
Using an Ontology to Evaluate a Large Rule Based Ontology: Theory and Practice

William Jarrold
Department of Educational Psychology

University of Texas at Austin
william.jarrold@alum.mit.edu

Abstract

This paper surveys theoretical and practical issues
associated with ontologies and performance evalua-
tion of intelligent systems. The case is made for par-
allels between performance evaluation and human
psycho-educational evaluation. Important ontologi-
cal distinctions in testing concepts are reviewed. Fi-
nally an actual implemented evaluation system, the
Cyc Testing System, is described. Consisting of an
ontology and a software system, this system pro-
vides evaluative feedback during the development
of Cyc, a large rule-based ontology. Four kinds of
validation tests are described: challenge tests, re-
gression tests, integrity tests, and rumination based
tests. The ontology of these tests and its accompany-
ing software package is intended for use with Cyc,
a large rule based system with common sense and
natural language capabilities.

Keywords
ontologies, evaluation.

Introduction
The role of ontologies in evaluation of intelligent systems has
been a topic at prior PerMIS conferences. For example, at Per-
MIS ’02 there was a discussion section titled, “General Dis-
cussion Panel 1 - What is the Role of Ontology in Performance
Evaluation?” In this paper I first discuss some general issues
associated with ontologies and performance evaluation. As a
working example of these ideas put into practice, I next de-
scribe the Cyc Testing System, an ontology-based system for
evaluating Cyc, a large rule based ontology.

What is an Ontology?
An ontology may be viewed as a system of concepts par-
tially ordered by a subsumption relation. The Linnean
Taxonomy of organisms is an example of a simple ontol-
ogy. Unlike the Linnean system, semantically rich ontolo-
gies contain a more diverse set of semantic relations be-
tween concepts than a single subsumption relation. Word-
net (http://www.cogsci.princeton.edu/ wn/) is an example of
such an ontology which represents the English lexicon. Word-
net contain terms such as Fruit and Apple which are linked

Copyright c
�

2003, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

together via the hypnonym relationship, one of Wordnet’s
subsumption relationships. Being a relatively rich ontology,
Wordnet also contains other types of relationships such as
partonomic relationships relating, for example, Apple to Stem.
Other types of relationships such as synset relationships are
used to relate synonymous terms to one another. Richer still
is a rule-based ontology. Such an ontology uses rules in addi-
tion to a diverse of semantic links as a means of linking con-
cepts together. Cyc, described below, and the Knowledge Ma-
chine (http://www.cs.utexas.edu/users/mfkb/km.html) contain
examples of this sort of ontology.

Knowledge Base versus Ontology
The terms knowledge base (KB) and ontology are somewhat
interchangeable. For the purposes, of this paper KB will refer
to a more concrete entity - a datastructure which is supposed
to serve as the actual instantiation of a given ontology. An on-
tology may be seen as an abstraction of a KB, as a scheme for
carving up the world into concepts, relationships, and possibly
rules about those concepts.

Cyc
The points made in this paper are intended for anyone wish-
ing to evaluate rule based ontologies. Although some of the
points are made on the basis of general principles, the second
half of this paper describes a specific testing system which I
created during the last third of my years at Cycorp, from ap-
proximately 1997 though March of 2001. This system helped
evaluate Cyc, a large rule-based system being constructed at
Cycorp (www.cyc.com). As of late in 2001 Cyc contained
over 1.2 million assertions which relate more than 100,000
concepts to each other. [4] Each such assertion is expressed
in the representation language of Cyc, called CycL, a vari-
ant of first order predicate calculus with enhancements (see
http://www.cyc.com/cycl.html for details).

Metrics: Assertions versus Questions
There is a surprisingly pervasive tendency to evaluate rule
based ontologies along dimensions such as the number of as-
sertions or number of reified concepts. This is analogous to
what has been known to happen in programmer communities.
Certain programmers make boastful claims about how many
thousands of lines of code they have written. In spite of this,
all else being equal, the most efficient least buggy programs

tend to be the ones with fewer lines of code. The analogous is
true for rule based ontologies. Like with computer programs,
what really matters at the end of the day is not the number of
assertions or the number of constants, but rather the overall
functionality of the system.

How does one measure the performance of a rule based on-
tology? I submit that the number of questions that a given sys-
tem is known to correctly answer, although incredibly crude,
is a step in the right direction. Specifically, it is a step away
from the trap of simply focusing exclusively on the number of
assertions or the number of reified concepts.

Nonetheless, it almost goes without saying that a simple re-
port of number of queries the system can answer begs certain
questions such as how important are the queries and the an-
swers? How correct are the answers? How robust are they to
KB changes? To be sure, measuring this latter sort of func-
tionality is no simple matter. However, the main point is that
a focus on what inferences a rule based ontology can make is
as least as important as quantifying the size of that system.

This paper discusses ontological issues associated with a
question- or functionality-focused approach (as opposed to a
content focused approach) to evaluating a rule based ontology.

White Box versus Black Box Tests
An important distinction for evaluating intelligent systems can
be imported from the software testing community - the dis-
tinction between black box and white box tests. Black box
tests are those motivated out of required module functionality.
Black box tests ignore system internals and specify require-
ments for the mapping of interface inputs to outputs. White
box tests, on the other hand, are motivated as a function of
the targeted software module’s internals. The designer of a
white box test analyzes the innards of a system, identifies sys-
tem weaknesses based on such an analysis and poses tests to
check for buggy behavior arising from such weaknesses.

Evaluation as Psychological Assessment
The difficulty of defining intelligence was alluded to in White
Paper to PerMIS01. These difficulties apply to the evaluation
of rule based ontologies as described below. To illustrate these
difficulties, contrast the task of evaluating a physical map of
France with a knowledge base representation of France. In the
evaluating physical maps, one has access to physically verifi-
able measurements such as the vector from the actual Paris
to the actual Lyon. One compares this vector with the vector
from the map’s Paris to the map’s Lyon. A map may be evalu-
ated on the basis of measurements such as these. By contrast,
there is no such operational definition that instructs one how
to evaluate the representation of France in a given KB. Any
representation of France is an abstraction. An alternative eval-
uation model must be found.

One such alternative model can be found in human psycho-
educational assessment. Test theory for this class of evaluation
must cope with the problem that psychological constructs, un-
like physical properties, can not be directly measured. Unlike
physical scales, psycho-educational scales lack well-defined
units. For example, if an examinee answers all questions in-
correctly on a given skills test, does that indicate he or she
has “zero” amount of that skill? Does equal spacing between

different units on a psychological scale represent equal dif-
ferences in the quantity being measured? Due to these prob-
lems, psycho-educational test theorists simply accept certain
fundamental limitations. As a result, there is no universally
accepted means of measuring any psychological construct [3].
Psychological constructs can not be defined in operational
terms only. Relationships must be demonstrated to other con-
structs or other observables [3]. The prospect of applying spe-
cific lessons learned in the context of psycho-educational eval-
uation to evaluation of intelligent systems is worthy of further
discussion at this conference.

Vagueness, Ambiguity and Evaluation
Knowledge representation systems often need to represent and
reason with vague and ambiguous concepts. Vagueness and
ambiguity are less familiar in traditional software verification
circles. In order to verify or validate a software system, one
needs as complete and precise a specification of system re-
quirements as possible. The more stringent the verification
desired, the more precise the requirement specification needs
to be. Such completeness and precision is problematic if one’s
application domain is commonsense reasoning. As the follow-
ing use cases indicate, some commonsense reasoning require-
ments involve inherent vagueness or ambiguity.

For example,

Fred loves France. (A)

seems to correspond to a single coherent commonsensical
assertion. A system with commonsense reasoning capability
should be able to derive the following from (A)

Fred would probably enjoy eating French food. (B)

Fred would probably enjoy visiting France. (C)

Fred would probably enjoy chatting with locals in
France. (D)

Yet, precisely what concept is referred to by the English
word “France” in (A)? For example, does “France” denote (1)
a body of land bordering on Spain, the North Atlantic and the
Mediterranean, (2) an amalgam of regional lifestyles, culinary
practices, artistic traditions etc or (3) the people who are citi-
zens of France?

In addition to ambiguity, common sense systems should be
able to reason with vague information. For example, given a
fact of everyday life such as,

Men prefer not to be bald.

one should be able to use such an assertion in an explanation
as to why a given bald man went to the store to buy medicine
for his baldness. Being able to generate such an explanation
is a requirement in spite of the fact that baldness is inherently
vague or hard to operationalize.

As the prior use cases indicate, intelligent performance de-
pends on the ability to handle ambiguous or vague informa-
tion. For this reason, I claim that for intelligent systems with
common sense performance evaluation must be less formal
and less precise than traditional software verification in at least
some cases.

Ambiguity and Component Versus System
Level Tests

Although ambiguity does impose limits on the precision of
performance evaluation, it is not a complete show-stopper.
This can be seen by introducing an ontological distinction
made in the software testing community. The distinction I
refer to is that between component tests versus system tests.
Component level tests are intended to verify that a particular
system component is behaving as intended. A system level
test is intended to verify that an entire ensemble of compo-
nents are interacting as specified.

In spite of the ambiguity of the term “France”, we require of
our system that upon being given (A) it should be able to de-
rive (B), (C), and (D) as needed. Thus, if we are in a dialogue
with our system, we should be able to tell the system

Fred loves France.

and then ask it

Question, is it probable that Fred likes French cui-
sine?

an intelligent system should answer

Yes.

without resorting to requesting that the user disambiguate pre-
cisely what he or she meant by “France”. This is a specifica-
tion of a desired system level behavior and it is unambiguous.

The ambiguity in the above example involving Fred and
France lies in interpreting Fred loves France. As the existence
of interpretations (1), (2) and (3) suggest, there may not be
a single coherent knowledge representation for that assertion.
Thus, although at a system level performance evaluation is not
ambiguous, ambiguity may be present at the component level.

The Cyc Testing System: An Ontology-Based
System for Evaluating Cyc

The main purpose of the Cyc Testing system is to evaluate the
performance of the Cyc system so as to provide useful feed-
back to Cyc’s developers. It consists of two main subcompo-
nents: a declarative KB component and a procedural software
component. The KB component consists of assertions about
desired system behavior. These assertions are in the KB, ar-
ticulated in CycL, Cyc’s formal knowledge representation lan-
guage. This paper describes the state of the testing system up
to early spring 2001.

What are the Testing Requirements?
What kinds of testing requirements must the Cyc Testing Sys-
tem support? Fundamentally, any knowledge based system
is intended to make correct inferences. Thus, we desire the
testing system to allow us to evaluate the correctness of these
inferences. This broad requirement is made more specific via
certain distinctions and desiderta described immediately be-
low.

One such distinction has to do with the purpose of a given
evaluation. There is comparative evaluation in which one de-
sires to compare the performance of two or more systems.
There is also developmental evaluation in which one seeks

feedback in order to guide the process of system under con-
struction. The Cyc Testing system is mainly intended for de-
velopmental evaluation. Nonetheless, many of the ontological
distinctions represented in the testing system’s KB may be ap-
plied to comparative evaluation.

Another requirement that the Cyc Testing System should
meet is that it should ensure that system functionality never
moves backward. What worked yesterday should continue to
work today. This requirement is met by regression tests, a kind
of black box test, as described below.

In addition, we desire to verify that constraints related to the
internals of the system be upheld. Although there may not be
an end user requirement directly motivating a given constraint,
such tests may be said to enforce good KB housekeeping. KB
Integrity Tests, a type of white box test described below, are
intended to meet this requirement.

An additional desideratum is the ability to express desired
system behavior and measure the ability of the system to meet
or fail to meet a given set of specified behaviors. Challenge
Tests, described below, are intended to meet this requirement.

Also, we desire the system to provide us with a means
of measuring how well knowledge synergizes. We wish to
detect unintended inferences, either good or bad, that might
emerge when thousands or tens of thousands of rules inter-
act. Rumination-Based Tests, described below, are intended
to meet this requirement.

Finally, we desire the testing system to keep developers,
managers and evaluators abreast of how the system perform-
ing and how its functionality is changing on a day to day basis.
This should include an ability to aid in the diagnosis or system
problems or bugs. How the Cyc Testing System meets these
requirements is described below.

System Components and Operation
The ontology-based Cyc Testing System has two components.
A software component and a knowledge base component. The
software component consists of procedural statements which
act in response to KB test assertions (which comprise the
knowledge base component) in the appropriate manner. For
example, depending on the assertions associated with a partic-
ular test object, the Cyc testing system may make calls to the
inference engine or to one of several natural language parsing
systems. It may compare current to prior results along any
of several performance dimensions such as number nodes tra-
versed during inferencing, time elapsed, or results obtained.
More details of the kinds of properties one may associate with
KB test objects are described under the next subheading.

The Cyc Testing System can be invoked by a system user
in a wide variety of ways. It is also automatically invoked in
nightly testing runs. Results of particular tests and summaries
of test suites can be automatically emailed to interested par-
ties.

Test Ontology
I submit that it is a good idea to use an ontology to evaluate
an intelligent system such as Cyc. It is beneficial to declara-
tively assert evaluation guidelines to the knowledge base (KB)
in a manner very similar to the way one ontologizes “nor-
mal” common sense or expert knowledge. As the power of
knowledge engineer tools increases, as ontology-based natural

language interfaces become more usable, these gains leverage
one’s ability to communicate with the testing system.

Should Tests Correspond to Assertions or Reified
Terms?
One ontological issue that is fundamental to the testing system
is the decision to a let a given test be denoted by a single reified
KB term. Thus, test properties are articulated as assertions
about that term. This section provides details on how that is
done and then justifies why things were ontologized as they
were.

Suppose one wished to test whether or not Cyc knows the
common sense fact that adult humans are capable of running.
One way to test knowledge of this fact is to pose a query to
the inference engine using the CycL language and verify that
the answer came back correctly. In other words, we wish to
declare that when one poses the query “Can humans run?” in
CycL to the Cyc inference engine, then the inference engine
should return True.

In order to do this one reifies a term representing the test
and makes assertions about that term using vocabulary in
the Cyc test ontology. Suppose we wish to name the term
#$Test007. Take it as a given that the means of specifying
the question Can humans run? in CycL is as follows:

(#$typeBehaviorCapable
#$HumanAdult #$Running #$doneBy)

Thus, in essence one needs to tell the system that when the
above CycL query is made, true should be returned. Such
a statement is made with two cycl assertions as show below.
The first assertion associates a cycl query with the test.

(#%testQuestionCycL
#$Test01
(#$typeBehaviorCapable #$HumanAdult
#$Running #%doneBy))

The next assertion associates the desired answer, true, with
that test as shown below.

(#$testAnswersCycL
#$Test01
(((T T))))

The above presupposes that there should exist a reified term
for each test. One might ask, could not the above specification
of desired behavior be achieved more economically with a sin-
gle assertion? For example, by creating testQuestionAnswer a
hypothetical new addition to the test ontology, we could ar-
guably make a more economical representation. In the former
scheme we incurred the expense of reifying #$Test01 plus an
assertion about the query and its answer. With the hypothetical
proposal testQuestionAnswer we get by with a single assertion
as shown immediately below.

(testQuestionAnswer
(#$typeBehaviorCapable #$HumanAdult
#$Running #%doneBy)
(((T T))))

In the short run, such a proposal would indeed be more eco-
nomical. However, it decreases expressiveness of the test on-
tology. There are other properties that we wish to assign to
a given test. Some of these properties include which Cycorp

employee should be notified if the test should exhibit a sys-
tem failure; how frequently the test should be run; what sort
inference engine settings should be in effect; what contextual
assumptions should be present and so forth. Thus, if there
were N test properties, an N-ary predicate would be needed
to describe a given test. As the arity of a predicate increases,
it becomes more ungainly for both humans and inference en-
gines.1

Aside from ungainliness, there are additional arguments
against using a single assertion to describe a given test. For
example, we wish to optionally state these properties for some
tests and not others. CycL is not capable of representing a
value of ’not yet determined’ for a given argument position.
Finally, as the testing system evolves we may wish to ascribe
new test properties to certain tests. If at time 1 we might have
4 properties (and a corresponding quaternary test specification
predicate) and at time 2 we have 5 properties, we would need
to transfer all prior test specification assertions to from the
quaternary to the quintary predicate.

The testing ontology for the kinds of tests described below
allows one to associate numerous types of properties with a
given test. For example, one may wish to describe which
knowledge engineers are responsible for which tests, what
kind of inference parameters should be involved with a given
test (such as depth of backchaining, time to spend before forc-
ing a return of bindings collected so far, the context or “mi-
crotheory” which should be visible to the inference engine
when a given test is run) past performance of a given test, and
more.

Types of Tests
Regression Tests Adopted from traditional software testing,
regression tests are a type of test used to detect backsliding.
In other words, they ascertain that functionalities that worked
yesterday continues to work today.

These tests can be considered a kind of black box test. Mo-
tivated from user requirements, they check for specified out-
puts being generated in response to specified inputs being ap-
plied to a target functional module. For example, one might
have a set of inferences or natural language parses that one
has worked on for various demos, contracts, etc. One uses a
regression test if one wishes to make sure that such inferences
or parses continue to work correctly (and within optionally
specifiable resource bounds). Thus, unlike Challenge Tests
(see below) a Regression Test is, by definition, known to have
worked correctly at some time in the past. Thus, if a given
Regression Test fails, it most likely means that a KB editing
operation or a patch was made to the inference engine code
causing that test to fail.

We typically desire to run such tests frequently so as to be
quickly informed of any breakage and to minimize the can-
didate set of KB/inference engine changes which could have
caused the breakage. A corrolary to this is that knowledge en-
gineers are more able to diagnose a problem when the cause
of that problem is known to lie in activities which are more
recent and therefore fresher in their minds.

1Technically speaking, a single N-ary predicate may not be neces-
sary. However, one will need several predicates whose arity is higher
than two. Having several assertions all representing the same test that
do not hang off the same test descriptor object is still ungainly.

As of March of 2001, the entire suite of approximately two
hundred regression tests was run once per night. This seemed
to be timely enough notification and also took advantage of the
lull in computing needs that occurs at night when ontologists
and programmers are out of the office. Each such run took the
bulk of the night. The testing harness would boot up a fresh
Cyc image. Next it would cause that fresh Cyc image to iterate
through a transcript of KB edits. This transcript contained the
sequence of several thousand edits to the knowledge base that
had accumulated from the work of several score knowledge
engineers. Once caught up on recent KB edits, the testing
harness would iterate through the list of nightly tests.
Challenge Tests Roughly speaking, a challenge test is anal-
ogous to a problem assigned to a student. Challenge Tests are
specific problems posed to the targeted system that test its abil-
ity to apply knowledge towards the resolution of that problem.
Such tests can be in the form of sample tests or test questions.
Sample tests, much like homework given to human students,
allow a group of ontologists to modify the KB without many
constraints. As human students doing homework are allowed
access to books, relatively unconstrained time, and consulta-
tion with teachers, ontologists are allowed similar liberties.
This work is done with an eye towards maximal generality so
as to best prepare the system for answering test questions. Test
questions, by contrast, are analogous to final exams given to
humans. In some cases test questions are posed directly to a
system. In other cases, ontologists are allowed to make KB
changes in order to make the system answer a given test ques-
tion, however access to the KB subject to time limitations.

In contrast with Regression Tests, a given Challenge Test
is not necessarily expected to work successfully. Rather, the
purpose of Challenge Tests are to characterize a milestone in
Cyc’s abilities or to focus and stimulate work on enhancing
them. This kind of test is relevant to performance evaluators
interested in questions such as the following. “Can Cyc per-
form temporal reasoning?” or “Does Cyc understand DNA
transcription?” or “Is the Cyc recursive block parser able to
correctly parse the phrase P?”.

Likewise, performance measurers can use these tests to
monitor the human costs associated with knowledge engineer-
ing. Suppose that a week’s worth of a given knowledge en-
gineer’s activity was focused on implementing a general so-
lution to the question battery Z (a “teach set”). How much
did Cyc’s performance on that battery improve? How well did
that week’s worth of knowledge engineering generalize to the
“test set” battery Z’ (of which the knowledge engineer was
unaware)? Further, suppose that later a different knowledge
engineer, was set to work on the challenge question battery W.
How much of the early knowledge was able to be re-used in
the later ontologization effort associated with W?

Performance evaluation issues need not always be framed in
terms of specific instances of questions. Rather, a class ques-
tions can be identified. Thus, an evaluator might ask, what
percentage of the instantiations of question type Y is Cyc able
to correctly answer? The Cyc testing ontology distinguishes
between questions instances and parameterized questions –
whole classes of tests which vary along some specified set of
parameters. See [1] for more on this topic.

All else being equal, a more flexible KB can be more

quickly modified to meet a new set of challenges. Likewise, a
more flexible knowledge base axiomatization should general-
ize to unseen “test set” cases. Lastly, more knowledge re-use
should be attainable from a flexible knowledge base. For these
reasons, performance data on challenge tests may be said to
measure the flexibility and re-usability of a knowledge base.

KB Integrity Tests The third kind of test is termed a KB
integrity test. The purpose of such tests are to evaluate certain
structural properties of the knowledge base. Thus, the pur-
pose of such tests is not so much to state desirable end user
functionality but rather to enforce good “KB housekeeping”.
Because they check for in-felicities having to due with system
internals rather than those having to do with input-output rela-
tionships these tests a kind of white box test. A KB with high
integrity is easier to maintain and augment.

One type of KB integrity test checks the syntactic well-
formedness of a given KB assertion. Although assertions
can not be entered in the KB if they are syntactically well
formed, inevitably some assertions become non-well formed
over time. One way this change can occur when constraints
that define a predicate become more restrictive. When this
happens, an assertion using that predicate in the zeroth argu-
ment position that was previously well-formed could become
non-well formed.

Another higher level KB integrity test checks for the ap-
propriate relationship (i.e. the subset relationship) between
argument types of predicates which are in a subsumption rela-
tionship. For example,

(#$implies
(#$brothers ?X ?Y)
(#$siblings ?X ?Y))

In English this could be described as

If two people are brothers, then they are siblings.
Thus the predicate #$brothers is subsumed by

#$siblings. The argument type for brothers is
#$MalePerson. The argument type for siblings is
#$Person. The integrity constraint to be checked by this
test is that the argument type of a subsumed predicate, e.g.
#$brothers should be no more general than the argu-
ment type for the subsuming predicate, e.g. #$siblings.
If #$MalePerson is asserted to be a specific kind of
#$Person, then this integrity constraint is not violated.

Rumination-Based Tests The goal of rumination-based
testing is to look for emergent intelligence in the knowledge
base. As explained below the is achieved by having humans
evaluate a representative random sample of the resource bound
deductive closure of the knowledge base. This technique al-
lows human knowledge engineers to measure how well dis-
parate pieces of knowledge are synergizing. Discoveries can
be welcome surprises about assertions comingling in unantic-
ipated but desirable ways or undesirable interactions between
incompatible assertions.

To be sure, the more such welcome surprises one finds, the
better one’s knowledge base is synergizing. The more unde-
sirable interactions one finds, the worse the synergy is. Of
course, some surprises might be more interesting than others.
I have left as future work how to quantify the overall quality
of a set of deductions.

The following anecdote of an exploratory foray into
rumination-based testing methods shows how the technique
works. The Cyc system was set to backchain on the following
cycl query.

(#$feelsTowardsEvent ?agent ?emotion
?event-or-object ?level)

In English, the above CycL query could be phrased as fol-
lows.

Does anyone feel any emotion to any degree about
any event or any object.

There were hundreds of conclusions, the vast majority of
them were correct and even surprisingly interesting in some
cases. For example, Cyc inferred that Queen Elizabeth II
feels loyalty towards England, that various Cycorp employees
loved their spouses and their children, and that Abraham Lin-
coln felt fear at the time of his assassination. In a microtheory
devoted to the beliefs of Christianity the system even inferred
that God loves his son Jesus Christ. Having worked at Cy-
corp for over ten years I had a sense of what projects people
were working on and based on that knowledge found it highly
unlikely that anyone had asserted rules for these specific de-
ductions.

However, what was the following, a most amusing and
probably incorrect deduction in light of scandals occurring to-
wards the end of the Clinton presidency.

(#$feelsTowardsEvent
#$HillaryClinton
#$Dislike
#$BillClinton
#$None) (E)

An English rendering of the above assertion follows.

Hillary Clinton feels zero dislike towards Bill Clin-
ton.

An ontologist should naturally wonder what were the
grounds for such a seemingly erroneous conclusion and at-
tempt to fix the KB appropriately. Delving into the problem
further, I uncovered the following (translated into psuedo En-
glish) the givens as being responsible for the above deduction
can be stated as follows:

� (G1) Spouses love each other.
� (G2) Love and dislike are contrary emotions.
� (G3) If PERSON1 feels emotion E1 towards PERSON2

and E2 is contrary to E1, then the intensity level at which
E2 is felt is zero.

� (G4) Bill Clinton is Hillary Clinton’s spouse.

Each one of the above givens may appear roughly correct
standing on its own. However, when chained together they
led to the conclusion (E) which I believe most people would
consider a false deduction. These types of infelicitous com-
binations of rules are exactly the sort of thing that rumination
based testing is intended to uncover.

Once a given infelicity is located ontologists can be tasked
with its repair. There are several possible repairs for a deduc-
tion such as the above.

(1) Split apart the concept Love into at least two forms,
one would denote a brief “in the moment” feeling inconsistent
with dislike. The second would denote a long term affective
disposition frequently felt by spouses which is not necessarily

(2) Add an exception to (G1) such that it reads (G1) Spouses
love each other except in cases of infidelity. Then add a repre-
sentation of the Monica Lewinsky affair to the Cyc KB.

In this way, a kind of introspection test or open-ended
querying may be used to evaluate the overall synergy of a KB,
locate problematic assertions or terms, and, thereby obviate
particular improvements. A crude measure of this synergy or
reliability could be simply by taking the ratio of deductions
judged invalid vs. valid by some human judges based on their
intuitions about what seems commonsensical.

Having introduced the general nature of rumination-based
testing, a more complete rendering of this technique follows.
First, one specifies a rather open ended inferencing task or
series of tasks for the system to perform within (user speci-
fied) bounds of specified computational resources constraints
(e.g. time limit, maximum deduction chain length, contexts
in which to perform the deduction etc). Exactly what sorts
of tasks may be performed are described below. Because
rumination-based tests may take several hours on desktop PC
machines circa 2001 they are best done at night.

Secondly, once such a task is completed, knowledge engi-
neers should perform a quality control analysis on the result-
ing deductions. Human evaluators look at the results of such a
procedure and rate deductions along quality dimensions such
as “Was the deduction common-sensical?” or “Did the de-
duction seem an interesting demonstration of Cyc’s capabili-
ties or was it merely a banal obvious fact?” In certain cases
there are so many deductions made, that the best one can do
is randomly sample the set of deductions and make statistical
generalizations about the entire set. Thus, a disadvantage of
this technique is that it can get quite labor intensive. Future
work may identify heuristics and user interfaces which reduce
human labor by filtering out banal deductions.

There are several techniques for generating a sampling of
the resource bounded deductive closure of a given aspect of
the KB. The simplest method was described above - that of
backchaining on a predicate of interest. Several other methods
described below remain to be tried as future work.

For example, one such relatively simple method involves
forward chaining all rules in a given context or set of asser-
tions. A third method involves simply backchaining on the
consequent of every rule in the given assertion set. A fourth
method involves repeatedly picking one rule at random, in-
stantiating its antecedent, picking another random rule and
backchaining on its consequent. After hundreds or thousands
of iterations, such a technique (as of yet untried) is likely to
yield numerous deductions.

A fifth method, called “Open Ended Asks”, involves repeat-
edly picking an arbitrary n-ary predicate, P(X1,X2, ...Xn) and
asking the inference engine for all bindings of X1, X2, ...Xn
. On a run conducted in 2000, this latter technique, i.e. open
ended asks, were performed on 634 arbitrarily chosen predi-
cates. 6229 deductions were made over an 8 and a half hour
test run. My informal quality control analysis suggested that
the frequency of non-commonsensical to commonsensical de-
ductions was between 1 in 10 and 1 in 1000. In addition, the

results were spot checked for interesting non-commonsensical
deductions which could be easily described in this article. One
such deduction which caught my eye showed up in natural
language browsing mode exactly as follows: “Vienna is wet.”
Rendered in CycL viewing mode the assertion appears as fol-
lows:

(#$wetnessOfObject
#$CityOfViennaAustria #$Wet)

In order to maximize fidelity to the justification as it ap-
peared when the above problem was found I have copied it
directly from the interface below.

Argument : Deduction #395917

� (#$implies
(#$and
(#$touches ?U ?X)
(#$isa ?U ?TYPE)
(#$genls ?TYPE
#$LiquidTangibleThing))
(#$wetnessOfObject ?X Wet)) in
#$BaseKB

� (#$touches #$DanubeRiver
#$CityOfViennaAustria)
in #$WorldGeographyDualistMt

� :ISA (#$isa #$DanubeRiver
#$LiquidTangibleThing)
in #$InferencePSC

� :GENLS (#$genls
#$LiquidTangibleThing
#$LiquidTangibleThing)
in #$InferencePSC

The above can be rendered in English as follows:
Vienna is wet because:
(1) The Danube River touches the City of Vienna.
(2) The Danube River is a Liquid.
(3) If a liquid touches an object, then that object is wet.

After identifying this infelicitous combination of asser-
tions, it was decided to create a new attribute called
#$PartiallyWet whose meaning was that at least some
part of the object was wet but not necessarily the entire object.
(3) was then re-written as:

(3) If a liquid touches an object, then that object is at least
partially wet.

Of course, the above exploratory analysis of rumination
base testing lacks metrical rigor. More experimentation and
human effort are required in order to quantify the frequency
and quality of felicitous and infelicitous synergies like the
types described above. In spite of this, I believe that because
these type of tests aim at uncovering the unexpected it is an
important means and relatively untried means of evaluating
the performance of an autonomous system.

Using the Ontology to Give Evaluative Feedback
The Cyc Testing System does not only use the ontology to
specify tests and how they should be run. It also leverages
ontology in the service of giving feedback about system per-
formance.

For example, certain ontologists are responsible for certain
tests. Responsibility information is encoded in the knowledge
base as exemplified below.

(#$testCyclistsResponsible #$Test01
#$Fred-TheOntologist)

The above assertion signifies that Fred, a hypothetical on-
tologist working for Cycorp, is responsible for #$Test01, a
hypothetical test object. Because the Cyc KB is a general pur-
pose knowledge base and since email addresses are a salient
important fact about humans today, Cyc has means of speci-
fying the email address(es) of a person as exemplified below.

(#$eMailAddressText
#$BillJ-TheOntologist
"billj@cyc.com")

Such information can be exploited by the Cyc Testing sys-
tem. When a regression tests detects a problem, the Cyc Test-
ing System uses the KB to determine the ontologists(s) re-
sponsible for that test and uses #$eMailAddressText, if speci-
fied, to sends an email reporting the breakage. This is a modest
example of how general ontologized knowledge can be lever-
aged in the context of performance evaluation.

Localizing the Cause of a KB Bug
Suppose a given test, such as an integrity test or regression
test, run on a given night starts detecting a failure that was
not detected during the prior evening’s run. Such a scenario
was quite common, an informal analysis suggested an average
of at least one new problem was detected per day during the
last several months of nightly runs. Most likely, the bug was
introduced as a result of the knowledge editing activity of the
intervening day. A facility called the Breakage Pinpointer can
help diagnose the source of the problem. In particular, this
facility determines which KB edit operation was the one after
which the given test began to signal a new failure point. The
breakage pinpointer does this simply by looping through the
following procedure:

(0) Start up a new Cyc image at the beginning of yesterday’s
sequence of KB edit operations.

(1) Given yesterday’s sequence of KB edit operations, exe-
cute the next N of them in order.

(2) run the test (3) if the test works, do (1) again else re-
turn the information that the breakage occurred between the
operation just run and the Nth -1, inclusive. By setting N to
1 (for brief tests) or using larger N (for time consuming ones)
coupled with a binary search technique one can automatically
narrow down on the exact operation which caused the break-
age.

The Testing System and Technology Readiness
There are different means by which the Cyc Testing System
can be used to measure and ensure technology readiness.

One means by which technology readiness can be measured
is by way of regression tests. If a given set of supported func-
tionality can be identified and cast in terms of a regression
test suite, then any version of the Cyc KB that passes these
tests can be considered certified according to the functionality
articulated by the given test suite.

Integrity tests provide another means by which technology
readiness can be quantified. All things being equal, a version
of the Cyc KB which has fewer violations of a given integrity
test exhibits a higher level of readiness. In addition, the rate of
change in the number of violations of a given integrity test can
help answer questions such as, is the organization of ontolo-
gists keeping up with KB defects as they occur? This informa-
tion can inform best practices. In management terms, the ratio
of human resources required to maintain integrity of existing
knowledge versus that expended to add new knowledge can,
over time, be monitored. This ratio can provide feedback to
an organization in identifying best practices to ensure a given
level of technology readiness for a given cost.

Challenge tests can help one quantify the re-usability of
knowledge or the amount of effort required to meet novel re-
quirements. In addition, the progress of a team of ontologists
can be periodically tracked by means of challenge question
progress tracking vocabulary created for this purpose. For ex-
ample, one of the first stages in adapting the Cyc KB to a new
set of challenge problems is to create the vocabulary needed
for representing the question. A second step is sketching out
an inference path in English. A third step is identifying any
already existing KB rules that can be used as part of the in-
ference path. Ontologists can indicate progress against these
different milestones for a given challenge problem by means
of challenge question progress tracking vocabulary. In some
cases this progress can be automatically inferred (e.g. if a
#$testQuestionCycL is asserted, it then follows that question
vocabulary has been formulated).

Finally, rumination tests can provide measures of knowl-
edge synergy and autonomous or emergent behavior. By pro-
viding frequencies of felicitous and infelicitous deductions in
the resource bounded deductive closure, they allow one to es-
timate how well the KB may perform in novel circumstances.

Future Work

Note a given instantiation of Cyc tests itself. This could be
problematic. If a given instantiation contained a KB defect
which affected the test specification of the KB, then the re-
sults of the testing system could compromised. Thus, in the
future, it is important to have a stable testing well-verified
testing system that stands apart from the system undergoing
development. Nonetheless, in practice, this limitation was not
noticed to have caused any problems while I was putting the
system to use.

Acknowledgements
Thanks to Jim Zaiss for many helpful suggestions. Also, al-
though he has not reviewed this paper, I am indebted to Ken
Murray for many useful ideas.

References
[1] Cohen, Chaudhri, Pease and Schrag (1999), Does Prior
Knowledge Facilitate the Development of Knowledge Based
Systems, proceedings of AAAI-99.

[2] Cohen, Schrag, Jones, Pease, Lin, Starr, Gunning, and
Burke (1998), The DARPA High Performance Knowledge
Bases Project, AI Magazine, Vol. 19 No.4, Winter.

[3] Crocker, L. and Algina, J. (1986) Introduction to Classi-
cal and Modern Test Theory Harcourt Brace Jovanovich Col-
lege Publishers, New York.

[4] Jarrold, W. (2001). Validation of Intelligence in Large
Rule-Based Systems with Common Sense. Model-Based Vali-
dation of Intelligence: Papers from the 2001 AAAI Symposium
(AAAI Technical Report SS-01-04).

