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ABSTRACT

Micro-robots will soon be available for deployment by the
thousands.  Consequently, controlling and coordinating a
force this large to accomplish a prescribed task is of great
interest.  This paper describes a flexible architecture for
modeling thousands of autonomous agents simultaneously.
The agents’ behavior is based on a subsumption architec-
ture in which individual behaviors are prioritized with re-
spect to all others.  The primary behavior explored in this
work is a group formation behavior based on social poten-
tial fields (Reif and Wang 1999).  This paper extends the
social potential field model by introducing a neutral zone
within which other behaviors may exhibit themselves. Pre-
vious work with social potential fields has been restricted
to models of “perfect” autonomous agents. The paper
evaluates the effect of social potential fields in the pres-
ence of agent death (failure) and imperfect sensory input.

1 INTRODUCTION

This paper examines multi-agent modeling and simulation
for a large-scale number of autonomous agents.  Specifi-
cally, the paper examines the development of a simulation
program to model the interaction and collective behavior of
micro-robotic task forces consisting of 1000 or more enti-
ties.  The objective of the research presented in this paper
is twofold.  The first objective is to develop a viable simu-
lation tool for studying autonomous agent behavior and
collective interaction.  The second is to examine behavioral
models for group formation and coordinated motion.

Technology will soon make possible the practical de-
ployment of micro-robots on the size order of 2.5cm
square.  The dispersion of thousands of these micro-robots
represents a tremendous capability for application in sur-
veillance and remote sampling.  However, many issues,
beyond technical feasibility still need to be examined.
Notable research papers by Reynolds (1987), Gage (1992),
Hodgins and Brogan (1994), Kennedy and Eberhart
(1998), Reif and Wang (1999), and Suzuki and Yamashita

(1999), examine one of these issues, namely that of inter-
action and coordinated motion among autonomous agents.
This paper extends and advances previous research efforts
by examining the issues of imperfect perception and entity
death.  The simulation framework developed for this proj-
ect encapsulates the robots as autonomous entities in which
capability is added or reconfigured by the addition of ob-
jects (behaviors, sensors, physical characteristics, etc.).
The simulation described in this paper was developed us-
ing Extend�.

The paper begins by presenting a vision for future mi-
cro-robotic deployments.  Some of the issues involved in
coordinating the group’s behavior are also identified.  Next
the paper discusses the development of the agent model
and construction of the simulation.  Thirdly, movement
coordination is demonstrated using a force function be-
tween neighboring entities.  Finally, experimental results
and future work are discussed.

1.1 Research Motivation

Technological advances in micro-robotics, remote sensors,
and artificial intelligence continue to increase the capabili-
ties of micro-robots while decreasing the size of such units.
It is easy to imagine producing and deploying thousands of
inexpensive, essentially disposable micro-robots in the
near future.  Although possibly limited in individual capa-
bility, deployed in large numbers their cumulative ability
represents a tremendous force.  Given the proper social
behavior set, the agents form a collective; much like a col-
ony of ants or swarm of bees.  Importance shifts from the
actions of individual agents to the collective behavior.  A
complex system develops.  A complex system is defined as

“one whose component parts interact with suffi-
cient intricacy that they cannot be predicted by
standard linear equations; so many variables are
at work in the system that its overall behavior
can only be understood as an emergent conse-
quence of the holistic sum of all the myriad be-
haviors embedded within.”  (Levy 1992).



The autonomy, social interaction and system complexity
elevate the robots from mere mechanical agents to a point
where they approach a semblance of artificial life (AL).

A key element of micro-robot deployment is the con-
struction of behavior sets that facilitate group formation
and coordinated motion of micro-robotic forces.  This pa-
per examines the utility of Social Potential Forces in
maintaining spatial relationships in the face of micro-robot
deaths and sensor imperfections.  Additionally, this paper
introduces an adaptation, which promotes preferential ex-
pansion of the collective in a specific direction.

1.2 Application Scenario

To understand the complexities of micro-robot deployment
and the need for coordinated control, consider the follow-
ing scenario.  A train with several cars containing hazard-
ous material (HAZMAT) has derailed.  A subsequent ex-
plosion has scattered debris around the crash site.  The
extent of the area contamination and the status of the cars
carrying the HAZMAT are not known.  Due to the danger-
ous nature of the scattered material, a task force of micro-
robots is selected for site evaluation prior to human entry
into the area.  An Unmanned Aerial Vehicle (UAV) drops
a group of 2000 micro-robots equipped with chemical sen-
sors over the debris field and in the vicinity of the over-
turned cars.  As the robotics coordinator, your mission is to
utilize the micro- robots to map the contamination levels in
the area and assess the hazards before humans enter.

This scenario represents a practical and seemingly
simple application of micro-robots.  However, it reveals
many of the technical challenges involved in deploying
large numbers of micro-robots.  These challenges include
the following questions.

1. Given a random or batch distribution of the 2000
micro-robots, how do you organize them into a
nearly equidistant formation to maximize sensor
coverage of the suspect area?

2. Once, the pattern is formed, how do you direct the
masses in coordinated motion in the direction of
interest?

3. During the formation and sensor sweep, how do
you identify and then adjust for the inevitable
“deaths” (unit failures) in order to ensure com-
plete coverage?

This example illustrates the nature of some of the col-
lective tasking and coordinated motion issues that still face
large-scale micro-robot force deployments.  These issues
of autonomous behavior and command and control are also
faced when using larger robots, but the problem is much
more complex for several reasons.  First, the diminutive
size of the units severely restricts their capability in terms
of computational power, memory storage, sensor coverage,
etc.  Second, the sheer size of the collective, one thousand

or more, makes individual control of the units by an op-
erator unfeasible.

This project draws inspiration from observations of
social communities in nature, i.e. bees, ants, birds, fish.
The approach taken is to assign each unit a simple set of
individual behaviors.  Within this framework, each unit
senses and reacts to its environment and other units within
the group.  The units together form a collective behavior.
The model presented in this paper encapsulates a behavior
set that promotes group formation building and coordi-
nated motion.  These capabilities address some of the de-
ployment issues illustrated in the HAZMAT scenario by
giving the individuals some autonomous behavior that
helps accomplish the prescribed mission.

2 PROJECT DEVELOPMENT

Simulation unfortunately is a necessary evil.
(Arkin 1995)

Simulation, although accepted in many disciplines as an
essential tool for gaining insight into system operation, has
many skeptics among researchers in the robotics field.  The
prevailing thought is that the only true test of a new system
design is to implement that system on an actual robot and
evaluate the robot in a real world environment.  No one can
deny that this is indeed the ideal method for complete
evaluation.  However, costs, resources, time and even
technology often limit the feasibility of conducting real
world testing.  In these instances, simulation plays a valu-
able role in evaluating advanced concepts and designs.
Likewise, when resources become available for field-
testing, maximum benefit can be achieved by focusing
tests on the critical elements identified through prior
simulation.

2.1 Simulation of Micro-Robots

Many concerns of the robotics community are the result of
prior simulations that have unrealistically represented the
challenges of real world robotic system deployment.  Many
of these concerns are valid and have reduced the usefulness
of simulation as a development tool.  The following list
details some of the specific concerns raised regarding pre-
vious robotics modeling and simulation.  The list was
compiled from the literature and personal discussions with
several prominent roboticists.

1. Simulated robots live forever. (immortality)
2. Simulated robots see everything. (perfect sensing)
3. Simulated robots possess unlimited computational

ability.
4. The computer code used to drive the simulation

does not resemble the same program code used to
drive the actual robot. (Arkin 1995)



A simulation should take into account the realistic per-
formance of sensors and the effects of environmental con-
ditions.  The level of realism should be related to the focus
area and goals of the experiment.  Concept exploration
may not require a complete world model in terms of exact
duplication of the environment, but it should adequately
reflect the capabilities of the components in question.  Mi-
cro-robotic production is not to a point where full-scale
deployment is possible, but the simulation described later
tries to address the above issues in terms of estimated ca-
pabilities.  The capabilities of the simulated micro-robots
are easily adjusted within the simulation to increase real-
ism as more accurate information becomes available.

2.2 Foundations of Micro-Robotic Agent Modeling

The modeling and simulation of large-scale forces (1000 or
more units) of autonomous agents is a relatively new area
of research.  The roots of such simulation can be traced
back to the concept of cellular autonoma (CA) first con-
ceived by John von Neumann and his colleague Stanislaw
Ulam when they were exploring the realm of Artificial Life
and self-reproducing automaton.  According to Levy
(1992), Arthur Burks actually coined the phrase “Cellular
Autonoma” while editing von Neumann’s papers on the
subject.

In the late 1960s, a University of Cambridge mathe-
matician, John Horton Conway, took the concept of CA
and developed the game of Life.  This game inspired and
influenced generations of researchers in the realm of AL
and autonomous agent research.  The game of Life consists
of a two dimensional grid on which entities exists within
individual cells.  The entities have one of two states, alive
or dead.  The game traces the generations of entities as
they are born, live and die.  The state of an entity in the
next generation is based solely on the number and states of
the neighboring entities in the eight cells adjacent to the
entity in question (Levy 1992).

The game of Life illustrates some of the key concepts
used for autonomous robot modeling and multi-agent
simulation.  These core concepts include:

1. Identification of and focus on individual entities.
2. A defined rule set governs individual behavior.
3. Individual entities are directly affected by neigh-

boring entities.

These concepts establish the principles for multi-agent
model development and they serve as the basis for the de-
sign of our micro-robot simulation.

Throughout the remainder of the paper the terms
“agent” and “micro-robot” are used interchangeably.  The
reason for this is twofold.  First, we wish to shift focus
away from any preconceived mental models and the asso-
ciated limitations that arise when picturing a robot.  The
main focus is on the agent’s behavior or psyche.  Second,

we want to avoid limiting the simulation principles dis-
cussed to just micro-robotic applications.  The principles
and method discussed in this paper can be adapted easily to
other modeling applications.  For example, an automated
highway system might employ autonomous automobiles
that implement similar group spacing behavior.

3 SIMULATION MODEL CONSTRUCTION

The multi-agent simulation was developed using Extend�
by Imagine That, Inc.  Extend� is primarily known as a
process simulation language and has not been used to a
great degree for multi-agent simulation.  However, Ex-
tend� offered a means to develop a prototype system
without the overhead of developing a complete simulation
environment.  The C-like nature of Extend�’s MODL lan-
guage also supports the project goal of developing simula-
tion code that could be ported rather than re-written when
programming real robots for evaluation.

3.1 Environment Model

The simulation is similar to the game of Life discussed
earlier.  The simulation runs in a two dimensional plane
represented by a global grid (x, y coordinate system).  Ad-
ditional grids may be layered with the global grid to repre-
sent obstacles, terrain, sensory objects, weather, and other
environmentally significant elements.  The grids may be
static or dynamic and reflect changing elements in the en-
vironment.  This layering of grids allows rapid manipula-
tion of scenarios for elaborate “What if?” analysis.  The
current work does not include any additional environ-
mental grids.

Agents within the model move within the spaces de-
fined by the global grid.  At each simulation step, an agent
may move no further than a single block away from its
present position.  Thus, it may remain in position or move
to one of the eight adjacent (horizontal, vertical and diago-
nal) spaces.

A master status table contains agent position and state
information.  This table, coupled with information from the
global grid, is used to simulate sensing of neighboring en-
tities.  The individual sensors modeled on a particular
agent can determine the range and direction of other enti-
ties within their prescribed sensor range.  A more detailed
discussion of the sensor model is described in section 3.3.

3.2 Agent Model

In addition to the concepts from the game of Life, the prin-
ciples of complex reactive systems influenced the agent
model’s construction.  Arkin (1998) defines a reactive
system as one that “tightly couples perception to action
without the use of intervening abstract representation or
time history.”  Reactive systems place little emphasis on



planning and utilize agent behavior sets as their core
building blocks.  Simply speaking, reactive system and
behavior based systems sense the world and react.

3.2.1 Agent Model Principles

The agent simulation model is based on the premise that in
the near future technology will allow the production and
deployment of large-scale masses of micro-robots.  The
robots will be small.  They will likely possess only basic
capabilities and mission specific sensors.  Direct commu-
nication between agents may or may not exist.  The matur-
ity of this technology does not yet exist.  As a basis for
modeling the capabilities of these future agents, the aca-
demic experimental robot GrowBot by Parallax, Inc. was
used.  The GrowBot provides a good test platform in that it
was capable, but not too capable in terms of computational
power and sensor configuration.  Specific assumptions
about individual capabilities will be described in the corre-
sponding discussion of those capabilities.

The simulation design is very  “object oriented” in its
approach to agent construction.  Sensors and behaviors are
encapsulated when possible.  This approach allows indi-
vidual components to be added and removed from the
model as if the corresponding physical component were
being added to or removed from a real agent.  This modu-
lar design permits rapid capability reconfiguration during
concept exploration.  Additionally, a very conscious effort
was made to separate the “simulation artifacts” from the
logic code being evaluated.  For example, we attempted to
account for the real-time parallel nature of individual entity
behavior while running in a sequential simulation envi-
ronment.  Furthermore, the boundaries between the true
state of the environment and that which can be perceived
by an agent are clearly maintained.  The goal was to create
simulation code that could be ported rather than re-written
when programming real robots for evaluation.

3.2.2 Basic Agent Model

The model of an autonomous micro-robot is constructed by
building upon a base autonomous agent object.  The basic
model of the agent can be thought of as simply a physical
shell.  In abstract programming terms it may also be
thought of as an object with general capabilities.  The basic
agent possesses only locomotion as an innate capability.
The agent exists in one of three states: dead, alive or dor-
mant.  The only core capability possessed by the agent is
motion, which is further restricted by speed and endurance
limitations.  We make a distinction between the agent’s
motion capability and a behavior designed to direct or use
that capability of motion.

This basic agent serves as the platform on which addi-
tional capabilities (i.e., sensors) and individual behaviors
are layered.  Sensors are added to the agent model by
“plugging in” sensor models.  The sensors query the envi-

ronment model to perceive objects or conditions of inter-
est.  The agent receives input from these sensors to in-
crease its basic capabilities.

Similarly, new behaviors may be added to take ad-
vantage of additional sensory capability.  However, it
should be noted that sensors and behaviors are not the
same thing nor is it necessary to have a one-to-one corre-
spondence between sensors and behaviors.  Sensors pro-
vide a means for perceiving environmental states or condi-
tions while behaviors are the actions the agent takes based
on the perceptions it makes.

Behaviors may rely on multiple sensory input (stim-
uli).  For example, a robot’s next move may be based on
the input it receives from multiple neighbor detection sen-
sors.  Similarly an individual stimulus is not necessarily
unique to one behavior.  Neighbor position information
may be used in both a group formation behavior and a col-
lision avoidance behavior.  When behaviors conflict or
compete for resources, an arbitrating mechanism usually
dictates the agent’s reaction.  In this way behaviors are
layered.  Section 3.4.1 describes the behavior arbitration
model.

3.3 Sensor Model

Sensors are modeled as encapsulated object classes.  The
agent uses a fixed set of input and output parameters to
communicate with each sensor.  Consequently, multiple
types and qualities of sensors may be evaluated with com-
plete transparency to the agent model.  The agents pre-
sented in this model possess two types of sensors, a Near-
est Neighbor sensor and an Object Detection sensor.

This project distinguishes itself from much of the past
research in this area by the attention dedicated to modeling
realistic sensor capabilities.  The premise behind agent
interaction is that one agent can “see” his neighbor.  The
ability to detect and identify neighboring agents cannot be
taken for granted.  Adjacent agents can be identified via
two methods.  The first method consists of an active
broadcast in which agents broadcast position information.
Neighbor position may be derived from a relative coordi-
nate system or by strength and direction of the signal.
Omni-directional position data is possible.

The second method involves passive detection without
open communication between agents.  Neighboring agents
are detected through passive sensors.  Infrared sensors are
an example of this type of sensor.  Sensor coverage is di-
rectly tied to the number and arrangement of sensors.  De-
tection is further dependent on the sensor’s accuracy.

The agent model uses passive detection.  Each agent
possesses an array of five sensors for detecting neighboring
agents.  Each sensor has a coverage spread of 45 degrees.
Figure 1 illustrates the sensor configuration used in the
model.  Three additional sensors could have been added for
complete 360-degree coverage.  This was not done to con-
serve the resources that would have been consumed by



each additional sensor.  These resources include power
consumption, physical space, and computing (CPU) time.
For this study’s purposes, 360-degree coverage was not
necessary because an agent does not care who is behind it.

The sensors detect the nearest agent within the sen-
sor’s coverage area.  The sensor returns the relative bear-
ing, range and type of the neighbor agent detected.  Neigh-
bor type is important because neighbor type will determine
the agent’s reaction to the detection.  Figure 1 represents
the neighborhood of the agent.  The perceived neighbor-
hood, represented by the black dots, consists of only those
neighbors correctly detected by the agents.  Note that only
the nearest neighbor is detected if multiple neighbors exist
within the same sector.

Two types of errors are modeled for each sensor, an
inherent offset error and a detection error.  The offset error
accounts for the imperfect angular alignment of a sensor
with respect to the intended relative positioning. This error
is constant.  The detection error represents the imperfection
of the sensor and the degradation of the detection prob-
ability as a function of the detection range.  The detection
function is based on an exponential distribution with a
mean detection range of forty inches.

The Object Detection sensor determines whether an
obstruction exists along the intended path of the agent.
Specifically, an obstruction is detected only if it is immedi-
ately in front of the agent.  This sensor returns a signal
indicating an obstacle was detected.  Within the model, no
errors are associated with this sensor.

3.4 Behavior Model

The most important element of agent construction is the
behavior set.  In developing concepts and models for indi-
vidual agent and collective behavior schemas, biological
entities and examples from nature were examined for in-
sight.  Important to this research project were the relation-

ship that birds and fish exhibited in flocking and schooling
behaviors.  Birds and fish have the ability to form and
maintain collective patterns.  These patterns are formed by
the animal’s ability to balance the desire to remain close to
the flock (or school) and also to avoid collision (Shaw
1975).  Within the flock, the bird does not possess univer-
sal knowledge (i.e., knowledge of the position of all others
in the flock), but it adjusts its position based on the per-
ception on its immediate neighbors.  Reynolds used this
framework to develop his ground breaking animation work
on Boids (Reynolds 1987).  These two principles of flock-
ing and local perception provide the basis for the develop-
ment of the agent’s behavior.

3.4.1 Subsumption Architecture

Once a set of individual behaviors has been developed, a
framework or architecture must be constructed to initiate
behavioral responses and coordinate multiple behaviors.
The subsumption architecture (Brooks 1986) provides the
basis for behavioral coordination within the micro-robot
agent model.

In simplistic terms, the subsumption architecture is
based on layering reactive behavior sets on top of each
other.  These behaviors concurrently react to the perceived
environment.  A key tenant is that reaction is based on per-
ception and not on planning.  Coordination among behav-
iors involves a hierarchical scheme where higher level be-
haviors suppress or inhibit lower level behaviors.  In this
same way, successively more complex behaviors can
seamlessly be layered onto the existing behavior set (Arkin
1998).

Figure 2 illustrates the micro-robot agent’s behaviors
in order of their priority.  The priority goes from Collision
Avoidance (highest) to Wandering (lowest).

3.4.2 Wandering Behavior

The Wandering Behavior reflects the agent’s desire to
move about when not under other influences.  The wan-
dering may be a random walk or motion in a predetermined
direction.  In the experimental results presented in Section
4, the Wandering Behavior has a predefined preference to
direct the agent toward the east (i.e. right).

Figure 2:  Behavior architecture

Figure 1: Agent sensor arrangement and neighborhood.



3.4.3 Group Formation Behavior

The Group Formation Behavior seeks to establish a spe-
cific spatial relationship between adjacent neighbors.  The
work by Reif and Wang' (1999) on Social Potential Fields
provides the basis for establishing and maintaining this
spatial relationship between agents within the model.  In
addition to the work by Reif and Wang, this paper intro-
duces the concept of a neutral zone within the social po-
tential field.  The neutral zone permits the Wandering Be-
havior to activate and promotes expansion of the collective
in a specific direction.

 Social Potential Fields have as an underlying concept
that an agent is influenced by his immediate neighbors.  A
force vector is used to represent the influence exerted by an
agent’s neighbors.  The nature of the force can be attract-
ing or repelling depending on the distance between agents.
The sign and magnitude of the force is represented by the
force function (Reif and Wang 1999).

Equation (1) is the force function used in the Group
Formation Behavior model

where c1, c2 ≥0 ,  α1 > α2 > 0.
This function creates a repelling force if a neighbor is

close and an attracting force if the neighbor is far away.  If
a neighbor is too close, the agent tends to move away and
gain further separation.  If the neighbor is too far away, the
agent moves toward the neighbor to close the distance
between them.  The definitions of what is too close and too
far away are arbitrary and represent flexibility in config-
uring the behavior depending on the mission and desired
sensor coverage.

In Equation (1), d represents the range between neigh-
boring agents.  The constants, c1, c2, α1 and α2 determine
the slope and equilibrium point of the force function.  The
equilibrium point is defined as the distance in which the
combined effect of the repelling and attracting forces is
zero.

This force function has the following characteristics:
1. Attraction is controlled by the c2 /dα2 term.
2. Repulsion is controlled by the c1 /dα1 term.
3. The equilibrium point where the combined effect

is zero is given by d=(c1/c2) (1/(α1 - α2)).
Note that this function represents the force applied by

a single neighboring agent.  In practice, all perceived
neighbors apply forces.  The resulting force is the vector
summation of all the forces applied by all neighbors.  An-
other model parameter that may be set is to have neighbors
of different types that exert forces using different force
functions.  However, the simulation results presented in the
next section use a homogenous set of agent types and
hence, a single force function.

To understand the effect of multiple force vectors on a
single agent, consider agent A with perceived neighbors
N1, N2, ..., Nk with distances d1, d2, ..., dk.  The individual
forces applied by the neighbors is given by:

The combined force applied to agent A denoted by
F(A) is:

Equation (3) represents the force magnitude.  It does
not represent behavior.  Behavior is the reaction to the
forces applied and is realized in the agent by either the
desire for motion in a certain direction or the desire to re-
main in place.

As stated earlier, this paper introduces an adaptation to
Reif and Wang’s presentation of Social Potential Fields.
The adaptation is the introduction of a critical force.  The
critical force is defined as the magnitude of force below
which the agent feels no effect.  As an example, a critical
force set at 5 implies that a cumulative force, F(A), would
require a magnitude greater than 5 to cause a reaction by
the agent.  By careful selection of the force function f(x)
and the critical force, a neutral zone between repelling and
attracting forces is created.  Within this neutral zone, no
force effect exists.

This neutral zone accomplishes two purposes.  First, it
minimizes movement oscillations around the equilibrium
point where the sign of the force changes.  Second, it pro-
vides an opportunity for additional behaviors previously
subsumed by the force effect and Group Formation Be-
havior to have an effect on the agent.

In the agent model, during periods the agent resides
within the neutral zone, the Wandering Behavior dictates
the desired motion of the agent.  In our model, the Wan-
dering Behavior directs the agent to head east.  The agent
wanders east until the critical force is again reached.  At
this point, the Group Formation Behavior is activated.
This combination of both behaviors working in conjunc-
tion not only promotes a uniform spatial relationship be-
tween neighbors, but it also causes the entire formation to
preferentially expand and move in an easterly direction.

This type of behavior readily supports a scenario in
which the agents are batch dropped or are dispensed from a
canister and are tasked with establishing a uniform sensor
net across a specified area.

3.4.4 Collision Avoidance

Prior to repositioning, an agent will look ahead at the posi-
tion of his next intended move.  If another agent or ob-
struction is detected, the agent will evaluate a position 90
degrees  to  the  right  of  the  intended  position.  Again the
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agent evaluates this position.  If occupied, the agent will
turn 90 degrees right and repeat the process.  If after turn-
ing in a circle, no move is evaluated as “safe,” the agent
will remain in place for that simulation step.  On the next
simulation step, the process begins again.

4 SIMULATION RESULTS

This paper presents the initial development and research
into behavior-based command and control for autonomous
micro-robots.  A primary goal of the project was to de-
velop a simulation framework that permitted us to explore
autonomous agent design and the emergence of collective
behaviors.  A simulation framework was developed using
Extend�.  At the time of this paper, the simulation is capa-
ble of modeling the interactions of over one thousand
autonomous agents.

Figure 3 shows the simulation model and the basic
screen.  The dots displayed represent 350 randomly dis-

persed agents.  Animation is not a project focus at this time
and the agents are simply represented as an oval icon oc-
cupying a pixel on the screen.  The simulated world repre-
sents each pixel as an inch.  Thus the distance represented
between consecutive grid lines is 100 inches or just over
eight feet.  The individual agents are drawn a little larger
than they would be if drawn exactly to scale so that they
can be seen in the display.

4.1 Model Assumptions

One of the important aspects of this simulation project was
to create a credible model of agent performance.  In reality,
technology has not reached the point of developing micro-
robots capable of field deployment.  Performance capabili-
ties are therefore based on miniature robot capabilities and
on reasonable approximations of expected future perform-
ance.  The model facilitates capability modification to in-
corporate new performance data, as it becomes available.

The following assumptions are made about agent and
sensor capability:

•  Agent Size – one inch in length.
•  Agent Speed – one inch per second (maximum).
•  Agent Failure – failure equated with agent death,

follows an exponential distribution with an aver-
age agent life span of 17 minutes.

•  Mean range of neighbor detector – 40 inches.
•  Maximum offset error of neighbor detector – two

degrees.

4.2 Force Function and Critical Force Selection

The force function, f(d), used for the examples in this paper
is given by Equation 4.

Selection of c1 = 30000, implies that the equilibrium
point is located at a distance of 30 inches. Figure 4 is a
graph of the function.  Note the slope of the function.  The
shape or slope of the function has a large effect on the tran-
sition between repulsing and attracting force, particularly
in the combination of competing forces exerted by multiple
neighbors.  The repulsion force (represented by the portion
of the graph below the x-axis) is larger than the attraction
force.  Also, the attraction force flattens out quickly such
that its effects do not get too large as the distance between
agents increases.

The critical force used in the simulation run is set at 5.
This implies that a force magnitude, F(A), of at least 5 is
required to initiate a reaction by the agent.  While F(A) is
less than the critical force, the Wandering Behavior domi-
nates motion direction (subject to the Collision Avoidance
Behavior).  When the critical force is exceeded, the Group
Formation Behavior takes over.  Selection of the force
function parameters and the critical force is based on the
neighbor detection capability and desired spacing  between
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Figure 3: Initial dispersion – 350 agents.
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agents.  In the model, desired average spacing is set at 30
inches with a +/- six-inch tolerance.

4.3 Simulation Runs

The major thrust of this project was to evaluate the robust-
ness of Social Potential Fields in maintaining spatial rela-
tionships between agents when confronted with imperfect
sensing and agent failure.  Additionally, the project intro-
duced the concept of a critical force which, when coupled
with a Wandering Behavior, promotes coordinated motion.
The following discussions illustrate the project findings.
All simulation runs are initiated from the random disper-
sion illustrated in Figure 3.  The simulation time step is set
at one second.  Each illustration shows the collective after
500 time steps or 8.3 minutes (simulated time).

4.3.1 The Perfect World

Figure 5 represents the dispersion pattern for the case in
which sensing is perfect and agents do not fail.  Note the
nearly uniform spatial relationship between agents.  Addi-
tionally, note the preferential expansion of the collective in
an easterly direction.  This “perfect world” represents a
performance baseline for comparison.  Note that the right-
most agents have moved about 500 units (inches).  The
trailing agents have also progressed though a little more
slowly as they are concerned about also providing com-
plete coverage of the area being “swept.”

4.3.2 Agent Death

In this run (shown in Figure 6) sensors work perfectly, but
the agents are subject to death.  Death includes hard me-
chanical failures of the agent and destruction by environ-
mental factors (i.e. falling in a hole or being crushed by an
animal).  The death follows and exponential distribution
with an average agent life span of 1000 time units (sec-

onds).  The agents that have died are no longer displayed in
the figure so the density of the collection has decreased.

4.3.3 Imperfect Sensing

This simulation run (Figure 7) represents the case in which
a sensor offset error and a sensor detection probability are
incorporated into the agent model.  Agent failure is not
modeled in this execution of the simulation.  The sensor
offset error is randomly distributed between +/- two de-
grees from the sensor’s intended main axis alignment.  The
sensor detection probability is exponential distribution with
and average neighbor detection range of 40 inches.

4.3.4 Combined Death and Imperfect Sensing

The combined effects of both agent death and imperfect
sensors are illustrated in the simulation run presented in
Figure 8.

Figure 5: Model of a “perfect” environment.

Figure 6: Model agent death (failure).

Figure 7: Model using imperfect sensors.



4.3.5 Discussion

These simulation runs demonstrate three important results.
First, the social potential field method is robust for main-
taining spatial relationships when used in the presence of
agent death and imperfect sensors.  The dispersion patterns
are similar for both perfect sensor and imperfect ones.
When agents fail, the collective adjusts its shape to fill in
the gaps.  This behavior produces a fairly uniform cover-
age of the area being swept by the agents.

Second, the introduction of the critical force permits
the collective to wander.  That is, without the critical force,
the group formation behavior always dominates the wan-
dering behavior and the collective does little more than
simply space itself out.  When the wandering behavior is
allowed to have an effect, the collective can be moved in a
predefined direction.  This result is particularly apparent in
Figures 5 and 6.

The final conclusion is that motion efficiency under
social potential force control is highly dependent on accu-
rate neighbor detection.  Motion efficiency is defined as
the ratio of net distance traveled to total motion.  The in-
troduction of imperfect sensing reduces motion efficiency.
For example, the average easterly distance traveled in the
imperfect sensors case is only 53.22 inches as compared to
392.07 inches achieved with perfect sensing (see Table 1).
Intuitively, one would assume that the Wandering Behav-
ior would dominate with imperfect sensor performance.
The simulation showed, however, that the agents oscillated
between positions significantly more in the case of imper-
fect sensors. The agents were constantly readjusting their
position depending on neighbor detection, lost detection
and regained detection.

Table 1 illustrates average agent motion. Easterly mo-
tion is the total motion east.  X motion is the total move-
ment, east and west, along the x coordinate.  The ratio of
Easterly motion and X motion is equal to motion effi-
ciency.  The lower efficiency of the two simulations with

imperfect sensor configurations indicates movement oscil-
lations back and forth with minimal advancement.

Agent Motion (Average distances in inches)Agent
Config. Easterly

Motion
X

Dist.
X

Motion
Y

Dist.
Y

Motion
Total
Dist.

Perfect 392.07 392.07 465.07 11.94 90.25 392.41

Death 364.95 364.95 448.06 25.36 134.52 366.45

Imperfect
Sensors

53.22 53.95 367.27 22.83 310.55 60.69

Death  &
Imp. Sensors

61.51 61.74 366.35 17.67 306.38 70.46

Table 1: Average Agent Motion

4.3.6 Future Research

This paper represents part of a continuing effort to develop
behavior and control concepts for micro-robots, but also
for autonomous agent constructs.  Social potential fields
are shown to provide robust coordinated behavior for
dealing with agent death and sensor imperfections in a
simulated environment.  The next step is to conduct and
evaluation on actual robotic platforms.

This paper and Reif’s research explore social potential
fields in terms of a force function that is uniform and not
affected by the relative position of the neighboring agent.
Further research is planned to examine the effect of sector
dependent force functions which not only depend on the
distance from the neighboring agent, but also on the rela-
tive angle of the neighbor’s position.  The use of a sector-
based force function may have potential in the formation of
intricate patterns with the agents.

The concept of residual forces that decay over time
may be a way to address the inefficiencies and reduce mo-
tion oscillations.  In this manner, the agent possesses a
decaying memory of previous forces.  The residual force
would dampen the oscillation effect by creating some
“memory” of a previously detected agent that was not de-
tected during the current detection cycle.

Another interesting concept that must be explored
further is the effect of the agents’ initial distribution on
their subsequent behavior and group formation.  This paper
examines the case of a batch distribution in which all
agents are initially bunched in a small area.  Future study
involves reviewing the relationship between initial disper-
sion and the force function in constructing the desired spa-
tial relationship and coordinated motion.

5 CONCLUSIONS

In this paper, we have described a flexible architecture for
modeling thousands of autonomous agents.  The agents’
behavior is based on a subsumption architecture in which

Figure 8: Model agent failure and imperfect sensors.



individual behaviors are prioritized with respect to all oth-
ers.  The architecture used to model individual agents per-
mits specific capabilities to be quickly “plugged in” and
tested.  Of primary interest in this research was the use of
social potential fields as a mechanism for coordinated
group behavior.  This paper introduced the concept of a
neutral zone in the social potential field and demonstrated
its effect on the agents’ dispersion.  Furthermore, the dis-
persion patterns illustrate the interaction between the social
potential field and a wandering behavior operating within a
subsumption architecture.

Simulation has been criticized frequently by members
of the robotics community due to the too common use of
models that assume perfect performance of agent and sen-
sors.  We presented the results of modeling and testing
some of the real-world limitations of small-scale micro-
robots.  The research described here specifically investi-
gated the effects of agent death and imprecise sensors.
Initial simulation results suggests that group coordination
based on social potential fields is robust to these types of
real-world imperfections, but motion efficiency is relies on
sensor performance.

Future efforts will explore coordinated behaviors for
other mission objectives such as those outlined in the ini-
tial HAZMAT scenario.  These objectives include forming
a perimeter around a region and periodic, operator-induced
modifications to the mission.
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