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Abstract. The integration of Object-Oriented Programming (OOP) and
Description Logic seems to be so desirable that it produces valid, sound,
and reusable software on the firm base of Logic. Whereas we believe the
possibility of the integration from our experience up to now on SWC-
LOS, which is a Semantic Web description language developed on top
of Common Lisp Object System (CLOS), we have still an open issue
to establish SWCLOS as not only ontology description language but
also OOP language with OWL. In this paper, after an introduction of
SWCLOS, we demostrate the possibility of the integration of OWL and
OOP, and discuss the open question of the OOP with OWL, that is, the
method inheritance for OWL objects in OOP. Several ideas of solutions
are addressed.

1 Introduction

On one hand, OWL is an ontology description language annotating World Wide
Webs, and it is not deemed to be a software programming language. On the other
hand, Object Oriented Programming(OOP) is a software programming method
dominant today, and it is not captured as the way of ontology construction.
However, the ontological representation of objects in OWL is, not only syntacti-
cally but also semantically, very similar to the description of object classes and
instances in OOP. In practice, programmers tends to explain building ontologies
with the analogy of system-analysis in software engineering. It is partly true but
not correct as a whole. However, such a view of regarding the system-analysis
in software engineering process as the ontology building process invites us to an
idea of system development based on Description Logic (DL), in other words,
the software development based on the formalized ontological description. Out
of the formal description of system specifications we may expect fruitful results
of software sharing, validity, reusability, adaptability, and so on.

We have developed an OWL processor, SWCLOS3, which is developed on
top of Common Lisp Object System (CLOS). CLOS allows lisp programmers
3 It is available from http://pegasus.agent.galaxy-express.co.jp/galexinfo/indexe.htm
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to develop Object-Oriented systems, and SWCLOS allows lisp programmers to
construct domain and task ontologies in software application fields. Therefore,
using SWCLOS, a lisp programmer may unify system development process and
ontology building process in application fields. However, we have some open
issues to enjoy this happy marriage.

In this paper, at first we introduce CLOS as ontology description language
with an introductory example for ontology, and then explain the similarity be-
tween CLOS and OWL in SWCLOS with examples in Wine Ontology and oth-
ers. Then, we discuss the semantic gap between CLOS and OWL and show the
solutions. Finally, the question in the integration of OOP and OWL, that is,
the method inheritance in OWL objects is discussed, and explore the diverse
directions to solve the question.

2 Common Lisp Object System

The Common Lisp Object System is a set of operators for doing Object-Oriented
Programming in ANSI Common Lisp, and it has following features.

– Multiple Class Inheritance: methods and slots are inherited from multiple
classes.

– Dynamic Programming: CLOS provides the means to redefine class defini-
tions in program run time.

– Meta-Object: a class is the first object in CLOS as an instance, so a class in
CLOS is called metaobject.

– Meta-Class: a meta-class in CLOS, or a class of classes, allows us to modify
the methods of classes including system methods using the Meta-Object
Protocol [Kiczales1992].

– Reflecting Programming: the behavior of meta-classes including system meth-
ods is changeable using the Meta-Object Protocol. A programmer can mod-
ify behaviors of lisp systems. For example, so-called new method can be
customized adapting for applications by programmers.

2.1 CLOS for Ontology Description

Fig. 1 illustrates the introductory example of RDF graph that was published at
the draft of RDF Schema documentation4. We can encode this RDF graph using
CLOS as follows.

(defpackage rdfs

(:export "Resource")

(:documentation "http://www.w3.org/2000/01/rdf-schema"))

(defpackage rdf

(:export "about")

(:documentation "http://www.w3.org/1999/02/22-rdf-syntax-ns"))

(defpackage eg

4 http://www.w3.org/TR/2002/WD-rdf-schema-20021112/



3

(:export "Work" "Document" "Agent" "Person" "author" "Proposal" "name")

(:documentation "http://somewhere-for-eg/eg"))

(defpackage dc

(:export "title")

(:documentation "http://dublincore.org/2002/08/13/dces"))

(defclass rdfs:Resource ()

((rdf:about :initarg :about :type net.uri:uri)))

(defclass eg:Work (rdfs:Resource) ())

(defclass eg:Agent (rdfs:Resource) ())

(defclass eg:Person (eg:Agent)

((eg:name :initarg :name :type string)))

(defclass eg:Document (eg:Work)

((eg:author :initarg :author :type eg:Person)

(dc:title :initarg :title :type string)))

(defparameter eg:Proposal

(make-instance ’eg:Document

:author (make-instance ’eg:Person :name "Tim Berners-Lee")

:title "Information Management: A Proposal"

:about (net.uri:parse-uri "http:/.../Proposal/")))

Fig. 1. An Introductory Example of RDF Graph
from http://www.w3.org/TR/2002/WD-rdf-schema-20021112/

Where rdfs:subClassOf is replaced with superclass relation in CLOS and rdf:type
is replaced with class-instance relation. Note that we use here the lisp system that
is case sensitive, and a namespace of QName is mapped onto a lisp package. The
blank node in Fig. 1 is realized as an instance object of class eg:Person, which
is stored in the author slot of eg:Proposal that is an instance of eg:Document.
The object eg:Proposal is bound to the QName symbol eg:Proposal, but the
blank node, that has no QName or URI, is not bound to any symbol.
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After loading the above lisp forms, a lisp programmer can test the class of
eg:Proposal and the subsumption, and retrieve the fact data from this simple
ontology using CLOS APIs.

gx(11): eg:Proposal => #<eg:Document @ #x20f95aba>

gx(12): (typep eg:Proposal ’eg:Document) => t

gx(13): (typep eg:Proposal ’eg:Work) => t

gx(14): (typep eg:Proposal ’rdfs:Resource) => t

gx(15): (slot-value (slot-value eg:Proposal ’eg:author) ’eg:name)

=> "Tim Berners-Lee"

gx(16): (slot-value eg:Proposal ’dc:title)

=> "Information Management: A Proposal"

3 SWCLOS: A Semantic Web Processor on CLOS

In the previous section, we demonstrated the possibility of CLOS as ontology de-
scription language. In this section, we introduce SWCLOS [Koide2004,Koide2005],
a Semantic Web Processor developed on top of CLOS, and demonstrate the sim-
ilarity between CLOS and OWL in syntax and semantics. The semantic gaps
between CLOS and OWL and the solutions in SWCLOS are discussed in the
next section.

3.1 RDF/XML Syntax and S-expression

OWL ontology is usually encoded in RDF/XML. Since the XML nested structure
is very similar to the S-expression nested structure, it is theoretically easy to
transform XML to S-expression. The following shows the syntax transformation
from RDF/XML to S-expression on the example from the RDF documentation5.
Note that an attribute in XML representation is basically treated like a property.

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">

<ex:editor>

<rdf:Description>

<ex:homePage>

<rdf:Description rdf:about="http://purl.org/net/dajobe/">

</rdf:Description>

</ex:homePage>

</rdf:Description>

</ex:editor>

</rdf:Description>

(rdf:Description

(rdf:about "http://www.w3.org/TR/rdf-syntax-grammar")

(ex:editor

(rdf:Description

(ex:homePage

5 http://www.w3.org/TR/rdf-syntax-grammar/#example2
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(rdf:Description

(rdf:about "http://purl.org/net/dajobe/"))))))

We have developed an RDF/XML parser that makes the same nested struc-
tures as RDF/XML representation with lisp structure Description and property.
The following is an simple example for the RDF/XML parser in SWCLOS.
The print functions of lisp structures for Description structure and property
structure are customized so that the lisp printer prints not standard structure
expressions but XML forms. In this example, SWCLOS reads an RDF/XML
file that describes the ontology shown in Fig.1, and the return value is printed.
Note that the returned value is a list that includes three elements, which are an
XMLDecl structure, a doctypedecl structure, and a nested structure composed
by Description and property structures.

gx(21): (with-open-file (p "Example.rdf") (parse-rdf p))

(<?xml version="1.0" ?> :doctypedecl...

<rdf:RDF xmlns="http://galaxy-express.co.jp/semantic-web/example#"

xmlns:eg="http://galaxy-express.co.jp/semantic-web/example#"

xmlns:dc="http://dublincore.org/documents/2003/06/02/dces#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Property rdf:ID="name">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>

<rdf:Property rdf:about="http://dublincore.org/documents/2003/06/02/dces#title">

<rdfs:domain rdf:resource="#Document" />

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Property>

<rdf:Property rdf:ID="author">

<rdfs:domain rdf:resource="#Document" />

<rdfs:range rdf:resource="#Person" />

</rdf:Property>

<rdfs:Class rdf:ID="Person">

<rdfs:subClassOf rdf:resource="#Agent" />

</rdfs:Class>

<rdfs:Class rdf:ID="Document">

<rdfs:subClassOf rdf:resource="#Work" />

</rdfs:Class>

<eg:Document rdf:about="http:/.../Proposal/">

<eg:author>

<eg:Person>

<eg:name>Tim Berners-Lee</eg:name>

</eg:Person>

</eg:author>

<dc:title>Information Management: A Proposal</dc:title>

</eg:Document>

</rdf:RDF>)
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SWCLOS internal function Description-form and prop-form translate the lisp
structure Description and property to the corresponding S-expression, respec-
tively. Thus, SWCLOS function addRdfXml, which invokes these functions, con-
verts RDF structures into S-expressions and adds the assertions in S-expression
into memory with function addForm, which adds general RDF expression in S-
expression into lisp memory.

3.2 RDF Graph and OWL Semantics

In RDF, a directed graph with nodes and labeled arcs is a theoretical base
model for semantic representation. In SWCLOS, a resource node in RDF graph
is represented by a CLOS object, and a labeled arc from a node to another is
represented by a slot that belongs to an arrow-tail node and has an arrow-head
node as slot value, but rdf:type relation is replaced with instance-class relation
and rdfs:subClassOf relation is replaced with class-superclass relation in CLOS.
A class in CLOS is also an object (metaobject), so it may have arbitrary slots in
the same way as an instance object, in addition to a few special slots dedicated
to the classes.

All axioms and entailment rules in RDFS6 are implemented in SWCLOS. The
subsumption calculation in CLOS conveys the subsumption among RDFS classes
upon the class-instance and the superclass-class relationship. However, there is
no super-sub concept of slots in CLOS, whereas RDFS involves it on property.
Therefore, the subsumption on RDF property is programmed in addition to the
implementation of the domain and range constraint on the property.

The OWL representation is much more likely for objects than RDF graphs.
Especially, the property restrictions that provide the local constraints on prop-
erty values for a specific domain may be straightforwardly implemented by CLOS
slot definitions that belong to a class. The CLOS native type facet of slot def-
inition is utilized to realize the value type restriction in OWL. On the other
hand, in order to implement cardinality restrictions for property value, we have
introduced new slot facets, mincardinality and maxcardinality, into the slot defi-
nitions. For example, after reading Wine Ontology7, in addition to the following
assertional data upon OWL class vin:Zinfandel, CLOS metaobject vin:Zinfandel
holds the effective slot definitions for instances of vin:Zinfandel in the metaob-
ject structure. The following shows a description of the effective slot definition
for vin:hasColor slot of vin:Zinfandel, i.e., the type constraint, maxcardinality
and mincardinality constraint for vin:hasColor in vin:Zinfandel are stored in the
effective slot definition of vin:hasColor in vin:Zinfandel metaobject. Note that
the cardinality constraint for vin:hasColor here is inherited from vin:Wine. When
SWCLOS creates new instances of vin:Zinfandel, those constraints stored in the
effective slot definition does work as constraints in instance creation.

gx(7): (get-form vin:Zinfandel)

6 http://www.w3.org/TR/rdf-mt/
7 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf
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(owl:Class vin:Zinfandel (rdf:about "#Zinfandel")

(rdfs:subClassOf (owl:Restriction (owl:onProperty vin:hasColor)

(owl:hasValue vin:Red))

(owl:Restriction (owl:onProperty vin:hasSugar)

(owl:hasValue vin:Dry))

(owl:Restriction (owl:onProperty vin:hasBody)

(owl:allValuesFrom

(owl:Class (owl:oneOf vin:Full vin:Medium))))

(owl:Restriction (owl:onProperty vin:hasFlavor)

(owl:allValuesFrom

(owl:Class

(owl:oneOf vin:Moderate vin:Strong)))))

(owl:intersectionOf vin:Wine

(owl:Restriction (owl:onProperty vin:madeFromGrape)

(owl:hasValue vin:ZinfandelGrape))

(owl:Restriction (owl:onProperty vin:madeFromGrape)

(owl:maxCardinality 1))))

gx(8): (describe (find ’vin:hasColor (mop:class-slots vin:Zinfandel)

:key #’name))

#<OwlProperty-effective-slot-definition vin:hasColor @ #x20bd8032> is an

instance of #<standard-class OwlProperty-effective-slot-definition>:

The following slots have :instance allocation:

name vin:hasColor

type #<owl:Class vin:WineColor>

documentation common-lisp:nil

initform #<vin:WineColor vin:Red>

initfunction #<Closure (:internal constantly 0) @ #x20bac0ca>

initargs (vin:hasColor)

allocation :instance

subject #<owl:Class vin:Zinfandel>

maxcardinality 1

mincardinality 1

3.3 Satisfiability Check and Proactive Entailment

For RDFS, the domain and range constraint works effectively at the instance
definition. Namely, if programmers attempt to define or set a slot value that
violates the range constraint for the slot, SWCLOS signals an alarm. When
programmers attempt to define an object ambiguously (to define an object to a
more abstract class), if the domain definition is available, then SWCLOS defines
an object more precisely (defines an object to a more special class).

Such satisfiablility check works in OWL, too. It prevents programmers from
importing bugs into ontologies. The followings demonstrate an example of satis-
fiability checking, in which a programmer defined class BlendedWine and tried
to create an instance that has two wine colors, vin:Red and vin:White, then
SWCLOS signaled an un-satisfiability alarm, because the number of wine color
was restricted to one at vin:Wine definition that is a superclass of BlendedWine.
Note that the most strict and precise information is inherited and effective in
SWCLOS, according to the principle of the monotonicity.
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gx(2): (defResource BlendedWine (rdf:type owl:Class)

(rdfs:subClassOf

vin:Wine

(owl:Restriction (owl:onProperty vin:madeFromGrape)

(owl:minCardinality 2))

(owl:Restriction (owl:onProperty vin:hasColor)

(owl:minCardinality 2))))

#<owl:Class BlendedWine>

gx(3): (defIndividual MyBlendedWine (rdf:type BlendedWine)

(vin:hasColor vin:Red vin:White))

Error: Unsatisfiability by cardinality for BlendedWine vin:hasColor

Furthermore, the combination of owl:intersectionOf and the property con-
straints brings not only the entailment on slot values but also the powerful
entailment on objects in domain. For example, the following example shows a
number of entailments in the adding process and finally SWCLOS entails that
QueenElizabethII should be a woman, because it is asserted that a person who
has gender female is a woman, and it is asserted that QueenElizabethII is an
instance of Person and hasGender Female.

gx(4): (defIndividual Female (rdf:type Gender)

(owl:differentFrom Male))

Warning: Special Entailing with domain: Gender is a owl:Class.

Warning: Entail by range: Male rdf:type owl:Thing.

#<Gender Female>

gx(5): (defResource Person (rdf:type owl:Class)

(owl:intersectionOf

Human

(owl:Restriction (owl:onProperty hasGender)

(owl:cardinality 1))))

Warning: Entail by range: hasGender rdf:type rdf:Property.

Warning: Simple entailment: Human rdf:type owl:Class.

#<owl:Class Person>

gx(6): (defResource Woman (rdf:type owl:Class)

(owl:intersectionOf

Person

(owl:Restriction (owl:onProperty hasGender)

(owl:hasValue Female))))

#<owl:Class Woman>

gx(7): (defIndividual QueenElizabethII (rdf:type Person)

(hasGender Female))

Warning: Entailed in refining: #<Person QueenElizabethII> to Woman.

#<Woman QueenElizabethII>

Such proactive entailment as demonstrated above, namely effective entailing
on the fly without queries is very helpful to construct consisitent ontologies and
to build application systems.
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3.4 Description Logic and Software Development

The validity by satisfiability checking and entailing in OWL is underpinned
by DL. Therefore, it is possible that we obtain more valid and bug-less soft-
ware systems by introducing OWL descriptions for system-analysis in system
development process. Sattler, et al. [Sattler2003] discussed DL and other for-
malisms that include the ER model and the Object-Oriented model, but they
did not extend the discussion to OOP. Recently, the fusion of UML and DL has
been propelled. Brockmans, et al. [Brockmans2004] utilized UML for visualized
modeling language for ontologies. Berardi [Berardi2003] formalized UML class
diagrams from DL, and Kaneiwa and Satoh [Kaneiwa2005a] has cleared the val-
idation algorithm for UML using First Order Logic and counting quantifieres.
It is clear that the integration of OOP and DL reasoner will be very useful.
However, we emphasize that the work of the DL reasoner is just to reply queries
on the classification of instances and the subsumption of classes. Precisely, it
involves satisfiability check of concepts with the refutation and the Tableau Al-
gorithm. We must set up right queries in the relevant situations. The work of
the OWL reasoner is to perform appropriately the entailments in the situation.
However, the complete set of OWL entailment rules are not known [Horst2004].
Therefore, the complete proactive entailments, in other words, setting up right
queries for right entailments in the situation is still open in OWL. In the next
section, we introduce a few examples of OWL entailments and discuss the dif-
ference of semantics in CLOS and OWL, which we have solved to realize OWL
functions on top of CLOS.

4 Semantic Gaps between CLOS and OWL

4.1 Classification and Subsumption

A class in OWL is a set of some individuals (called an extension), the class-
subclass relation in OWL is the inclusiveness of the extensions. Namely, the
statement that a class C2 includes a class C1 (C1 v C2) means that all indi-
viduals of class C1 are concurrently individuals of class C2. On the other hand,
class semantics of CLOS is different from RDF/OWL. A class in CLOS is one
whose instances share methods and slot structure definitions. A CLOS class is a
prototype to create CLOS instances, and the class is required to make a CLOS in-
stance. However, the class-subclass relation and class-instance relation in CLOS
work upon the transitivity and subsumption of class/instance like OWL. In
practice, the RDF entailment rule rdfs98 (subsumption rule) and rdfs11 (tran-
sitivity rule on rdfs:subClassOf) are natively realized in the CLOS class-subclass
relation.

In SWCLOS, we have introduced appropriate subsumption among classes for
owl:intersectionOf and owl:unionOf assertion. For instance, owl:intersectionOf
results the class-subclass entailment as follows.
8 http://www.w3.org/TR/rdf-mt/#rulerdfs9
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owl:intersectionOf. An extension of class A is denoted by CEXT (A). A is an
intersection of Ci (where i = 1 . . . n), if and only if CEXT (A) = CEXT (C1)
u . . . u CEXT (Cn). Thus, A v Ci (A is a subclass of Ci) is entailed, since
CEXT (A) is included CEXT (Ci) for every Ci.

In practice, SWCLOS adds super-subclass information from owl:intersectionOf
and owl:unionOf assertions. Thus, vin:MariettaOldVinesRed in Wine Ontol-
ogy is entailed to be an instance of vin:Wine in addition to vin:TableWine as
follows.

gx(11): (get-form vin:MariettaOldVinesRed)

(vin:RedTableWine vin:MariettaOldVinesRed (vin:hasMaker vin:Marietta)

(vin:hasFlavor vin:Moderate) (vin:hasBody vin:Medium)

(vin:locatedIn vin:SonomaRegion) (vin:hasColor vin:Red)

(vin:hasSugar vin:Dry))

gx(12): (typep vin:MariettaOldVinesRed vin:RedTableWine) => t

gx(13): (typep vin:MariettaOldVinesRed vin:TableWine) => t

gx(14): (typep vin:MariettaOldVinesRed vin:Wine) => t

In addition to the simple subsumption entailment of owl:intersectionOf demon-
strated above and owl:unionOf, we have realized several entailments for the prop-
erty constraints in SWCLOS. Fig. 2 depicts a part of Wine Ontology, where the
assertion that vin:RedWine is an intersection of vin:Wine and the property con-
straint that the property vin:hasColor must have vin:Red on vin:RedWine.
The interest thing here is the effect of owl:intersectionOf. SWCLOS entails that
vin:RedTableWine is a subclass of vin:RedWine and vin:MariettaOldVinesRed
is typed to vin:RedWine, whereas those relationships are not explicitly asserted.

owl:Class owl:Restriction

vin:Wine

vin:RedWine vin:TableWine

vin:RedTableWine

vin:MariettaOldVinesRed

rdf:type
rdf:type rdf:type

rdf:type

rdfs:subClassOf

owl:intersectionOfowl:intersectionOf

vin:Red

vin:hasColor

vin:Dry

vin:hasSugar

owl:intersectionOf

Fig. 2. An Example of Entailment by owl:intersectionOf and Property Constraint

gx(14): (subtypep vin:RedTableWine vin:RedWine) => t

gx(15): (typep vin:MariettaOldVinesRed vin:RedWine) => t
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4.2 Multiple Classing

In the semantics of OWL (and RDFS), an instance may belong to multiple
classes. In fact, a vintage wine vin:SaucelitoCanyonZinfandel1998 is an instance
of vin:Vintage and vin:Zinfandel in Wine Ontology. However, a CLOS class is a
prototype to create its instances and eventually instances must belong to a single
class. To solve this question, we have introduced the invisible class that may be a
subclass of visible multiple classes. For example, vin:SaucelitoCanyonZinfandel1998
is an instance of vin:Zinfandel.15 that is invisible in OWL and a subclass of
vin:Vintage and vin:Zinfandel in CLOS.

4.3 Slot Restriction Inheritance and Default Slot Value

Although there is no word of inheritance in the specification documentations
of Semantic Webs, the domain and range constraint in RDFS and the local
property constraint in OWL are clearly inherited from superclasses to subclasses.
In contrast, we have no way to designate the default slot value that is often used
in frame systems and some of object systems. The reason is that DL cannot infer
anything about the slot default value. Only if we set the property constraint of
owl:oneOf with the cardinality one, the slot value of instances is entailed as if it
is a default value, although we cannot set a different value to the slot.

5 Reflective Programming or Metamodeling

In RDFS model theory, some discussions on metamodeling happened. As ex-
plained in RDF Semantics document9, the ‘membership loops’ of rdfs:Class
might seem to violate the axiom of foundation of set theory. However, this is
the mechanism for the reflective knowledge modelling which originated to Mc-
Carthy [McCarthy1968], in which he aimed a common language that describe
reasoning procedures and huristics knowledge in order to improve the system be-
havior with adding assertions afterward. Weyhrauch’s First-Order Logic program
fol [Weyhrauch1980] attempted to establish ‘reflection principles’ between the-
ory and meta-theory. He also mentioned the meta-metatheory. 3-Lisp [Smith1984]
was the first implementation of reflective lisp programming language, where eval
and apply in lisp was effectively untilized for the reflection. However, it was not
an OOP language. CLOS is a language designed to standardize reflective pro-
gramming in lisp, namely, describing the language implementation by the lan-
guage. This paradigm produces great flexibility in programming. We can modify
the language specification and implementation with the language.

Pan and Horrocks [Pan2001] argued that RDFS metamodeling architecture
was difficult and proposed to separate the architecture into modeling layers (In-
stance Layer and Ontology Layer) and language layers (Language Layer and
Metalanguage Layer) in the same way as UML. However, this idea contradicts
the object-oriented reflection. In fact, the architecture of RDFS, that is, “the
9 http://www.w3.org/TR/rdf-mt/
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class rdfs:Resource is a superclass and instance of rdfs:Class at the same time”
is quite same as CLOS (the standard-object is a superclass and instance of the
standard-class). Actually there is no obstacle, even if every concept is also an
object, to add missing objects into the domain when required. The following
shows a simple example taken from [Pan2003]. SWCLOS adds required objects
through a simple proactive entailment (a referent by owl:intersectionOf should
be an instance of owl:Class).

gx(2): (defResource EuropeanEmployeeStudent (rdf:type owl:Class)

(owl:intersectionOf Student Employee European))

Warning: Simple entailment: Student rdf:type owl:Class.

Warning: Simple entailment: Employee rdf:type owl:Class.

Warning: Simple entailment: European rdf:type owl:Class.

#<owl:Class EuropeanEmployeeStudent>

gx(3): (defIndividual John (rdf:type EuropeanEmployeeStudent))

#<EuropeanEmployeeStudent John>

gx(4): (typep John Student) => t

gx(5): (typep John Employee) => t

gx(6): (typep John European) => t

6 Methods and Method Inheritance

For example, in case that we need to translate a legacy ontology described by
CLOS to OWL/XML, SWCLOS provides the best way to solve it with defining
a set of CLOS methods that translate legacy knowledge representation to OWL.

Furthermore, we can directly combine OOP and OWL much more. So far,
we have discussed SWCLOS as ontology description language, then have demon-
strated that DL entailing in SWCLOS reduces inconsistency in ontology. It sug-
gests that it may be also useful to reduce bugs in software by means of software
specifications in formal logic description. Namely, system engineers describe pro-
gram specifications out of system-analysis with OWL. The system description
in OWL is a sort of meta program that defines programs to be instantiated
and properly guides programmers to encode the programs. The advantage of
SWCLOS is the continuity from the description language to the programming
language. We can perform OOP in the envionment that is underpinned by DL.

However, in case that we attemt to perform OOP directly on top of SWCLOS,
a delicate problem is revealed upon the method inheritance for OWL object
parameters.

6.1 Method Selection in CLOS

A method in CLOS can be selected for a set of arguments when each required
argument satisfies its corresponding parameter specializer [DeMichiel1993]. Ac-
tually, the most specific applicable method in applicable methods for the parame-
ters is selected by consulting the class subsumption for the parameters. However,
the method selection in CLOS depends on the class precedence list, that is, a to-
tally ordered superclass list from the viewpoint of each class. It implies that this
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view may be different among classes, even if two classes have same superclasses
as set. It easily misleads people at the method combination.

To prevent the mutual inconsistency among class definitions, CLOS detects
the inconsistency at making the class precedence list, and signals an alarm. For
the example from [DeMichiel1993], CoopStudent is a subclass of Employee and
Student, and ResearchStudent is also a subclass of the same both, but Em-
ployee precedes to Student in CoopStudent and inversely in ResearchStudent.
Then CLOS signals the inconsistency when a programmer attempts to create an
instance of a mixed class of Coop- and Research-Student as a subclass of Coop-
Student and ResearchStudent, because CLOS cannot decide the total ordered
class precedence list.

Even if CLOS does not detect the total order inconsistency, we have still a del-
icate question on the method inheritance. In the case that we set a class-subclass
relation that is shown in Fig. 3 [Kiczales1992], there are a few possibilities of
total ordering from given local orders, depending on the method for comput-
ing the class precedence list. CLOS adopts the topological sort for making the
class precedence list. The digits in the figure mean the local order in the local
superclass definitions. By the topological sorting for total ordering in the class
precedence list, we have different class precedence lists for ColoredNoisyWin-
dow and NoisyColoredWindow as shown in the figure. In such a situation, if

ColoredObject Window NoisyObject

ColoredWindow NoisyWindow

NoisyColoredWindow

ColoredNoisyWindow

12 1 2

2

2

1

1

Fig. 3. A Delicate Example on Class Precedence List
ColoredNoisyWindow with superclasses (ColoredWindow NoisyWindow) →

(ColoredWindow NoisyWindow Window NoisyObject ColoredObject)
NoisyColoredWindow with superclasses (NoisyWindow ColoredWindow) →

(NoisyWindow ColoredWindow Window ColoredObject NoisyObject)

you define different methods with an identical name, the selected methods vary
through the class precedence list, and those methods could contingently cause
unexpected effects on method overloading, or may interfere with each other on
before- and after-method execution. The problem is in the ordering between
non-subsuming (independent) classes and an identical name, even though there
is no ordering among independent classes in OWL and DL. It is possible to think
diverse strategies to cope with this problem as follows.

– Single Inheritance: Mizoguchi [Mizoguchi2004] has claimed that the IS-A re-
lation (the substantial sorts) should be single inheritance from the viewpoint
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of Ontology Engineering, whereas an object may have multiple roles (the
non-substantial sorts), and Kaneiwa and Mizoguchi [Kaneiwa2005b] devel-
oped formal ontology on property classification and extended Order-Sorted
Logic onto the property classification. This claim suggests us to extend On-
tology Engineering from properties and property values to object behaviors,
namely what behavior of object should be defined and inherited as substan-
tial method upon IS-A relation, and what behavior should be defined and
inherited as interface for a role.

– Inhibition of Identical Name among Independent Classes: If a programmer
does not use an identical name among independent classes, we have no prob-
lem, even though we may loose the advantage of method overloading upon
mix-in objects.

– New Method Selection: In the current CLOS version, primary methods are
overloaded by subsumption ordering, and before- and after-methods are in-
voked in the special-first (before-method) and special-last (after-method)
manner. We may set any alternative method selection and combination al-
gorithm for OWL classes using the Meta-Object Protocol. For example, in
the case-based memory package, Memory Organization Package (MOP) by
Schank et al., the most special slot value is obtained out of all inherited slot
values collected from relevant superclasses. For instance, if we make relevant
multiple methods being a taxonomy tree so that it is consistent to parame-
ters’ taxonomy trees, we can pick up the most specific applicable method in
the tree, descending the taxonomy tree with the refining algorithm such as
demonstrated at the last of section 3.3.

As those strategies above are orthogonal, we can adopt them multiply and
concurrently. Pros and Cons among those strategies, which should be related to
the characteristics of applications, will be cleared when we tackle a number of
applications in real world in the near future.

7 Conclusion

Reorganizing software development process from the viewpoint of ontological
analysis is plausible. Description Logic will provide means to formalize software
specifications and definitions, and OWL will be the language for software de-
scription as well as UML. SWCLOS is a language for ontology description in
OWL, and simultaneously it is an Object-Oriented Programming language on
Common Lisp. Lisp programmers may exchange their idea on software systems
on the firm base of Description Logic with SWCLOS, and then they can instan-
tiate the formalization and develop working lisp programs on the continuous
and reachable ground. In this paper, SWCLOS is briefly introduced, and some
examples in OWL for SWCLOS are demonstrated. The method inheritance of
OWL objects is issued as an open question, and several strategies to solve the
question are discussed. Although the question is still open, it will be solved in
the process of software development in real world in the future.
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