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Abstract 
We present a distributed approach to ontology representation suited for semantic 
web services that is robust to extension and re-use. The representation 
encompasses, but is not limited to, the subsumption relationships included by 
the ontology creator. We discuss a refactoring of a large biological ontology into 
a property-centric model that allows improved consistency checking and easier 
cross-ontology integration, and yet maintains the original subsumption 
relationships without requiring explicit attribution of subsumption semantics. 
Upon the use of Formal Concept Analysis (FCA), the approach becomes 
ontogenic: it facilitates automatic, dynamic, data-driven ontology and 
knowledge base creation through the analysis of individuals’ shared properties. 
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1 Introduction 
Traditional representations of ontologies utilize subsumption in the form of 
nested subclass relationships to organize concepts hierarchically. In the world of 
semantic web services, in which information-providing services are distributed 
while their properties, capabilities, interfaces, and effects are encoded in an 
unambiguous, machine-understandable form [1], this type of representation 
leads to ontologies that are difficult to access dynamically and that are brittle 
with respect to extensibility and re-use.   

These problems are exacerbated for very large ontologies, such as those 
used in biomedicine. There is an effort to standardize the syntax for biomedical 
ontologies through the Open Biomedical Ontologies project (OBO: 
obo.sourceforge.net). Yet the ontologies tend to be monolithic in conception, 
and reside as one ontology per file in their representation. Such representations 
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create difficulties for dynamic web services environments that seek access 
across ontologies on the per-term level. In this paper, we explore an alternative, 
property-centric representation for ontologies that maintains the information 
content of hierarchical ontologies and yet is lighter and more flexible for use in 
semantic web services. 

1.1 The Large Ontology Problem 
Ontologies in biology tend to be large.   For example, the Gene Ontology (GO: 
www.geneontology.org) is comprised of three separate ontologies (Biological 
Process, Molecular Function, and Cellular Component) containing nearly 20,000 
terms. This is dwarfed by the almost 23,000 descriptors and 151,000 
supplemental headings in the Medical Subject Headings (MeSH: 
www.nlm.nih.gov/pubs/factsheets/mesh.html) and the one million biological 
concept and vocabulary terms in the National Library of Medicine’s Unified 
Medical Language System Metathesaurus (UMLS: 
www.nlm.nih.gov/research/umls/about_umls.html#Metathesaurus). 

Large ontologies, per se, do not present noteworthy problems. For example, 
standard ETL (extract, translate, and load) operations on compressed files of 
many MB are easily handled by today’s PCs with access to broadband internet 
connections.  But these same ontologies can present a formidable challenge to 
distributed semantic web services architectures that require dynamic access to 
specific, generally small, portions of the ontologies in response to particular 
information requests. 

To address this issue, the Virtual Plant Information Network (VPIN: 
vpin.ncgr.org; www.semanticmoby.org), an open-world semantic web service 
architecture, has been designed such that service discovery, service requests, and 
service responses reference semantic terms atomically. That is, terms from 
disparate ontologies are referenced via term-specific URLs (Uniform Resource 
Locators) much in the same way as hyperlinks are used on a web page. Just as it 
would be unreasonably burdensome to require that web pages dereference the 
content behind a URL before including a reference to it on a page (or even 
worse, downloading the entire web site simply to reference the URL), it is 
unreasonably burdensome on semantic web service architectures such as the 
VPIN to require that full ontologies be downloaded by clients and servers 
simply for the purpose of referencing one or two terms contained therein.  For 
the VPIN, we seek a way to allow rapid, on-demand access across ontologies on 
a term-by-term basis at transaction time.  We need a way to access ontological 
terms atomically, yet without losing the ability to identify the topological 
relationships of any given term in the ontology.  As we will see later, this is not 
sufficiently solved by simply using the fragment (‘#’) token in a URL. 



 3

1.2 The Static Subsumption Problem 
In a well controlled domain space, one can use nested subclass relationships to 
organize concepts hierarchically. Indeed, many ontologies, such as the Gene 
Ontology, are essentially static subsumption hierarchies. By static subsumption 
hierarchies, we mean that they explicitly assert subclass relationships 
axiomatically (for example, by using the owl:subClassOf predicate), 
instead of deriving subsumption dynamically (for example, by inferring classes 
and subclasses from sets of individuals based on shared properties) 

If the problem at hand is well defined, and if ontology maintenance, 
extension, and deprecation are centrally controlled, then axiomatic subsumption 
can yield substantial value in semantically organizing information. But static 
subsumption hierarchies suffer from two problems in an open world of semantic 
web services. The first is that they tend to be built from the top down, so 
concepts near the root—for which changes necessarily alter the definition of 
every subclass—are established early in the ontology’s creation when there is 
the least amount of experience and real-world feedback on the utility of the 
ontological model. Changes to those terms established earliest in the project are 
unfortunately likely to cause the most extensive repercussions later on, thereby 
working against evolvability. The second problem is the antagonism between 
static subsumption and loose-coupling, or the need to allow individual nodes in 
a distributed system to change without affecting or requiring change in other 
parts of the system [2]. Because static subsumption classes are defined in 
transitive, cascading subclass definitions, it is difficult for third-parties to extend 
concepts unless the entire subsumption tree matches the concepts relevant for 
their problem at hand; i.e., the users’ problem space has to match the ontology 
creator’s world view up the chain of the hierarchy. This is particularly acute 
across ontologies where static subsumption limits cross-ontology modularization 
due to lack of extensibility and re-use. 

Thus static subsumption hierarchies fuel both rigidity (the inability to 
change to meet new demands) and fragility (the propensity to fail, often in 
multiple and seemingly unrelated places, under changes). We seek an 
ontological model that is robust to extension and re-use in an open world, and 
specifically one that encompasses, but does not limit, the pre-conceived 
subsumption relationships of the ontology creator. 

2 Deconstruction 
Despite the above limitations, there still is high value in preserving the 
information content of legacy ontologies (such as the Gene Ontology and others 
of the OBO), even if this information is organized primarily as a static 
subsumption hierarchy. So the problem is: How can we refactor legacy 
ontologies so that we can apply their value while addressing the limitations of 
monolithicity and static subsumption assertions?  In the sections that follow, we 
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reference a partial refactoring of OBO and GO available at ontologies.ncgr.org.  
We use the W3C standard of OWL as serialized by RDF/XML to encode the 
ontologies. 

2.1 Using Full URLs instead of ‘#’ Fragments 
A straight-forward approach to decomposing a large ontology into component 
terms is to reference each term via a URL. A common practice in OWL 
RDF/XML ontologies is to use the URL fragment identifier ‘#’ to “hash into” a 
large file (e.g., www.myWebsite.org/largeOntology#term100). But the W3C 
standard on ‘#’ clearly states that it is interpretable solely by the actor 
dereferencing the URL (see [3]). This is primarily a client-side activity; indeed, 
network caches and proxies may preclude a server from even seeing the ‘#’ in 
the URL on a HTTP GET or POST. In other words, an HTTP GET on 
www.myWebsite.org./largeOntology#term100 may invoke the server to return 
the entire document at www.myWebsite.org/largeOntology, independent of the 
‘#term100’ visible at the client end. 

In our decomposition of GO (ontologies.ncgr.org/GeneOntology), we 
represent each GO term as a separately dereferencable URL without the use of 
#; e.g., ontologies.ncgr.org/GeneOntology/BiologicalProcess/GO_0000001.  
Each term is only a dozen or so lines of RDF/XML, guaranteeing scalability 
such that semantic web service applications can execute term-by-term, on-
demand, random access in a high-throughput manner, independent of the size of 
the ontology. 

2.2 Removing Static Subsumption Assertions 

Simply decomposing a large file into numerous smaller files1 each 
dereferencable by a unique URL is hardly modularization.  For the mix-and-
match capabilities of a semantic web services architecture, we also seek a 
representation in each file that is essentially self-contained; i.e., a valid OWL (or 
specifically OWL-DL) definition of the term that can be used in a variety of 
circumstances independent of any a priori class hierarchy. This is similar to how 
one can choose and use words from a dictionary without claiming adherence to 
the global model of all words as defined in the language.  In aggregation across 
terms, we seek a lossless representation, such that all subsumption information 
in the monolithic formulation is recoverable. We do this by emphasizing each 
term’s properties, instead of its class inheritance. 

                                                 
1 There is, of course, no implementation requirement that these be physical files 
in a file system. Thousands of distinct URLs can be handled by a single Java 
servlet that generates a distinct document for each URL on demand. 
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For ontologies such as GO, the problem is made more difficult because 
there is no readily available set of properties that can be used to infer the class 
subsumption hierarchy of the ontology.  Essentially the entire topology of the 
subsumption hierarchy is built on the axiomatic assertions that one class is a 
subclass of another, without explicitly listing those properties that would allow a 
reasoner to so infer. For example, ‘Cell Adhesion’ is a subclass of ‘Cellular 
Process’ which is a subclass of ‘Biological Process,’ but there is no explicit list 
of properties that would allow a reasoner to group individuals into these classes 
based on those individuals’ properties. Individuals—for example, gene entries in 
databases—get assigned to classes: a procedure called annotation.  This may be 
done manually by a curator. Automatic (algorithmic) annotation, where it exists, 
is rule based, referring to external data to assign matches between individuals 
and GO classes [4, inter alia]. 

To address the static subsumption limitation of property-poor legacy 
ontologies such as GO, we note that the transitive relationship C subClassOf 
B, B subClassOf A for classes A, B, and C implies by definition that all 
individuals of class C have all the properties required for individuals to be of 
class B (and maybe more), and similarly all individuals of class B have all the 
properties required for individuals to be of class A (and maybe more).  The triple 
‘C subClassOf B’ is purposefully analogous to the use of triples in RDF 
specifying a subject-predicate-object relationship. As one traverses up a 
subsumption hierarchy from the subclass to the superclass, one goes from the 
specific (more properties) to the general (fewer properties). 

We first redefine each legacy class in GO (each GO term) to be an 
individual (an instance, as distinct from a class) at a URL. We then introduce 
three new properties called superProperty, subProperty, and 
rootProperty. For each individual (corresponding to a GO term in the new 
formulation), we add a superProperty predicate for each of its legacy 
superclasses, with the superclasses’ instance representation as the object of the 
predicate: e.g., C owl:subClassOf B becomes { C superProperty 
B, C superProperty A }. Thus we replace static owl:subClassOf 
assertions with properties suitable for dynamic class inference—since without 
this subsumption information GO is little more than a controlled vocabulary. 

For each term’s direct legacy children (but not grand children, etc.), we add 
a subProperty statement; e.g., A subProperty B.  Thus from any GO 
term as a URL, one can traverse a sequence of hyperlinks both up and down the 
legacy subsumption tree, and therefore have a mechanism to dereference the 
entire ontology, including preserving its subsumption topology, from starting at 
any node. 

For implementation issues, we note some minor refinements. We add the 
convenience property rootProperty to every individual. This points directly 
to the root of the ontology; e.g., C rootProperty A.  We also note that the 
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minimum information needed to recreate the subsumption topology from the 
superProperty predicate is for each individual to preserve its relationship 
solely to its direct legacy parent(s) (since one could successively dereference 
definitions up the superProperty chain, just as we do down on the 
subProperty chain), yet for any given term we include superProperty 
statements up to the root. This has the advantage of allowing a term’s single file 
definition to comprehensively include all statements about it on a single URL 
dereference. It has the disadvantage that term maintenance requires checking 
that all superProperty statements remain true over time. This is the same 
maintenance issue that all web masters must address in ensuring that URLs 
embedded in their pages continue to reference relevant content. Different 
implementations will assess this cost/performance issue differently. We also 
note that there is no distinction in the use of superProperty as to the 
claimed subsumption relationships of the objects; e.g., { C superProperty 
B, C superProperty A } does not tell one if B superProperty A or 
A superProperty B. This is important as it encapsulates statements 
between subjects and objects, so that, for example, C is only making statements 
about itself as the subject, and is not making assertions about other terms within 
its definition. Other terms’ superProperty statements should appear, and 
only appear, in their definition documents at their URLs. 

The final result is a deconstruction of a large, legacy, monolithic ontology 
built almost entirely on static subsumption statements into distributed, atomic, 
components; each separately dereferencable by its own URL, and each devoid of 
the legacy owl:subClassOf static assertions. The deep hierarchy topology is 
broken.  Yet while no component makes an explicit subsumption statement 
about its legacy subsumption relationships, any part of the entire subsumption 
topology can be recreated by noting that all components that share the same 
objects of superProperty triples can be inferred to belong to the same class 
marginal on those objects. 

3 Reconstruction 
The advantage of replacing static subsumption assertions—particularly 
cascading assertions in deep hierarchies—with a property-centric model is that it 
brings the benefits of extensibility and loose-coupling more directly to ontology 
modularization. These benefits include improved consistency checking, easier 
third-party extension and re-use, easier cross-ontology integration. 

3.1 superProperty creates principal filters which allow 
for a lossless recreation of the subsumption assertions 

Our use of superProperty creates a partially ordered set (a poset) of all 
individuals from any given node to the root.  The set theoretic principal filter for 
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some individual X is the set of all individuals, from X to the root, that are objects  
of superProperty relationships with X as the subject; in other words, the 
single file definition of a term as described above. The transitive reduction [5] 
on the union over all principal filters is guaranteed to recreate the poset 
(graphically a Hasse diagram) guaranteeing that this modularization of 
subsumption information is lossless [6]. 

It is trivial that if we replace all owl:subClassOf predicates with 
superProperty predicates that one could recreate the subsumption 
assertions by simply stating semantic equivalency between the two. Yet a 
stronger statement can be made, in that the poset and principal filter approach 
[6] shows that subsumption information can be recovered purely on a set 
theoretic basis based on the relational information present within the formal 
context, whatever the source of that information. In other words, even when 
subsumption information is not explicitly encoded, the relational properties in 
the context allow induction of subsumption relations on a set theoretical basis, 
without requiring that superProperty be overloaded with subsumption 
semantics. 

3.2 Formal Concept Analysis drives the Dedekind-
MacNeille Completion 

One problem with manually created, deep subsumption hierarchies is the 
possibility of failing to explicitly identify all relevant classes. For example, 
Figure 1 shows how a manually asserted subsumption hierarchy may fail to 
explicitly delineate the class of “individuals with properties in common to A and 
B, but without all properties of E”.  In Figure 1, Q is called the least common 
subsumer (LCS) of D and E.  Least common subsumers arise often in the 
solutions to answering questions using ontologies (e.g., what is minimally 
common to D and E?) [7]. 

A B 

C 

E D 

A B

C

ED

Q

Figure 1. Subsumption hierarchies (Hasse diagrams) where arrows indicate 
subclass relationships (e.g., owl:subClassOf). (Left) Original, manually asserted 
hierarchy. (Right) The Dedekind-MacNeille completion makes it clear that there 
exists a least common subsumer (LCS) Q that is the minimal class of all 
individuals with properties shared by D and E. 
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Least common subsumers fall out naturally from the Dedekind-MacNeille 
completion [8] over a bounded poset. Consider a matrix where the rows and 
columns refer to the individuals, or nodes, in the poset.  We add a virtual top R 
(unique superclass of all classes) and virtual bottom Z (unique subclass of all 
classes) if these nodes do not already exist. Let element eij be unity for the RDF 
triple i superProperty j or i = j, and zero otherwise.  Thus the matrix 
is a summary of all static subsumption statements over the legacy ontology: 

 

 R A B C D E Z 

R 1 0 0 0 0 0 0 

A 1 1 0 0 0 0 0 

B 1 0 1 0 0 0 0 

C 1 1 1 1 0 0 0 

D 1 1 1 1 1 0 0 

E 1 1 1 0 0 1 0 

Z 1 1 1 1 1 1 1 

It can be shown [6,8] that by using Formal Concept Analysis (FCA), the 
Dedekind-MacNeille completion over this matrix is a lattice as shown 
graphically in the right hand side of Fig. 1.  The lattice explicitly includes Q, the 
LCS of D and E. In theory, FCA will construct missing LCSs for all nodes in 
legacy ontologies modularized by the superProperty approach, thereby 
adding an important automated consistency and completeness step to the 
otherwise manual process of ontology construction. In practice, we have not 
implemented FCA on large ontologies, so performance and feasibility issues 
remain to be addressed. 

4 Data-driven Ontology Induction 
The ontogenic properties of FCA can be used in an even stronger manner in 
conjunction with a property-centric data model. Traditionally, we separate 
ontology creation (ontogenesis) from annotation (the process of associating 
individuals, such as gene records, with ontological concepts, such as “Cellular 
Adhesion”).  But this is a laborious and error-prone task.  What we seek is a way 
that ontologies can be created automatically, and ideally in a manner that 
reflects those concepts most applicable to the problem at hand. 

One can use FCA for data-driven, automatic, de novo ontology creation.  To 
do so, construct a n × m matrix of n individuals and m binary properties. These 
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properties, or attributes, can come from a variety of sources: legacy ontologies, 
experimental data, computational results, etc.  One can then apply FCA to the 
matrix to create a subsumption lattice which integrates the properties across 
these distinct sources. 

 
Figure 2. Annotated portion of an ontology where individuals G are annotated 

to (ordered) concepts {a, b, c} 

To illustrate, consider a (hypothetical) fragment of an ontology, with 
individuals g1 to g3 annotated to concepts {a, b, c} as in Figure 2, coupled with 
keyword associations derived from texts between individuals g2 to g4 and 
keywords k1 to k3, as indicated in Figure 3(a). 

 

 k1 k2 k3 

g2 1 0 1 

g3 0 1 0 

g4 1 1 0 

Figure 3a. Keyword property matrix 

 

 a b c k1 k2 k3 

g1 0 1 1 0 0 0 

g2 1 0 1 1 0 1 

g3 0 0 1 0 1 0 

g4 0 0 0 1 1 0 
 

Figure 3b: Merged property matrix 

The merged matrix of individual/property associations is then shown in Figure 
3(b). The application of FCA to this matrix results in the concept lattice in 
Figure 4. While the ontological information of the ontology fragment is 
preserved and respected in the merged subsumption hierarchy, there is no 
explicit underlying hierarchical structure on the keywords K in this example. 
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Rather, the concept lattice process derives the hierarchical relations among the 
keywords implicit in the structure of the properties.  For example, k1 is a more 
general keyword than k3, while k2 is of effectively indeterminate generality. So 
there is not a complete poset relation among the properties as shown in both the 
merged matrix and the lattice. 
 
 

 
Figure 4. Joint concept lattice for the merged property matrix. 

This subsumption lattice is an on-demand knowledge base that classifies 
individuals according to their hierarchically related common properties. The 
subsumption classes essentially create a data-driven, de novo ontology.  In this 
manner, one can construct data-driven ontology induction to create ontologies 
from disparate sources customized to the problem at hand. So for biology, 
instead of thinking about biological concepts ex situ and organizing them in a 
static, deep subsumption hierarchy; then discovering genes and laboriously 
annotating associated gene records to the ontological concepts—all without the 
guarantee that the classification is consistent and complete—one would enter 
gene properties, concepts, literature records, etc., into an “FCA engine” which 
would generate a data-driven, guaranteed consistent, annotated knowledge base 
automatically.  The semantic web services support allows this FCA engine to 
operate over disparate, distributed resources.  Such knowledge bases would be 
more dynamic, ephemeral, and suited to the problem at hand, rather than the 
more static and encyclopedic conception of knowledge bases currently popular.  
The quality of the knowledge base would be critically dependent on the quality 
of the property matrix. But because that matrix is built from considering 
property-centric statements instead of global subsumption models, it is 
substantially easier to verify on a statement-by-statement basis. 
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5 Conclusions 
We have presented a property-centric approach to capturing subsumption 
relations as expressed in traditional ontologies, and discussed how this 
refactoring enables both more dynamic access to the ontology in a semantic web 
services environment. We have also shown how it could be use to drive 
ontology induction from properties associated with individuals in the property-
centric representation. 

Acknowledgements 

This material is based upon work supported by the National Science Foundation 
under Grant No. 0516487, as well as work supported by the Department of 
Energy under contract with Los Alamos National Security, LLC. 

References 

1. McIlraith, S., Son, T.C. and Zeng, H.  “Semantic Web Services”,  IEEE 
Intelligent Systems. Special Issue on the Semantic Web. 16(2):46--53, 
March/April, 2001. 

2. See http://www.mcdowall.com/webservices/2002_11_19_archive.html  

3. See http://www.w3.org/TR/webarch/#media-type-fragid. 

4. Verspoor, KM; Cohn, JD; Mniszewski, SM and Joslyn, CA: (2006) "A 
Categorization Approach to Automated Ontological Protein Function 
Annotation", Protein Science, v. 15, pp. 1544-1549. 

5. Aho, AV; Garey, MR; and Ullman, JD: (1972) “The Transitive 
Reduction of a Directed Graph”, SIAM Journal of Computing, v. 1:2, 
pp. 131-137. 

6. Joslyn, CA; Gessler, DDG; Schmidt, SE; and Verspoor, KM: (2006) 
“Distributed  Representations of Bio-Ontologies for Semantic Web 
Services”, Joint BioLINK and 9th Bio-Ontologies Meeting, 14th 
Annual International Conference on Intelligence Systems for Molecular 
Biology (ISMB 06). 

7. Baader, Franz; Sertkaya, Baris; and Turham, Anni-Yasmi: (2004) 
“Computing the Least Common Subsumer w.r.t. a Background 
Terminology”, in: Proc. JELIA 2004, Lecture Notes in AI, v. 3229, pp. 
400-412. 

8. Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept Analysis, 
Springer-Verlag. 


