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Abstract 
 
As part of DARPA Information Processing Technology Office (IPTO) Software for 
Distributed Robotics (SDR) Program, Sandia National Laboratories has 
developed analysis and control software for coordinating tens to thousands of 
autonomous cooperative robotic agents (primarily unmanned ground vehicles) 
performing military operations such as reconnaissance, surveillance and target 
acquisition; countermine and explosive ordnance disposal; force protection and 
physical security; and logistics support.  Due to the nature of these applications, 
the control techniques must be distributed, and they must not rely on high 
bandwidth communication between agents.  At the same time, a single soldier 
must easily direct these large-scale systems.  Finally, the control techniques 
must be provably convergent so as not to cause undo harm to civilians.  In this 
project, provably convergent, moderate communication bandwidth, distributed 
control algorithms have been developed that can be regulated by a single soldier.  
We have simulated in great detail the control of low numbers of vehicles (up to 
20) navigating throughout a building, and we have simulated in lesser detail the 
control of larger numbers of vehicles (up to 1000) trying to locate several targets 
in a large outdoor facility.  Finally, we have experimentally validated the resulting 
control algorithms on smaller numbers of autonomous vehicles. 
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I.  Introduction 
 
The subject of cooperative multiple autonomous vehicles has generated a great deal of interest in 
recent years due to the vision of these vehicles being able to perform tasks faster and more 
efficiently than an individual vehicle.  Types of cooperative tasks range from moving large objects 
[1] to troop hunting behaviors [2]. Conceptually, large groups of mobile vehicles outfitted with 
sensors should be able to automatically perform military tasks like formation following, localization 
of chemical sources, de-mining, target assignments, autonomous driving, perimeter control, 
surveillance, and search and rescue missions [3-6].  Simulation and experiments have shown that 
by sharing concurrent sensory information, the group can better estimate the shape of a chemical 
plume and therefore localize its source [7]. Similarly, for a search and rescue operation, a moving 
target is more easily found using an organized team [8-9].  

 
In the field of distributed mobile robot systems, much research has been performed and 
summaries are given in [10][11].  The strategies of cooperation encompass theories from such 
diverse disciplines as artificial intelligence, game theory/economics, theoretical biology, 
distributed computing/control, animal ethology, and artificial life. 

 
Much of the early research concentrated on animal-like cooperative behavior.  Arkin [12] studied 
an approach to "cooperation without communication" for multiple mobile robots that are to forage 
and retrieve objects in a hostile environment.  This behavior-based approach was extended in 
[13] to perform formation control of multiple robot teams.  Motor schemas such as avoid-static-
obstacle, avoid-robot, move-to-goal, and maintain-formation were combined by an arbiter to 
maintain the formation while driving the vehicles to their destination. Each motor schema 
contained parameters such as an attractive or repulsive gain value, a sphere of influence, and a 
minimum range that were selected by the designer.  “When inter-robot communication is 
required, the robots transmit their current position in world coordinates with updates as rapidly as 
required for the given formation speed and environmental conditions.” [13] 

 
Another behavior-based approach includes Kube and Zhang [14].   Much of their study examined 
comparisons of behaviors of different social insects such as ants and bees. They considered a 
box-pushing task and utilized a Subsumption approach [15-16] as well as ALN (Adaptive Logic 
Networks). Similar studies using analogs to animal behavior can be found in Fukuda et al. [17].  
Noreils [18] dealt with robots that were not necessarily homogeneous. His architecture consisted 
of three levels:  functional level, control level, and planner level.  The planner level was the high-
level decision maker.  Most of behavior-based approaches do not include a formal development 
of the system controls from a stability point of view.  Many of the schemes such as the 
Subsumption approach rely on stable controls at a lower level while providing coordination at a 
higher level.   

 
More recently, researchers have begun to take a system controls perspective and analyze the 
stability of multiple vehicles when driving in formations. Chen and Luh [19] examined 
decentralized control laws that drove a set of holonomic mobile robots into a circular formation.  A 
conservative stability requirement for the sample period is given in terms of the damping ratio and 
the undamped natural frequency of the system.  Similarly, Yamaguchi studied line-formations [20] 
and general formations [21] of nonholonomic vehicles, as did Yoshida et al. [22].  Decentralized 
control laws using a potential field approach to guide vehicles away from obstacles can be found 
in [23-24].  In these studies, only continuous time analyses have been performed, assuming that 
the relative position between vehicles and obstacles can be measured at all time.   

 
Another way of analyzing stability is to investigate the convergence of a distributed algorithm.   
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Beni and Liang [25] proved the convergence of a linear swarm of asynchronous distributed 
autonomous agents into a synchronously achievable configuration.  The linear swarm is modeled 
as a set of linear equations that are solved iteratively.  Their formulation is best applied to 
resource allocation problems that can be described by linear equations. Liu et al. [26] provide 
conditions for convergence of an asynchronous swarm in which swarm "cohesiveness" is the 
stability property under study.  Their paper assumes position information is passed between 
nearest neighbors only and proximity sensors prevent collisions. 

 
Also of importance is the recent research combining graph theory with decentralized controls.  
Most cooperative mobile robot vehicles have wireless communication, and simulations have 
shown that a wireless network of mobile robots can be modeled as an undirected graph [27].  
These same graphs can be used to control a formation.  Desai et al. [28-29] used directed graph 
theory to control a team of robots navigating terrain with obstacles while maintaining a desired 
formation and changing formations when needed.  When changing formations, the transition 
matrix between the current adjacency matrix and all possible control graphs are evaluated.  In the 
next section, the reader will notice that graph theory is also used in this paper to evaluate the 
controllability and observability of the system.   
   
Other methods for controlling a group of vehicles range from distributed autonomy [30] to 
intelligent squad control and general purpose cooperative mission planning [31].  In addition, 
satisfaction propagation is proposed in [32] to contribute to adaptive cooperation of mobile 
distributed vehicles.   The decentralized localization problem is examined by Roumeliotis and 
Bekey [33] and Bozorg et al. [34] via the use of distributed Kalman filters.  Uchibe et al. [35] use 
Canonical Variate Analysis (CVA) for this same problem. 
 
In this project, we addressed the stable control of multiple vehicles using large-scale 
decentralized control techniques [36].   The approach taken differs from previous efforts in that 
the analysis techniques are scalable to very large dimensions and they ensure stability even 
under structural perturbations such as communication failures and parameter variations.  While 
this depth of analysis may not be necessary when controlling smaller numbers of vehicles, the 
formalism introduced here is necessary when tens to hundreds, possibly thousands of vehicles, 
are involved. With hundreds of vehicles, it is not feasible to experimentally determine the 
interaction gains and the communication rates between vehicles necessary to stabilize the 
system. 
 
In this project, we have also focused our effort on a surveillance task where large numbers of 
vehicles from 20 to 1000 are dispersed around a facility.  The goal is for these vehicles to 
autonomously create a distributed communication/navigation network that links a remote base 
station to multiple surveillance points.  We have simulated in great detail the control of low 
numbers of vehicles (up to 20) navigating throughout a building.  These simulations include 
detailed models of the radio frequency communication, infrared and ultrasound ranging with the 
environment and amongst vehicles, and the vehicles’ kinematics.   
 
We have also simulated in lesser detail the control of larger numbers of vehicles (up to 1000) 
trying to locate a number of targets in a large outdoor facility.  These simulations use software 
initially developed to simulate molecular interactions in plasma physics and celestial body 
interactions in galactic physics.  Grid-based techniques limit the range of interaction thus reducing 
the computational load of computing the interactive forces.   
 
In both the small-scale and large-scale simulations, the guidance of the vehicles is based on 
attractive and repulsive gradient forces.  These gradient forces are derived from optimal 
performance indices that trade off minimizing the distance to specified goals, and optimizing the 
distance between vehicles to maintain a required communication distance.   
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To verify and validate the control algorithms, we have implemented and tested the algorithms in 
hardware.  We have developed 20 test vehicles with the ability to navigate an indoor 
environment.  Each vehicle contains a 4MHz 8-bit microcontroller, a 900 MHz radio, 4 infrared 
proximity sensors, an electromagnetic compass, and a wheel encoder.  For more computationally 
expensive algorithms, an optional 25MHz 386EX embedded processor interfaces to the 
microcontroller through dual port SRAM.  Each vehicle is approximately 250 mm long, 225 mm 
wide, and 200 mm tall.  Powered by rechargable nickel-metal hydride batteries, the vehicles are 
typically able to operate 30-45 minutes before needing to be recharged. 
 
The following sections briefly describe the stability analysis, small-scale and large-scale 
simulations, and the hardware test platform.  More details on the stability analysis and the 
experimental results can be found in [39-44].  
 
II. Stability Analysis 
 
In complex large-scale systems, it is often desirable to break up a system into smaller strongly 
coupled systems that are controllable.  If we can prove that the smaller systems are input/output 
reachable and controllable, then we can prove that the large-scale system is connectively 
controllable [36].  Even the smaller scale systems may contain thousands of states, in which 
case, there exist techniques based on graph theory that can quickly tell a person whether the 
system is input/output reachable and structurally controllable.   The example below shows some 
of the progress made in understanding how these techniques can be used in the design of large-
scale distributed cooperative robotic vehicular systems. 
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Figure 1.  One-dimensional control problem.  The top line is the initial state.  The second line is 
the desired final state.  The vehicles can only use their neighbors’ position to reach the final goal 
state. 
 
 
Let us start by analyzing a simple one-dimensional problem where a linear chain of 
interdependent vehicles is to spread out along a line as shown in Figure 1.  The objective is to 
spread out evenly along the line using only information from the nearest neighbor.  In [37], the 
Sandia National Laboratories had previously developed a robotic perimeter detection system that 
spread the vehicles uniformly around a perimeter.  The vehicles shared their current positions 
with neighboring vehicles via radio messages.  The goal position, used by the embedded control 
on each vehicle, was one-half the distance between the vehicles to their right and left.  This goal 
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point moved as the neighboring vehicles moved and updated their position with their neighbors. 
In the experiments, the system worked, but we wondered if one-half was a magic number and if 
we could prove that it provides a stable solution regardless of how fast the vehicles move and 
how often they share their current position.  The following analysis resulted. 
 
Assume the vehicle’s plant model is a simple integrator, and the commanded input is the desired 
velocity of the vehicle along the line.  A feedback loop and a proportional gain Kp are used to 
control the vehicle’s position.  The desired position of each vehicle is one-half the sum of the 
position of the neighbors on each side.  Figure 2 shows a block diagram of the control system.  
The formulation is in the discrete-time frequency domain, i.e. the z domain.  Since we are 
interested in steady state analysis, we will make heavy use of the final value theorem, which 
states 
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Figure 2.  Control block diagram of two vehicle interaction problem. 
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If we let H1(z) be the transfer function Y1(z)/U1(z) and H2(z) be the transfer function Y2(z)/U1(z) 
then we have 
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where we have used the fact that U1(z) = 1/(1-z-1), i.e., u1(kT)=1 for all k.  That is, the desired 
linear positioning behavior has been normalized to be between 0 and 1.  The superscript “ss” 
refers to the steady state value.  Carrying out the block diagram manipulation and algebra, one 
arrives at the formulas for the steady state position values of the two vehicles in terms of the 
given parameters 
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where 1λ  and 2λ  are the interaction gains.  Given the steady state positions, the formulas for the 
interaction gains are 
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These formulas assume a stable configuration.  We will explore stability analysis shortly.  It 
should be noted that both steady state positions are independent of the delays n1 and n2, the 
proportional gain Kp, and the sampling time delay T. Now consider the three-vehicle case as 
depicted in Figure 3.  Using the same analysis as above, we can arrive at the steady state 
positions (assuming stability) for the three vehicles as 
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where again only the vehicle interaction gains affect the steady state position values.  To solve 
the inverse problem, i.e., the vehicle interaction gains given the steady state positions, we must 
solve an undetermined system of nonlinear equations with 3 equations and 4 unknowns.  This 
can be done using a nonlinear least squares root finding algorithm such as employed in the 
MATLAB routine, fsolve.   
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Figure 3.  N vehicle interaction problem. 
 
 
To generalize for the N vehicle interaction problem, we formulate a set of linear equations based 
on the algebra of the transfer function manipulation.  Note that 
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This results in the tridiagonal [38] system of linear equations 
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which can be reformulated in the familiar Ax=b form 
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Thus, given the steady state position values, the required interaction gains can be solved for as a 
system of linear equations using least squares.  The solution will not be unique; hence many 
different sets of interaction gains can result in the same steady state position values of the 
vehicles.  Likewise, the inverse problem can be solved to determine the interaction gains given a 
set of desired steady state vehicle position values.  We obtain 
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In this case, Ax=b is an underdetermined system (more unknowns than equations, 2(N-1)>N for 
N>2) which can be solved using QR factorization such as with the MATLAB backslash (\) 
operator.  Alternatively, this can be solved as a constrained linear least squares problem: 
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where the first constraint rejects negative interaction gains, the second constraint forces Equation 
(9) to be solved exactly, and the third constraint rejects zero and unity interaction gains, that is, ε 
is a small parameter greater than zero.  The advantage of formulating Equation (9) as a 
constrained least squares problem is that we can eliminate nonzero interaction gains from the set 
of possible solutions.  Since this corresponds to a vehicle not utilizing information of its nearest 
neighbors, it is best to look at nonzero interaction gains. 
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In order to analyze stability of the N vehicle interaction problem, a reformulation of the vehicle 
dynamics into discrete-time state space is helpful.  The purpose of this analysis is to determine 
conditions for asymptotic stability of vehicle positions with respect to the interaction gains λ and 
vehicle speed time constant KpT.  The following time-domain equations are derived from Fig. 3: 
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where it is assumed that uN(k)=0 and the delay between position interaction information is one 
sampling delay.  To solve these equations, initialize by setting yi(0)= yi(1)=0 for i between 1 and N 
(note that initial vehicle positions do not have to start at 0, but this is the normal case).  Then start 
the difference equation solver at k=1 (i.e. compute yi(2)).  For the stability analysis, we note that 
we can put (11) into a state space description.  We break the analysis into two cases. 
 
Case I: All interaction delays =0, i.e. nij=0.  This results in the following state space description. 
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which is in the form: y(k+1) = Ay(k) + Bu1(k).  The eigenvalues can easily be solved for in any of a 
number of software packages including MATLAB.  For stability, we look at the maximum absolute 
value of all the eigenvalues of A which is a real NxN matrix.  If this is inside the unit circle (less 
than unity magnitude) then we have asymptotic stability of the vehicle positions.  Otherwise, we 
do not have a stable vehicle configuration.  Note that the A matrix above is in tridiagonal form.  
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For the special case of all the interaction gains λij = λ, the elements of each diagonal are equal.  
There is a special formula (p. 59 of [38]) for the eigenvalues of A in this case, which is 

Ni
N

i
TKTKAeig pp ,,1),

1
cos(21)( L=

+
+−=

πλ                              (13)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Stability region for the N=2 vehicle case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Stability region for the N=1000 vehicle case. 
 
All the eigenvalues in (13) will be real.  Figures 4 and 5 illustrate the stability region for this case.  
The red zone represents stable combinations of λ and KpT.  The blue zone represents unstable 
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combinations of λ and KpT.  We refer to this as a stability “house” due to the shape of the stable 
zone.  The size of this house varies only with N.  The plot shown is for N=2.  As N is increased, 
the house gets smaller in width but maintains the same height and shape.  Figure 5 shows the 
stability region for N=1000.  From the formula in (13), we can see that as N →∞ the cosine term 
becomes unity.  This implies that λ must stay between –0.5 and 0.5 for KpT less than one in order 
to maintain stability.  For KpT greater than one, the admissible λ values taper off parabolically (the 
sloped “roof”) until KpT =2.  Computer simulations of (11) agreed with these stability results. 
 
 
Case II: all interaction delays =1, i.e. nij=1 
For this case, we get a more complex state space description 
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(14) 
The above still fits the y(k+1)=Ay(k)+bu1(k) formulation.  Note now that A is a 2Nx2N matrix.  It is 
also no longer a tridiagonal matrix.  There is no simple formula for the eigenvalues of A in this 
case even if all λij = λ.  The eigenvalues can still be solved for using standard linear algebra 
software, but this becomes numerically unreliable for large N.  However, if a software package 
has techniques for handling large sparse matrices (as does MATLAB) then it becomes more 
tractable.  In the above description, only 4N-2 elements of A are nonzero in general out of 4N2 
total elements.  Thus for large N, the A matrix is sparse.  Though a formula is lacking, computer 
simulation of (4) and solving for the maximum absolute eigenvalue of A above resulted in very 
nearly the same stability regions with respect to λ and KpT.  In other words, the delay in 
interaction gains between vehicles did not affect the stability of the vehicle positions to any 
appreciable degree. 
 
A more specific case can be studied in which all forward λij’s are equal (i.e. λ12 = λ23 = …= λF) and 
all backward λij’s are equal (i.e. λ21 = λ32 = …= λB ).  In this case the stability region has a three-
dimensional structure, K

B

pT vs. λF vs. λBB.  Numerical simulation of this case revealed that for 
various fixed KpT contours from 1 to 2, the stability region for λF and λB looked like a 1/ λB  surface 
that increased in size as KpT decreased from 2 down to 1.  This is intuitive because we expect 
the range of λ’s for stability to shrink as the speed gain is increased.  This is essentially a three 
dimensional version of the “roof” of the stability house in Figs. 4 and 5. 
 

16 



 

Several conclusions can be drawn from the stability analysis.  First, asymptotic stability of vehicle 
positions depends on vehicle responsiveness Kp, communication sampling period T, and vehicle 
interaction gain λ.  Second, if the vehicle is too fast (large Kp) or the sample period is too long 
(large T), then the vehicles will go unstable.  There is a dependence on interaction gain for 
stability as well.  Third, the interaction gains can be used to bunch the vehicles closer together or 
spread them out.  Fourth, the stability region shrinks as the number of vehicles, N, increases but 
only to a defined limit.  Finally, we can give a two-step process for placing the vehicles into an 
arbitrary position.  First, solve Eq. (3) for the λij’s necessary to achieve these vehicle positions.  
Then, use the above stability analysis (the stability “house”) to determine the upper limits for KpT 
to maintain stability. 
 
 
III.  Simulations of Smaller Numbers 
 
The multiple vehicle problem in planar space is essentially a generalization of the above analysis.  
But when obstacles such as walls and other vehicles as well as the need for communication 
between vehicles are taken into account, the ability to analytically solve the problem becomes 
very difficult.  Thus, we implemented a study of multiple vehicles under such constraints in a 
simulation environment developed at Sandia National Laboratories called Umbra.  Umbra allows 
the simulation of multiple autonomous agents with a variety of physical phenomena such as RF 
communications, interactions with solid objects (i.e. collisions), ultrasound communication, IR 
detection of objects, vehicle physics, terrain descriptions, and other phenomena the user wishes 
to study.  All of these physical attributes can be simulated simultaneously with a graphical 
visualization that allows the monitoring of the vehicles’ performance over the terrain.   
 
Such a simulation was implemented for the case of multiple, small, wheeled vehicles traversing a 
single floor in a building with multiple corridors, rooms, and entrances.  The vehicles are modeled 
after the vehicles that will be used in the hardware tests.  Each vehicle contains 4 IR sensors for 
detecting objects between 6” and 2.5’ on all 4 sides of itself (see Figure 6).  The vehicles also 
contain RF communication devices to be able to converse with other vehicles within a 100’ line of 
sight range or roughly 30’ through walls.  They also have ultrasound capability to measure the 
distance between them provided they are within 30’ of each other and in line of sight range.  The 
vehicle physics are quite simple and proved adequate on a smooth surface.  The building model 
was generated as a CAD model and contains several connected hallways as well as a multitude 
of variable size rooms.  The control algorithms for the vehicles must avoid contact with walls and 
other vehicles.  Beyond that, the control goals can vary depending on the motives of the operator.  
For instance, the vehicles can spread out to provide maximum coverage of the building or they 
can stay within a prescribed area, or they can maintain a particular formation.  Note that a strict 
mathematical model of this situation is intractable. This is due to both discrete event-based as 
well as dynamic physics with very complicated interactions.  Thus, a stability analysis is more 
qualitative in nature rather than strictly mathematical. 
 
The restriction that vehicles can’t run into walls, doors, or each other essential ensures they 
remain inside the building.  This is accomplished via rules that use the IR sensors to follow walls 
down a hallway.  This will enable the vehicles to move throughout the building, though not 
necessarily in any prescribed fashion.  Further restrictions on the vehicles involve the 
maintenance of a continuous RF communication network.  This requires that vehicles stay within 
100’ of each other or less if line of sight (LOS) is lost (i.e. they may have to stay at a wall junction 
to maintain LOS).  A more stringent condition is the ability for each vehicle to know its absolute 
(x,y) position with respect to some global coordinate system.  This requires triangulation off of two 
or more known vehicles using ultrasound as a distance measurement.  This implies that at least 
two vehicles must remain in fixed known locations until the other vehicles can triangulate off of 
them.  There are a number of techniques to accomplish this that were investigated in Umbra.  
These include the law of cosines triangulation, steepest descent triangulation, and conjugate 
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gradient triangulation [42].  All had advantages and disadvantages depending on the number of 
vehicles and the on-board processing power and memory.  Finally, there is the constraint that the 
vehicles spread out and “cover” the building uniformly.  A gradient-based scheme was used to 
repel the vehicles from each other to diffuse through the building while the aforementioned 
constraints keep them close enough to communication and compute absolute position [41]. 
 
 

 
 
Figure 6.  Detailed simulation of multiple vehicles navigating a building.  The protruding green and 
blue cones represent the 4 IR proximity sensors. 
 
 

IV.  Simulations of Larger Numbers 
 
In this project, models and simulations were developed that lead directly to the capability to 
simulate and understand the introduction and behavior of swarms of semi-autonomous robotic 
agents in urban and military environments.  The physics-based modeling of swarms of 
autonomous robots utilizes the approaches of statistical mechanics, molecular dynamics, and 
plasma physics.  The advantages of this approach include leveraging a large body of work on 
stability, fluctuation spectra, equilibrium, and efficient computation of the dynamics of potentially 
large ensembles of interacting objects.   
 
Plasma simulation methods make possible the comparative theoretical study of cooperative 
behavior in certain limits.  We have been investigating swarming and collaborative behavior from 
a statistical mechanics point of view where the motion or flight of vehicles is dictated by the 
physics of particles in potential fields.  The motion is a combination of real potentials (gravity, 
drag, propulsion) and fictitious potentials (anti-collision and target seeking) generated by models 
and sensors.  In the limit where the real and fictitious potentials are similar to physical, Coulomb, 
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or EM electrodynamics, the mature sciences of plasma and statistical mechanics theory can be 
applied to the system to study stability, fluctuations, dissipation, and entropy in provable limits. 
 
 
IV.A.  Ballistic simulation methods 
 
In plasma physics particles are considered to have mass and charge and they move self-
consistently in both self-generated and externally applied electric and magnetic potential fields.  
The interaction forces can be long range (electromagnetic) or short range (coulomb collisions).  In 
molecular dynamics (and lattice gas dynamics) the particles are considered uncharged and 
generally move according to more simple short-range collisional forces and external boundary 
conditions.  This model may be simplified further by considering particles moving in the ballistic 
limit, in which case only instantaneous impulsive forces act at the beginning of a simulation and 
then cease to exist.  
 
As an example consider Figure 7, which is from a Particle-In-Cell (PIC) code simulation taken to 
the ballistic limit.  This simulation models the injection and swarming behavior of 103 autonomous 
agents deployed at two locations within Area 1 of the main campus of Sandia National 
Laboratories.  In this simulation the autonomous vehicles are assumed to be man made, with the 
ability to communicate over a specified distance.  After injection into Area 1, all members of the 
swarm travel in a straight line at a constant velocity until they collide with an obstacle.  
Momentum is conserved during all collisions, whether with other members of the swarm or with 
walls within the simulated urban environment.  As the simulation progresses, members of the 
swarm fill the area, searching for two targets, shown in purple.  Each member of the swarm acts 
with complete autonomy until it either finds one of the targets or comes into communications 
range of another member of the swarm that has.  When a target is located, the robot in question 
stops and broadcasts a signal stating that a target has been found.  Upon entering 
communications range other members of the swarm also stop moving and broadcast the same 
signal.  Over time the swarm gradually ceases to move as more and more robots relay the 
message that a target has been located. 
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Figure 7. Ballistic simulation of a swarm in a complex urban environment.
 
 
 
VI.B.  Plasma Simulation Methods 
 
Modern plasma simulations accurately follow large numbers (~106) of charged particles 
interacting with each other self-consistently.  The particles move according to the forces  from 
both applied (external) fields as well as fields the particles generate themselves.  Abstractly, this 
is mathematically equivalent to a swarm of communicating vehicles moving according to the 
forces applied to them, as shown below.  In this example, as with the first, a PIC code was 
modified to simulate the collective behavior of a swarm of 103 robots injected into a portion of 
Sandia's Area 1. In this simulation friction, drag, inertia, and a pursuer's swarming and target 
seeking forces were added to the model.  The effect of adding these forces is striking.  When the 
simulation begins, the swarm is divided into two tightly packed groups.  Intermediate range 
swarming forces and target seeking forces pull the separate halves of the swarm towards each 
other and towards the two targets very quickly.  As the simulation progresses, nearest-neighbor 
repulsive forces prevent the separate groups from re-forming a single, compact group.  
Eventually the forces begin to reach equilibrium, with groups of robots near each target, and a 
larger number distributed throughout the search area.   
 
As the example below shows, plasma simulation codes can accurately compute complex 
trajectories and efficiently handle large numbers of particles and vehicles.  Large populations are 
an issue because N interacting or communicating objects generally require N2 communication 
events, which is an unfavorable numerical scaling for a simulation that must be time stepped to 
resolve group dynamics.  Plasma simulation codes efficiently handle this communication 
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bottleneck by grouping near (strongly communicating) and far (weakly communicating) neighbors 
onto virtual meshes or into linked lists.  The computational requirements of PIC codes scale as O 
(N), where N is the number of particles.  As stated earlier, gridless particle simulation codes scale 
as O (N2), and grid-optional methods scale as O (N), O (N log (N)), or O (N2) depending on 
parameters set at run-time. 

Figure 8. PIC simulation of a swarm in a complex urban environment.
 
 
The value of plasma simulation methods extends beyond just the simulation utility. Simple 
biomimetic behavior such as flocking can be modeled effectively using coulomb-like potentials.  
More complex biomimetic behavior arises when the vehicles are given more complicated 
controllers.  For example, a program or neural net can make decisions and adapt to changing 
conditions in an attempt to achieve a goal.  For further ground based robotic studies we can use 
an underlying lattice gas model instead of a plasma model.  A more complete model using 
genetic algorithms to globally optimize terrestrial robotic behavior is currently under development.   
 
In summary, there are several reasons to use a particle simulation code to model swarm 
dynamics.  First, particle simulation codes are benchmarked.  They have been shown to be stable 
and accurate models of particle dynamics with both applied and self-consistent forces.  Second, 
particle simulation codes have well-researched theoretical underpinnings.  The statistical 
mechanics of finite-sized particles moving under common force laws are well documented and 
understood.  Third, particle simulation codes are efficient.  Grid-optional codes are highly efficient 
for large numbers of particles.  The N2-algorithm is only used for near-neighbors; multiple 
expansions are used for distant neighbors.  Particle simulation codes have been implemented for 
both serial and parallel processors.  Fourth, particle simulation codes are feature rich.  Inertial 
forces, platform constraints, friction and drag effects, gravitational forces, and boundary 
conditions are easily modeled.  A complete set of diagnostics is also available.  Finally, particle 
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simulation codes support heterogeneous particles.  Friend and foe behavior are analogous to the 
physical properties of different interacting molecules. 
 
 

V.  Hardware Test Platform 
 
To test the algorithms and software developed in this project, we have built 20 low-cost robotic 
vehicle platforms that contain the necessary processing and sensing to navigate and traverse a 
building.  The platforms are built on top of a $60 commercial radio control car called Super 
Rebound from Tyco.  We have removed the external housing and replaced the radio control and 
motor amplifier electronics with our own custom circuit boards (see Figure 10).  A smaller circuit 
board in the back of the vehicle contains the power conditioning and two motor amplifier H-
bridges.  The larger circuit board on top of the vehicle contains a 4MHz 8-bit microcontroller, 
900MHz radio, 4 infrared sensors, wheel encoder interface electronics, ultrasound interface 
electronics, and an electromagnetic compass.  This board also has 16 kilobytes of dual port 
SRAM which allows it to interface to a commercially available embedded processing board with a 
25MHz 386EX processor.  This processor will be used for computationally intensive tasks such 
as computing the location of the vehicles from the ultrasound ranging information.  On top of the 
vehicle is an omni-direction ultrasound transceiver.   Using the RF radio to indicate the start of a 
ultrasound chirp, the ultrasound transceivers can be used to measure the distance (via time of 
flight) between vehicles.  With three or more vehicles, we can triangulate to determine their x,y 
position in a plane.   Using this technique, the system has a positioning accuracy of 25-50 mm. 
 
 
 

 
 

Figure 9.  Robotic vehicle platform used in the tests. 
 
Many of the algorithms described above were implemented on these 20 vehicles (see [39-44] for 
more details).  Our goal was to demonstrate that a cooperative group of robotic vehicles can form 
a communication/navigation network, and that this network could be applied to a military 
surveillance task. 
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Figure 10.  Surveillance task: starting in a single location, all 20 vehicles spread throughout the 
building while maintaining ultrasound and communication range to nearest neighbors. 
 
 
 

VI.  Conclusions 
 
In both the small-scale and large-scale simulations, the guidance of the vehicles is based on 
attractive and repulsive gradient forces.  These gradient forces are derived from optimal 
performance indices that trade off minimizing the distance to specified goals, and optimizing the 
distance between vehicles to maintain a required communication distance.   
 
Using state space control analysis and/or a vector Liapunov method (illustrated in [43]), we have 
proven that properly designed gradient-force-based control laws are asymptotically connectively 
stable.  Also, we have shown that these gradient-force-based control laws can be used to 
generate many of the meta-level behaviors such as dispersion, following, clustering, and orbiting. 
This is a major break-through since we can now design provably stable and convergent control 
laws for large numbers of autonomous vehicles. 
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