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Hierarchical approaches and methodologies are commonly used for control system design and
synthesis. Well-known model-based techniques are often applied to solve problems of complex
and large-scale control systems. The general philosophy of decomposing control problems into
modular and more manageable subsystem control problems applies equally to the growing domain
of intelligent and autonomous systems. However, for this class of systems, new techniques for
subsystem coordination and overall system control are often required. This article presents an
approach to hierarchical control design and synthesis for the case where the collection of subsys-
tems is comprised of fuzzy logic controllers and fuzzy knowledge-based decision systems. The
approach is used to implement hierarchical behavior-based controllers for autonomous navigation
of one or more mobile robots. Theoretical details of the approach are presented, followed by
discussions of practical design and implementation issues. Example implementations realized on
various physical mobile robots are described to demonstrate how the techniques may be applied
in practical applications involving homogeneous and heterogeneous robot teams. © 2002 Wiley
Periodicals, Inc.

1. INTRODUCTION

Autonomous control and navigation of mobile robotic vehicles are fundamental
enabling technologies for automation in a variety of operating domains ranging from
industrial environments to remote planetary surfaces. The engineering problem to be
solved generally consists of achieving real-time sensor-based motion control among
obstacles in the environment while performing useful tasks throughout its accessi-
ble regions. In many instances, mobile robots are required to do so using limited
resources (e.g., power, computation, sensors, etc.) that are resident onboard the ve-
hicle. Recent successful approaches have been based on a behavioral decomposition
of tasks with quasi-parallel execution. The seminal work by Brooks,1 exemplified

*To whom all correspondence should be addressed.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 17, 449–470 (2002)
© 2002 Wiley Periodicals, Inc. Published online in Wiley InterScience
(www.interscience.wiley.com). • DOI: 10.1002/int.10032



450 TUNSTEL, de OLIVEIRA, AND BERMAN

by the subsumption architecture, provided the impetus for these behavior-based so-
lutions. Since the introduction of the subsumption architecture, a number of variants
have been proposed for behavior-based control including hierarchical architectures
of fuzzy rule-based systems.2,3 Related work has been proposed in the literature
on single mobile robot control using multiple behaviors and/or hierarchical control
structures.4,5,6 The ideologies of each of these research activities are mutually simi-
lar. The approach presented in this article differs mainly in its use of a fuzzy-behavior
hierarchy, and the implementation of a dynamic behavior coordination mechanism
as a source of adaptive behavior. It can generally be applied as a control method-
ology for distributed intelligent systems that can be represented as hierarchical or
decentralized computational structures. Examples of such systems are autonomous
robotic agents, corporate decision-making entities, social systems, electric power
systems, and other large-scale systems7 in general.

This article presents some theoretical details of a hierarchical fuzzy behavior-
based control architecture that has been successfully applied to autonomous mobile
robot navigation problems. The theoretical foundation permits design flexibility and
extensibility of the architecture for application to increasingly complex problems. As
such, the approach may be used to implement hierarchical controllers for individual
mobile robot navigation, and is easily extended to serve as a core architecture for
coordination and control of multi-robot teams.9,10 Architectures that integrate fuzzy
logic techniques with behavior-based control can offer robust and reliable solutions
for the autonomous navigation problem. In a fuzzy-behavior control hybrid, addi-
tional advantages are gained with regard to representation and handling of uncertain
and imprecise knowledge about the robots’ environment, and in behavior coordi-
nation and conflict resolution. Fuzzy control implicitly accounts for uncertainty by
virtue of the approximate reasoning capability of fuzzy logic. In general, fuzzy logic
controllers (FLCs) provide robustness to perturbations, design simplicity, and effi-
ciency in dealing with continuous variables.8 These are all desirable attributes for
autonomous vehicle control systems.

Example implementations of the architecture on various physical mobile robots
are briefly described, which demonstrate how the techniques may be applied in prac-
tical applications involving homogeneous and heterogeneous robot teams. The arti-
cle is organized as follows. Section 2 details the underlying theory of hierarchical
fuzzy-behavior synthesis and coordination. This is followed by discussion of prac-
tical issues related to hierarchy design and implementation for individual mobile
robots in Section 3. Sections 4 and 5 describe the application of the approach in the
context of multi-robot control, followed by example implementations for physical
robots in Section 6.

2. FUZZY BEHAVIOR HIERARCHIES

Behavior controllers that are based on fuzzy rule-based systems can be con-
figured in a number of ways. The alternatives are governed by issues such as the
fuzzy set resolution selected for system variables and the complexity of decision-
making, or reasoning, demanded by the task environment. The fuzzy set resolu-
tion of the system variables (inputs) determines the total number of rules (i.e., the
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rule-base cardinality) necessary to cover all possible combinations of fuzzy controller
inputs. The collection of individual rule outputs for a given rule base produces a
control/decision surface, the nonlinearity of which is a measure of the decision-
making complexity. Thus, the resolution of the state space and the nonlinearity of the
control surface are interrelated with regard to the interpolation necessary to produce
desired behavior via approximate reasoning. If the rule-base cardinality is relatively
small, then it is feasible to realize the fuzzy behavior controller as a monolithic, or
single-rule-base controller. Otherwise, alternative rule structures may be in order.
Hierarchical rule structures are a viable alternative for dealing with autonomous
behavioral systems such as mobile robots, which require many rules and/or complex
decision-making.

The architectural design of a hierarchical system of behaviors is based on the
premise that autonomous navigation behavior can be decomposed into a finite num-
ber of special-purpose task-achieving behaviors.1 Behaviors can be arranged as a
hierarchical network of distributed fuzzy rule bases, each responsible for some in-
tegral aspect of system functionality. A collection of primitive behaviors resides at
the lowest level, which is referred to as the primitive level. These are encoded as
fuzzy rule bases with distinct control policies governed by fuzzy inference. They
are typically simple and self-contained behaviors that serve a single purpose while
operating in a reactive (non-deliberative) or reflexive (memoryless) fashion. Exam-
ples include simple obstacle avoidance and motion towards commanded subgoals.
Primitive behaviors perform mappings from different subsets of the available sensor
suite to common actuators. When operating alone, each would be insufficient for
performing complex navigation tasks. Such primitive behaviors are building blocks
for higher-level coordination behaviors, referred to as composite behaviors, such as
goal-seeking or route-following.11 That is, their capabilities can be combined through
synergistic coordination to produce composite behavior(s) suitable for goal-directed
navigation. Hereafter, references to primitive and composite fuzzy behaviors will be
abbreviated as p-behaviors and c-behaviors, respectively.

The hierarchical architecture differs from the conventional monolithic FLC
implementation in that a multi-level structure of fuzzy rule bases is employed and a
mechanism for adaptive behavior is provided. The behavior of the system is adaptive
in the sense that the control surface generated by the hierarchy constantly changes
in response to sensor input and perception of the environment. The control surface
of the conventional monolithic FLC is usually fixed and represented by a static
nonlinear input-output map. Note, however, that an FLC with a mechanism for
adaptive behavior should not be mistaken for an adaptive controller. The fuzzy control
hierarchy assumes the role of an intelligent supervisory controller over conventional
linear controllers. That is, the hierarchy generates control set-points as input to low-
level motor controllers in support of autonomous local navigation. Figure 1 is a
conceptual illustration of a general behavior hierarchy consisting of a primitive level
of individual motion behaviors, βi , coordinated by higher-level c-behaviors, Bj , via
a weight-adaptive scheme called behavior modulation (described in Section 2.1.1).
The interconnecting circles between c-behaviors and the primitive level represent
weights and activation thresholds associated with p-behaviors. Each p-behavior maps
inputs to a vector of fuzzy control outputs. Higher-level behaviors act as fuzzy
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Figure 1. Generic fuzzy behavior hierarchy.

decision systems that map goal information and other available input (which may
include sensory data, memory, and symbolic knowledge) to dynamically adaptive,
scalar weights associated with each p-behavior.

2.1. Theoretical Framework

Let X and U be input and output universes of discourse of a p-behavior with a
rule base of size N . We describe the generic fuzzy if-then rule as follows

IF x is Ãi THEN u is B̃i (1)

where x and u represent input and output fuzzy linguistic variables, respectively, and
Ãi and B̃i (i = 1, 2, . . . , N ) are fuzzy subsets representing linguistic values of x and
u. In our mobile robot controllers, x often refers to sensory data or goal information;
u refers to set-points for motor control velocities. In general, the rule antecedent
consisting of the proposition “x is Ãi” could be replaced by a compound fuzzy
proposition consisting of a conjunction (and/or disjunction) of similar propositions.
Similarly, the rule consequent “u is B̃i” could include additional rule-base output
propositions. Primitive fuzzy behaviors are synthesized as a finite set of such rules.
Formally, the output of the i th fuzzy rule is represented by a fuzzy relation, ũi ∈
X × U , which is a fuzzy set itself. Moreover, the output of a fuzzy rule base can
be characterized as a single fuzzy relation, β̃, which is a union of fuzzy relations
ũi , i = 1, 2, . . . , N :

β̃ =
N⋃

i=1

ũi (2)

The output of a primitive fuzzy behavior, then, can also be represented as a fuzzy set.
Thus, the mathematical operations of inference in fuzzy controllers are closed for
fuzzy sets. This fact serves as the basis for extending fuzzy set and logic operations
used for monolithic fuzzy control to multi-rule-based hierarchical fuzzy control.
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In monolithic FLCs, Equation 2 represents the aggregated result of individual
rule outputs and undergoes defuzzification to yield a crisp (numerically precise)
output that serves as input to the robot. In a similar manner, outputs from multi-
ple p-behaviors are aggregated to yield a resultant fuzzy set as the output of the
overall behavior hierarchy. In order for this to work effectively, defuzzification of
p-behavior outputs must be deferred until after the aggregation takes place. There-
fore, in the fuzzy-behavior hierarchy the output of each p-behavior is a fuzzy set of
recommended wheel velocities. Alternatively, the output fuzzy sets could represent
recommended vehicle steering and speed, depending upon one’s selection of control
variables.

2.1.1. Behavior Modulation

When more than one p-behavior is active, interactions can take the form of
behavioral cooperation and/or competition. These forms of behavior are not perfectly
distinct; they are extremes along a continuum.12 Variations in the state of interaction
throughout this continuum are governed by behaviormodulation,which we define as
continuous adjustment or adaptation of behavior activation levels in a multi-behavior
or multi-agent system. This is the underlying mechanism used to regulate behavior
coordination in the architecture. It is achieved by weighted control decision-making
embodied in a concept called the degree of applicability (DOA)—a measure of the
instantaneous level of activation of a motion behavior. Fuzzy rules of c-behaviors are
formulated to include weighting consequents that modulate the DOAs of behaviors
at a lower level. We refer to these as applicability rules. The DOA, α, of a p-behavior
is specified in the consequent of applicability rules of the form

IF x is Ãi THEN α is D̃i (3)

where Ãi is defined as in Equation 1. D̃i is a fuzzy subset representing the linguistic
value (e.g., high, low, etc.) of the behavior’s DOA to the situation prevailing during
the current control cycle. It is defined over the closed unit interval [0, 1], and de-
faults to zero if unspecified by a c-behavior. In general, a composite behavior, c, will
include applicability rules with a consequent of the form “αp is D̃i” for each prim-
itive behavior p modulated by c. Thus for all p, αp ∈ [0, 1] is determined by fuzzy
inference as the output of an associated composite behavior. This feature allows
certain robot behaviors to influence the overall behavior to a greater or lesser degree
as required by the current situation and goal. It serves as a form of adaptation since
it causes the control policy to dynamically change in response to goal information
and sensory input. The behavior hierarchy, then, is a dynamic nonlinear mapping
from situations to actions rather than a static nonlinear mapping represented by a
fixed set of fuzzy rules.

We have established Equation 2 as an expression for the output fuzzy set for
motor control set-points recommended by a p-behavior. Let us denote the fuzzy
output for primitive behavior p as β̃ p, and its corresponding DOA as αp. Let P be
the set of all primitive behaviors in a given behavior hierarchy. Then the modulated
fuzzy output of p is given by (αp · β̃ p). At this point the use of an appropriate
t-conorm will take care of aggregating individual modulated fuzzy outputs to produce
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a resultant output of the behavior hierarchy. The arithmetic sum t-conorm, and hence,
center-of-sums defuzzification Ref. 13, has been chosen for this purpose. This is an
instance of the weight-counting property described in Ref. 13. The arithmetic sum
will be denoted here by the symbol �. Finally, if we denote the resultant output
fuzzy set of the behavior hierarchy as β̃H , then its computation is performed using
the following fuzzy-behavior hierarchy equation:

β̃H = ⊎

p∈P

αp · β̃ p (4)

The crisp control output, u∗ ∈ U , which serves as the velocity set-point input to
the robots’s wheel motors, is computed by center-of-sums defuzzification of β̃H .
That is,

u∗ =
∫
u∈U u · µβ̃H

(u)
∫
u∈U µβ̃H

(u)
(5)

=
∫
u∈U u

∑
p∈P αp · µβ̃ p

(u)
∫
u∈U

∑
p∈P αp · µβ̃ p

(u)
(6)

This expression is the nonlinear input-output mapping of the fuzzy-behavior hier-
archy, which causes its control surface to dynamically change due to continuous
fluctuations in αp, ∀p ∈ P . In this procedure, multiplication by αp expresses the rel-
ative applicability of a p-behavior to the current situation, while the scalar αp itself
represents the weight of the behavior in the aggregated control decision. Operators
other than multiplication can be used to achieve a similar effect. Yager14 refers to
such operators as importance transformations and suggests a general class of them
for both t-norm and t-conorm aggregations.

To gain a better understanding of the effect of weight counting, consider two
primitive behavior output fuzzy sets (modulated or not), β̃1 and β̃2. Suppose that
when these output recommendations are aggregated, the union, β̃1 ∪ β̃2, results in an
overlap of portions of β̃1 and β̃2. Weight-counting defuzzification methods consider
membership values in the overlap region contributed by both β̃1 and β̃2, thereby
processing the full recommendations of both behaviors and forming a true consensus.
This also holds for greater than two output fuzzy sets. The weight-counting property
enforces the weighted decision-making intended in the philosophy of our approach;
i.e., control actions should result from a consensus of recommendations from all
behaviors applicable in the current context. The arithmetic sum, as an aggregation
operator, affords a behavior arbitration strategy that retains and uses all available
information from the individual output fuzzy sets.

3. DESIGN CONSIDERATIONS AND PRACTICAL ISSUES

A number of practical issues serve to complicate the design and development
of the necessary autonomous control algorithms. First, each vehicle is required to
achieve the desired functionality within the data processing limitations of the com-
putational resources available onboard. Second, sensors commonly used in mobile
robotics to measure range to objects in the workspace have inherent accuracy and
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reliability problems that are well known in the literature.15 As a result, the quality
of range data operated on by an associated robot controller is suspect. Third, several
sources of error and uncertainty contribute to inaccurate dead reckoning. Systematic
errors caused by unequal wheel diameters, uncertainty about the vehicle’s wheel-
base, or other mechanical imperfections are common.16 In addition, non-systematic
errors such as irregularities in the terrain contribute significantly to the problem of
estimating the vehicle position and orientation. The problem is further complicated
by unpredictable effects due to less-than-perfect execution of actuator commands
(e.g., wheel slip).

For mobile robots that are designed primarily for path tracking or teleoperation,
classic control techniques can be applied without much difficulty. If there is sufficient
reason to employ fuzzy control techniques for these problems, monolithic FLCs
often provide sufficient solutions. However, as environmental structure and task
constraints are removed from the problem domain, the need for increased autonomy
mandates the development of higher-level intelligent controllers. The methodology
detailed in the previous section can be used to synthesize such controllers using a
well-managed hierarchical structure of fuzzy behaviors. Fuzzy logic is particularly
well suited for implementing such controllers due to its capabilities of inference
and approximate reasoning under uncertainty. In the context of mobile robotics,
fuzzy logic techniques permit easy modeling of the intuitive nature of sensor-based
navigation through the use of fuzzy sets and linguistic terminology. There are certain
aspects of non-fuzzy solutions to the problem for which the application of fuzzy
techniques is more germane. These include conflict resolution, cooperation among
alternatives, and behavior coordination. The proposed architecture features fuzzy
implementations of these capabilities. Advantages to be gained include generally
smoother control response in transitions from one activated behavior to others, and
more democratic arbitration with less loss of available information. This is not to
mention the “built-in” capacity for handling uncertainties inherent in perception and
actuation for mobile robot controllers.

At a higher level, solutions to complex navigational problems must handle the
fulfillment of multiple, and sometimes conflicting, goals for which the priorities
might change with time. Thus, a control system capable of realizing a number of
task-achieving behaviors that can be integrated to achieve different control objec-
tives is desirable. In the face of these formidable practical concerns, solutions for
autonomous navigation must be both robust and adaptable. The requirements for
developing a system that deals with multiple objectives subject to imprecise sensory
data and uncertain actuator performance lead us to employ approximate reasoning
capabilities as a resource for autonomy. We advocate fuzzy logic control techniques
as a means to this end because they facilitate integration of the various layers of
hierarchical control systems. Software control architectures that employ fuzzy logic
techniques and behavioral subsystems can mitigate complications associated with
developing a suitable interface between high-level and low-level processes. This is
primarily due to the intrinsic capability of fuzzy logic to represent both numerical
and symbolic aspects of reasoning (in the form of analytical membership functions
and rules expressed in natural language, respectively). As such, fuzzy systems are
a powerful tool for addressing the integration of deliberative and reactive control
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layers in hierarchical software architectures for distributed robot coordination. Fur-
thermore, fuzzy control structures are amenable to integration with other soft com-
puting methodologies such as neural networks and evolutionary algorithms. Fuzzy
systems also provide significant reasoning capability that can be realized with com-
pact code and memory sizes. In contrast to traditional production rules in AI expert
systems, the symbolic expressions of if-then rules in fuzzy systems are manipulated
through simple numerical computations based on fuzzy set-theoretical operations.
Since fuzzy sets and fuzzy logic are generalizations of classic sets and logic theory,
quantitative references to physical attributes can be represented with coarse gran-
ularity. As such, significantly fewer fuzzy if-then rules (relative to rule base sizes
for expert systems) can be formulated to represent general situations, while the in-
terpolative mechanics of fuzzy logical inference handle intelligent decision-making
for specific situations that arise. In contrast, a conventional expert system requires a
rule for each possible situation.

3.1. Simulation Example

To provide insight into the inner workings of the control strategy, we present
an example behavior hierarchy used to control a single mobile robot in a simulated
indoor navigational task. The capabilities necessary for goal-directed navigation
include avoidance of collisions with obstacles, self and goal localization, and traver-
sal through indoor features such as halls, doorways, and densely cluttered spaces.
A behavior hierarchy encompassing some of these capabilities is shown in Fig-
ure 2. This figure implies that goal-directed navigation can be decomposed as a
behavioral function of goal-seek (collision-free navigation to some location) and
route-follow (assuming some direction is given perhaps in the form of waypoints
or a path plan). These behaviors can be further decomposed into the p-behaviors
shown, with dependencies indicated by the adjoining lines. The purposes of wall-
follow and avoid-collision are implied by their names. The doorway behavior guides
a robot through narrow passageways in walls. The go-to-xy behavior performs a
position-based homing motion that directs a robot to navigate along a straight-line

route-follow

doorwaywall-follow

goal-seek

Goal-directed 
navigation

avoid-collisiongo-to-xy

Primitive level

Figure 2. Mobile robot behavior hierarchy.
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Figure 3. Route-following using waypoints.

trajectory to a particular location. Interconnecting circles between c-behaviors and
the primitive level represent DOAs of associated p-behaviors.

In this hierarchy, route-follow employs capabilities of several primitive be-
haviors, each contributing its own capability while being modulated in response to
sensor input and goal information. For this example, the robot’s task is sensor-based
navigation from a start location to a designated goal inside a hypothetical indoor
layout (See Figure 3). The robot is not provided with an explicit map, however, it is
cognizant of the notion of a two-dimensional Cartesian coordinate system. Its path is
not preplanned; it is executed in response to instantaneous sensory feedback via mod-
ulation of avoid-collision (ac), go-to-xy (gt), and wall-follow (wf ). Its initial state is
at a docking/charging station with pose (x y θ)T = (10 m 5 m −π

2 rad)T ; the goal
is located at (1.2 m, 5.2 m). A designated route to the goal is specified by the fol-
lowing three additional waypoints or subgoals: (7.5, 2.5) → (3.5, 6.5) → (2.0, 8.5).
The resulting route is shown in Figure 3 and the corresponding DOAs (αp) for each
p-behavior are shown separately in Figure 4 (labeled DOAp on the ordinate of each
graph). LabelsA–G in each figure indicate a correlation between robot position along
the route and the DOAs applied at that instant.

At pointA as the robot exits the start room, all three primitive behaviors compete
for control. At B, αac exceeds αgt and αwf , allowing avoid-collision to take over
as the dominant behavior while approaching the first waypoint. After avoiding an
obstacle, αgt increases while go-to-xy becomes dominant at C on approaching the
second waypoint. Dominance alternates between avoid-collision and go-to-xy as
they compete while traversing through D and E where the robot adjusts its heading
towards the goal room. Interactions among the three p-behaviors resurface atFwhere
αwf exceeds αac and αgt, allowingwall-follow to briefly dominate. It becomes inactive
at G, giving way to avoid-collision, and finally to go-to-xy on direct approach to the
goal. During the majority of the task each p-behavior is active to varying degrees
influencing the overall robot behavior.
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4. APPLICATION TOMULTI-ROBOT SYSTEMS

In order to extend the approach to be viable in multi-robot domains, addi-
tional considerations are necessary to address the new demands and challenges on
the control system.17 These include efficient communication for data sharing and
robot cooperation, scalable cooperation strategies, and efficient sensor fusion and
data representation. The extensibility of the architecture facilitates the straightfor-
ward incorporation of the necessary features. In this section, we describe the core
fuzzy behavior hierarchy developed for multi-robot systems and its associated design
methodology.

In the design phase, the generic hierarchy of Figure 1 is outfitted with compe-
tencies that span the necessary behavioral repertoire for fulfilling the robot’s purpose.
That is, a behavior hierarchy is constructed that includes competencies sufficient to
support the robot’s task(s), and that are executable in the target operating environ-
ment. Sufficiency of the behavioral repertoire is based on the designer’s subjective
assessment of the problem.

The design procedure begins with establishment of the overall behavioral pur-
pose of the desired navigation system. The problem is then assessed from the point
of view of the robot(s) situated in the target operating environment. The behav-
ior hierarchy is built to encompass motion capabilities necessary for goal-directed
local navigation. Based on the designer’s assessment and intuition, a number of
fundamental behavioral requirements are identified leading to definition of the
primitive level. Useful composite behaviors at the level above are then identified,
which can conceptually emerge from combining fundamental capabilities of two
or more identified primitive behaviors. This process continues until the designer is
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satisfied that the suite of behaviors is sufficient to realize the overall purpose of
the navigation system. Inputs, outputs, and associated membership functions are
defined for each fuzzy behavior. Rules are then formulated that govern the desired
response of the behavior for all practical inputs. This is followed by an iterative
test-debug-tune cycle, which might be performed off-line using computer simu-
lation. Additional refinement takes place on the actual robot when inadequacies
are discovered that were not evident in simulation. This trial-and-error procedure
involves fine-tuning of the shapes of membership functions used to express uncer-
tainty in inputs and outputs, as well as modifications to the fuzzy rule base. The
duration of this process is a function of system complexity and the availability of
expert knowledge or intuition. Manual formulation of rules for primitive behaviors
is straightforward because the control policies are relatively simple. Manual formu-
lation of rules for composite behavioral capabilities such as goal-seeking and route-
following is a considerably more complex and arduous task. It is perhaps the most
challenging aspect of applying the approach. We will elaborate on this issue later in
Section 7.

The total number and individual purpose of fuzzy behaviors in a given behavior
hierarchy is indicative of the problem complexity and can be conveniently modified
as required. Such modifications may become necessary in the event that tests with
the physical robot(s) and environment reveal a need for additional behaviors or an
alternative decomposition. Having established a nominal hierarchical arrangement
of behaviors, the design proceeds as outlined above. Descriptions of the resulting
suite of fuzzy behaviors are provided below.

4.1. Core Behavior Hierarchy

The behavior of each mobile robot is implemented using the hierarchical con-
trol architecture described in Section 2, wherein multiple behaviors are arranged
as a hierarchical network of distributed fuzzy rule bases. This base architecture for
individual robots3 can be extended to enable cooperative control of multiple mobile
robots by exploiting its flexibility and scalability.10 Thus far, this has been achieved
by employing a common core hierarchy of behaviors that enables cooperative group
behaviors such as moving towards a given position without colliding with stationary
obstacles or other robots. A core hierarchy for this safe-homing group behavior is
depicted in Figure 5. It is composed of the p-behaviorhoming and the c-behavior safe-
wander. Homing consists of moving towards a given position based on knowledge of
the current robot position and its goal/target position. Safe-wander enables random
motion without colliding with stationary obstacles or other robots. Safe-wander is
composed of three p-behaviors: avoid-obstacle, avoid-kin, and wander-randomly.
As its name implies, avoid-obstacle provides the survival capability for avoiding
collisions with stationary obstacles. This p-behavior takes as inputs the distances
to the nearest sensed obstacle in front and on both sides of the robot and recom-
mends appropriate actuator outputs. Avoid-kin augments this capability with respect
to robot team members by enabling a robot to avoid collisions with other robots. It
operates in a similar fashion, considering only the distance and angle to the near-
est robot team member. Finally, wander-randomly ensures avoidance of deadlock
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Figure 5. Safe-homing behavior hierarchy.

situations by directing a robot to move forward with rotational directives issued
randomly.

Executing on each robot during group motion, safe-wander modulates the
DOAs of avoid-obstacle, avoid-kin, and wander-randomly, in response to distance
measurements to the nearest obstacle and robot. At a higher level, safe-homingmodu-
lates the DOAs of homing and safe-wander. This core behavior hierarchy aggregates
basic navigational and survival behaviors with communications and cooperative re-
sponse behavior. With a hierarchical fuzzy controller executing on each robot, it
is possible to realize various intelligent group behaviors such as safe wandering,
homing, and flocking, which emerge as a result of robot interactions.10

Note that decomposition of behavior for a given mobile robot system is not
unique. Consequently, suitable behavioral repertoires and associated hierarchical
arrangements are arrived at following a subjective analysis of the system and the
task environment. Note also that there is no requirement for behaviors in the primitive
level to be implemented using fuzzy logic. In fact, behaviors with crisp inputs and
outputs that are implemented using other techniques (e.g., classic control or neural
networks) can easily be accommodated by the hierarchy. This is possible because
their crisp outputs can be folded into Equation 4 as singleton fuzzy sets.

5. MOBILE ROBOT GROUP ARCHITECTURES

We describe two group architectures that have been implemented using the
hierarchical fuzzy behavior-based approach. The first consists of a homogeneous
group of mobile robots that work collectively to achieve a common mission generally
classified as foraging. The focus of the second group architecture is a heterogeneous
group of robots that are organized as a hierarchy themselves to achieve missions
involving area coverage.

The homogeneous group is comprised of two identical robotic platforms. For
this pair of robots, mission objectives are achieved via parallel execution of a common
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Figure 6. Group hierarchy for coordinator-scout robot ensemble.

core behavior hierarchy. The robots receive common directives from a centralized
source of environmental sensory data and execute the directives collectively until
the mission is accomplished. An example is provided in the following section.

The heterogeneous group is comprised of two different types of mobile robot,
each with different sensors and actuators. In this case, the multiple robots are them-
selves organized as a loose hierarchy, with the cooperative control strategies per-
formed by the robot(s) at the highest level. Cooperation among robots is mediated
through a two-tier hierarchy, based on two classes of robots: coordinators and scouts.
A cluster of scout robots is associated with a coordinator robot. We refer to the
coordinator-scout cluster as an ensemble and its hierarchical and functional disposi-
tion is depicted in Figure 6. This figure also shows an optional supervisor layer, for
situations where remote telemetry or human-in-the-loop are required.

In our conception, scout and coordinator robots employ the same robotic plat-
form software and core behavior hierarchy, although coordinators are typically en-
coded with more deliberative capabilities. Differentiation is manifested in the subset
of behaviors employed, allowing a scout to take over the role of a coordinator, if
the latter is absent. Likewise, if the capabilities of a coordinator are compromised in
some manner, it can be reconfigured as a (less-capable) scout. This reconfigurability
is a feature of the hierarchical architecture that can be exploited by presetting or
adjusting behavioral DOAs—in essence, enabling only those behaviors in the hier-
archy that are useful for coordinators versus scouts. A similar concept is proposed for
modular design of robot teams in ref. 18. Scouts are configured to utilize minimal
autonomous decision-making capability, sufficient only for self-preservation and
basic navigation. They utilize their resources primarily for mission-relevant data
collection. On the other hand, coordinator robots are configured for more sophis-
ticated navigation, and multiple scout coordination and control capabilities. They
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Coordinator Data propagation

Coordinator comm. range

Scout

Scout comm. range

Figure 7. Data propagation within robot ensemble.

limit their sensory resources to self-preservation and navigation uses, rather than data
collection.

The ensemble is defined by the coordinator robot and the scouts that are within
the coordinator range of communication (and therefore, range of influence). Inter-
robot communication is realized through intermittent, short bursts of data. In general,
since the communication range of each scout is limited, data originating at a cer-
tain location will gradually propagate to other locations via robots in the group (see
Figure 7). In this manner, incoming environmental information (e.g., a priori or ac-
quired map data) is integrated into the world representation of each robot and prop-
agated, as part of its current database, in posterior bursts.19 Furthermore, communi-
cation between coordinator and scout units may also contain mission directives that
modify the basic scout behaviors of data collection and self-preservation, resulting
in collectively directed action. Examples of group directives include go-to-position,
follow, halt, and go-direction, which are application-dependent.

6. PHYSICAL MOBILE ROBOT APPLICATIONS

Two examples are presented to describe how the hierarchical fuzzy control
approach can be used in practical applications to coordinate and control multi-
robot group behavior. The first example describes a foraging application involving
the homogeneous group of two robots.20 The foraging application has a variety of
practical parallels in robot application domains. Some of these include the search and
disarming of landmines (demining), search and collection of particular soil samples
at hazardous waste sites or on remote planetary surfaces, collection and disposal of
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trash, and so on. In the example, foraging is performed in a laboratory setting wherein
the objects of the search are represented by aluminum soda cans distributed on the
laboratory floor. The second illustrative example describes a scenario involving the
task of area coverage using the heterogeneous group of robots organized as an
ensemble hierarchy.

6.1. A Foraging Example

The foraging mission of identifying target objects (soda cans) in an indoor envi-
ronment was chosen since it requires a relatively simple setup, it allows comparison
to other projects (see, for example, Ref. 21) due to its popularity as a multi-robotic
application, and it lays a foundation for more interesting applications such as those
mentioned above.

Two identical Pioneer 2-DX mobile robots (named LACHISH and NEGEV)
are used to forage for target objects. These commercially available mobile robots are
38 cm long, 22 cm wide, and 44 cm tall, with mobility provided by two driven wheels
and a passive caster. Each is equipped with front and rear sonars, bump sensors,
encoders, a photoelectric sensor, and wireless Ethernet communication devices (with
a range up to 50 meters in optimal conditions). In this example, the robots reach
the soda cans and subsequently return to a home position using the core behavior
hierarchy for safe-homing. An additional p-behavior, constant-velocity, was added
at the same level of the hierarchy as the safe-wander and homing behaviors. The
constant-velocity behavior simply guides each robot to move forward at a constant
velocity. We found this behavior useful for increasing the rate of progress during
foraging, which was relatively slow due to frequent interactions between homing
and avoid-obstacle.

In this case, the c-behavior safe-wander modulates the DOAs of avoid-
obstacle and wander-randomly, according to the distance to the nearest obstacle
and robot and the probability of the robot being in a deadlock situation (based on
persistent activation of avoid-obstacle). The c-behavior safe-homing modulates the
DOAs of its underlying behaviors according to the distance to the nearest obstacle,
the distance to the target, as well as the DOA of the safe-wander behavior and its
recommended turn angle from the previous run.

Experiments were conducted in a 6 m × 8 m relatively open region of the
laboratory (see Figure 8). Soda cans are targeted by two fixed overhead cameras,
each viewing a different subregion of the laboratory. One region is 2 m × 2 m and
the other is 1.2 m × 1.6 m. The robots’ home position is situated approximately
in between the two camera subregions. One region is directly in front of the home
position and the other is to the right (Figure 9). Once a minute, black-and-white
images of the regions are sampled and then thresholded and dilated. The soda cans
are identified based on their size in the processed image. The locations of the detected
soda cans are then broadcast to the robots and are expected to lie within only one of
the two subregions.

Prior to task execution, each robot starts at the home position. They wait until
a target is acquired before executing the safe-homing behavior to reach the target.
When the target vicinity is reached, the robots verify that a soda can object is indeed
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Figure 8. Foraging experimental environment.

Region A

Region B
Home

Figure 9. Schematic diagram of experiment.

present using a photoelectric range detector. If successful, the robot announces its
findings and returns to the home position. The robots do not actually pick up the soda
cans because they are currently not equipped with grippers; the cans are manually
removed by the experimenters. Ten successive runs in which the robots set out to find
cans and return to the home position are summarized in Table I. In all runs, except
runs 3 and 10, LACHISH left the home position 15 seconds after NEGEV. After
each run, the robots were reset to avoid accumulation of encoder errors. Nine runs
terminated successfully; i.e., the robots found the soda cans and returned successfully
to the home position. When a can had already been found by the other robot (and
manually removed by the experimenter), the robots correctly identified that it was
not there. Each run was completed within one to four minutes. However, run 5 had
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Table I. Group foraging results.

Region Time Region Time
Run (NEGEV) (sec) (LACHISH) (sec) Remarks

1 A 110 A 165
2 B 150 A 110
3 A 240 A 180 No reset after run 2
4 A 120 A 120
5 A — A — Robots collided
6 B 130 A 120
7 A 90 B 165
8 A 135 A 270 LACHISH collided with table
9 B 165 B 240

10 A 165 B 180

to be manually stopped because the robots collided with each other due to a failure
to resolve inter-robot behavioral interactions. This occurred during an instance in
which LACHISH and NEGEV were moving in opposite directions while close to an
obstacle on their side. The behavioral failure occurred while attempting to satisfy the
dual objective of avoiding collision with each other and the obstacle. Such an event
is not unlike the situation wherein two people collide while walking toward one
another after committing to conflicting decisions about avoidance maneuvers. This
revealed a need for traffic rules and/or inter-robot communication to facilitate group
navigation when the robots collectively execute parallel tasks in a shared workspace.
Formal multi-objective decision-making approaches for behavior-based systems22

are particularly useful in such cases.

6.2. Area Coverage Scenario

The ensemble architecture is being implemented in a heterogeneous group of
three robots. A commercially available Koala robot named MAX is used as a coordi-
nator robot, and two identical custom-built laboratory robots are used as scouts due
to the greater computational resources of the former. As mentioned earlier, however,
the flexibility of the hierarchical fuzzy control architecture permits each robot to be
configured for alternative group roles. As shown in Figure 10, the Koala robot is a
six-wheeled vehicle and the scouts employ a tracked mobility system. MAX is the
larger robot with dimensions of: length: 32 cm, width: 32 cm, and height: 20 cm;
respective dimensions for the scout robots are 21 cm, 20 cm, and 13 cm. Each of
these robots possesses only range-finding sensors for obstacle detection/avoidance
and encoder-based odometry for navigation. MAX has 12 peripherally mounted in-
frared (IR) sensors, while the scout robots currently have four perimeter-mounted IR
sensors. The robots are equipped with similar radio frequency transceivers (mounted
atop each robot). These are UHF band FM transceivers with a range of about 30 me-
ters in optimal conditions and a data rate up to 38,400 bits per second. MAX utilizes a
communication scheme executed by an ancillary Motorola 68HC11 microcontroller
coupled to its transceiver.
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Figure 10. Ensemble scout robot (left) and coordinator robot (right).

This heterogeneous group of robots can be used to achieve tasks of area cover-
age for exploration. In an exploration scenario, scouts commence distributed cover-
age of a region of interest after being led to the region by a coordinator. The group
could collectively navigate using a core behavior hierarchy that supports motion in
particular formations (not supported in the current design). Alternatively, the co-
ordinator can execute the navigation while the scouts follow using a follow-leader
behavior added to the hierarchy described above. A simple way to implement this is
to install a light source or beacon on MAX, which is tracked by light sensors on the
scout robots. The coordinator illuminates its beacon when leading scouts to a region
of interest, and shuts it off when the location is reached. So the directive to start
work is communicated to scouts optically by the absence of the coordinator beacon.
When the coordinator beacon is on, the nominal approach to area coverage by the
scouts is based on execution of the safe-wander behavior in the region of interest;
otherwise scouts activate a follow-leader behavior.

6.2.1. Example

In the experimental scenario, the ensemble’s task is coverage of a designated
area (for example, to gather data from all reachable parts of some interesting terrain).
The terrain has subareas that the coordinator cannot reach or venture into due to its
larger size or poor traversability for wheels versus tracks, for instance. Coverage of
such subareas within the general area of interest must be achieved by the scouts.
The coordinator is responsible for leading the scouts to the designated area, while
the scouts are tasked with the coverage job.

This area coverage scenario is illustrated in Figure 11, and it was carried out in
a laboratory setting using MAX and the scout robots. Figure 12 shows the ensemble
operating in a representative experimental trial as recorded by a sequence of overhead
camera images. The trial run was executed in an area bounded by four walls enclos-
ing the robots and styrofoam boxes used as generic obstacles/barriers. This figure
records the first 3.5 minutes of area coverage trajectories executed by the scouts
upon activation of the safe-wander behavior. The coordinator, MAX, is situated at
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Figure 11. Ensemble area coverage scenario.

Figure 12. Area coverage experimental run.

the bottom center of the figure, having issued a directive to initiate area coverage.
Scout trajectories are depicted as dashed lines with circles marking periodic posi-
tions along the trajectory approximately every 25 seconds. The random-walk nature
of the safe-wander behavior is evident in Figure 12. Indeed, more structured explo-
ration behaviors could be employed for systematic coverage of designated areas in
real applications.

7. DISCUSSION AND CONCLUSIONS

The illustrative example implementations for foraging and area coverage pro-
vide basic demonstrations of how the proposed multi-robot control scheme might be
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applied. The hierarchy of fuzzy behaviors offers an efficient approach to synthesis
of behavioral capabilities necessary for these and other autonomous navigational
tasks. Its practical utility lies in the hierarchical decomposition of overall behavior
into sub-behaviors that are activated only when applicable. This approach, along
with its mechanism for weighted decision-making, provides a suitable framework
for situated adaptation in single and multiple autonomous vehicles. As in the philos-
ophy of our approach, the “trick” is in applying these fuzzy logic techniques when,
and where, they are most feasible.

One of the salient attributes of the approach, in the spirit of the subsumption
architecture, is the solipsist view that each primitive has of the “world.” The func-
tionality of the system depends on a combined effect of the behavioral functionality
of each primitive and the competence of the composite behaviors that coordinate
them. As mentioned earlier, perhaps the most difficult aspect of applying the ap-
proach is the formulation of applicability rules for c-behaviors, particularly when
they modulate several underlying p-behaviors. In earlier work,23 we successfully
addressed the issue of which behaviors to activate, and to what degrees, using ge-
netic programming24 to computationally evolve fuzzy coordination rules off-line.
However, the evolutionary approach leaves something to be desired with regard to
the speed with which solutions can be obtained. Behavior evolution is one among
several computational alternatives to manual formulation of the applicability rule
bases responsible for appropriately modulating p-behaviors. Other learning or op-
timization approaches may be applied to facilitate the process. For example, this
problem has been addressed in the contexts of other coordination schemes by using
reinforcement learning25 and hybrids of reinforcement and neural networks.26,27

Low-level and high-level behaviors, as well as the behavior coordination mech-
anisms of the hierarchical structure, are based on fuzzy set theory and fuzzy logic.
This uniformity in representation permits design flexibility and extensibility of the
architecture for application to increasingly complex problems. In addition, it fa-
cilitates the integration of the various layers of hierarchical control systems. The
practical applications to basic mobile robot navigational tasks demonstrate the scal-
ability of the core architecture from single to multiple robot control. It is con-
ceivable that the coordination mechanisms could be useful at a larger scale where
individual agents/robots are treated in the same way as individual behaviors in the
hierarchy.

A significant feature of the architecture that could be the focus of future exten-
sions is behavior threshold activation. Thresholds imposed on DOAs would allow
filtering of undesirable interbehavioral influences. Threshold activation has not been
fully exploited in the research reported here. The feature remains as an additional
degree of freedom of the architecture that deserves further attention. A simple ap-
proach to exercising threshold activation within the hierarchy as described here is
presented in Ref. 28. A preliminary assessment of its impact on local navigational
performance is provided there as well. In addition, the computational mechanism for
behavior modulation deserves further attention. Namely, the availability of various
formulations for computing the information and control interface between hierarchi-
cal layers should be exploited to determine their relative merits in different problem
domains.
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The fuzzy-behavior approach is being adopted for planetary rover navigation
in rough terrain.29 It extends the approach by accounting for third-dimensional char-
acteristics of terrain such as roughness, slope, and discontinuities, as well as vehicle
safety against hazards such as tip-over and excessive wheel slippage. A fuzzy logic
rule set is added to reason about these characteristics and infer a degree of ter-
rain traversability, which is then factored into behavioral decisions for goal-seeking.
Finally, the approach presented here is also being extended for application to mul-
tiple cooperating mobile robots in the competitive robot soccer domain.9,30 In this
extension, robots are controlled by a behavior hierarchy of strategic motion behaviors
meant to emulate soccer players. Both of these extensions have been implemented
and tested on physical mobile robots.
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