
Comparison of Fault Classes in

Specification-Based Testing

Vadim Okun a,b Paul E. Black a Yaacov Yesha b

aNational Institute of Standards and Technology, Gaithersburg, MD 20899, USA

bUniversity of Maryland Baltimore County, Baltimore, MD 21250, USA

Abstract

Our results extending Kuhn’s fault class hierarchy provide a justification for the
focus of fault-based testing strategies on detecting particular faults and ignoring
others. We develop a novel analytical technique which allows us to elegantly prove
that the hierarchy applies to arbitrary expressions, not just those in disjunctive
normal form. We also use the technique to extend the hierarchy to a wider range
of fault classes. To demonstrate broad applicability, we compare faults in practical
situations and analyze previous results. In particular, using our technique, we show
that the basic meaningful impact strategy of Weyuker et al. tests for stuck-at faults,
not just variable negation faults.

Key words: Fault-based testing; Specification-based testing; Kuhn’s hierarchy;
Fault classes

1 Introduction

Fault-based testing focuses on generating tests to detect faults in softwa-
re [26,15,5,25]. It can often guarantee the absence of particular faults, which
is an important advantage over other testing approaches. Since testing for all
conceivable faults is impossible, fault based testing targets prespecified classes
of faults. Experience shows that resulting tests are also effective for detecting
faults in other classes [1].

Is there an analytical foundation to expect such effectiveness? Kuhn’s hierar-
chy [12] of fault classes implies that some faults may be skipped during testing.

Email addresses: vokun1@cs.umbc.edu (Vadim Okun), paul.black@nist.gov
(Paul E. Black), yayesha@cs.umbc.edu (Yaacov Yesha).

Preprint submitted to Elsevier Science 2 April 2004

Previous results [12,23,1,13] were proved for specifications in disjunctive nor-
mal form.

We are able to remove the restriction to disjunctive normal form. This is signif-
icant because specifications are seldom written entirely in disjunctive normal
form, yet some testing literature pertains solely to normalized specifications.
However, fault-based testing from normalized specifications may miss faults
which would have been detected if testing were done from the original speci-
fications [24,1]. So having the option of testing from the original specification
is better in some cases and is never worse.

Kuhn developed the hierarchy based on detection conditions for fault classes.
We apply the RELAY model [21] to refine Kuhn’s approach. In particular, we
define the detection condition as the conjunction of origination and propaga-
tion conditions. This enables us to prove relationships between fault classes
for arbitrary predicates instead of being restricted to disjunctive normal form.
We also extend the hierarchy to include additional fault classes. Our analysis
is not restricted to Boolean specifications. In particular, some faults occurring
in relational expressions are considered.

The use of fault conditions enables us to analyze existing testing methods. For
instance, we find that the basic meaningful impact strategy [24] is stronger in
that it tests for stuck-at faults and not variable negation faults as was claimed
by the authors. The strategy happens to also detect variable negation faults
because those are “easier to detect” than the stuck-at faults.

The remainder of this introduction presents definitions and notation, and de-
scribes relevant fault classes and our model of faults.

1.1 Definitions and Notation

In this paper, a test case is an assignment of values to variables in an expres-
sion.

The following notation is used throughout the paper. A horizontal line above
an operand represents negation. ∨ and ∧ represent disjunction and conjunc-
tion, respectively. Occasionally, when clear from the context, ∧ is omitted. ⊕
and ↔ stand for exclusive-or and equivalence, respectively. → represents im-
plication. Among the Boolean operators, negation has the highest precedence,
and ∧ has higher precedence than other binary operators. 1 and 0 denote
“true” and “false,” respectively.

2

A clause 1 is either a Boolean variable or a relational expression, possibly
negated. A relational expression is of the form E op F , where E and F are
arithmetic expressions and op is one of <,≤,=, 6=, >, or ≥.

A compound predicate consists of one or more binary Boolean operators and
their operands, and possibly negation operators and parenthesis.

A predicate 2 is either a clause or a compound predicate.

For example, x < 5 is a clause, and ((x < 5)∨(y > x))∧(f ∨ g) is a compound
predicate. If a clause appears more than once in a predicate, we consider each
occurrence to be a distinct clause. This affects our definition of fault classes
as explained in the next section.

A Boolean formula consists of Boolean variables and possibly Boolean oper-
ators and parenthesis. In other words, a Boolean formula is a predicate with
no relational expressions.

1.2 Fault Classes

Faults may involve Boolean variables, Boolean operators, relational operators,
or arithmetic expressions. We first list faults that involve a clause, then later
list faults that affect compound predicates. In the following fault classes, a
clause is implemented incorrectly as a (possibly empty) predicate.

• Clause Reference Fault (CRF) - replace a clause c with another clause,
d. For example, the specification (x < 5) ∨ (y > 3) is implemented as
(x < 4) ∨ (y > 3).

• Clause Negation Fault (CNF) - replace a clause c by its negation c̄.
• Clause Insertion Fault (CIF) - insert a clause d, that is, replace a clause c

by c ◦ d, where d is another clause, ◦ is either conjunction or disjunction.
There are two subclasses of this class.
· Clause Conjunction Fault (CCF) - replace a clause c by c ∧ d.
· Clause Disjunction Fault (CDF) - replace a clause c by c ∨ d.

• Relational Operator Reference Fault (RRF) - replace a relational operator
by any other relational operator. Note that replacing a relational operator
with its opposite is the same as negating the whole relational expression.

• Off-By-1 Fault (OFF) - in a relational expression E1operatorE2, replace the
arithmetic expression E2 with E2 + 1 and E2 − 1.

• Stuck-At Fault (STF) - stuck-at-0 replaces a clause with 0, stuck-at-1 re-
places it with 1.

1 The terms condition or simple predicate are also used in the literature.
2 Sometimes we use the term expression.

3

• Missing Clause Fault (MCF) - a clause is omitted during implementation.
For instance, the specification c ∧ d ∨ e is implemented as c ∨ e.

Boolean formulas are often used to formally specify real-world systems [14].
For this reason, testing based on Boolean specifications is often studied ex-
clusively [24,2]. The results in this paper can easily be adapted to Boolean
specifications since many fault classes in Boolean formulas are special cases
of the fault classes listed above. In particular, in case of Boolean specifica-
tions or when only Boolean variables are involved in the substitution, CRF,
CNF, and CIF become variable reference fault (VRF), variable negation fault
(VNF), and variable insertion fault (VIF), respectively. VRF, RRF, OFF, and
STF are subclasses of CRF. CRF also includes some unlikely faults such as
replacing a Boolean variable with a relational expression. For this reason, we
consider its subclasses separately. CNF represents realistic faults: a relational
expression may be implemented as its negation. Whenever a proof is given for
CNF, a similar proof can be given for VNF.

Most of the fault classes involve replacing a clause. Even though the same
clause may occur more than once in an expression, a single fault is a change
to just one of the occurrences, not to all of them simultaneously. This approach
to faults is also taken by [23] and [13]. These fault classes correspond closely to
faults that may occur in software specifications, where one occurrence of a clau-
se or a variable may be replaced as a result of an error while another occurrence
is correct. This is in contrast with hardware design, where, for example, a
stuck-at-0 fault on a line of a logic circuit results in all occurrences of the
corresponding clause being replaced with 0. So in this paper, whenever we
refer to a clause (variable) in an expression, we mean a single clause (variable)
occurrence.

Some additional fault classes, where a predicate (possibly compound) is im-
plemented incorrectly, are as follows.

• Expression Negation Fault (ENF) - replace an expression X by X.
• Missing Expression Fault (MEF) - a predicate is omitted during implemen-

tation. MEF includes both where a clause is missing and where a compound
predicate is missing.

• Logical Operator Reference Fault (LRF) - a Boolean operator is replaced
by another operator, e.g., x ∧ y is replaced by x ∨ y.

• Associative Shift Fault (ASF) - change the associativity of terms. For ex-
ample, replace (ab) ∨ c with a(b ∨ c).

The rest of this paper is organized as follows. Section 2 presents background,
including Kuhn’s fault hierarchy. Section 3 defines the fault conditions and
explains our analytical approach. Section 4, the heart of the paper, uses the
approach to prove the fault class hierarchy. Section 5 applies the fault condi-

4

tions and fault hierarchy to compare several specific fault classes commonly
occurring in predicates, consider some previous empirical observations, and
analyze the basic meaningful impact strategy of Weyuker et al. Section 6
summarizes the results and presents conclusions.

2 Related Work

Mutation analysis [5] is a fault-based testing technique that uses “mutation
operators” to introduce small changes, or mutations, into the program or spec-
ification, producing a mutant, and then chooses a test case to distinguish the
mutant from the original. For mutation testing to be practical, mutation op-
erators model a limited number of typical single fault classes. A fault is called
simple or single if the faulty version differs from the original by exactly one
syntactic change.

Mutation testing is one of a myriad of testing criteria proposed in the litera-
ture. A testing criterion [8] specifies what properties of a program or specifi-
cation must be exercised to constitute a thorough test. Criteria for generating
tests from state-based specifications are presented in [19]. Subsumption rela-
tionship is a widely accepted method for comparing different testing criteria.
A criterion C1 is said to subsume another criterion C2 if and only if any test
set that satisfies C1 also satisfies C2. A subsumption hierarchy for several path
selection criteria was developed in [4]. Many criteria based on logical control
flow through a program [3] are subsumed by mutation testing [18].

There is an extensive body of research that studied conditions for detecting
a fault from the program output [7,6,16,21,25,10]. The RELAY model [21]
defines the revealing conditions under which a fault is detected. First, a po-
tential error originates at the smallest subexpression containing the fault, that
is, the subexpression evaluates incorrectly. Then the potential error transfers
through computations and information flow. Finally, a failure is revealed in
the outputs. The model provides a mechanism for developing failure condi-
tions that guarantee fault detection. In particular, the transfer conditions for
Boolean operators are defined. The transfer condition guarantees that a po-
tential failure is not masked out by the computation of a parent operator. We
apply the RELAY model to construct the detection conditions for predicates.

2.1 Kuhn’s Fault Hierarchy

Kuhn [11] invented the technique of predicate differences for analyzing the
effects of faults in specifications. Briefly, it is as follows. Let S denote a spec-

5

ification predicate hypothesized to be correct and S ′ a faulty version of it.
A test detects the fault if and only if it causes S ′ to evaluate to a different
value than S, formally when S⊕S ′. The predicate S⊕S ′ is referred to as the
detection condition for the fault. The predicate difference is a generalization
of the Boolean difference [20] used in hardware testing.

Several researchers [12,23,1,13] used Kuhn’s technique to compare fault classes
in Boolean specifications restricted to disjunctive normal form, that is, a dis-
junction of terms. A term is a conjunction of literals, a literal is an occurrence
of a variable or its negation.

Kuhn [12] compared the detection conditions for variable reference fault (VRF),
variable negation fault (VNF), and expression negation fault (ENF) and proved
that they form a hierarchy with respect to detectability. That is, any test that
detects a VRF for some variable also detects a VNF for the same variable,
and any test that detects a VNF for some variable also detects an ENF for the
expression in which the variable occurs. Tsuchiya and Kikuno [23] proved that
tests that detect missing clause fault (MCF) will also detect VNF. Tsuchiya
and Kikuno also showed that tests that detect MCF may not be able to detect
VRF, and vice versa. They also showed that a test set that detects MCFs for
single variable terms, as well as VRFs, is sufficient to detect both VRFs and
MCFs.

Lau and Yu [13] extended the hierarchy to include several other fault classes
that can occur in Boolean specifications. They considered literal insertion fault
(LIF), literal reference fault (LRF), literal and term omission faults (LOF and
TOF), literal, term, and expression negation faults (LNF, TNF, and ENF).
They concluded that a test case that detects LIF can also detect LRF and
TOF, a test case that detects either LRF, TOF, or LOF can also detect LNF,
a test case that detects LNF can also detect TNF, a test case that detects
TNF can also detect ENF.

All these results apply to Boolean specifications in disjunctive normal form.
This paper studies more general fault classes. For instance, the literal insertion
fault in [13] is a special case of the clause conjunction fault when specifications
are restricted to disjunctive normal form.

Detection condition is an effective and concise analytical tool for studying
faults in formal specifications. It can be thought of as a formalization (in the
case of predicates) of “necessity condition” [6] which is described as follows:
“for a test to differentiate a mutant program from the original program, the
execution state of the mutant program must differ from that of the original
program after some execution of the mutated statement”. We refine the fault
detection conditions.

6

3 Fault Conditions

Since we use the following identities throughout the rest of the paper, we
present them here together. For any predicates f , g, h:

f ∧ h⊕ g ∧ h=(f ⊕ g) ∧ h (1)

f ∧ h⊕ h= f̄ ∧ h (2)

(f ∨ h)⊕ (g ∨ h)= (f ⊕ g) ∧ h̄ (3)

(f ∨ h)⊕ h= f ∧ h̄ (4)

f ⊕ h⊕ f̄ ⊕ h=1 (5)

(f ∨ g)⊕ (f ∧ g)= f ⊕ g (6)

((f ∧ g)→ g)= 1 (7)

Identities (2) and (4) follow from (1) and (3), respectively. With these identities
at hand, we can analyze fault conditions for various fault classes.

3.1 Origination Condition

Suppose X is the smallest subpredicate of a specification S corresponding to
a fault, that is, X is implemented as a predicate E. Then the origination

condition for the fault is X ⊕ E, in other words, E evaluates to a different
value than X.

For example, a specification S = (x < 5) ∨ a may be implemented incorrectly
as (x < 4) ∨ a, that is, the implementation contains an Off-by-1 fault. Then,
the smallest subpredicate of S corresponding to the fault is the clause (x < 5),
and the origination condition is (x < 5)⊕(x < 4) or x = 4. On the other hand,
suppose that S is implemented as (x < 5)∧a, a logical operator reference fault.
Then, the smallest subpredicate of S corresponding to the fault is S itself, and
the origination condition is ((x < 5) ∨ a)⊕ ((x < 5) ∧ a) or (x < 5)⊕ a.

3.2 Propagation Condition

In what cases will the value of a predicate be affected if one part is faulty?
Concretely, if R is some predicate such as P ∧Q, P ∨Q, or P ⊕Q, what value
of Q will let a change in the value of P lead to a change in the value of R?
For completeness, we include the case of R = P . Formally, let R = op(P, [Q])
denote either R = P or R = P ◦Q, where ◦ is a binary Boolean operator.

7

The propagation condition guarantees that the value of R will change if the
value of P changes. Denote the propagation condition for operator op as

Q̂ = op(1, [Q])⊕ op(0, [Q])

An alternate but equivalent definition of Q̂ is

Q̂ = op(P, [Q])⊕ op(P , [Q])

For instance, when R = P ∨Q, the propagation condition is

(P ∨Q)⊕ (P ∨Q) = Q by (3)

Using identities (1), (3) and (5), the propagation conditions for fundamental
operators are as follows:

Q̂ =

1 if R = P or R = P ⊕Q

Q if R = P ∧Q

Q if R = P ∨Q

Propagation conditions for the other binary Boolean operators fall into one of
the three categories above, since they can be expressed using the fundamental
operators without duplicating the clause occurrences involved. That is, P →

Q = P ∨Q, P ↔ Q = P ⊕Q.

More generally, we can define the propagation condition for a subpredicate X

of some larger predicate. It guarantees that a fault in X is not masked by the
computation of parent expressions. In other words, it is the condition under
which the value of specification S will change if the value of its subpredicate
X changes.

Let P0, . . . , Pn be predicates, such that S = P0, Pi−1 = opi(Pi, [Qi]), i = 1 . . . n,
X = Pn. The series of predicates Pi can be seen as the path in the expression
tree of S from the root to X. Each Qi is the subtree on the branch which is
not on the path. The propagation condition for a fault in X is the conjunction
of the propagation conditions for each opi:

dS

dX
= Q̂1 ∧ Q̂2 ∧ · · · ∧ Q̂n

Suppose a specification

F = (x ↔ y)w ∨ (vzw) (8)

8

Table 1
Computing the propagation condition for clause z in (x ↔ y)w ∨ (vzw).

i Pi Qi opi Q̂i

1 vzw (x ↔ y)w Q1 ∨ P1 Q1

2 vzw none P2 1

3 z vw P3 ∧ Q3 Q3

has a variable reference fault where z is replaced by x. The propagation con-
dition for a fault in z can be computed from Table 1. There, i is the index in
Pi. It follows that

dF

dz
= Q̂1Q̂2Q̂3 = Q1 ∧Q3

=(x ↔ y)w ∧ vw = (x ↔ y ∨ w)vw = (x⊕ y)vw

There may be more than one occurrence of the same clause in a predicate,

for instance, variable w occurs twice in (8). This makes the notation
dF

dw
ambiguous. However, the concept of clause replacement is unambiguous since
each occurrence is considered to be a distinct clause and a fault is a change
to just one of the occurrences. Rather than use an awkward but unambiguous
notation, we trust that the reader will understand that the claims made in
this paper have to do with replacing one clause at a time, never several clauses
simultaneously.

It turns out that, given two predicates R and P on a path in the expression
tree of specification S, such that R is an ancestor of P on the path, if the
propagation condition for P is satisfied, then the propagation condition for R

is guaranteed to be satisfied. This is stated formally as Lemma 1.

Lemma 1 Let R be a subpredicate of predicate S. If P is a subpredicate of

R, then

dS

dP
→

dS

dR
.

Proof. Let P0, . . . , Pk, . . . , Pn, 0 < k < n, be predicates, such that S = P0,
Pi−1 = opi(Pi, [Qi]), i = 1 . . . n, R = Pk, P = Pn. Then

dS

dP
= Q̂1 ∧ · · · ∧ Q̂k ∧ Q̂k+1 ∧ · · · ∧ Q̂n

dS

dR
= Q̂1 ∧ · · · ∧ Q̂k

9

In view of (7), the Lemma holds. Q.E.D.

3.3 Detection Condition

The notation SX
E signifies that a subpredicate X of specification S is replaced

by a predicate E. Kuhn’s original definition [12] of the detection condition for
the fault is dSX

E = S ⊕ SX
E , in other words, SX

E evaluates to a different value
than S. For example, if E = X̄, an expression negation fault, the detection
condition is dSX

X
= S ⊕ SX

X
.

For example, the detection condition for the fault where z is replaced by x

in (8) is

dF z
x = ((x ↔ y)w ∨ (vzw))⊕ ((x ↔ y)w ∨ (vxw))

It follows that, for instance, a test case (x, y, z, v, w) = (1, 0, 0, 1, 1) will detect
the fault because this assignment of values to variables satisfies dF z

x.

This illustrates a limitation of this definition: the formula is not easy to ma-
nipulate, especially when one would like to prove that a property of detection
conditions holds for any specification. Proofs in [12] for the restricted case of
disjunctive normal form involve manipulating large formulas. Our reformula-
tion, although semantically equivalent to Kuhn’s definition, allows for more
generally applicable, yet more succinct, proofs.

We define the detection condition as a conjunction of origination condition
and propagation condition:

dSX
E = (X ⊕ E) ∧

dS

dX
(9)

For example, the detection condition for the fault where z is replaced by x

in (8) is

dF z
x = (z ⊕ x) ∧

dF

dz
= (z ⊕ x)(x⊕ y)vw

4 Analytical Comparison of Fault Classes

This section uses fault conditions to derive the relationships between several
fault classes. Some practical implications of these results are presented in
Section 5.

10

Table 2
Detection conditions for several fault classes.

SCRF dSx
y Clause Reference Fault

SCNF dSx
x Clause Negation Fault

SENF dSX
X

Expression Negation Fault

SCCF dSx
x∧y Clause Conjunction Fault

SCDF dSx
x∨y Clause Disjunction Fault

The notation SF is used to represent the detection condition for an arbitrary
fault belonging to fault class F . The detection conditions for fault classes CRF,
CNF, ENF, CCF, and CDF are summarized in Table 2. There, x is a clause
in S, y is another valid clause 3 , and X is an expression in S.

First consider the relationship between clause reference faults (CRF) and clau-
se negation faults (CNF).

Theorem 1 If the clause replaced in SCRF is the same clause negated in SCNF,

then SCRF → SCNF.
4

Proof. By Table 2, we must establish that, for a predicate P and a clause x

occurring in P , dP x
y → dP x

x holds, where y 6= x is another valid clause.

Rewriting with (9), we have

((x⊕ y) ∧
dP

dx
)→ ((x⊕ x̄) ∧

dP

dx
)

Since x⊕ x̄ = 1, and in view of (7), the Theorem holds. Q.E.D.

By Theorem 1, a test case, that is, an assignment of values to variables, which
makes dP x

y true, also makes dP x
x true. This is stated as the following corollary.

Corollary 1 Any test case that detects a clause reference fault for a clause

in a predicate will also detect the clause negation fault for the same clause.

It must be noted that dP x
y → dP x

x in Theorem 1 does not guarantee the
existence of a test for the clause reference fault. For instance, if P x

y and P

evaluate the same on their entire domain, then no test exists for the fault,
even though there may be a test for the corresponding clause negation fault.

3 While Kuhn [12] restricts y to be a variable in S, this paper only requires Sx
y to

be syntactically legal, that is, y has to be a valid clause. This applies to other faults
involving clauses.
4 Some papers indicate fault class domination by an arrow. In contrast, SCRF and
SCNF are predicates, and the theorem states a logical implication.

11

But dP x
y is universally false in this case, so the theorem is still valid. However,

if there actually is a test case for the clause reference fault, that test will detect
the clause negation fault.

Another interesting relationship is between clause negation faults (CNF) and
expression negation faults (ENF).

Theorem 2 If the clause negated in SCNF occurs in the expression negated in

SENF, then SCNF → SENF.

Proof. By Table 2, we must establish that, for a predicate P , with a clause x

occurring in a subpredicate E of P , dP x
x → dPE

E
holds.

Rewriting with (9), we have

((x⊕ x̄) ∧
dP

dx
)→ ((E ⊕ E) ∧

dP

dE
)

Since the exclusive-or of a predicate with its negation is trivially true, this can
be rewritten as

dP

dx
→

dP

dE

Since clause x is a subpredicate of E, the theorem follows from Lemma 1.
Q.E.D.

Corollary 2 Any test case that detects a clause negation fault for a clause in

a predicate will also detect an expression negation fault for an expression in

which the clause occurs.

Consider the relationship between the clause reference fault (CRF) class and
the two clause insertion fault classes. Informally, tests for a clause conjunction
fault (CCF) and tests for the corresponding clause disjunction fault (CDF)
partition the set of test cases that detect the corresponding clause reference
fault. Figure 1 presents this relationship. In terms of detection conditions, it
means:

(1) The disjunction of SCCF and SCDF is equivalent to SCRF.
(2) SCCF and SCDF are never satisfied simultaneously.

This is formalized in Theorem 3.

Theorem 3 If a clause x is replaced with another clause y in SCRF, and the

same clause x is replaced with x ∧ y in SCCF, with x ∨ y in SCDF, then

((SCCF ∨ SCDF)↔ SCRF) ∧ (SCCF ∨ SCDF)

12

ClauseClause
Conjunction Disjunction

Fault Fault

Clause Reference Fault

Fig. 1. Relationship between tests for a clause reference fault and tests for the
corresponding clause insertion faults.

Proof. By Table 2, we must establish that, for a predicate P and a clause x

occurring in P ,

((dP x
x∧y ∨ dP x

x∨y)↔ dP x
y) ∧ (dP x

x∧y ∨ dP x
x∨y)

where y 6= x is another valid clause.

By (9), the detection conditions for CRF, CCF, and CDF are

dP x
y =(x⊕ y) ∧

dP

dx

dP x
x∧y =(x⊕ (x ∧ y)) ∧

dP

dx
= xȳ ∧

dP

dx
by (2)

dP x
x∨y =(x⊕ (x ∨ y)) ∧

dP

dx
= x̄y ∧

dP

dx
by (4)

The disjunction of the detection conditions for CCF and CDF is

dP x
x∧y ∨ dP x

x∨y = (xȳ ∧
dP

dx
∨ x̄y ∧

dP

dx
) = (x⊕ y) ∧

dP

dx
(10)

Additionally,

xȳ ∧
dP

dx
∨ x̄y ∧

dP

dx
= x̄ ∨ y ∨ x ∨ ȳ ∨

dP

dx
= 1 (11)

In view of (10) and (11), the Theorem holds. Q.E.D.

Corollary 3 Any test case that detects a clause insertion fault in a predicate

where a clause x is implemented as x ∨ y or as x ∧ y, y is another valid

clause, will also detect the clause reference fault where the same clause x is

implemented as y.

Corollary 4 Any test case that detects a clause reference fault in a predicate

where a clause x is implemented as another valid clause y will also detect

13

either the clause conjunction fault where the clause x is implemented as x∧ y

or the clause disjunction fault where the clause x is implemented as x∨ y, but

not both.

Putting the results of this section together, Figure 2 depicts the hierarchy of
tests that detect various fault classes in predicates. Note that this hierarchy
applies to arbitrary predicates. It is not restricted to predicates in disjunctive
normal form.

Expression

Negation

FaultFault

Negation

ClauseClause

Reference

Fault

Clause

Conjunction

 Fault

Clause

Disjunction

 Fault

Fig. 2. Hierarchy of Fault Classes

5 Applications

The fault hierarchy in Figure 2 is rather general. Why should testing re-
searchers care? This section presents examples of applying the hierarchy and
fault conditions to specific cases. Section 5.1 discusses how the results apply
to faults involving Boolean variables, as well as those occurring in relational
expressions. Section 5.2 explains and discusses previous empirical observations
about other fault classes including logical operator reference and missing clau-
se faults. Section 5.3 analyzes the basic meaningful impact strategy [24].

14

5.1 Comparison of Faults in Specific Constructs

Boolean variables, such as flags, commonly occur in predicates. Additionally,
some specifications are written using Boolean formulas. Since the results in the
previous section were proved for a more general case of clauses in predicates,
they apply directly to Boolean formulas. These specific applications generalize
similar results which were obtained earlier in [12,13] for Boolean formulas
limited to disjunctive normal form.

While faults in relational expressions were thoroughly investigated [7,22], use
of fault conditions allows us to compare these fault classes from another, more
formal, perspective. The clause reference fault class includes relational opera-
tor reference faults and off-by-1 faults. Therefore, by Corollary 1,

• Any test case that detects a relational operator reference fault for a clause
in a predicate will also detect a clause negation fault for the same clause.

• Any test case that detects an off-by-1 fault for a clause in a predicate will
also detect a clause negation fault for the same clause.

For a relational expression, there are five possible relational operator reference
faults for each of the other relational operators, as well as two possible off-
by-1 faults. Fault conditions can be used to compare these faults. Consider,
for instance, a specification S with a clause E < F , where E and F are
arithmetic expressions. The detection condition for an off-by-1 fault which
replaces E < F with E < F − 1 is

dSE<F
E<F−1 =((E < F)⊕ (E < F − 1)) ∧

dS

d(E < F)

= (E = F − 1) ∧
dS

d(E < F)

since E < F − 1 evaluates to a different value than E < F only when E is
equal to F − 1. On the other hand, the detection condition for a relational
operator fault that replaces E < F with E > F is

dSE<F
E>F = ((E < F)⊕ (E > F)) ∧

dS

d(E < F)

Since E < F and E > F are never satisfied simultaneously,

dSE<F
E>F =((E < F) ∨ (E > F)) ∧

dS

d(E < F)

15

=(E 6= F) ∧
dS

d(E < F)

Since (E = F − 1)→ (E 6= F), dSE<F
E<F−1 → dSE<F

E>F.

It follows that any test case that detects an off-by-1 fault which replaces a
clause E < F with E < F − 1 will also detect a relational operator fault
which replaces the same clause with E > F .

In a similar fashion, it is possible to derive a set of relationships between
relational operator and off-by-1 faults for various relational expressions.

5.2 Analysis of Previous Observations

Gopal and Budd [9] note that a logical operator reference fault (LRF), where
∨ is substituted for ∧ and vice versa, tends to be trivial to detect. Indeed, in
view of (6), the detection condition for such a fault in a specification S = P∨Q

is

dS
P∨Q
P∧Q = (P ∨Q)⊕ (P ∧Q) = P ⊕Q,

so this fault is detected by any test where P and Q evaluate differently. This
explains Gopal and Budd’s observation.

The detection condition for a corresponding missing expression fault (MEF)
is

dS
P∨Q
P = (P ∨Q)⊕ P = P̄ ∧Q,

and dS
P∨Q
P → dS

P∨Q
P∧Q. Hence, a test that detects an MEF for an operand of

an ∨ operator will also detect an LRF where the operator is replaced by ∧. A
similar result can be obtained when ∧ is replaced by ∨.

The above does not mean that all logical reference faults can be ignored.
Consider an LRF where ∨ is replaced by ⊕. The detection condition is

dS
P∨Q
P⊕Q = (P ∨Q)⊕ (P ⊕Q) = P ∧Q,

so the fault is relatively hard to detect. This is reasonable since ∨ differs from
⊕ in only one of four positions of the truth table, while it differs from ∧ in
two positions.

16

Stuck-at fault (STF) is one of the subclasses of the clause reference fault.
Therefore, any test that detects a stuck-at fault for a clause in a predicate will
also detect a clause negation fault for the same clause. It was suggested in [12]
that missing clause fault (MCF) can be regarded as a special case of variable
reference fault. However, it is more appropriate to compare MCF with STF.
For instance, if a specification contains a conjunction x ∧ y, the result of an
MCF where clause y is not implemented at all is equivalent to the result of
an STF where y is replaced with 1. Similarly, in x ∨ y or x ⊕ y, the result of
an MCF for clause y is equivalent to the result of an STF where y is replaced
with 0. Implication is a special case. Consider specification S with implication
x → y. There are two cases. First, the result of an MCF where clause x is not
implemented at all is equivalent to the result of an STF where x is replaced
with 0. Second, the detection condition for an MCF for y is

dSx→y
x = ((x→ y)⊕ x) ∧

dS

dy
= (x̄ ∨ ȳ) ∧

dS

dy
.

On the other hand, the detection condition for an STF where y is replaced
with 1 is

dS
y
1 = ((x → y)⊕ (x → 1)) ∧

dS

dy
= xȳ ∧

dS

dy
.

Since xȳ → (x̄∨ ȳ), dS
y
1 → dSx→y

x . To summarize, if a test generation strategy
guarantees detection of both stuck-at-0 and stuck-at-1 faults for a clause, it
will also guarantee detection of the missing clause fault for the same clause.

5.3 On the Basic Meaningful Impact Strategy

Weyuker et al. [24] designed themeaningful impact strategy for testing Boolean
formulas in irreducible disjunctive normal form. A formula is said to be in
irreducible disjunctive normal form when none of the formula’s literals or
terms can be deleted without altering the formula’s value for some test case.

We briefly repeat here the relevant definitions. More details are in [24]. Let F

be a Boolean formula in irreducible disjunctive normal form with n variables
and m product terms: p1∨p2∨ . . .∨pm. Each term is a conjunction of literals.
Recall that a literal is a single occurrence of a variable or its negation.

The points of the input space are divided into two categories: true points

and false points are those that cause the formula to evaluate to 1 and 0,
respectively. True points for the term pi are the points of the input space that
cause pi to evaluate to 1. Denote these points by Ri. The unique true points

17

for the term pi are those points that are in Ri but do not belong to any other
Rj. Denote these points by Ui.

Let pi,j denote the product-term obtained by complementing the jth literal of
the product-term pi. Denote the set of true points for pi,j by Di,j . Denote the
points in Di,j that are false points for F by Ni,j.

The basic meaningful impact strategy is defined as follows [24]:

(1) Select one test point from each nonempty Ui of F .
(2) Select one test point from each Ni,j of F .

Weyuker et al. [24] claim that the strategy is testing directly for a variable
negation fault. In fact, the strategy is stronger: it is testing for stuck-at faults.

To show this, we first compute the propagation conditions for a fault in an
arbitrary term and for a fault in an arbitrary literal for a specification in
disjunctive normal form. Since F can be rewritten as

pi ∨ (p1 ∨ . . . ∨ pi−1 ∨ pi+1 . . . ∨ pm),

it follows that the propagation condition for a fault in pi is

dF

dpi

= p1 ∨ . . . pi−1 ∨ pi+1 ∨ . . . pm

= p1 ∧ . . . pi−1 ∧ pi+1 ∧ . . . pm (12)

Let pi = l1 . . . lk, where lj denotes the jth literal in pi. Then F can be rewritten
as

ljl1 . . . lj−1lj+1 . . . lk ∨ (p1 ∨ . . . ∨ pi−1 ∨ pi+1 . . . ∨ pm)

The propagation condition for a fault in lj is

dF

dlj
= l1 . . . lj−1lj+1 . . . lk ∧

dF

dpi

(13)

In view of (12), the detection condition for a stuck-at-0 fault which replaces
any literal in term pi with 0 is

(pi ⊕ 0) ∧
dF

dpi

= pi ∧ p1 ∧ . . . pi−1 ∧ pi+1 ∧ . . . pm

18

This defines the set Ui of unique true points for the term pi.

In view of (13), the detection condition for a stuck-at-1 fault which replaces
literal lj of term pi with 1 is

(lj ⊕ 1) ∧
dF

dlj
= ljl1 · · · lj−1lj+1 · · · lk ∧

dF

dpi

This defines the set Ni,j, since ljl1 · · · lj−1lj+1 · · · lk defines the set Di,j of true
points for pi,j .

The basic meaningful impact strategy happens to also detect the variable
negation faults because, as we observed in Section 5.2, test cases that detect
stuck-at faults will also detect variable negation faults.

6 Conclusions

Our reformulation of the detection condition for a fault in specification S

where a subpredicate X is replaced with another predicate E as a conjunction
of origination condition and propagation condition:

dSX
E = (X ⊕ E) ∧

dS

dX

allows us to elegantly prove that the fault hierarchy holds for general expres-
sions, not just expressions in disjunctive normal form. It also allows us to
extend the fault hierarchy to a wider range of fault classes.

This extended hierarchy, diagrammed in Figure 2, permits us to skip an ex-
plicit test for a fault from an “easier to detect” class in the hierarchy, pro-
vided that we detect a corresponding fault from a “harder to detect” class,
thus improving the effectiveness of fault based testing. The work is applicable
to faults involving Boolean variables, as well as those occurring in relational
expressions.

We use the fault conditions and our analysis to explain many previous em-
pirical observations. In particular, we prove that a test that detects a missing
expression fault will also detect the corresponding logical operator reference
fault where ∧ is replaced by ∨ and vice versa, and a test set that detects both
stuck-at-0 and stuck-at-1 faults for a clause will also detect the corresponding
missing clause fault.

19

We prove that the basic meaningful impact strategy of Weyuker et. al is testing
for stuck-at faults; it detects variable negation faults because tests that detect
stuck-at faults also detect variable negation faults.

The analytical technique presented in this paper can be applied to other such
problems. In particular, it can be used to compare the semantic sizes [17] of
fault classes. For instance, the relationship between clause negation fault and
expression negation fault implies that the former is smaller semantically. In
this case, clause negation fault also represents a smaller syntactic change than
the expression negation fault.

References

[1] P. E. Black, V. Okun, Y. Yesha, Mutation operators for specifications,
in: 15th IEEE International Conference on Automated Software Engineering
(ASE2000), IEEE Computer Society, Grenoble, France, 2000, pp. 81–88.

[2] T. Y. Chen, M. F. Lau, Test case selection strategies based on boolean
specifications, Software Testing, Verification and Reliability 11 (3) (2001) 165–
180.

[3] J. J. Chilenski, S. P. Miller, Applicability of modified condition/decision
coverage to software testing, Software Engineering Journal (1994) 193–200.

[4] L. A. Clarke, A. Podgurski, D. J. Richardson, S. J. Zeil, A formal evaluation of
data flow path selection criteria, IEEE Transactions on Software Engineering
15 (11) (1989) 1318–1332.

[5] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection: Help
for the practicing programmer, IEEE Computer 11 (4) (1978) 34–41.

[6] R. A. DeMillo, A. J. Offutt, Constraint-based automatic test data generation,
IEEE Transactions on Software Engineering 17 (9) (1991) 900–910.

[7] K. A. Foster, Error sensitive test cases analysis (ESTCA), IEEE Transactions
on Software Engineering 6 (3) (1980) 258–264.

[8] J. B. Goodenough, S. L. Gerhart, Toward a theory of test data selection, IEEE
Transactions on Software Engineering 1 (2) (1975) 156–173.

[9] A. Gopal, T. Budd, Program testing by specification mutation, Tech. Rep. TR
83-17, University of Arizona (Nov. 1983).

[10] T. Goradia, Dynamic impact analysis: Analyzing error propagation in program
executions, Ph.D. thesis, Dept. of Computer Science, New York University
(1988).

[11] D. R. Kuhn, A technique for analyzing the effects of changes in formal
specifications, The Computer Journal 35 (6) (1992) 574–578.

20

[12] D. R. Kuhn, Fault classes and error detection in specification based testing,
ACM Transactions on Software Engineering Methodology 8 (4) (1999) 411–424.

[13] M. F. Lau, Y. T. Yu, On the relationships of faults for boolean specification
based testing, in: 2001 Australian Software Engineering Conference, IEEE CS
Press, 2001, pp. 21–28.

[14] N. G. Leveson, M. P. Heimdahl, H. Hildreth, J. Reese, Requirements
specification for process control systems, IEEE Transactions on Software
Engineering SE-20 (9) (1994) 684–707.

[15] H. D. Mills, On the statistical validation of computer programs, in: Software
Productivity, Little, Brown, Boston, 1983, pp. 71–81, also Technical Report
FSC 72-6015, IBM Federal Systems Division, 1972.

[16] L. J. Morell, A theory of error-based testing, Dissertation, Dept. of Computer
Science, University of Maryland (Aug. 1984).

[17] A. J. Offutt, J. H. Hayes, A semantic model of program faults, in: International
Symposium on Software Testing and Analysis, 1996, pp. 195–200.

[18] A. J. Offutt, J. M. Voas, Subsumption of condition coverage techniques by
mutation testing, Tech. Rep. ISSE-TR-96-01, George Mason University (1996).

[19] J. Offutt, Y. Xiong, S. Liu, Criteria for generating specification-based tests, in:
Proceedings of the Fifth IEEE Fifth International Conference on Engineering
of Complex Computer Systems (ICECCS ’99), IEEE Computer Society Press,
Las Vegas, NV, 1999, pp. 119–131.

[20] I. Reed, Boolean difference calculus and fault finding, SIAM Journal Applied
Mathematics 24 (1) (1973) 134–143.

[21] D. J. Richardson, M. C. Thompson, An analysis of test data selection criteria
using the relay model of fault detection, IEEE Transactions on Software
Engineering 19 (6) (1993) 533–553.

[22] K.-C. Tai, Theory of fault-based predicate testing for computer programs, IEEE
Transactions on Software Engineering 22 (8) (1996) 552–562.

[23] T. Tsuchiya, T. Kikuno, On fault classes and error detection in specification
based testing, ACM Transactions on Software Engineering Methodology 11 (1)
(2002) 58–62.

[24] E. Weyuker, T. Goradia, A. Singh, Automatically generating test data from a
boolean specification, IEEE Transactions on Software Engineering 20 (5) (1994)
353–363.

[25] S. J. Zeil, Perturbation techniques for detecting domain errors, IEEE
Transactions on Software Engineering 15 (6) (1989) 737–746.

[26] H. Zhu, P. A. V. Hall, J. H. R. May, Software unit test coverage and adequacy,
ACM Computing Surveys 29 (4) (1997) 366–427.

21

