That is, while the number
of different DNA sequences required grows linearly with the number of directed paths in a graph, the
volume of those DNA sequences needed to solve a given problem is exponential in the problem’s size
(in this case, the number of nodes in the graph). Put differently, for the problems to which DNA
computing is applicable, a problem that can be solved in exponential time on silicon-based von
Neumann computers is replaced by one that can be solved with exponential increases of mass. It is thus
an open question today about what kinds of problems can be solved practically using DNA computing.
For example, Hartmanis reports that the amount of DNA necessary to replicate Adleman’s experiment
for a 200-node problem would exceed the weight of the Earth.112

While this is a valid concern, standard computers have been widely accepted despite their inability
to solve NP-complete problems in a timely fashion. To the best understanding of computer science
today, NP-complete problems are fundamentally challenging, and so it ought to be no surprise that
even new models of computation struggle with them. Nevertheless some breakthrough may provide
subexponential scaling for biomolecular-based exhaustive search.

A second concern involves the time-consuming and expensive laboratory techniques necessary to
set up and read out the answer from an experiment—in essence, the input-output problem for bio-
molecular computing. While DNA reactions themselves offer staggering parallelism (although in fact
they take about an hour), the bottleneck may be the time it takes for trained humans to undertake the
experiment. Adleman’s experiment required about 7 days of laboratory work. And although DNA
synthesis itself is cheap, some of the enzymes used in Adleman’s experiments cost 10,000 times as much
as gold,113 suggesting that scaling up significantly may not be feasible on economic grounds.

Related to this is the fact that DNA computation is not error-free. Synthesis of sequences can
introduce errors; strands of DNA that are close to being complements—but not quite—may still hybrid-
ize; point mutations may occur; sheer chance may allow strands of DNA to escape enzymatic destruc-
tion; and so forth. Although comparatively high error rates can be acceptable in laboratory environ-
ments, this is far more problematic for computation. The problem can be ameliorated partly by the use
of techniques familiar to communications protocols, including error-correcting codes and careful design
of the code words used in computation, so as to maximize the information distance between any pair.
This last example is a good case of computer science and biological cooperation: the distance between a
pair of code words composed of a series of bases is a product of both its information content and its
biochemical properties. Word design is currently an active area of DNA computation research.

112J. Hartmanis, “On the Weight of Computations,” Bulletin of the European Association for Theoretical Computer Science 55:136-
138, 1995.

113A.L. Delcher, L. Hood, and R.M. Karp, “Report on the DNA/Biomolecular Computing Workshop (June 6-7, 1996),” Na-
tional Science Foundation, NSF 97-168, 1998, available at http://www.nsf.gov/pubs/1998/nsf97168/nsf97168.htm.

286 CATALYZING INQUIRY

A related problem is the lack of programmability of current models. Even if experimental verifica-
tion of Turing-complete biomolecular computing can be achieved, individual runs must still be care-
fully tuned to a specific instance of a specific problem, much like the hardwiring of the first generation
of electronic computers. Worse yet, the sequences of biomolecules synthesized for a particular
biomolecular computation are usually consumed or destroyed during the computation. For a replica-
tion of the experiment, even with the same dataset, much of the entire process of setup must be
repeated. If a different dataset or a different “program” is run, then other steps must be included, such
as designing the set of sequences to be used as “words” of the computation and determining the set of
enzymes and concentration levels necessary to correctly identify, mark, destroy, and read out the
appropriate strands of nucleic acids. The ability to formulate a problem of any generality in terms that
map onto a set of chemical processing lab procedures is likely an essential aspect of DNA computing,
but it is not at all clear today how such formulations can occur in general.

Finally, the most significant challenge is the high bar that DNA computation will have to surpass to
gain wide acceptance. Moore’s law is expected to continue unabated for at least a decade, resulting in
petaflop machines by 2015. Additionally, biomolecular computation is not the only radical technique in
town; quantum computation, various other applications of nanotechnology, analog computing, and
other contenders may turn out to offer more favorable performance, programmability, or convenience.

These challenges are quite significant and possibly decisive. Len Adleman himself was pessimistic
about the prospect of general computation in a 2002 paper: “Despite our successes, and those of others,
in the absence of technical breakthroughs, optimism regarding the creation of a molecular computer
capable of competing with electronic computers on classical computational problems in not war-
ranted.”114 Of course, such breakthroughs may yet occur, and this possibility warrants some level of
continued research.

8.4.1.4 Future Directions

While it was DNA’s resemblance to the tape of a Turing machine that inspired Adleman to investi-
gate the possibility, this model has not yet been pursued experimentally. Nor is it likely that it would
have practical computing utility—a Turing machine is extraordinarily slow even executing simple
algorithms.

A very different approach would involve single molecules of DNA (or RNA or another biomolecule)
acting as the memory of a single process, while enzymes performed the computation by splicing and
copying sequences of bases. Although this has been discussed theoretically, it has not yet been shown in
an experiment. This model would be best used for massively parallel applications, since the individual
operations on DNA are still quite slow compared to electronic components, but it would offer massive
improvements of density and energy efficiency over traditional computers.

In a slightly different approach, enzymes that operate on DNA sequences are used as logic gates,
such as XOR, AND, or NOT. DNA strands are data, and the enzymes, by reacting to the presence of
certain sequences, modify the DNA or generate new strands. Thus, using fairly traditional digital logic
design techniques, assemblies of logic gates can be constructed. The resulting circuits will operate in
exactly the same manner as traditional silicon electronic-based circuits, but at the energy efficiency and
size of molecules.115

Even if it turns out that biomolecular computation is a dead end, the research that went into it will
not be for naught: the laboratory techniques, enabling technologies, and deeper understanding of

114R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, and L.M. Adleman, “Solution of a 20-Variable 3-SAT
Problem on a DNA Computer,” Science 296(5567):499-502, 2002.

115M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, “Deoxyribozyme-based Logic Gates,” Journal of the American Chemical
Society 124(14):3555-3561, 2002.

BIOLOGICAL INSPIRATION FOR COMPUTING 287

biomolecular processes will be valuable. Already, commercial spinoff technologies are available: based
on Adleman’s research, a company in Japan developed a way to synthesize 10,000 DNA sequences to
rapidly search for the presence of genes related to cancer.116 Also, biologist Laura Landweber’s research
into biomolecular computation at Princeton has provided insights for her research on DNA and RNA
mechanisms in living organisms. For example, her and Lila Kari’s analysis of the DNA manipulations
that occur in some protozoa is based on techniques of formal languages from computer science, show-
ing that the cellular operations performed by these protozoa are actually Turing-complete. The use of
formal computer science theory, in other words, has proven a useful tool for the analysis of natural
genetic processes.

8.4.2 Synthetic Biology

As a field of inquiry, the goal of biology—reductionist or otherwise—has been to catalog the diver-
sity of life and to understand how it came about and how it works. These goals emphasize the impor-
tance of observation and understanding. Synthetic biology, in contrast, is a new subfield of biology with
different intent: based on biological understanding, synthetic biology seeks to modify living systems
and create new ones.

Synthetic biology encompasses a wide variety of projects, definitions, and goals and thus is difficult
to define precisely. It usually involves the creation of novel biological functions, such as custom meta-
bolic or genetic networks, novel amino acids and proteins, and even entire cells. For example, a syn-
thetic biology project may seek to modify Escherichia coli to fluoresce in the presence of TNT, creating in
effect a new organism that can be used for human purposes.117 In one sense, this is a mirror image of
natural selection: adding new features to lineages not through mutation and blind adaptation to an
environment, but through planned design and forethought. Synthetic biology shares some similarities
with recombinant genetic engineering, a common approach that involves transplanting a gene from one
organism into the genome of another. However, synthetic biology does not restrict itself to using actual
genes found in organisms; it considers the set of all possible genes. In effect, synthetic biology involves
writing DNA, not merely reading it.

One basic motivation of this field is that creating artificial cells, or introducing novel biological
functions, challenges our understanding of biology and requires significant new insight. In this view,
only by reproducing life can we demonstrate that we fully understand it; this is the ultimate acid test for
our theories of biology. It is precisely analogous to early synthetic chemistry: only by the successful
synthesis of a substance would a theory of its composition be verified.118

More broadly, some synthetic biology researchers see created life as an opportunity to explore
wider conceptions of life beyond the examples provided by nature. For example, what are the physical
limitations of biological systems?119 Are other self-replicating molecular information systems possible?
Are there general principles of biochemical organization? These inquires may help researchers to un-
derstand how life began on Earth, as well as the possibility of life in extraterrestrial environments.120

Finally, synthetic biology has the potential to contribute significantly to technology, offering in
many ways a new industrial revolution. In this view, chemical synthesis, detection, and modification
could all be done by creating a microbe with the desired characteristics. This holds the promise of new
methods for energy production, environmental cleanup, pharmaceutical synthesis, pathogen detection

116Business Week, “Len Adleman: Tapping DNA Power for Computers,” January 4, 2002.
117L.L. Looger, M.W. Dwyer, J.J. Smith, and H.W. Hellinga, “Computational Design of Receptor and Sensor Proteins with

Novel Functions,” Nature 423(6936):185-190, 2003.
118S.A. Benner, “Act Natural,” Nature 421:118, 2003.
119D. Endy, quoted in L. Clark, “Writing DNA: First Synthetic Biology Conference Held at MIT,” available at http://

web.mit.edu/be/news/synth_bio.htm.
120J.W. Szostak, D.P. Bartel, and P.L. Luisi, “Synthesizing Life,” Nature 409(6818):387-390, 2001.

288 CATALYZING INQUIRY

and neutralization, biomaterials synthesis, or any task that can be done by biochemistry. This is essen-
tially a form of nanotechnology, in which the already existing mechanisms of biology are employed to
operate on structures at the molecular scale.

However, all of these goals will require a different set of approaches and techniques than traditional
biology or any natural science provides. While synthetic biology employs many of the same techniques
and tools as systems biology—simulation, computer models of genetic networks, gene sequencing and
identification, massively parallel experiments—it is more of an engineering discipline than a purely
natural science.

8.4.2.1 An Engineering Approach to Building Living Systems

Although as a viewpoint it is not shared by all synthetic biology researchers, a common desire is to
invent an engineering discipline wherein biological systems are both the raw materials and the desired
end products. Engineering—particularly, electronics design—is an appropriate discipline to draw on,
because no other design field has experience with constructing systems composed of millions or even
billions of components. The engineering design approaches of abstraction, modularity, protocols, and
standards are necessary to manage the complexity of the biomolecular reality.

One important piece of establishing an engineering discipline of building living systems is to create
a library of well-defined, well-understood parts that can serve as components in larger designs. A team
led by Tom Knight and Drew Endy at the Massachusetts Institute of Technology (MIT) have created the
MIT Registry of Standard Biological Parts, also known as BioBricks, to meet this need.121 An entry in the
registry is a sequence of DNA that will code for a piece of genetic or metabolic mechanism. Each entry
has a set of inputs (given concentrations or transcription rates of certain molecules) and a similar set of
outputs.

The goal of such a library is to provide a set of components for would-be synthetic biology design-
ers, where the parts are interchangeable, components can be composed into larger assemblies and easily
be shared between separate researchers, and work can build on previous success by incorporating
existing components. Taken together, these attributes allow the designers to design in ignorance of the
underlying biological complexity.

These BioBricks contain DNA sequences at either end that are recognized by specific restriction
enzymes (i.e., enzymes that will cut DNA at a target sequence); thus, by adding the appropriate en-
zymes, a selected DNA section can be spliced. When two or more BioBricks sequences are ligated
together, the same restriction sequences will flank the ends of the DNA sequence, allowing the re-
searcher to treat the composite as a single component. BioBricks are in the early stages of research still,
and the final product will likely be substantially different in construction.

8.4.2.2 Cellular Logic Gates

Of particular interest to synthetic biologists are modifications to cellular machinery that simulate
the operations of classical electronic logic gates, such as AND, NOT, XOR, and so forth. These are
valuable for many reasons, including the fact that that their availability in biological systems would
mean that researchers could draw on a wide range of existing design experience from electronic circuits.
Such logic gates are especially powerful because they increase the ability of designers to build more
sophisticated control and reactivity into engineered biological systems. Finally, it is the hope of some
researchers that, just as modern electronic computers are composed of many millions of logical gates, a
new generation of biological computers could be composed of logic gates embedded in cells.

121T. Knight, “Idempotent Vector Design for Standard Assembly of Biobricks,” available at http://docs.syntheticbiology.org/
biobricks.pdf.

BIOLOGICAL INSPIRATION FOR COMPUTING 289

Researchers have begun to construct cellular logic gates in which signals are represented by protein
concentrations rather than electrical voltages, with the intent of developing primitives for digital com-
puting on a biological substrate and control of biological metabolic and genetic networks. In other
words, the logic gate is an abstraction of an underlying technology (based on silicon or on cellular
biology): once the abstraction is available, the designer can more or less forget about the underlying
technology.

A biological logic gate uses intracellular chemical mechanisms, such as the genetic regulatory
network, metabolic networks, or signaling systems to organize and control biological processes, just as
electronic mechanisms are used to control electronic processes.

Any logic gate is fundamentally nonlinear, in the sense that it must be able to produce two levels of
output (zero and one), depending on the input(s), in a manner that is highly insensitive to noise (hence,
subsequent computations based on the output of that gate are not sensitive to noise at the input). That
is, variations in the input levels that are smaller than the difference between 1 and 0 must not be
significant to the output of the gate.

Once a logic gate is created, all of the digital logic design principles and tools developed for use in
the electronic domain are in principle applicable to the construction of systems involving cellular logic.

A basic construct in digital logic is the inverting gate. Knight et al.122 describe a cellular inverter
consisting of an “output” protein Z and an “input” protein A that serves as a repressor for Z. Thus,
when A is present, the cellular inverter does not produce Z, and when A is not present, the inverter does
produce Z. One implementation of this inverter is a genetic unit with a binding site for A (an operator),
a site on the DNA at which RNA polymerase binds to start transcription of Z (a promoter), and a
structural gene that codes for the production of Z.

Protein Z is produced when RNA polymerase binds to the promoter site. However, if A binds to the
operator site, it prevents (represses) the binding of RNA polymerase to the promoter site. Thus, if
proteins have a finite lifetime, the concentration of Z varies inversely with the concentration of A. To
turn this behavior into digital form, it is necessary for the cellular inverter to provide low gain for
concentrations of A that are very high and very low, and high gain for intermediate concentrations of A.

Overall gain can be increased by providing multiple copies of the structural gene to be controlled by
a single operator binding site. Where high and low concentrations call for low gain, a combination of
multiple steps or associations into a single pathway (e.g., the mitogen-activated protein [MAP]-kinase
pathway, which consists of many switches that turn on successively) can be used to generate a much
sharper nonlinear response for the system as a whole than can be obtained from a single step.

Once this inverter is available, any logic gate can be constructed from combinations of inverters.123

For example, a NAND gate can be constructed from two inverters that have different input repressors
(e.g., A1 and A2) but the same output protein Z, which will be produced unless both A1 and A2 are
present. On the other hand, cellular logic and electronic logic differ in that cellular logic circuits are
more inherently asynchronous because signal propagation in cellular logic circuits is based on diffusion
of proteins, which makes both synchronization and high speed very hard to achieve. In addition,
because these diffusion processes are, by definition, not channeled in the same way that electrical
signals are confined to wires, a different protein must be used for each unique signal. Therefore, the
number of proteins required to implement a circuit is proportional to the complexity of the circuit.
Using different proteins means that their physical and chemical properties are different, thus complicat-
ing the design and requiring that explicit steps be taken to ensure that the signal ranges for coupled
gates are appropriately matched.

122T.F. Knight and G.J. Sussman, “Cellular Gate Technology,” Unconventional Models of Computation, C. Calude, J. Casti, and
M.J. Dinneen, eds., Springer, Auckland, New Zealand, 1998.

123In general, the availability of an inverter is not sufficient to compute all Boolean functions—an AND or an OR function is
also needed. In this particular case, however, the implementing technology permits inverters to be placed side by side to form
NOT-AND (NAND) gates.

290 CATALYZING INQUIRY

Cellular circuits capable of logic operations have been demonstrated. For example, Elowitz and
Leibler designed and implemented a three-gene network that produced oscillations in protein concen-
tration.124 The implemented network worked in only a fraction of the cells but did, in fact, oscillate.
Gardner et al. built a genetic latch that acted as a toggle between two different stable states of gene
expression.125 They demonstrated that different implementations of the general designs yielded more
or less stable switches with differing variances of concentration in the stable states. While both of these
applications demonstrate the ability to design a simple behavior into a cell, they also demonstrate the
difficulty in implementing these circuits experimentally and meeting design specifications.

In a step toward clinical application of this type of work,126 Benenson et al. developed a molecular
computer that could sense its immediate environment for the presence of several mRNA species of
disease-related genes associated with models of lung and prostate cancer and, upon detecting all of
these mRNA species, release a short DNA molecule modeled on an anticancer drug.127 Benenson et al.
suggest that this approach might be applied in vivo to biochemical sensing, genetic engineering, and
medical diagnosis and treatment.

8.4.2.3 Broader Views of Synthetic Biology

While cellular logic emphasizes the biological network as a substrate for digital computing, syn-
thetic biology can also use analog computing. To support analog computing, the biomolecular networks
involved would be sensitive to small changes in concentrations of substances of interest. For example, a
microbe altered by synthetic biology research might fluoresce with an intensity proportional to the
concentration of a pollutant. Such analog computing is in one sense closer to the actual functionality of
existing biomolecular networks (although of course there are many digital elements in such networks as
well), but is more alien to the existing engineering approaches borrowed from electronic systems.

For purposes of understanding existing biology, one approach inspired by synthetic biology is to
strip down and clean up genomes for maximal clarity and comprehensibility. For example, Drew
Endy’s group at MIT is cleaning the genome of the T7 bacteriophage, removing all unnecessary se-
quences, editing it so that genes are contiguous, and so on.128 Such an organism would be easier to
understand than the wild genotype, although such editing would obscure the evolutionary history of
the genome.

While synthetic biology stresses the power of hand-designing biological functions, evolution and
selection may have their place. Ron Weiss’s group at Princeton University has experimented with using
artificial selection as a way to achieve desired behavior.129 This approach can be combined with engi-
neering approaches, using evolution as a final stage to eliminate unstable or faulty designs.

The most extreme goal of synthetic biology is to generate entirely synthetic living cells. In principle,
these cells need have no chemical or structural similarity to natural cells. Indeed, achieving an under-
standing of the range of potential structures that can be considered living cells will represent a profound
step forward in biology. This goal is discussed further in Section 9.3.

124M.B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403(6767):335-338,
2000.

125T.S. Gardner, C.R. Cantor, and J.J. Collins, “Construction of a Genetic Toggle Switch in Escherichia coli,” Nature 403(6767):339-
342, 2000.

126Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, “An Autonomous Molecular Computer for Logical Control of
Gene Expression,” Nature 429(6990):423-429, 2004.

127In fact, the molecular computer—analogous to a process control computer—is designed to release a suppressor molecule
that inhibits action of the drug-like molecule.

128W.W. Gibbs, “Synthetic Life,” Scientific American 290(5):74-81, 2004.
129Y. Yokobayashi, C.H. Collins, J.R. Leadbetter, R. Weiss, and F.H. Arnold, “Evolutionary Design of Genetic Circuits and Cell-

Cell Communications,” Advances in Complex Systems, World Scientific, 2003.

BIOLOGICAL INSPIRATION FOR COMPUTING 291

8.4.2.4 Applications

While significant from a research view, synthetic biology also has practical applications. A strong
driver of this is the rapidly falling cost of custom DNA synthesis. For a few dollars per base pair in 2004,
laboratories can synthesize an arbitrary sequence of DNA;130 these prices are expected to fall by orders
of magnitude over the next decade. This not only has enabled research into constructing new genes, but
also offers the promise of cost-effective use of synthetic biology for commercial or industrial applica-
tions. Once a new lineage is created, of course, organisms can self-replicate in the appropriate environ-
ment, implying extremely low marginal cost.

Cells can be abstracted as chemical factories controlled by a host of process control computers. If the
programming of these process control computers can be manipulated, or new processes introduced, it
is—in principle—possible to co-opt the functional behavior of cells to perform tasks of engineering or
industrial interest. Natural biology creates cells that are capable of sensing and actuating functions: cells
can generate motion and light, for example, and respond to light or to the presence of chemicals in the
environment. Natural cells also produce a variety of enzymes and proteins with a variety of catalytic
and structural functions. If logic functions can be realized through cellular engineering, cellular com-
puting offers the promise of a seamlessly integrated approach to process control computing.

Synthetic or modified cells could lead to more rational biosynthesis of a variety of useful organic
compounds, including proteins, small molecules, or any substance that is too costly or difficult to
synthesize by ordinary bench chemistry. Some of this is already being done by cloning and gene
transfection (e.g., in yeast, plants, and many organisms), but synthetic biology would allow finer con-
trol, increased accuracy, and the ability to customize such processes in terms of quantity, precise mo-
lecular characteristics, and chemical pathways, even when the desired characteristics are not available
in nature.

8.4.2.5 Challenges

Synthetic biology brings the techniques and metaphor of electronic design to modify biomolecular
networks. However, in many ways, these networks do not behave like electronic networks, and the
nature of biological systems provides a number of challenges for synthetic biology researchers in at-
tempting to build reliable and predictable systems.

A key challenge is the stochastic and noisy nature of biological systems, especially at the molecular
scale. This noise can lead to random variation in the concentration of molecular species; systems that
require a precise concentration will likely work only intermittently. Additionally, as the mechanisms of
synthetic biology are embedded in the genome of living creatures, mutation or imperfect replication can
alter the inserted gene sequences, possibly disabling them or causing them to operate in unforeseen
ways.

Unlike actual electronic systems, the components of biomolecular networks are not connected by
physical wires that direct a signal to a precise location; the many molecules that are the inputs and
outputs of these processes share a physical space and can commingle throughout the cell. It is therefore
difficult to isolate signals and prevent cross-talk, in which signals intended for one recipient are re-
ceived by another. This physical location sharing also means that it is more difficult to control the timing
of the propagation of signals; again, unlike electronics, which typically rely on a clock to precisely
synchronize signals, these biomolecular signals are asynchronous and may arrive at varying speeds.
Finally, the signals may not arrive, or may arrive in an attenuated fashion.131

130One firm claims to be able to provide DNA sequences as long as 40,000 base pairs. See http://www.blueheronbio.com/
genemaker/synthesis.html. Others suggest that sequences in the 100 base pair range are the longest that can be synthesized
today without significant error in most of the resulting strands.

131R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali, “Genetic Circuit Building Blocks for
Cellular Computation, Communications, and Signal Processing,” Natural Computing 2:47-84, 2003.

292 CATALYZING INQUIRY

Aside from the technical challenges of achieving the desired results of synthetic biology projects,
there are significant concerns about the misuse or unintended consequences of even successful work. Of
major concern is the potential negative effect on the environment or the human population if modified
or created organisms became unmanaged, through escape from a laboratory, mutation, or any other
vector. This is especially a concern for organisms, such as those intended to detect or treat pollutants,
that are designed to work in the open environment. Such a release could occur as a result of an accident,
in which case the organism would have been intended to be safe but may enter an environment in
which it could pose a threat. More worrisome, an organism could be engineered using the techniques of
synthetic biology, but with malicious intent, and then released into the environment. The answer to
such concerns must include elements of government regulation, public health policy, public safety, and
security. Some researchers have suggested that synthetic biology needs an “Asilomar” conference, by
analogy to the conference in 1975 that established the ground rules for genetic engineering.132

Some technical approaches to answer these concerns are possible, however. These include “bar-
coding” engineered organisms, that is, including a defined marker sequence of DNA in their genome
(or in every inserted sequence) that uniquely identifies the modification or organism. More ambitiously,
modified organisms could be designed to use molecules incompatible with natural metabolic pathways,
such as right-handed amino acids or left-handed sugars.133

8.4.3 Nanofabrication and DNA Self-Assembly134

Nanofabrication draws from many fields, including computer science, biology, materials science,
mathematics, chemistry, bioengineering, biochemistry, and biophysics. Nanofabrication seeks to apply
modern biotechnological methodologies to produce new materials, analytic devices, self-assembling
structures, and computational components from both naturally occurring and artificially synthesized
biological molecules such as DNA, RNA, peptide nucleic acids (PNAs), proteins, and enzymes. Ex-
amples include the creation of sensors from DNA-binding proteins for the detection of trace amounts of
arsenic and lead in ground waters, the development of nonsocial DNA cascade switches that can be
used to identify single molecular events, and the fabrication of novel materials with unique optical,
electronic, rheological, and selective transport properties.

8.4.3.1 Rationale

Scientists and engineers wish to be able to controllably generate complex two- and three-dimen-
sional structures at scales from 10–6 to 10–9 meters; the resulting structures could have applications in
extremely high-density electronic circuit components, information storage, biomedical devices, or
nanoscale machines. Although some techniques exist today for constructing structures at such tiny
scales, such as optical lithography or individual atomic placement, in general they have drawbacks of
cost, time, or limited feature size.

Biotechnology offers many advantages over such techniques; in particular, the molecular precision
and specificity of the enzymatic biochemical pathways employed in biotechnology can often surpass
what can be accomplished by other chemical or physical methods. This is especially true in the area of
nanoscale self-assembly. Consider the following quote from M.J. Frechet, a chemistry professor at the

132D. Ferber, “Synthetic Biology: Microbes Made to Order,” Science 303(5655):158-161, 2004.
133O. Morton, “Life, Reinvented,” Wired 13.01, 2005.
134Section 8.4.3 draws heavily from T.H. LaBean, “Introduction to Self-Assembling DNA Nanostructures for Computation and

Nanofabrication,” World Scientific, CBGI, 2001; E. Winfree, “Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D
Assembly Experiments,” Journal of Biomolecular Structure and Dynamics 11(2):263-270, 2000; J.H. Reif, T.H. LaBean, and N.C.
Seeman, “Challenges and Applications for Self-Assembled DNA Nanostructures,” pp. 173-198 in Proceedings of the Sixth Interna-
tional Workshop on DNA-Based Computers, A. Condon and G. Rozenberg, eds., DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Springer-Verlag, Berlin, 2001.

BIOLOGICAL INSPIRATION FOR COMPUTING 293

University of California, Berkeley, who is a leader in the area of the synthesis and control of molecular
architectures on the nanometer scale:135

While most common organic molecules—“small molecules”—have sizes well below one nanometer, mac-
romolecules such as proteins or synthetic polymers have sizes in the nanometer range. Within this size
range, it is generally very difficult to control the 3-D structure of the molecules. Nature has learned how
to achieve this with proteins and DNA, but most other large synthetic macromolecules have little shape
persistence and precise functional group placement is difficult.

It is this fine control of nanoscale architecture exhibited in proteins, membranes, and nucleic acids
that researchers hope to harness with these applied biotechnologies, and the goal of research into “self-
assembly” is to develop techniques that can create structures at a molecular scale with a minimum of
manual intervention.

Self-assembly, also known as bottom-up construction, is a method of fabrication that relies on
chemicals forming larger structures without centralized or external control.136 Because of its ability to
run in parallel and at molecular scales, self-assembly is considered to be a potentially important tech-
nique for constructing submicron devices such as future electronic circuit components.

Since the role of DNA and related molecules in biology is to generate complicated three-dimen-
sional macromolecules such as proteins, DNA is a natural candidate for a system of self-assembly.
Researchers have investigated the potential of using DNA as a medium for self-assembling structures at
the nanometer scale. DNA has many characteristics that make it an excellent candidate for creating
arbitrary components: its three-dimensional shape is well understood (in contrast to most proteins,
which have poorly understood folding behavior); it is a digital, information-encoding molecule, allow-
ing for arbitrary customization of sequence; and it, with a set of easily accessible enzymes, is designed
for self-replication. Box 8.4 describes some key enabling technologies for DNA self-assembly.

One important focus of DNA self-assembly research draws on the theory of Wang tiles, a math-
ematical theory of tiling first laid out in 1961.137 Wang tiles are polygons with colored edges, and they
must be laid out in a pattern such that the edges of any two neighbors are the same color. Later, Berger
established three important properties of tiling: the question of whether a given set of tiles could cover
an area was undecidable; aperiodic sets of tiles could cover an area; and tiling could simulate a univer-
sal Turing machine,138 and thus was a full computational system.139

The core of DNA self-assembly is based on constructing special forms of DNA in which strands
cross over between multiple double helices, creating strong two-dimensional structures known as DNA
tiles. These tiles can be composed of a variety of combinations of spacing and interconnecting patterns;
the most common, called DX and TX tiles, contain two or three double helices (i.e., four or six strands),
although other structures are being investigated as well. Ends of the single strands, sequences of
unhybridized bases, stick out from the edges of the tile, and are known as “sticky ends” (or “pads”)
because of their ability to hybridize—stick to—other pads. Pads can be designed to attach to the sticky
ends of other tiles. By careful design of the base sequence of these pads, tiles can be designed to connect
only with specific other tiles that complement their base sequence.

The congruence between Wang tiles and DNA tiles with sticky ends is straightforward: the sticky
ends are designed so that they will bond only to complementary sticky ends on other tiles, just as Wang
tiles must be aligned by color of edge. The exciting result of combining Wang tiles with DNA tiles is that
DNA tiles have also been shown to be Turing-complete and thus a potential mechanism for computing.

135See http://www.cchem.berkeley.edu.
136See, for example, G.M. Whitesides et al., “Molecular Self-Assembly and Nanochemistry—A Chemical Strategy for the

Synthesis of Nanostructures,” Science 254(5036):1312-1319, 1991.
137H. Wang, “Proving Theorems by Pattern Recognition,” Bell System Technical Journal 40:1-41, 1961.
138A universal Turing machine is an abstract model of computer execution and storage with the ability to perform any

computation that any computer can perform.
139R. Berger, “The Undecidability of the Domino Problem,” Memoirs of the American Mathematical Society 66:1-72, 1966.

294 CATALYZING INQUIRY

Box 8.4
Enabling Technologies for DNA Self-replication

DNA Surface Arrays

Current DNA array technologies based on spotting techniques or photolithography extend down to pixel sizes
on the order of 1 micron.1 Examples of these arrays are those produced by Affymetrix and Nanogen.2 The
creation of DNA arrays on the nanometer scale require new types of non-photolithographic fabrication tech-
nologies, and a number of methods utilizing scanning probe microscopic techniques and self-assembled
systems have been reported.

DNA Microchannels

The separation and analysis of DNA by electrophoresis is one of the driving technologies of the entire genom-
ics area. The miniaturization of these analysis technologies with micron-sized fluidic channels has been
vigorously pursued with the end goal of creating “lab on a chip” devices. Examples are the products of Caliper
Technologies and Aclara Biosciences.3 The next generation of these devices will target the manipulation of
single DNA molecules through nanometer-sized channels. Attempts to make such channels both lithograph-
ically and with carbon nanotubes have been reported.

DNA Attachment and Enzyme Chemistry

Robust attachment of DNA, RNA, and PNA onto surfaces and nanostructures is an absolute necessity for the
construction of nanoscale objects—both to planar surfaces and to nanoparticles. The primary strategy is to use
modified oligonucleotides (e.g., thiol, amine-containing derivatives) that can be reacted either chemically or
enzymatically. The manipulation of DNA sequences by enzymatic activity has the potential to be a very
sequence-specific methodology for the fabrication of DNA nanostructures.4

DNA-modified Nanoparticles

Nanoscale objects that incorporate DNA molecules have been used successfully to create biosensor materi-
als. In one example, the DNA is attached to a nanometer-sized gold particle, and then the nucleic acid is used
to provide biological functionality,while the optical properties of the gold nanoparticles are used to report
particle-particle interactions.5 Semiconductor particles can also be used, and recently the attachment of DNA
to dendrimers or polypeptide nanoscale particles has been exploited for both sensing and drug delivery.6

DNA Code Design

To successfully self-assemble nucleic acid nanostructures by hybridization, the DNA sequences (often re-
ferred to as DNA words) must be “well behaved” (i.e., they must not interact with incorrect sequences). The
creation of large sets of well behaved DNA molecules is important not only for DNA materials research by
also for large-scale DNA array analysis. An example of the work in this area is the DNA word design by
Professor Anne Condon at the University of British Columbia.7

DNA and RNA Secondary Structure

The secondary structure of nucleic acid objects beyond simple DNA Watson-Crick duplex formation, whether
they are simple single strands of RNA or the complex multiple junctions of Ned Seeman, have to be under-
stood by a combination of experimental methods and computer modeling. The incorporation of nucleic acid
structures that include mismatches (e.g., bulges, hairpins) will most likely be an important piece of the self-
assembly process of DNA nanoscale objects.8

BIOLOGICAL INSPIRATION FOR COMPUTING 295

Given a set of tiles with the appropriate pads, any arbitrary pattern of tiles can be created. Simple,
periodic patterns have been successfully fabricated and formed from a variety of different DNA tiles,140

and large superstructures involving these systems and containing tens of thousands of tiles have been
observed. However, nonperiodic structures are more generally useful (e.g., for circuit layouts), and
larger tile sets with more complicated association rules are currently being developed for the assembly
of such patterns.

The design of the pads is a critical element of DNA self-assembly. Since the sticky ends are com-
posed of a sequence of bases, the set of different possible sticky ends is very large. However, there are
physical constraints that restrict the sequences chosen; pads and their complements should be suffi-
ciently different from other matched pairs, as to avoid unintended hybridization; they should avoid
palindromes, and so on.141 Most importantly, the entire set of pads must be designed so as to produce
the desired overall assembly.

The process of DNA self-assembly requires two steps: the first is the creation of the tiles, by mixing
input strands of DNA together; then, the tiles are placed in solution and the temperature is lowered
slowly until the tiles’ pads connect and the overall structure takes form. This process of annealing can
take from several seconds to hours.

Multistrand DNA Nanostructures and Arrays

The creation of three-dimensional objects with multistrand DNA structures has been pursued for many years
by researchers such as Ned Seeman at New York University. Computer scientists such as Erik Winfree at the
California Institute of Technology and John Reif at Duke University have been using the assembly of these
nanostructures to create mosaics and tile arrays on surfaces. The application of computer science concepts to
“program” the self-assembly of materials is the eventual goal. Since single-stranded RNA forms many biolog-
ically functional structures, researchers are also pursuing the use of RNA as well as DNA for these self-
assembling systems.9

1A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P.A. Fodor, “Light-generated Oligonucleotide Arrays for Rapid DNA
Sequence Analysis,” Proceedings of the National Academy of Sciences 91(11):5022-5026, 1994.

2See http://www.affymetrix.com and http://www.nanogen.com.
3See http://www.caliper.com; and http://www.alcara.com.
4A.G. Frutos, A.E. Condon, L.M. Smith, and R.M. Corn, “Enzymatic Ligation Reactions of DNA ‘Words’ on Surfaces for DNA Computing,”

Journal of the American Chemical Society 120 (40):10277-10282, 1998. Also, Q. Liu, L. Wang. A.G. Frutos, A.E. Condon, R.M. Corn, and
L.M. Smith, “DNA Computing on Surfaces,” Nature 403:175-179, 2000.

5C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, “A DNA-based Method for Rationally Assembling Nanoparticles into Macro-
scopic Materials,” Nature 382(6592):607-609, 1996; T.A. Taton, C.A. Mirkin, and R.L. Letsinger, “Scanometric DNA Array Detection with
Nanoparticle Probes,” Science 289(5485):1757-1760, 2000.

6F. Zeng and S.C. Zimmerman, “Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly,” Chemical
Review 97(5):1681-1713, 1997; M.S. Shchepinov, K.U. Mir, J.K. Elder, M.D. Frank-Kamenetskii, and E.M. Southern, “Oligonucleotide
Dendrimers: Stable Nano-structures,” Nucleic Acids Research 27(15):3035-3041, 1999.

7A. Maranthe, A.E. Condon, and R.M. Corn, “On Combinatorial Word Design,” DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 54:75-90, 2000.

8C. Mao, T. LaBean, J.H. Reif, and N.C. Seeman, “Logical Computation Using Algorithmic Self-Assembly of DNA Triple Crossover
Molecules,” Nature 407(6803):493-496, 2000.

9E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman, “Design and Self-Assembly of Two-Dimensional DNA Crystals,” Nature
394(6693):539-544, 1998.

140C. Mao, “The Emergence of Complexity: Lessons from DNA,” PLoS Biology 2(12):e431, 2004, available at http://www.
plosbiology.org/archive/1545-7885/2/12/pdf/10.1371_journal.pbio.0020431-S.pdf.

141T.H. LaBean, “Introduction to Self-Assembling DNA Nanostructures for Computation and Nanofabrication,” Computa-
tional Biology and Genome Informatics, J.T.L. Wang et al., eds., World Scientific, Singapore, 2003.

296 CATALYZING INQUIRY

Once the structure is completed, a number of methods can be used to obtain the output if necessary.
The first is to image the resulting structure, for example, with an atomic force microscope or transmis-
sion electron microscope. In some cases, the structure by itself is visible; in others, tiles can be made
distinguishable by reflectivity or the presence of extra atoms such as gold or fluorescents possibly
added to a turn of the strand that extends out of the plane. Second, with the use of certain tiles, a
“reporter” strand of DNA can be included in such a way that when all the tiles are connected, the single
reporter strand winds through all of them. Once the tiling structure completes assembly, that strand can
then be isolated and sequenced by PCR or another technique to determine the ordering of the tiles.

8.4.3.2 Applications

DNA self-assembly has a wide range of potential applications, drawing on its ability to create
arbitrary, programmable structures. Self-assembled structures can encode data (especially array data
such as images); act as a layout foundation for nanoscale structures such as circuits; work as part of a
molecular machine; and perform computations.

Since a tiled assembly can be programmed to form in an arbitrary pattern, it is potentially a useful
way to store data or designs. In one dimension, this can be accomplished by synthesizing a sequence of
DNA bases that encode the data; then, in the self-assembly step, tiles join to the input strand, extending
the encoding into the second dimension. This two-dimensional striped assembly can be inspected
visually using microscopy, enabling a useful way to read out data. To store two-dimensional data, the
input strand is designed with a number of hairpin turns so that the strand weaves across every other
line of the assembly; the tiles then attach between adjacent turns of the input strand. The resulting
assembly can encode any two-dimensional pattern, and in principle this approach could be extended to
three dimensions.

This approach can also be used to create a foundation for nanometer-scale electronic circuits. For
this application, the DNA tiles would contain some extra materials, such as tiny gold beads, possibly in
a strand fragment that extended above the plain of the tile. After the tiles have formed the desired
configuration, chemical deposition would be used to coat the gold beads, increasing their size, until
they merge and form a wire. Box 8.5 describes a fantasy regarding a potential application to circuit
fabrication.

DNA has been used as a scaffold for the fabrication of nanoscale devices.142 In crystalline form,
DNA has enabled the precise and closely spaced placement of gold nanoparticles (at distances of 10-20
angstroms). Gold nanoparticles might function as a single-electron storage device for one bit, and other
nanoparticles might be able to hold information as well (e.g., in the form of electric charge or spin). At
one bit per nanoparticle, the information density would be on the order of 1013 to 1014 bits per square
centimeter.

Computation through self-assembly is an attractive alternative to traditional exhaustive search DNA
computation. Although traditional DNA computation, such as performed by Adleman, required a linear
number of steps with the input size, in algorithmic self-assembly, the computation occurs in a single step.
In current experiments with self-assembly, a series of tiles are provided as input, and computation tiles
and output tiles form into position around the input. For example, in an experiment that used DNA tiles
to calculate cumulative XOR, input tiles represented the Boolean values of four inputs, while output tiles,
designed such that a tile representing the value 0 would connect to two identical inputs, and a tile
representing the value of 1 would connect to two dissimilar inputs, formed alongside the input tiles. Then,
the reporter strand is ligated, extracted, and amplified to read out the answer.143

142S. Xiao, F. Liu, A.E. Rosen, J.F. Hainfeld, N.C. Seeman, K. Musier-Forsyth, and R.A. Kiehl, “Assembly of Nanoparticle
Arrays by DNA Scaffolding,” Journal of Nanoparticle Research 4:313-317, 2002.

143C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman, “Logical Computation Using Algorithmic Self-assembly of DNA Triple-
crossover Molecules,” Nature 407:493-496, 2000.

BIOLOGICAL INSPIRATION FOR COMPUTING 297

This approach has two main drawbacks: the speed of individual assemblies, and the error rate.
First, the DNA reactions can take minutes or hours, and so any individual computation by self-assem-
bly will likely be substantially slower than using a traditional computer. The potential for self-assembly
is that, like exhaustive DNA computation, it can occur in parallel, with a parallelism factor as high as
1018. In the XOR experiment, researchers observed an error rate of 2 to 5 percent. Certainly, this rate may
be lowered as experience is gained in designing laboratory procedures and assembly methods; how-
ever, the error rate is likely to remain higher than that for electronic computers. For certain classes of
problems, an ultraparallel though unreliable approach may be an effective way to compute a solution.

8.4.3.3 Prospects

So far, DNA self-assembly has been demonstrated successfully in the laboratory, constructing rela-
tively simple patterns (e.g., alternating bands, or the encoding of a binary string) that are visible through
microscopy. It has also been used successfully for simple computations such as counting, XOR, and
addition.

Moving forward, laboratory techniques must improve in sophistication to handle the more complex
assemblies and reactions that will accompany large-scale computations or designs. Along with progress
in the lab, further theoretical developments are possible in developing algorithms for constructing
arbitrary aperiodic patterns.

Although so far DNA self-assembly has used only naturally occurring variants of DNA, a possible
improvement is to employ alternative chemistries, such as peptide nucleic acid, an artificial form of
DNA in which the backbone has peptide links in place of the phosphate that occurs in natural DNA.

Box 8.5
A Fantasy of Circuit Fabrication

Consider:

. . . a fantasy of nanoscale circuit fabrication in a future technology. Imagine a family of primitive molecular-
electronic components, such as conductors, diodes, and switches, is available from generic parts suppliers.
Perhaps we have bottles of these common components in the freezer. . . . Suppose we have a circuit to imple-
ment. The first stage of the construction begins with the circuit and builds a layout incorporating the sizes of the
components and the ways they might interact. Next, the layout is analyzed to determine how to construct a
scaffold. Each branch is compiled into a collagen strut that links only to its selected targets. The struts are labeled
so that they bind only to the appropriate electrical component molecules. For each strut, the DNA sequence to
make that kind of strut is assembled, and a protocol is produced to insert the DNA into an appropriate cell. These
various custom parts are then synthesized by the transformed cells.

Finally, we create an appropriate mixture of these custom scaffold parts and generic electrical parts. Specially
programmed worker cells are added to the mixture to implement the circuit edifice we want. The worker cells
have complex programs, developed through amorphous computing technology. The programs control how the
workers perform their particular task of assembling the appropriate components in the appropriate patterns. With
a bit of sugar (to pay for their labor), the workers construct copies of our circuit we then collect, test, and package
for use.

SOURCE: H. Abelson, R. Weiss, D. Allen, D. Coore, C. Hanson, G. Homsy, T.F. Knight, Jr., et al., “Amorphous Computing,” Commu-
nications of the ACM 43(5):74-82, 2000.

298 CATALYZING INQUIRY

Also, a wide variety of potential geometries exists for crossover tiles. There have been experiments with
a so-called 4 × 4 tile, where the sticky ends extend at right angles.

DNA also has the property that its length scale can bridge the gap between molecular systems and
microelectronics components. If the issues of surface attachment chemistry, secondary structure, and
self-assembly can be worked out, hybrid DNA-silicon nanostructures may be feasible, and a DNA-
controlled field effect transistor is one possible choice for a first structure to fabricate. Some other
specific near-term objectives for research in DNA self-assembly include the creation of highly regular
DNA nanoparticles and the creation of programmable DNA self-assembling systems. For the cell regu-
latory systems and enzymatic pathways, some specific near-term objectives include the creation of sets
of coupled protein-DNA interactions or genes, the simulation and emulation of kinase phosphor-relay
systems, and the creation of networks of interconnecting nanostructures with unique enzyme commu-
nication paths.

To be adopted successfully as an industrial technology, however, DNA self-assembly faces chal-
lenges similar to solution-based exhaustive search DNA computing: a high error rate, the need to run
new laboratory procedures for each computation, and the increasing capability of non-DNA technolo-
gies to operate at nanoscales. For example, while it is likely true that current lithography technology has
limits, various improvements already demonstrated in laboratories such as extreme ultraviolet lithogra-
phy, halo implants, and laser-assisted direct imprint techniques can achieve feature sizes of 10 nm,
comparable to a single DNA tile. Some other targets might be the ability to fabricate biopolymers such
as oligonucleotides and polypeptides as long as 10,000 bases for the creation of molecular control
systems and the creation of biochemical and hybrid biomolecular-inorganic systems that can be self-
assembled into larger nanoscale objects in a programmable fashion.

8.4.3.4 Hybrid Systems

A hybrid system is one that is assembled from both biological and nonbiological parts. Hybrid
systems have many applications, including biosensors, measurement devices, mechanisms, and pros-
thetic devices.

Biological sensors, or biosensors, probe the environment for specific molecules or targets through
chemical, biochemical, or biological assays. Such devices consist of a biological detection element at-
tuned to the target and a transduction mechanism to translate a detection event into a quantifiable
electronic or optical signal for analysis. For example, antennae from a living silkworm moth have been
used as an olfactory sensor connected to a robot.144 Such antennae are much more sensitive than
artificial gas sensors, in this case to moth pheromones. A mobile robot, so equipped, has been shown to
be able to follow a pheromone plume much as a male silkworm moth does. When a silkworm moth’s
antennae are stimulated by the presence of pheromones, the moth’s nervous system activities alternate
between active and inactive states in a pattern consistent with the activity pattern of neck motor neu-
rons that guide the moth’s direction of motion. In the robot, the silkworm moth’s antennae are con-
nected to an electrical interface, and a signal generated by the right (left) antenna results in a “turn
right” (“turn left”) command. This suggests that such signals may play an important role in controlling
the pheromone-oriented zigzag walking of a silkworm moth.

144Y. Kuwana et al., “Synthesis of the Pheromone-oriented Behaviour of Silkworm Moths by a Mobile Robot with Moth
Antennae as Pheromone Sensors,” Biosensors and Bioelectronics 14:195-202, 1999.

