
Chapter 8  Module Structuring 

While task structuring requires a designer to search data/control flow diagrams for

threads of control, module structuring requires the designer to take an orthogonal view,

searching the data/control flow diagrams instead for reasons to combine transformations

and data stores based on information-hiding criteria.  This goal is accomplished by

applying Module Structuring Knowledge, which is organized as seven, distinct,

decision-making processes, shown in Figure 27.  The main information used to structure

modules consists of a fully-classified data/control flow diagram, as described in Chapter

4, and the state of the evolving, software design.  The main information output from the

module-structuring phase consists of a set of information hiding modules, or IHMs, that

become components in the evolving concurrent design.

The decision-making strategy used to structure modules begins by identifying

elements in the data/control flow diagram that form the basis for IHMs.  These include

any interface and control objects and any data stores that are accessed by multiple

transformations.  In addition, some special configurations of state-dependent functions

form modules.  The concept classification, performed earlier during the analysis of the

input specification, facilitates identification of candidate modules.  Once candidate

modules are identified, an attempt is made to allocate functions to existing

data-abstraction modules.  Any remaining functions are then examined.  Functions that
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hide complex algorithms are allocated to algorithm-hiding modules, while functions that

cannot be definitively allocated are referred to an experienced designer, if available, for

assistance.  Any remaining nodes, called isolated elements, must connect to only one

other node in the specification.  These isolated elements are examined last.  An isolated

data store is incorporated into an existing module as local storage, unless an experienced

designer indicates that the data store should be allocated to its own data-abstraction

module.  Each remaining, unallocated function is mapped to a corresponding

algorithm-hiding module.

After all elements of the input specification are allocated to modules in the design,

then selected modules are examined to identify those that might be combined together.

Each case identified is referred to an experienced designer for a decision; thus, this

portion of the strategy is invoked only when an experienced designer is available.  To

complete module structuring, module operations are determined and then the designer is

offered an opportunity to review the module structure, and to consider whether any of the

modules should be renamed.

8.1  Identify Candidate Modules

Module structuring begins with a decision-making process that: 1) identifies those

transformations and data stores in the input specification that can be allocated to separate

modules, 2) makes the necessary allocations, 3) captures the decisions and rationale, and

then 4) denotes the traceability between existing specification elements and the newly

created modules.  This initial decision-making process consists of a set of rules that
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identify device-interface modules, other interface modules, state-transition modules,

data-abstraction modules, and state-driven, function-driver and algorithm-hiding

modules.

8.1.1  Rule for Identifying Device-Interface Modules

The CODARTS design method identifies a criterion for allocating a module to

provide a virtual interface for each device, thus, insulating other software modules from

changes in the actual devices, where such changes do not alter the virtual interface.

[Gomaa93, pp. 226-227]  A single design-decision rule reflects this criterion.

Rule: Device Interface Module

if
TransformationDIO is a Device Interface Object

then
create a device interface module, IHMDIM

record the design decision and rationale in the design history for IHMDIM

denote the traceability between TransformationDIO and  IHMDIM

fi

This rule recognizes each transformation in an input specification that inherits the

concept Device Interface Object.  Each such transformation forms the basis for a Device

Interface Module, or DIM.

8.1.2  Rules for Identifying Other Interface Modules

While not explicitly addressed in the CODARTS module structuring criteria,

other interface objects could form the basis for modules that provide a virtual interface to

the external elements with which they interact.  Two design-decision rules address this

extension of the CODARTS device interface module criterion.
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Rule: User Interface Module

if
TransformationURIO is a User-Role Interface Object

then
create a user interface module, IHMUIM

record the design decision and rationale in the design history for IHMUIM

denote the traceability between TransformationURIO and  IHMUIM

fi

This rule could apply, for example, in a factory automation application as described by

Gomaa. [Gomaa93, Chapter 25]  In the example, three user roles are specified:  process

engineer, production manager, and factory operator.  An interface object is defined for

each user role: Process Planning User Services, Production Management, and Operator

Services, respectively.  A User Interface Module would be allocated for each of these

user-role interface objects.

Another rule recognizes each object that provides an interface to an external

subsystem.  For each such object recognized a Subsystem Interface Module is allocated.

Rule: Subsystem Interface Module

if
TransformationSIO is a Subsystem Interface Object

then
create a subsystem interface module, IHMSIM

record the design decision and rationale in the design history for IHMSIM

denote the traceability between TransformationSIO and  IHMSIM

fi

As an example where this rule might apply, consider the factory automation

system described by Gomaa. [Gomaa93, Chapter 25]  Suppose that each Line Workstation
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Controller is defined to be a distributed subsystem, rather than an internal subsystem.  In

the decomposition of each Line Workstation Controller subsystem, the predecessor and

successor workstations could each be represented as a Terminator that interacts with an

interface object, the Predecessor Workstation Interface and the Successor Workstation

Interface, respectively.  Two Subsystem Interface Modules would then be defined to

provide a virtual interface for sending messages to and receiving messages from the

appropriate Link Workstation Controller subsystems.

8.1.3  Rule for Identifying State-Transition Modules

The CODARTS design method includes a criterion for allocating a behavior

hiding module for each control object in an input specification. [Gomaa93, p. 230]  This

criterion is echoed in the following rule.

Rule: State-Transition Module

if
TransformationCO is a Control Object

then
create a state transition module, IHMSTM

record the design decision and rationale in the design history for IHMSTM

denote the traceability between TransformationCO and  IHMSTM

fi

A cruise control and monitoring system described by Gomaa includes two control

objects: Cruise Control and Calibration Control.  [Gomaa93, Chapter 22]  The rule that

allocates state-transition modules maps each of these control objects to a state-transition

module.
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8.1.4  Rule for Identifying Data-Abstraction Modules

The CODARTS design method recognizes that each data store in a data/control

flow diagram potentially forms the basis for creating a data-abstraction module, or DAM.

[Gomaa93, pp. 228-230]  A DAM is used to hide the internal structure of a data store, and to

provide access to the information in the data store through operations.  The

design-decision rules defined for module structuring consider two types of data stores:

those that are accessed by multiple transformations and those that are accessed by only a

single transformation.  The former data stores serve as the basis for establishing a DAM.

Consideration of the latter data stores is deferred until a later decision-making process

that examines isolated elements.  The rule to establish a DAM is given below.

Rule: Data Abstraction Module

if
NodeDS is a Data Store and
NodeDS is accessed by multiple transformations

then
create a data abstraction module, IHMDAM

record the design decision and rationale in the design history for IHMDAM

denote the traceability between NodeDS and  IHMDAM

fi

Each access to a data store consists of either a Store, a Retrieve, or an Update,

each a concept specified in the semantic meta-model for specifications.  Any

transformation that connects to a data store via one of these concepts constitutes an

accessing transformation.  An example where this rule applies can be found in a robot

controller system described by Gomaa. [Gomaa93, Chapter 23]  In the example, a data store,
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Sensor/Actuator Data Store connects via an Update with the transformation Process

Sensor/Actuator Command, via a Store with the transformation Input From Sensors, and

via a Retrieve with the transformation Output To Actuators.  Since three transformations

access the data store, the rule allocates a DAM based on Sensor/Actuator Data Store.

8.1.5  Rules for Identifying State-Driven Modules 

Although not strictly called for in the CODARTS module structuring criteria, the

design-decision rules defined in this dissertation include two rules to form modules from

special configurations of state-driven transformations.  State-driven transformations

include those that are triggered or enabled by a Control Object.  One rule recognizes

state-driven transformations that send outputs only to Device Interface Objects.  This rule

applies the CODARTS function-driver module criterion [Gomaa93, p. 231] to state-driven

transformations.  The second rule groups state-driven transformations that do not connect

to data stores, but that send outputs to transformations other than Device Interface

Objects into a single algorithm-hiding module.  This rule adapts the CODARTS criterion

for algorithm-hiding modules [Gomaa93, pp. 231-232] to situations where state-driven

transformations can be grouped together based on their functional relationship as support

algorithms for a state-transition module.  Each rule is specified in turn below.
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Rule: State-Dependent Function Driver Module

if
TransformationSDF is a State-Dependent Function  with cardinality, F, and
TransformationCO is a Control Object and
TransformationSDF receives a Control Event Flow or a Signal from

TransformationCO and
TransformationSDF sends a Signal or Stimulus to a TransformationDIO and
TransformationDIO is a Device Interface Object and
TransformationSDF does not write to any Data Store

then
create a function driver module, IHMFDM

record the design decision and rationale in the design history for IHMFDM

for every TransformationE  that is a State-Dependent Function and
     that has a cardinality, F, and
    that receives a Control Event Flow or Signal from

 TransformationCO and
     that sends a Signal or Stimulus to 

TransformationDIO 
and that does not write to any Data Store

allocate TransformationE to IHMFDM

record the design decision and rationale in the design history for 
IHMFDM

denote the traceability between TransformationE and  IHMFDM

rof
fi

A situation where this rule applies can be found in a cruise control and monitoring

system presented by Gomaa. [Gomaa93, Chapter 22]  In the example, a Control Object, Cruise

Control, manages three State-Dependent Functions:  Maintain Speed, Resume Cruising,

and Increase Speed.  Each of these State-Dependent Functions generates outputs for the

same Device Interface Object, Throttle, and none of them write to any Data Store.  Here,

the three State-Dependent Functions would be mapped into a single function-driver

module.
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The second rule to group state-driven transformations into a module is specified

below. 

Rule: Triggered Algorithm-Hiding Module

if
TransformationTSF is a Triggered Synchronous Function

with cardinality, F, and
TransformationCO is a Control Object and
TransformationTSF receives a Control Event Flow or a Signal from

TransformationCO and
TransformationTSF sends a Signal or Stimulus to a TransformationF and
TransformationF is a Function and
TransformationTSF does not write to any Data Store

then
create an algorithm hiding module, IHMAHM

record the design decision and rationale in the design history for IHMFDM

for every TransformationE  that is a Triggered Synchronous Function and
     that has a cardinality, F, and
     that receives a Control Event Flow or Signal from

 TransformationCO and
     that sends a Signal or Stimulus to any TransformationA

where TransformationA is a Function and
     that does not write to any Data Store

allocate TransformationE to IHMAHM

record the design decision and rationale in the design history for 
IHMAHM

denote the traceability between TransformationE and  IHMAHM

rof
fi

To understand the distinction between this rule and the previous rule, a slightly

modified version of the same example is used.  In the aforementioned cruise control and

monitoring system assume that, rather than sending outputs to the same Device Interface

Object, the three State-Dependent Functions, Increase Speed, Resume Cruising, and
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Maintain Speed, each send Stimuli to one or more Functions within the input

specification.  These three transformations would then form the basis for an algorithm

hiding module in support of the state-transition module derived from the Control Object

Cruise Control.

8.2  Allocate Functions to Data-Abstraction Modules 

Once a candidate set of modules exists, consideration should be given to

allocating functions that interact with data stores to the same IHM as the data store.

These functions can be allocated as operations on DAMs, using criteria included in the

CODARTS design method. [Gomaa93, pp. 228-230].  The CODARTS criteria identify a

number of situations that should be considered.  For example, if an entire transformation

operates only on a data store, then the transformation should be allocated as an operation

on the DAM that contains the data store.  As another example, if a transformation reads

from one data store and updates another data store, then the transformation should be

allocated to the DAM that contains the data store updated by the transformation.  The

CODARTS criteria also state that when a transformation updates multiple data stores that

the transformation should not be allocated to any DAM.

The design-decision rules specified below attempt to reflect the heuristic guidance

given in the CODARTS criteria.  In general, the rules use information-hiding as the

criteria for creating modules, and so are biased to allocate a function to some data store

whenever possible.  The first rule allocates a function to a data store when that function

connects to no other data store.
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Rule: Function Connects With Only One Data Store 

if
IHMDAM hides a Data StoreDS and
FunctionF  writes to or reads from Data StoreDS and
FunctionF writes to or reads from no other Data Store

then
allocate FunctionF to IHMDAM

record the design decision and rationale in the design history for IHMDAM

denote the traceability between FunctionF and  IHMDAM

fi

The function in question is allocated to the same DAM as the data store it

accesses even when that function sends outputs to other transformations.  An example

where this rule applies can be found in the elevator control system recounted by Gomaa.

[Gomaa93, Chapter 24]  In the example, a transformation, Update Status, writes to one and only

one data store, Elevator Status and Plan.  The rule defined above maps Update Status to

an operation of the DAM that contains Elevator Status and Plan.

A second rule reflects the CODARTS heuristic that advises mapping a

transformation to an operation of a DAM whenever the transformation writes only to the

data store contained within the DAM.

Rule: Function Writes To Only One Data Store 

if
IHMDAM hides a Data StoreDS and
FunctionF  writes to Data StoreDS and
FunctionF writes to no other Data Store that is hidden in a DAM

then
allocate FunctionF to IHMDAM

record the design decision and rationale in the design history for IHMDAM

denote the traceability between FunctionF and  IHMDAM

fi
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This rule causes a function to be mapped to a DAM operation whenever the

function writes to a data store hidden within the DAM, provided the function writes to no

other data store.  Even though the function may read from other data stores, this rule

ensures that the function will be mapped to an operation of the DAM that it updates.  An

example where this rule applies can be found in the cruise control and monitoring system

detailed by Gomaa. [Gomaa93, Chapter 22]  In the example, a transformation, Record

Calibration Start, reads from a data store, Shaft Rotation Count, and writes to a data store

Calibration Start Count.  The rule defined above maps the transformation, Record

Calibration Start, to an operation of the DAM hiding the data store, Calibration Start

Count.

A third rule recognizes situations where a function might read from multiple data

stores and write to no data store, but where that function is the sole reader from one data

store, but not the sole reader from any other data store.

Rule: Function Is The Sole Reader From A Data Store 

if
IHMDAM hides a Data StoreDS and
FunctionF reads from Data StoreDS and
FunctionF writes to no data store and
no other transformation reads from Data StoreDS and

  FunctionF is the sole reader from no data store other than Data StoreDS

then
allocate FunctionF to IHMDAM

record the design decision and rationale in the design history for IHMDAM

denote the traceability between FunctionF and  IHMDAM

fi
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In such cases, the function is allocated to the DAM that hides the data store for

which the function is the sole reader.  This rule is based on the idea that a function might

cohere more closely with a data store for which it is the only reader than to another data

store for which many readers exist.  An example where this rule would apply appears in a

cruise control and monitoring system elaborated by Gomaa.  [Gomaa93, Chapter 22]  In the

example,  the function, Check Oil Filter Maintenance, reads from two data stores:

Cumulative Distance and Miles at Last Oil Filter Maintenance.  Check Oil Filter

Maintenance writes to no data stores.  The data store Cumulative Distance is accessed by

many readers.  The data store, Miles at Last Oil Filter Maintenance, however, is accessed

by only one reader, Check Oil Filter Maintenance.  The rule defined above allocates

Check Oil Filter Maintenance to the DAM that contains the data store Miles at Last Oil

Filter Maintenance.

The remaining situations where functions access multiple data stores might be

decided by an experienced designer based on knowledge about the application.  Where an

experienced designer is not available, unallocated functions are mapped, in subsequent

decision-making processes, by default to algorithm-hiding modules.  Where an

experienced designer is available, however, two rules are defined to enable the designer

to make an allocation of functions to DAMs, where appropriate.  The first rule recognizes

the presence of the ambiguity and also the availability of an experienced designer.  In

such a situation, the ambiguity is referred to the designer for a decision.
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Rule: Connects With Multiple Data Stores (Last Preference)

if
an experienced designer is present and
FunctionF  accesses multiple Data Stores where those Data Stores are 

already allocated to a DAM
then

show the designer the SetDS of Data Stores that are already allocated to a
DAM and that are also accessed by FunctionF

ask the designer to indicate to which Data Store from SetDS, if any, the
FunctionF should be allocated as an operation

if the designer selects a Data StoreA from SetDS

then denote for use in a related rule, Function Allocated To Data Store, 
that FunctionF is an operation of Data StoreA 

fi
fi

This rule is given last preference to ensure that it does not conflict with the other,

more specific, rules that are able to allocate a function to a data store even when that

function connects with multiple data stores. Should the designer indicate a decision, then

a second rule recognizes that a decision was taken and implements that decision.  This

second rule is specified below.

Rule: Function Allocated To Data Store 

if
IHMDAM hides a Data StoreDS and
FunctionF  is an operation on Data StoreDS, as indicated by the designer  

then
allocate FunctionF to IHMDAM

record the design decision and rationale in the design history for IHMDAM

denote the traceability between FunctionF and  IHMDAM

fi
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An example where these two rules, taken together, would apply can be found in

the cruise control and monitoring example, assuming that the previously defined rule,

Function Is The Sole Reader From A Data Store, does not exist.  With that assumption,

the function, Check Oil Filter Maintenance, referred to previously, is recognized by the

rule, Connects With Multiple Data Stores, because the function reads from two data

stores: Cumulative Distance and Miles at Last Oil Filter Maintenance.  Assuming that an

experienced designer is available, this function, and the two data stores, are referred to the

designer for resolution.  The designer could map the function to an operation on one of

the two data stores, in which case, the rule, Function Allocated To Data Store, would be

invoked.  The designer might also choose to leave the function for later decision-making

processes. 

8.3  Allocate Remaining Transformations to Modules

After the object-based IHMs and the DAMs are created, a number of

transformations might remain unallocated to any module.  These unallocated

transformations must now be examined and allocated.  The CODARTS algorithm hiding

module criterion provides the basis for allocating certain transformations to modules.

[Gomaa93, pp. 231-232]  A rule is specified to mirror this criterion.
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Rule: Active Function

if
TransformationAF is a Periodic Function or an Asynchronous Function 

or a Triggered Asynchronous Function 
or a Triggered Synchronous Function

then
create an algorithm hiding module, IHMAHM

allocate TransformationAF to IHMAHM

record the design decision and rationale in the design history for IHMAHM

denote the traceability between TransformationAF and  IHMAHM

fi

This rule creates an algorithm-hiding module for each unallocated function of the

indicated types.  An example where this rule applies can be found in the robot controller

system described by Gomaa in a case study for the CODARTS design method. [Gomaa93,

Chapter 23]  In the example, an Asynchronous Function, Interpret Program Statement, forms

the basis for an algorithm-hiding module, according to the rule given above.

After algorithm-hiding modules are allocated, the remaining, unallocated

transformations in the input specification are Synchronous Functions.  In general, the

remaining Synchronous Functions might be allocated to existing modules where

application-specific knowledge can be used to make such allocations.  When an

experienced designer is available, each unallocated Synchronous Function is referred to

the designer for a decision.  The following rule reflects these cases.

241



Rule: User Specifies Allocation (Last Preference)

if
an experienced designer is present and
TransformationSF is a Synchronous Function and
TransformationF is a Function and
TransformationF sends a Signal or Stimulus to TransformationSF and
TransformationF is allocated to an IHM

then
show the designer the SetF of Functions that connect to

TransformationSF and that are already allocated to an IHM
ask the designer to select the Function from SetF  , if any, that should be in

the same IHM as TransformationSF  
if the designer indicates that TransformationSF should not be 

allocated to the same IHM as a Function in SetF 
then

create an algorithm hiding module, IHMAHM

allocate TransformationSF to IHMAHM

record the design decision and rationale in the design history for 
IHMAHM

denote the traceability between TransformationSF and  IHMAHM

else
denote for use in the rule Synchronous Function Allocated To An 

IHM that TransformationSF should be placed in the same 
IHM as the Function selected from SetF 

fi
fi

An example where this rule applies can be found in the robot controller case study

detailed by Gomaa. [Gomaa93, Chapter 23]  In this example, a Synchronous Function, Receive

Acknowledgment, might be allocated to the same algorithm-hiding module as either

Generate Axis Command or Interpret Program Statement, or might be allocated to an

algorithm-hiding module of its own.  According to the rule defined above, the allocation

of Receive Acknowledgment would be referred to an experienced designer, if available,

for a decision.
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Whenever an experienced designer does allocate a Synchronous Function to an

existing IHM, the following rule implements that decision.

Rule: Synchronous Function Allocated To An IHM

if
TransformationSF is a Synchronous Function and
TransformationF is a Function and
TransformationF is allocated to IHMAHM and
TransformationSF should be allocated to the same IHM as 

TransformationF, as indicated by the designer
then

allocate TransformationSF to IHMAHM

record the design decision and rationale in the design history for IHMAHM

denote the traceability between TransformationSF and  IHMAHM

fi

Assuming, from the preceding example, that the designer indicates that the

Synchronous Function Receive Acknowledgment should be allocated to the same IHM as

the Function Generate Axis Command, then this rule makes the necessary allocation.

8.4  Allocate Isolated Elements to Modules

Some elements from the specification might remain unallocated following

completion of the first three decision-making processes contained within the Module

Structuring Knowledge base.  In general, these elements will be either: 1) data stores that

are accessed by only one transformation and that, thus, were not used to establish

data-abstraction modules or 2) unallocated Synchronous Functions that were not

considered because an experienced designer was unavailable.  Failure to use a data store

as the basis for a data-abstraction module during the process of identifying candidate

IHMs isolates these data stores from further decision-making.  The main purpose of the
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next decision-making process is to make allocation decisions regarding these isolated

data stores.  In addition, any Function that remains unallocated to an IHM is recognized

and allocated to an algorithm-hiding module.  First, the rules for unallocated data stores

are explained.

8.4.1  Rules to Allocate Isolated Data Stores

Data Stores that connect via an Update arc to a single transformation, and that are

accessed by no other transformation, serve most likely as local memory for the updating

transformation, but might instead provide a placeholder for a data interface to an external

subsystem, being designed separately, that is not shown on the data/control flow diagram.

Since a different allocation of the data store is indicated in each of these cases, a rule is

defined to consult with an experienced designer,1 where available, about which use is

intended.  Where no experienced designer is available, the data store is mapped by default

to local storage within an existing module.  The rule is specified below, following a brief

example of where the rule might apply.

In a cruise control and monitoring system case study, described by Gomaa, a

function, Determine Distance, updates a data store, Last Distance.  Last Distance

connects to no other data store.  In this situation, Last Distance might be allocated to a

DAM or might be incorporated into an IHM that includes Determine Distance.  The

proper decision depends upon whether Last Distance serves only as a local memory for

Determine Distance.  An experienced designer can be asked about the correct

1 In some situtations, the use of RTSA notation leads to ambiguity.  The
experienced designer referred to in such situations is the author of the data/control flow
diagram who, one hopes, can resolve the ambiguity.
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interpretation of Last Distance.  Lacking an experienced designer, the most likely

interpretation can be made by default; thus, the following rule is defined.

Rule: Isolated Update Of A Data Store

if
TransformationST is a Solid Transformation and
TransformationST is allocated to IHMI

TransformationST updates a Data StoreDS and
no other transformation accesses Data StoreDS

then
if an experienced designer is available
then

ask the designer whether Data StoreDS is used as local memory for 
TransformationST or as an interface to another subsystem

else
assume Data StoreDS is used for local memory

fi
if Data StoreDS is used for local memory
then 

allocate Data StoreDS to IHMI

record the design decision and rationale in the design history for 
IHMI

denote the traceability between Data StoreDS and  IHMI

else
create a data abstraction module, IHMDAM

allocate Data StoreDS to IHMDAM

record the design decision and rationale in the design history for 
IHMDAM

denote the traceability between Data StoreDS and  IHMDAM

fi
fi

Any data stores that remain unallocated after this rule is applied must be read-only

or write-only data stores that connect to a single transformation.  Data stores in this

configuration might represent, for example, parameter files or audit trail files, or might
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provide a data interface to another subsystem.  In any of these cases, the isolated data

store forms the basis for a data-abstraction module, according to the following rule.

Rule: Isolated Data Store (Last Preference)

if
Data StoreDS is not allocated to an IHM

then
create a data abstraction IHMDAM

allocate Data StoreDS to IHMDAM

record the design decision and rationale in the design history for 
IHMDAM

denote the traceability between Data StoreDS and  IHMDAM

fi

An example where this rule applies can be found in the robot controller case study

provided by Gomaa. [Gomaa93, Chapter 23]  In the example, Robot Program, a read-only data

store that is accessed only by the transformation Interpret Program Statement, represents

an input file that is created off-line by another subsystem in the application.  The rule

specified above allocates the data store Robot Program to a data-abstraction module.

8.4.2  Rule to Allocate Isolated Functions  

Any remaining elements that require allocation must be Synchronous Functions.

Synchronous Functions only remain unallocated if no experienced designer is available

for consultation.  Each unallocated Synchronous Function forms the basis for an

algorithm-hiding module.  The rule defined to recognize this situation is specified below.
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Rule: Isolated Function

if
TransformationF is a Function and
TransformationF is not allocated to an IHM

then
create an algorithm hiding module, IHMAHM

allocate TransformationF to IHMAHM

record the design decision and rationale in the design history for 
IHMAHM

denote the traceability between TransformationF and  IHMAHM

fi

An example where this rule might apply can be illustrated using the robot

controller case study referred to earlier. [Gomaa93, Chapter 23]  In the example, assume that

the transformation Process Motion Command is classified as a Synchronous Function;

further assume that no experienced designer is available to decide that Process Motion

Command should be allocated to the same IHM as the transformation Interpret Program

Statement.  With these assumptions, the rule defined above will form an algorithm-hiding

module based on the existence of the unallocated Synchronous Function, Process Motion

Command.

8.5  Consider Module Subsumption

The fifth decision-making process within the Module Structuring Knowledge base

considers whether any pairs of information-hiding modules are candidates to be

combined.  This phase only applies if the designer is experienced.  This constraint exists

because any decision to combine two information-hiding modules requires a judgment on

the part of the designer, a judgment that novice designers should not be called upon to
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make.  Currently, only data-abstraction modules, or DAMs, are considered.  If the

designer is not experienced, then DAMs will not be combined.  If the designer is

experienced, then when one DAM exists that is read solely by another DAM,

consideration should be given to combining the DAMs, depending upon

application-specific knowledge and upon other design considerations not contained

within design-decision rules.  The rule defined below identifies situations where a

designer might want to consider combining DAMs and then allows the designer to review

the structure of the modules and to make a decision to combine the modules or to keep

them separate.

Rule: Exclusive Read Between Data-Abstraction Modules

if
designer is experienced and
IHMDAM1 is a data-abstraction module and
IHMDAM2 is a data-abstraction module and
IHMDAM2 reads from IHMDAM1 and
no other IHM reads from IHMDAM1

then
report to the designer that IHMDAM2 is a candidate to subsume IHMDAM1

depending on application-specific knowledge
offer the designer a chance to review the components of IHMDAM1 

and IHMDAM2

ask the designer whether IHMDAM2 should subsume IHMDAM1

if the designer says to subsume IHMDAM1

then
merge IHMDAM1 into IHMDAM2

record the design decision and rationale in the design history for 
IHMDAM2

fi
fi
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A situation where this rule might apply appears in the cruise control and

monitoring system, as specified by Gomaa. [Gomaa93, Chapter 22]  Assuming that a design is

under construction, previously explained rules would have created a number of DAMs.

Three of these DAMs are relevant to the current discussion:  1) a DAM, consisting of

Calibration Start Count (a data store) and Record Calibration Start (a transformation that

writes to Calibration Start Count), 2) a DAM consisting of Calibration Constant (a data

store) and Compute Calibration Constant (a transformation that writes to Calibration

Constant), and 3) a DAM consisting of Cumulative Distance (a data store), Determine

Distance (a transformation that writes to Cumulative Distance), and Last Distance (a data

store providing local memory for Determine Distance).  The DAM containing

Cumulative Distance is the only DAM containing an operation that reads the DAM

containing Calibration Constant; thus, the Calibration Constant DAM might be subsumed

by the Cumulative Distance DAM.  An experienced designer might decide, however, that

the functional nature of these DAMs is too different to warrant combining them.

Consider, though, another situation involving the DAM containing Calibration Constant,

which is the only DAM containing an operation that reads the DAM containing

Calibration Start Count.  In this case, an experienced designer might decide that the

functional similarity between the two DAMs warrants combining them.

8.6  Determine Module Operations

The sixth decision-making process that composes the Module Structuring

Knowledge determines the operations provided by each module and maps relevant
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specification elements to operation parameters.  Before operations and parameters are

determined, arcs that flow internally within a module are allocated to that module and

dropped from further consideration.  Depending upon the type of module under

consideration, different strategies are used to determine module operations.   Interface

modules are treated as objects, with incoming event flows and data flows used to identify

operations.  Outgoing event flows and data flows from interface modules are mapped to

operation parameters.  In certain cases, where no incoming event flow or data flow exists

for an interface module, operations are created based upon the data flows exchanged

between the module and its associated terminator.  State-transition modules are treated as

objects with two standard operations, Process Event and Get Current State.  All event

flows entering the control object associated with a state-transition module are mapped

onto an incoming parameter for the Process Event operation.  For any data-abstraction

module, each direct access from outside the module to a data store encapsulated within

the module is mapped to an appropriate operation on the data store, that is, a Get, Put, or

Update operation.  Any function within a module that is accessed from outside the

module is mapped to an operation for the module.  For operations derived from functions,

incoming and outgoing event flows and data flows are mapped, in most cases, to

operation parameters.  The design-decision rules that implement these strategies are

specified and described below.
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8.6.1  Rule to Allocate Arcs Internal to Modules

Event flows and data flows between specification elements within the same

information hiding module can be allocated to the module and then dropped from further

consideration because such flows are not visible outside the module.  This rule ensures

that an appropriate allocation is made for each arc within the input specification, even

when that arc is not significant outside an information hiding module.  The rule to

identify such flows and to make the necessary allocation is specified below.

Rule: Allocate Arc Internal To IHM (First Preference)

if
a NodeA is in an IHMI and
a NodeB is in an IHMI and
an ArcAB is a Directed-Arc or Two-Way-Arc and
ArcAB connects NodeA and NodeB 

then
allocate ArcAB to IHMI

record the decision and rationale in the history for IHMI

fi

An example where this rule applies can be found in an elevator control system

case study described by Gomaa.  [Gomaa93, Chapter 24]  In the example, a data-abstraction

module, Elevator Status and Plan, comprises a data store and four transformations: Check

This Floor, Update Status, Check Next Destination, and Accept New Request.  All

accesses to the module come through one of the four transformations; thus, each data

flow between the transformations and the data store that compose the module is not

visible outside the module.  The rule specified above allocates each of these data flows to
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the data-abstraction module, Elevator Status and Plan.  The rule is given first preference

in order that arcs internal to IHMs can be eliminated from further consideration.  Such

arcs do not lead to module operations, nor to parameters.

8.6.2  Rules to Determine Operations for Interface Modules

Each interface module, that is, each module derived from an object that exchanges

data or events with a terminator, is viewed as an object.  For each such module, an

initialization operation is created and the various incoming and outgoing event flows and

data flows are mapped to appropriate operations and parameters.  A number of situations

must be anticipated.  One rule, specified below, allocates an initialization operation for

each interface module in an evolving design.

Rule: Interface Module Skeleton

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO

then
create an Initialize OperationIOP

establish the design relationship IHMIM Provides OperationIOP

allocate ObjectIO to OperationIOP

record the decision and rationale in the history for IHMIM

create an Initialization Data ParameterP

establish the design relationship OperationIOP Takes ParameterP

record the decision and rationale in the history for OperationIOP

fi

Many examples where this rule applies can be seen in a cruise control and

monitoring system presented by Gomaa.  [Gomaa93, Chapter 22]  In the example, a number of

device interface objects can be found:  Brake, Engine, Shaft, Cruise-Control Lever,
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Calibration Buttons, Gas Tank, Mileage Display, Maintenance Display, Maintenance

Reset Buttons, and Mileage Reset Buttons.  Each such device interface object results in

the creation of a device-interface module.  The rule specified above creates an operation,

Initialize, for each device-interface module in the example.

A second rule creates an operation for each uniquely-named event flow to an

interface object from another transformation.  Multiple occurrences of an incoming event

flow with the same name are mapped to the same operation. The rule is specified below.

Rule: Signal To Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the sink for a SignalS

then
if an OperationSOP with the same name as SignalS is not already 

provided by IHMIM

then
create OperationSOP with the same name as SignalS

establish the design relationship IHMIM Provides OperationSOP

record the decision and rationale in the history for IHMIM

else
use existing OperationSOP

fi
allocate SignalS to OperationSOP

record the decision and rationale in the history for OperationSOP

fi

An example where this rule applies can be found in Gomaa’s elevator control

system case study. [Gomaa93, Chapter 24]  In the case study, two device-interface objects,

Elevator Door and Motor, receive event flows.  Elevator Door receives Open Door and
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Close Door, while Motor receives Up, Down, and Stop.  The rule specified above maps

each of these event flows to an operation with the same name as the event flow.

A third rule creates a Put operation for each uniquely-named data flow received

by an interface object from another transformation, where the incoming data flow is not

associated with an outgoing response.  Each such operation created is named with a

concatenation of two symbols: Put_ and data-name, where data-name is the name of the

incoming data flow.  Multiple occurrences of an incoming data flow with the same name

are mapped to the same operation.  The rule is specified below.  

Rule: Stimulus Without Response To Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the sink for a StimulusS  and
a TransformationT is the source for StimulusS and
no ResponseR flows from Interface ObjectIO to TransformationT

then
if an OperationPOP named Put_Data that Takes a ParameterP named 

Data, where Data is the name of StimulusS, is not already
provided by IHMIM

then
create OperationPOP named Put_Data
establish the design relationship IHMIM Provides OperationPOP

record the decision and rationale in the history for IHMIM

create ParameterP with the same name as StimulusS

establish the design relationship OperationPOP Takes ParameterP

record the decision and rationale in the history for OperationPOP

else    use existing OperationPOP and ParameterP

fi
allocate StimulusS to OperationPOP

allocate StimulusS to ParameterP

record the decision and rationale in the history for ParameterP

fi
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An example where this rule applies appears in the cruise control and monitoring

system case study presented by Gomaa. [Gomaa93, Chapter 22]  In the example, two device

interface objects, Mileage Display and Maintenance Display, receive five incoming data

flows:  Average MPG, Average MPH, Oil Filter Status, Air Filter Status, and Major

Service Maintenance Status.  The rule specified above creates an operation for each of

these incoming data flows, for example, Put_Average_MPG, with each created operation

taking an incoming parameter, for example, Average_MPG.

Another example found in the same case study illustrates the compressing effect

obtained from the rule.  The device interface object Throttle receives three incoming data

flows, each named Throttle Value.  The rule specified above creates an operation,

Put_Throttle_Value with a parameter, Throttle_Value, and then, with repeated application

of the rule, maps each instance of the Throttle Value data flow to the same operation and

parameter.

A fourth rule creates an operation for interface objects that receive a data flow and

emit an associated response, where the name of the incoming data flow is not the same as

the name of the associated response.2  In such cases, the incoming data flow and its

associated response are viewed as a request for data, possibly based upon information

provided with the incoming data flow.  For this reason, such stimulus-response pairs are

mapped to a Get_Data operation, where Data is the name of the response data flow, that

2 Note that the RTSA notation, and the specification meta-model as defined in
Chapter 4, do not insist that the name of a Stimulus and Response be different.
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has an incoming parameter, named for the incoming data flow, and an outgoing

parameter, named for the response.  The rule is specified below.

Rule: Stimulus With Response To Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the sink for a StimulusS  and
a TransformationT is the source for StimulusS and
a ResponseR flows from Interface ObjectIO to TransformationT and
ResponseR and StimulusS do not have the same name

then
if an OperationGOP named Get_Resp, where Resp is the name of 

ResponseR that Takes a ParameterS named Stim, where 
Stim is the name of StimulusS, and Yields a ParameterR 
named Resp, is not already provided by IHMIM 

then
create OperationGOP named Get_Resp
establish the design relationship IHMIM Provides OperationGOP

record the decision and rationale in the history for IHMIM

create ParameterR with the same name as ResponseR

establish the design relationship OperationGOP Yields ParameterR

create ParameterS with the same name as StimulusS

establish the design relationship OperationGOP Takes ParameterS

record the decision and rationale in the history for OperationGOP

else
use existing OperationGOP and ParameterS and ParameterR

fi
allocate ResponseR to OperationGOP

allocate StimulusS to OperationGOP

allocate ResponseR to ParameterR

record the decision and rationale in the history for ParameterR

allocate StimulusS to ParameterS

record the decision and rationale in the history for ParameterS

fi
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An example where this rule applies can be seen by examining the Gas Tank

device interface object in Gomaa’s cruise control and monitoring system case study.  The

Gas Tank receives the Fuel Request data flow and responds with the Fuel Level data

flow.  In this situation, the rule specified above creates an operation, Get_Fuel_Level,

with an input parameter, Fuel Request, and an output parameter, Fuel_Level.  In addition,

since the Gas Tank exchanges two instances of the Fuel Request and Fuel Level data

flows, one with the transformation Initialize MPG and another with the transformation

Compute Average MPG, the rule maps each of these instances to the same operation.

A fifth rule attends to situations where an interface object receives a data flow and

emits an associated response, but where the incoming and responding data flow have the

same name.  Such situations are viewed as operations where a data value is passed in,

possibly modified, and then returned to the caller of the operation.  With this view, such

situations are mapped to an Update_Data operation, where Data is the name of the

incoming and associated responding data flows.  Each such operation created will also be

assigned an input/output parameter, Data, named from the incoming and responding data

flows.  As with previous rules, multiple instances of a stimulus-response pair with the

same name, are mapped to a single Update_Data operation.

To fabricate an example where this rule could apply assume that an Interface

Object, Password_Generator, accepts a data input, Password, and returns a data output,

Password.  Perhaps the intent of such an operation is to validate an old password before

generating a new password.  If this fabricated example existed, then an operation,
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Update_Password, would be created with an input/output parameter named Password.

The rule to make these mappings is specified below.

Rule: Same Stimulus And Response With Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the sink for a StimulusS  and
a TransformationT is the source for StimulusS and
a ResponseR flows from Interface ObjectIO to TransformationT and
ResponseR and StimulusS have the same name

then
if an OperationUOP named Update_Data, where Data is the name of 

ResponseR, that Alters a ParameterA named Data, is not 
already provided by IHMIM

then
create OperationUOP named Update_Data
establish the design relationship IHMIM Provides OperationUOP

record the decision and rationale in the history for IHMIM

create ParameterA with the same name as ResponseR

establish the design relationship OperationUOP Alters ParameterA

record the decision and rationale in the history for OperationUOP

else
use existing OperationUOP and ParameterA 

fi
allocate ResponseR to OperationUOP

allocate StimulusS to OperationUOP

allocate ResponseR to ParameterA

allocate StimulusS to ParameterA

record the decision and rationale in the history for ParameterA

fi

Event flows and data flows, other than responses, from an interface object to

another transformation are allocated to Get_Name operations, where Name is Status, in
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the case of event flows, or the name of the flow, in the case of data flows.  A rule is

specified below for each of these situations, beginning with outgoing event flows.

Rule: Signal From Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the source for a SignalS

then
if an OperationGOP with the name Get_Status   that yields a ParameterO

named Status is not already provided by IHMIM

then
create OperationGOP named Get_Status
establish the design relationship IHMIM Provides OperationGOP

record the decision and rationale in the history for IHMIM

create ParameterP name Status
establish the design relationship OperationGOP Yields ParameterP

record the decision and rationale in the history for OperationGOP

else
use existing OperationGOP and ParameterP

fi
allocate SignalS to OperationGOP 
allocate SignalS to ParameterP

record the decision and rationale in the history for ParameterP

fi

An example where this rule applies can be found in Gomaa’s elevator control

system case study [Gomaa93, Chapter 24] where the device interface object Motor emits event

flows Elevator Started and Elevator Stopped and where the device interface object

Elevator Door emits event flows Door Opened and Door Closed.  The rule specified

above will create a Get_Status operation for the device-interface module, or DIM, derived
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from Motor and for the DIM derived from Elevator Door.  Each of these operations will

yield a parameter, Status, and the corresponding event flows will be mapped to both the

operation and the parameter.

A similar rule, specified below, creates operations for data flows emitted by an

interface object, where such data flows have no associated response.  When an outgoing

data flow does have an associated response, then the outgoing data flow is viewed as an

invocation of an operation provided by the responding transformation.

Rule: Stimulus Without Response From Interface Module

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is the source for a StimulusS and
a TransformationT is the sink for StimulusS and
no ResponseR flows to Interface ObjectIO from TransformationT

then
if an OperationGOP named Get_Data that Yields a ParameterP named 

Data, where Data is the name of StimulusS, is not already
provided by IHMIM

then
create OperationGOP named Get_Data
establish the design relationship IHMIM Provides OperationGOP

record the decision and rationale in the history for IHMIM

create ParameterP with the same name as StimulusS

establish the design relationship OperationGOP Yields ParameterP

record the decision and rationale in the history for OperationGOP

else    use existing OperationGOP and ParameterP

fi
allocate StimulusS to OperationGOP

allocate StimulusS to ParameterP

record the decision and rationale in the history for ParameterP

fi
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An example where this rule applies appears in Gomaa’s elevator control system

case study. [Gomaa93, Chapter 24]  The example contains a device interface object, Floor

Arrival Sensor, that emits a data flow, Floor Number, which has no associated response.

The rule specified above maps this data flow to the operation Get_Floor_Number that

yields a parameter, Floor_Number.

A final rule is specified to determine operations for interface objects where no

event flows or data flows are exchanged between the interface object and any other

transformation.  Such situations arise whenever an interface object interacts solely with a

data store.  In these cases, any input data flow from a terminator to the interface object is

mapped to a Read operation with the input data flow as an output parameter.  Where no

input data flow exists but where an interrupt event flow exists, then a Read_Count

operation is created with an output parameter named Count.  This operation allows the

count of interrupts to be accessed.  Any output data flow to a terminator from the

interface object is mapped to a Write operation with the output data flow as an input

parameter.  

Several cases where these situations arise can be found in the case studies

described by Gomaa.  For example, Gomaa’s robot controller system [Gomaa93, Chapter 23]

includes two device interface objects, Output To Actuators and Input From Sensors, that

interact solely with a data store, Sensor/Actuator Data Store.  For the Output To

Actuators object, an operation is needed to write the data flow Actuator Output.  For the

Input From Sensors object, an operation is needed to read the data flow Sensor Input.  A
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different example appears in the cruise control and monitoring case study where the Shaft

object interacts solely with the data store Shaft Rotation Count but receives no input data

flows.  Here, an operation can be provided to read the count of interrups.  A rule that

addresses these cases is specified below.

Rule: Interface Module Without Drivers

if
an IHMIM is a device-interface module or a user-interface module or a

subsystem-interface module and
IHMIM is derived from an Interface ObjectIO and
Interface ObjectIO is not the source for any Signal or Stimulus and
Interface ObjectIO is not the sink for any Signal or Stimulus

then
if Interface ObjectIO receives an InputI

then
create an OperationROP named Read
establish the design relationship IHMIM Provides OperationROP

record the decision and rationale in the history for IHMIM

allocate InputI to OperationROP

record the decision and rationale in the history for OperationROP

create a ParameterO with the same name as InputI

establish  the design relationship OperationROP Yields ParameterO

record the decision and rationale in the history for OperationROP

allocate InputI to ParameterO

record the decision and rationale in the history for ParameterO 
fi
if Interface ObjectIO receives an InterruptI and receives no Input
then

create an OperationROP named Read_Count
establish the design relationship IHMIM Provides OperationROP

record the decision and rationale in the history for IHMIM

allocate InterruptI to OperationROP

record the decision and rationale in the history for OperationROP

create a ParameterO named Count
establish  the design relationship OperationROP Yields ParameterO

record the decision and rationale in the history for OperationROP

allocate InterruptI to ParameterO

record the decision and rationale in the history for ParameterO 
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fi
if Interface ObjectIO emits an OutputO

then
create an OperationWOP named Write
establish the design relationship IHMIM Provides OperationWOP

record the decision and rationale in the history for IHMIM

allocate OutputO to OperationWOP

record the decision and rationale in the history for OperationWOP

create a ParameterI with the same name as OutputO

establish  the design relationship OperationWOP Takes ParameterI

record the decision and rationale in the history for OperationWOP

allocate OutputO to ParameterI

record the decision and rationale in the history for ParameterI 
fi

fi

8.6.3  Rule to Determine Operations for State-Transition Modules

Each state-transition module, formed from a control object, is treated as a

special-purpose module encapsulating a state-transition diagram.  State-transition

modules are always allocated two operations.  One operation, Process Event, accepts an

input parameter, Event, and then looks up the appropriate set of actions for the value

associated with Event, depending on the current state, as maintained within the

state-transition module.  The second operation, Get Current State, simply returns the

current state of the encapsulated state-transition diagram.3  This manner of addressing

state-transition modules is taken from the CODARTS module structuring criteria.

[Gomaa93, pp. 230-231]  Only one rule is needed to determine the operations for

state-transition modules.  The required rule is specified below.

3 When not needed, this operation can be eliminated later by the designer.
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Rule: STM

if
an IHMSTM is a state-transition module and
IHMSTM is derived from an Control ObjectCO and

then
create an OperationPE named Process_Event
establish the design relationship IHMSTM Provides OperationPE

record the decision and rationale in the history for IHMSTM

create a ParameterE named Event
establish the design relationship OperationPE Takes ParameterE

record the decision and rationale in the history for OperationPE

for each SignalS such that Control ObjectCO is the sink for SignalS

allocate SignalS to ParameterE

record the decision and rationale in the history for ParameterE

rof
create an OperationGCS named Get_Current_State
establish the design relationship IHMSTM Provides OperationGCS

record the decision and rationale in the history for IHMSTM

create a ParameterS named STD_State
establish the design relationship OperationCGS Yields ParameterS

record the decision and rationale in the history for OperationGCS

fi

This rule applies for each control object that exists in an input specification

because each control object is mapped to a state-transition module and each

state-transition module provides two operations.  Several of the case studies presented by

Gomaa [Gomaa93, Chapters 22, 23, and 24] contain instances of a control object; for example,

Cruise Control and Perform Calibration in the cruise control and monitoring system,

Control Robot in the robot controller case study, and Elevator Control in the elevator

control system.  The rule specified above applies to each of these instances.
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8.6.4  Rules to Determine Operations for Direct Access to Data Stores

A set of three rules addresses situations where a data store within a

data-abstraction module connects directly via a directed arc with a transformation that is

outside the data-abstraction module.  Each direct access from outside a data-abstraction

module requires that an appropriate operation be provided by the data-abstraction

module.  One rule, specified below, creates for an outgoing data flow a Get_Data

operation, where Data is replaced by the name of the data flow or, if the data flow has no

name, by the name of the data store.  The operation yields a parameter with the same

name as that used in place of Data in the operation name.

Rule: DAM Get

if
an IHMDAM is a data-abstraction module and
IHMDAM is derived from a Data StoreDS and
Data StoreDS is the source of RetrieveR and
RetrieveR is not internal to IHMDAM

then
determine a name for OperationGOP and ParameterO

if an OperationGOP yielding ParameterO is not already provided by 
IHMDAM

then
create OperationGOP

establish the design relationship IHMDAM Provides OperationGOP

record the decision and rationale in the history for IHMDAM

create ParameterO

establish the design relationship OperationGOP Yields ParameterO

record the decision and rationale in the history for OperationGOP

else use existing OperationGOP and ParameterO

fi
allocate RetrieveR to OperationGOP 

fi
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An example where this rule applies can be found in the cruise control and

monitoring system explained by Gomaa. [Gomaa93, Chapter 22]  In the example, a data store,

Cumulative Distance, forms the basis for a data-abstraction module, Distance.

Cumulative Distance is accessed directly via a Retrieve from ten transformations that are

not a part of the Distance DAM.  The rule specified above recognizes each of these

accesses.  The first execution of the rule creates a Get_Cumulative_Distance operation

that yields a parameter, Cumulative_Distance.  Each subsequent execution simply maps a

Retrieve onto the existing operation.  A similar rule, specified below, addresses direct

writes to a data store.

Rule: DAM Put

if
an IHMDAM is a data-abstraction module and
IHMDAM is derived from a Data StoreDS and
Data StoreDS is the sink of StoreS and
StoreS is not internal to IHMDAM

then
determine an appropriate name for OperationPOP and ParameterI

if an OperationPOP taking ParameterI is not already provided by 
IHMDAM

then
create OperationPOP

establish the design relationship IHMDAM Provides OperationPOP

record the decision and rationale in the history for IHMDAM

create ParameterI

establish the design relationship OperationPOP Takes ParameterI

record the decision and rationale in the history for OperationPOP

else use existing OperationPOP and ParameterI

fi
allocate StoreS to OperationPOP 

fi
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This rule creates a Put_Data operation, where Data is replaced by the name of  

data flow or, if the data flow has no name, by the name of the data store.  The operation

takes a parameter with the same name as that used in place of Data in the operation name.

An example where this rule applies appears in the robot controller system explained by

Gomaa. [Gomaa93, Chapter 23]  In this example, the Sensor/Actuator Data Store forms the

basis for a data-abstraction module.  A device interface module, based upon the

transformation Input From Sensors, executes a direct store to the Sensor/Actuator Data

Store.  The  rule specified above creates an operation, Put_Sensor/Acutator_Data_Store,

with an input parameter so that the data-abstraction module can provide an operation to

write to the data store.  To complete direct data store accesses, a final rule, specified

below, handles update operations.

Rule: DAM Update

if
an IHMDAM is a data-abstraction module and
IHMDAM is derived from a Data StoreDS and
Data StoreDS connects to an UpdateU and
UpdateU is not internal to IHMDAM

then
determine an appropriate name for OperationUOP and ParameterIO

if   an OperationUOP taking ParameterIO is not already provided by IHMDAM

then create OperationUOP

establish the design relationship IHMDAM Provides OperationUOP

record the decision and rationale in the history for IHMDAM

create ParameterIO

establish the design relationship OperationUOP Alters ParameterIO

record the decision and rationale in the history for OperationUOP

else use existing OperationUOP and ParameterIO

fi
allocate UpdateU to OperationUOP 

fi
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A situation where this rule applies can be fabricated by altering some assumptions

about Gomaa’s cruise control and monitoring system. [Gomaa93, Chapter 22]  Assume that,

rather than its intended use as local memory for the transformation Determine Distance,

the data store Last Distance in the example provides an interface to an external subsystem

that is being designed separately.  Under such an assumption, Last Distance forms the

basis for a separate data-abstraction module.  In such a case, the rule specified above

creates an Update_Last_Distance operation with an input/output parameter.

8.6.5  Rules to Determine Operations from Functions

Module operations can be determined from one other source -- Functions (see

Chapter 4 for a definition) allocated to a module that are then accessed from outside the

module.  Two situations must be recognized.  One situation involves a function that

receives an event flow or data flow from a transformation within another module or that

receives no event flow or data flow at all.  A rule for this case is specified below.

Rule: External Function

if
IHMI is an algorithm-hiding module or a function-driver module or a 

data-abstraction module and
FunctionF is allocated to IHMI and
((FunctionF receives a Trigger or Enable or Stimulus or Signal from 
   TransformationT and TransformationT is not allocated to IHMI) or
 (FunctionF does not receive any Trigger or Enable or Stimulus or Signal))

then
create an OperationEF with the same name as FunctionF

allocate FunctionF to OperationEF

establish the design relationship IHMI Provides OperationEF

record the decision and rationale in the history for IHMI

fi
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Several examples where this rule applies, in various forms, can be found in

Gomaa’s cruise control and monitoring system case study. [Gomaa93, Chapter 22] Consider for

example the information hiding module, Average MPG, composed of two functions,

Initialize MPG and Compute Average MPG and a data store, Initial Distance and Fuel

Level.  One function, Initialize MPG, receives a signal from the transformation Mileage

Reset Buttons, which is allocated to a device-interface module.  The rule specified above

creates an operation based on the function Initialize MPG.  The other function, Compute

Average MPG, composing Average MPG receives no signal or stimulus or enable or

trigger.  The rule specified above also creates an operation based on this function.

A second situation to consider involves disables that enter a module.  For any

module that receives a disable from outside the module, a deactivate operation is created.

Multiple disables entering a single module are mapped to a single deactivate operation.

For example, in the cruise control and monitoring system discussed above,  a

function-driver module, Speed Control, is formed from three functions: Maintain Speed,

Resume Cruising, and Increase Speed, each of which receives a Disable from the control

object, Cruise Control.  Since Cruise Control forms the basis for a state-transition

module, the disables received by Speed Control originate from outside the Speed Control

module.  The CODARTS module structuring criteria indicate that a single operation to

deactivate a module should be provided for each module that receives a disable from

outside the module.  [Gomaa93, pp. 231-232]  The rule to achieve this mapping is specified

below.
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Rule: Deactivate Module

if
IHMI is an algorithm-hiding module or a function-driver module or a 

data-abstraction module and
FunctionF is allocated to IHMI and
FunctionF receives a DisableD from TransformationT and
TransformationT is not allocated to IHMI

then
if IHMI does not already provide an OperationDOP named Deactivate
then

create an OperationDOP named Deactivate
establish the design relationship IHMI Provides OperationDOP

record the decision and rationale in the history for IHMI

else
use the existing OperationDOP

fi
allocate DisableD to OperationDOP

fi

Once an operation is created based on a function, the event flows and data flows

entering and leaving the function must be analyzed in order to allocate operation

parameters, where appropriate.  A number of mapping strategies might be considered by

a human designer.  Because a range of strategies could be adopted, allocation of event

flows and data flows to parameters might be left for a human designer.  Instead, the

approach adopted defines a single set of mappings that can be reviewed later by a

designer to consider whether different mappings are preferred.  The mappings are

achieved through a set of six rules.

One rule identifies cases where an operation is invoked by a single control flow.

In such cases, the control flow is not treated as a parameter but, rather, is allocated to the
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operation itself.  This allocation ensures that these control flows are mapped to an

appropriate design element.  The rule is specified below.

Rule: External Function Invocation

if
IHMI is an algorithm-hiding module or a function-driver module or a 

data-abstraction module and
FunctionF is allocated to IHMI and
FunctionF is allocated to OperationEF and
FunctionF receives an ArcA  from TransformationT and
ArcA is a Trigger or an Enable or a Signal and
TransformationT is not allocated to IHMI and
FunctionF does not receive a SignalS with a different name from ArcA

from TransformationANY where TransformationANY is not 
allocated to IHMI

then
allocate ArcA to OperationEF

record the decision and rationale in the history for OperationEF

fi

An example where this rule applies appears in the cruise control and monitoring

system discussed previously.  In the example, a data-abstraction module, Desired Speed,

consists of two functions, Select Desired Speed and Clear Desired Speed, and a data

store.  Each of the functions receives a trigger from a control object, Cruise Control, in a

state-transition module.  The rule specified above maps each of these triggers to the

operation associated with the function stimulated by each trigger.  Another example in

the same case study can be seen where a single event flow, MPG Reset, is sent from

Mileage Reset Buttons to Initialize MPG.  The sending and receiving transformations are

allocated to different modules, so the rule specified above maps the MPG Reset event

flow to the operation associated with Initialize MPG.
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Multiple event flows that enter a function associated with an operation are viewed

as incoming parameters meant to influence the processing within the operation.  A rule to

achieve this mapping is specified below.

Rule: Multiple Signals To Function

if
an OperationEF is derived from a FunctionF and
IHMI provides OperationEF and
FunctionF receives SignalS1 and
FunctionF receives SignalS2, where SignalS2 is not SignalS1, and
SignalS1 and SignalS2 do not have the same name and
SignalS1 is not allocated to IHMI and
SignalS2 is not allocated to IHMI and
OperationEF does not already take a parameter named Condition

then
create a ParameterC named Condition
establish the design relationship OperationEF Takes ParameterC

record the decision and rationale in the history for OperationEF

for each SignalS received by FunctionF where SignalS is not allocated
to IHMI

allocate SignalS to ParameterC

record the decision and rationale in the history for ParameterC

rof
fi

An example where this rule applies can be found in the elevator control system

explicated by Gomaa. [Gomaa93, Chapter 24]  In the example, a data-abstraction module,

Elevator Status and Plan, provides an operation derived from the function Update Status.

Update Status receives two distinct event flows, Arrived and Departed.  The rule

specified above maps these two event flows onto an input parameter named Condition for

the operation derived from Update Status.
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Another rule simply allocates each data flow arriving at a function composing a

module operation to an input parameter.  The rule to make these mappings is specified

below.

Rule: Stimulus To Function

if
an OperationEF is derived from a FunctionF and
IHMI provides OperationEF and
FunctionF receives StimulusS and
StimulusS is not allocated to IHMI and

then
if OperationEF does not already take ParameterI with the same name

as StimulusS

then
create ParameterI with the same name as StimulusS

establish the design relationship OperationEF Takes ParameterI

record the decision and rationale in the history for OperationEF

else
use existing ParameterI

fi
allocate StimulusS to ParameterI

record the decision and rationale in the history for ParameterI
fi

An application of this rule can be illustrated with Gomaa’s elevator control system

case study. [Gomaa93, Chapter 24]  In the example, the transformation Scheduler forms the

basis for an algorithm-hiding module containing a single operation.  The rule defined

above maps each incoming data flow, Elevator Status, Elevator Commitment, and

Service Request, to a separate input parameter for the sole operation in the Scheduler

module.
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Another rule identifies cases where a stimulus to a function is answered by an

associated response, and where the stimulus and response have the same name.  In such

cases, the stimulus and response are mapped to a single input/output parameter for the

operation derived from the function.  The rule, specified below, is given first preference

so that the incoming stimulus and the outgoing response will not be mapped to an input

parameter and an output parameter, respectively, by other rules.  

Rule: Same Stimulus Response With Function (First Preference)

if
an OperationEF is derived from a FunctionF and
IHMI provides OperationEF and
FunctionF receives StimulusS from a TransformationT and
FunctionF sends a ResponseR to TransformationT and
StimulusS has the same name as ResponseR and
StimulusS is not allocated to IHMI and

           ResponseR is not allocated to IHMI

then
if OperationEF does not already alter ParameterIO with the same name

as StimulusS

then
create ParameterIO with the same name as StimulusS

establish the design relationship OperationEF Alters ParameterIO

record the decision and rationale in the history for OperationEF

else
use existing ParameterIO

fi
allocate StimulusS to ParameterIO

allocate ResponseR to ParameterIO

record the decision and rationale in the history for ParameterIO

fi

No example where the rule applies can be found among the case studies provided

by Gomaa but an example can be manufactured by making a slight alteration to the robot
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controller system specification. [Gomaa93, Chapter 23]  Assume that the function Process

Sensor/Actuator Command is replaced with a function Update Sensor Value.  Assume

further that the function receives a stimulus, Sensor Value, from the function Interpret

Program Statement and returns a response, Sensor Value.  The rule specified above maps

the stimulus and response that are named Sensor Value to an input/output parameter for

the operation derived from the function Update Sensor Value.

Two remaining rules provide mappings for event flows and data flows emanating

from any function that forms a module operation.  The first rule maps such event flows to

an output parameter.

Rule: Signals From Function

if
an OperationEF is derived from a FunctionF and
IHMI provides OperationEF and
FunctionF receives SignalS and
SignalS is not allocated to IHMI and

           OperationEF does not yield a ParameterO named Status
then

create a ParameterO named Status
establish the design relationship OperationEF Yields ParameterO

record the decision and rationale in the history for OperationEF

for each SignalS sent by FunctionF where SignalS is not allocated
to IHMI

allocate SignalS to ParameterO

record the decision and rationale in the history for ParameterO

rof
fi

An example where this rule applies appears in Gomaa’s elevator control system

case study. [Gomaa93, Chapter 24]  In the example, the function Check Next Destination emits
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three event flows, Down Request, Up Request, and No Request.  The function Check

Next Destination becomes an operation provided by a data-abstraction module.  The rule

specified above creates a output parameter named Status for the operation and allocates

the three event flows to that parameter.

A final rule maps each data flow, whether stimulus or response, emitted from a

function associated with an operation to an output parameter for the operation.  The rule

is specified below.

Rule: Stimulus Or Response From Function

if
an OperationEF is derived from a FunctionF and
IHMI provides OperationEF and
FunctionF sends an ArcA to a TransformationT and
ArcA is a Stimulus or Response and

          ArcA is not allocated to IHMI and
no Response goes from TransformationT to FunctionF

then
if OperationEF does not already yield a ParameterO with the same 

name as ArcA

then
create a ParameterO with the same name as ArcA

establish the design relationship OperationEF Yields ParameterO

record the decision and rationale in the history for OperationEF

else
use existing ParameterO

fi
allocate ArcA to ParameterO

record the decision and rationale in the history for ParameterO

fi

A case where this rule applies can be found in Gomaa’s cruise control and

monitoring system case study. [Gomaa93, Chapter 22]  In the example, the function Determine
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Distance leads to an operation provided by the data-abstraction module named Distance.

Determine Distance emits a data flow named Incremental Distance.  The rule specified

above maps Incremental Distance to an output parameter for the operation derived from

Determine Distance.  

8.7  Review Module Structure and Consider Renaming Modules

After all the transformations and data stores that can be allocated to modules are

allocated, the module structuring for the evolving design is essentially complete.  The

designer is then given an opportunity to review the module structure.  If the designer is

dissatisfied with the results, then they can be discarded.  In addition, the designer is given

an opportunity to rename any module.  A single rule, not shown here, drives the module

review and renaming that completes the structuring of modules.
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