
 1

Deconstruction, Reconstruction, and Ontogenesis for
Large, Monolithic, Legacy Ontologies in

Semantic Web Service Applications

Damian DG Gessler1, Cliff A Joslyn2, Karin M Verspoor2, and
Stefan E Schmidt3

(1) National Center for Genome Resources, Santa Fe, NM 87505 USA

(2) Computer, Computational and Statistical Sciences Division, Los Alamos
National Laboratory, Los Alamos, NM, 87545, USA

(3) Technische Universitat, Dresden, Germany

Abstract
We present a distributed approach to ontology representation suited for semantic
web services that is robust to extension and re-use. The representation
encompasses, but is not limited to, the subsumption relationships included by
the ontology creator. We discuss a refactoring of a large biological ontology into
a property-centric model that allows improved consistency checking and easier
cross-ontology integration, and yet maintains the original subsumption
relationships without requiring explicit attribution of subsumption semantics.
Upon the use of Formal Concept Analysis (FCA), the approach becomes
ontogenic: it facilitates automatic, dynamic, data-driven ontology and
knowledge base creation through the analysis of individuals’ shared properties.

Key words: semantics, web services, ontologies, formal concept analysis,
ontogenic

1 Introduction
Traditional representations of ontologies utilize subsumption in the form of
nested subclass relationships to organize concepts hierarchically. In the world of
semantic web services, in which information-providing services are distributed
while their properties, capabilities, interfaces, and effects are encoded in an
unambiguous, machine-understandable form [1], this type of representation
leads to ontologies that are difficult to access dynamically and that are brittle
with respect to extensibility and re-use.

These problems are exacerbated for very large ontologies, such as those
used in biomedicine. There is an effort to standardize the syntax for biomedical
ontologies through the Open Biomedical Ontologies project (OBO:
obo.sourceforge.net). Yet the ontologies tend to be monolithic in conception,
and reside as one ontology per file in their representation. Such representations

 2

create difficulties for dynamic web services environments that seek access
across ontologies on the per-term level. In this paper, we explore an alternative,
property-centric representation for ontologies that maintains the information
content of hierarchical ontologies and yet is lighter and more flexible for use in
semantic web services.

1.1 The Large Ontology Problem
Ontologies in biology tend to be large. For example, the Gene Ontology (GO:
www.geneontology.org) is comprised of three separate ontologies (Biological
Process, Molecular Function, and Cellular Component) containing nearly 20,000
terms. This is dwarfed by the almost 23,000 descriptors and 151,000
supplemental headings in the Medical Subject Headings (MeSH:
www.nlm.nih.gov/pubs/factsheets/mesh.html) and the one million biological
concept and vocabulary terms in the National Library of Medicine’s Unified
Medical Language System Metathesaurus (UMLS:
www.nlm.nih.gov/research/umls/about_umls.html#Metathesaurus).

Large ontologies, per se, do not present noteworthy problems. For example,
standard ETL (extract, translate, and load) operations on compressed files of
many MB are easily handled by today’s PCs with access to broadband internet
connections. But these same ontologies can present a formidable challenge to
distributed semantic web services architectures that require dynamic access to
specific, generally small, portions of the ontologies in response to particular
information requests.

To address this issue, the Virtual Plant Information Network (VPIN:
vpin.ncgr.org; www.semanticmoby.org), an open-world semantic web service
architecture, has been designed such that service discovery, service requests, and
service responses reference semantic terms atomically. That is, terms from
disparate ontologies are referenced via term-specific URLs (Uniform Resource
Locators) much in the same way as hyperlinks are used on a web page. Just as it
would be unreasonably burdensome to require that web pages dereference the
content behind a URL before including a reference to it on a page (or even
worse, downloading the entire web site simply to reference the URL), it is
unreasonably burdensome on semantic web service architectures such as the
VPIN to require that full ontologies be downloaded by clients and servers
simply for the purpose of referencing one or two terms contained therein. For
the VPIN, we seek a way to allow rapid, on-demand access across ontologies on
a term-by-term basis at transaction time. We need a way to access ontological
terms atomically, yet without losing the ability to identify the topological
relationships of any given term in the ontology. As we will see later, this is not
sufficiently solved by simply using the fragment (‘#’) token in a URL.

 3

1.2 The Static Subsumption Problem
In a well controlled domain space, one can use nested subclass relationships to
organize concepts hierarchically. Indeed, many ontologies, such as the Gene
Ontology, are essentially static subsumption hierarchies. By static subsumption
hierarchies, we mean that they explicitly assert subclass relationships
axiomatically (for example, by using the owl:subClassOf predicate),
instead of deriving subsumption dynamically (for example, by inferring classes
and subclasses from sets of individuals based on shared properties)

If the problem at hand is well defined, and if ontology maintenance,
extension, and deprecation are centrally controlled, then axiomatic subsumption
can yield substantial value in semantically organizing information. But static
subsumption hierarchies suffer from two problems in an open world of semantic
web services. The first is that they tend to be built from the top down, so
concepts near the root—for which changes necessarily alter the definition of
every subclass—are established early in the ontology’s creation when there is
the least amount of experience and real-world feedback on the utility of the
ontological model. Changes to those terms established earliest in the project are
unfortunately likely to cause the most extensive repercussions later on, thereby
working against evolvability. The second problem is the antagonism between
static subsumption and loose-coupling, or the need to allow individual nodes in
a distributed system to change without affecting or requiring change in other
parts of the system [2]. Because static subsumption classes are defined in
transitive, cascading subclass definitions, it is difficult for third-parties to extend
concepts unless the entire subsumption tree matches the concepts relevant for
their problem at hand; i.e., the users’ problem space has to match the ontology
creator’s world view up the chain of the hierarchy. This is particularly acute
across ontologies where static subsumption limits cross-ontology modularization
due to lack of extensibility and re-use.

Thus static subsumption hierarchies fuel both rigidity (the inability to
change to meet new demands) and fragility (the propensity to fail, often in
multiple and seemingly unrelated places, under changes). We seek an
ontological model that is robust to extension and re-use in an open world, and
specifically one that encompasses, but does not limit, the pre-conceived
subsumption relationships of the ontology creator.

2 Deconstruction
Despite the above limitations, there still is high value in preserving the
information content of legacy ontologies (such as the Gene Ontology and others
of the OBO), even if this information is organized primarily as a static
subsumption hierarchy. So the problem is: How can we refactor legacy
ontologies so that we can apply their value while addressing the limitations of
monolithicity and static subsumption assertions? In the sections that follow, we

 4

reference a partial refactoring of OBO and GO available at ontologies.ncgr.org.
We use the W3C standard of OWL as serialized by RDF/XML to encode the
ontologies.

2.1 Using Full URLs instead of ‘#’ Fragments
A straight-forward approach to decomposing a large ontology into component
terms is to reference each term via a URL. A common practice in OWL
RDF/XML ontologies is to use the URL fragment identifier ‘#’ to “hash into” a
large file (e.g., www.myWebsite.org/largeOntology#term100). But the W3C
standard on ‘#’ clearly states that it is interpretable solely by the actor
dereferencing the URL (see [3]). This is primarily a client-side activity; indeed,
network caches and proxies may preclude a server from even seeing the ‘#’ in
the URL on a HTTP GET or POST. In other words, an HTTP GET on
www.myWebsite.org./largeOntology#term100 may invoke the server to return
the entire document at www.myWebsite.org/largeOntology, independent of the
‘#term100’ visible at the client end.

In our decomposition of GO (ontologies.ncgr.org/GeneOntology), we
represent each GO term as a separately dereferencable URL without the use of
#; e.g., ontologies.ncgr.org/GeneOntology/BiologicalProcess/GO_0000001.
Each term is only a dozen or so lines of RDF/XML, guaranteeing scalability
such that semantic web service applications can execute term-by-term, on-
demand, random access in a high-throughput manner, independent of the size of
the ontology.

2.2 Removing Static Subsumption Assertions

Simply decomposing a large file into numerous smaller files1 each
dereferencable by a unique URL is hardly modularization. For the mix-and-
match capabilities of a semantic web services architecture, we also seek a
representation in each file that is essentially self-contained; i.e., a valid OWL (or
specifically OWL-DL) definition of the term that can be used in a variety of
circumstances independent of any a priori class hierarchy. This is similar to how
one can choose and use words from a dictionary without claiming adherence to
the global model of all words as defined in the language. In aggregation across
terms, we seek a lossless representation, such that all subsumption information
in the monolithic formulation is recoverable. We do this by emphasizing each
term’s properties, instead of its class inheritance.

1 There is, of course, no implementation requirement that these be physical files
in a file system. Thousands of distinct URLs can be handled by a single Java
servlet that generates a distinct document for each URL on demand.

 5

For ontologies such as GO, the problem is made more difficult because
there is no readily available set of properties that can be used to infer the class
subsumption hierarchy of the ontology. Essentially the entire topology of the
subsumption hierarchy is built on the axiomatic assertions that one class is a
subclass of another, without explicitly listing those properties that would allow a
reasoner to so infer. For example, ‘Cell Adhesion’ is a subclass of ‘Cellular
Process’ which is a subclass of ‘Biological Process,’ but there is no explicit list
of properties that would allow a reasoner to group individuals into these classes
based on those individuals’ properties. Individuals—for example, gene entries in
databases—get assigned to classes: a procedure called annotation. This may be
done manually by a curator. Automatic (algorithmic) annotation, where it exists,
is rule based, referring to external data to assign matches between individuals
and GO classes [4, inter alia].

To address the static subsumption limitation of property-poor legacy
ontologies such as GO, we note that the transitive relationship C subClassOf
B, B subClassOf A for classes A, B, and C implies by definition that all
individuals of class C have all the properties required for individuals to be of
class B (and maybe more), and similarly all individuals of class B have all the
properties required for individuals to be of class A (and maybe more). The triple
‘C subClassOf B’ is purposefully analogous to the use of triples in RDF
specifying a subject-predicate-object relationship. As one traverses up a
subsumption hierarchy from the subclass to the superclass, one goes from the
specific (more properties) to the general (fewer properties).

We first redefine each legacy class in GO (each GO term) to be an
individual (an instance, as distinct from a class) at a URL. We then introduce
three new properties called superProperty, subProperty, and
rootProperty. For each individual (corresponding to a GO term in the new
formulation), we add a superProperty predicate for each of its legacy
superclasses, with the superclasses’ instance representation as the object of the
predicate: e.g., C owl:subClassOf B becomes { C superProperty
B, C superProperty A }. Thus we replace static owl:subClassOf
assertions with properties suitable for dynamic class inference—since without
this subsumption information GO is little more than a controlled vocabulary.

For each term’s direct legacy children (but not grand children, etc.), we add
a subProperty statement; e.g., A subProperty B. Thus from any GO
term as a URL, one can traverse a sequence of hyperlinks both up and down the
legacy subsumption tree, and therefore have a mechanism to dereference the
entire ontology, including preserving its subsumption topology, from starting at
any node.

For implementation issues, we note some minor refinements. We add the
convenience property rootProperty to every individual. This points directly
to the root of the ontology; e.g., C rootProperty A. We also note that the

 6

minimum information needed to recreate the subsumption topology from the
superProperty predicate is for each individual to preserve its relationship
solely to its direct legacy parent(s) (since one could successively dereference
definitions up the superProperty chain, just as we do down on the
subProperty chain), yet for any given term we include superProperty
statements up to the root. This has the advantage of allowing a term’s single file
definition to comprehensively include all statements about it on a single URL
dereference. It has the disadvantage that term maintenance requires checking
that all superProperty statements remain true over time. This is the same
maintenance issue that all web masters must address in ensuring that URLs
embedded in their pages continue to reference relevant content. Different
implementations will assess this cost/performance issue differently. We also
note that there is no distinction in the use of superProperty as to the
claimed subsumption relationships of the objects; e.g., { C superProperty
B, C superProperty A } does not tell one if B superProperty A or
A superProperty B. This is important as it encapsulates statements
between subjects and objects, so that, for example, C is only making statements
about itself as the subject, and is not making assertions about other terms within
its definition. Other terms’ superProperty statements should appear, and
only appear, in their definition documents at their URLs.

The final result is a deconstruction of a large, legacy, monolithic ontology
built almost entirely on static subsumption statements into distributed, atomic,
components; each separately dereferencable by its own URL, and each devoid of
the legacy owl:subClassOf static assertions. The deep hierarchy topology is
broken. Yet while no component makes an explicit subsumption statement
about its legacy subsumption relationships, any part of the entire subsumption
topology can be recreated by noting that all components that share the same
objects of superProperty triples can be inferred to belong to the same class
marginal on those objects.

3 Reconstruction
The advantage of replacing static subsumption assertions—particularly
cascading assertions in deep hierarchies—with a property-centric model is that it
brings the benefits of extensibility and loose-coupling more directly to ontology
modularization. These benefits include improved consistency checking, easier
third-party extension and re-use, easier cross-ontology integration.

3.1 superProperty creates principal filters which allow
for a lossless recreation of the subsumption assertions

Our use of superProperty creates a partially ordered set (a poset) of all
individuals from any given node to the root. The set theoretic principal filter for

 7

some individual X is the set of all individuals, from X to the root, that are objects
of superProperty relationships with X as the subject; in other words, the
single file definition of a term as described above. The transitive reduction [5]
on the union over all principal filters is guaranteed to recreate the poset
(graphically a Hasse diagram) guaranteeing that this modularization of
subsumption information is lossless [6].

It is trivial that if we replace all owl:subClassOf predicates with
superProperty predicates that one could recreate the subsumption
assertions by simply stating semantic equivalency between the two. Yet a
stronger statement can be made, in that the poset and principal filter approach
[6] shows that subsumption information can be recovered purely on a set
theoretic basis based on the relational information present within the formal
context, whatever the source of that information. In other words, even when
subsumption information is not explicitly encoded, the relational properties in
the context allow induction of subsumption relations on a set theoretical basis,
without requiring that superProperty be overloaded with subsumption
semantics.

3.2 Formal Concept Analysis drives the Dedekind-
MacNeille Completion

One problem with manually created, deep subsumption hierarchies is the
possibility of failing to explicitly identify all relevant classes. For example,
Figure 1 shows how a manually asserted subsumption hierarchy may fail to
explicitly delineate the class of “individuals with properties in common to A and
B, but without all properties of E”. In Figure 1, Q is called the least common
subsumer (LCS) of D and E. Least common subsumers arise often in the
solutions to answering questions using ontologies (e.g., what is minimally
common to D and E?) [7].

A B

C

E D

A B

C

ED

Q

Figure 1. Subsumption hierarchies (Hasse diagrams) where arrows indicate
subclass relationships (e.g., owl:subClassOf). (Left) Original, manually asserted
hierarchy. (Right) The Dedekind-MacNeille completion makes it clear that there
exists a least common subsumer (LCS) Q that is the minimal class of all
individuals with properties shared by D and E.

 8

Least common subsumers fall out naturally from the Dedekind-MacNeille
completion [8] over a bounded poset. Consider a matrix where the rows and
columns refer to the individuals, or nodes, in the poset. We add a virtual top R
(unique superclass of all classes) and virtual bottom Z (unique subclass of all
classes) if these nodes do not already exist. Let element eij be unity for the RDF
triple i superProperty j or i = j, and zero otherwise. Thus the matrix
is a summary of all static subsumption statements over the legacy ontology:

 R A B C D E Z

R 1 0 0 0 0 0 0

A 1 1 0 0 0 0 0

B 1 0 1 0 0 0 0

C 1 1 1 1 0 0 0

D 1 1 1 1 1 0 0

E 1 1 1 0 0 1 0

Z 1 1 1 1 1 1 1

It can be shown [6,8] that by using Formal Concept Analysis (FCA), the
Dedekind-MacNeille completion over this matrix is a lattice as shown
graphically in the right hand side of Fig. 1. The lattice explicitly includes Q, the
LCS of D and E. In theory, FCA will construct missing LCSs for all nodes in
legacy ontologies modularized by the superProperty approach, thereby
adding an important automated consistency and completeness step to the
otherwise manual process of ontology construction. In practice, we have not
implemented FCA on large ontologies, so performance and feasibility issues
remain to be addressed.

4 Data-driven Ontology Induction
The ontogenic properties of FCA can be used in an even stronger manner in
conjunction with a property-centric data model. Traditionally, we separate
ontology creation (ontogenesis) from annotation (the process of associating
individuals, such as gene records, with ontological concepts, such as “Cellular
Adhesion”). But this is a laborious and error-prone task. What we seek is a way
that ontologies can be created automatically, and ideally in a manner that
reflects those concepts most applicable to the problem at hand.

One can use FCA for data-driven, automatic, de novo ontology creation. To
do so, construct a n × m matrix of n individuals and m binary properties. These

 9

properties, or attributes, can come from a variety of sources: legacy ontologies,
experimental data, computational results, etc. One can then apply FCA to the
matrix to create a subsumption lattice which integrates the properties across
these distinct sources.

Figure 2. Annotated portion of an ontology where individuals G are annotated

to (ordered) concepts {a, b, c}

To illustrate, consider a (hypothetical) fragment of an ontology, with
individuals g1 to g3 annotated to concepts {a, b, c} as in Figure 2, coupled with
keyword associations derived from texts between individuals g2 to g4 and
keywords k1 to k3, as indicated in Figure 3(a).

 k1 k2 k3

g2 1 0 1

g3 0 1 0

g4 1 1 0

Figure 3a. Keyword property matrix

 a b c k1 k2 k3

g1 0 1 1 0 0 0

g2 1 0 1 1 0 1

g3 0 0 1 0 1 0

g4 0 0 0 1 1 0

Figure 3b: Merged property matrix

The merged matrix of individual/property associations is then shown in Figure
3(b). The application of FCA to this matrix results in the concept lattice in
Figure 4. While the ontological information of the ontology fragment is
preserved and respected in the merged subsumption hierarchy, there is no
explicit underlying hierarchical structure on the keywords K in this example.

 10

Rather, the concept lattice process derives the hierarchical relations among the
keywords implicit in the structure of the properties. For example, k1 is a more
general keyword than k3, while k2 is of effectively indeterminate generality. So
there is not a complete poset relation among the properties as shown in both the
merged matrix and the lattice.

Figure 4. Joint concept lattice for the merged property matrix.

This subsumption lattice is an on-demand knowledge base that classifies
individuals according to their hierarchically related common properties. The
subsumption classes essentially create a data-driven, de novo ontology. In this
manner, one can construct data-driven ontology induction to create ontologies
from disparate sources customized to the problem at hand. So for biology,
instead of thinking about biological concepts ex situ and organizing them in a
static, deep subsumption hierarchy; then discovering genes and laboriously
annotating associated gene records to the ontological concepts—all without the
guarantee that the classification is consistent and complete—one would enter
gene properties, concepts, literature records, etc., into an “FCA engine” which
would generate a data-driven, guaranteed consistent, annotated knowledge base
automatically. The semantic web services support allows this FCA engine to
operate over disparate, distributed resources. Such knowledge bases would be
more dynamic, ephemeral, and suited to the problem at hand, rather than the
more static and encyclopedic conception of knowledge bases currently popular.
The quality of the knowledge base would be critically dependent on the quality
of the property matrix. But because that matrix is built from considering
property-centric statements instead of global subsumption models, it is
substantially easier to verify on a statement-by-statement basis.

 11

5 Conclusions
We have presented a property-centric approach to capturing subsumption
relations as expressed in traditional ontologies, and discussed how this
refactoring enables both more dynamic access to the ontology in a semantic web
services environment. We have also shown how it could be use to drive
ontology induction from properties associated with individuals in the property-
centric representation.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 0516487, as well as work supported by the Department of
Energy under contract with Los Alamos National Security, LLC.

References

1. McIlraith, S., Son, T.C. and Zeng, H. “Semantic Web Services”, IEEE
Intelligent Systems. Special Issue on the Semantic Web. 16(2):46--53,
March/April, 2001.

2. See http://www.mcdowall.com/webservices/2002_11_19_archive.html

3. See http://www.w3.org/TR/webarch/#media-type-fragid.

4. Verspoor, KM; Cohn, JD; Mniszewski, SM and Joslyn, CA: (2006) "A
Categorization Approach to Automated Ontological Protein Function
Annotation", Protein Science, v. 15, pp. 1544-1549.

5. Aho, AV; Garey, MR; and Ullman, JD: (1972) “The Transitive
Reduction of a Directed Graph”, SIAM Journal of Computing, v. 1:2,
pp. 131-137.

6. Joslyn, CA; Gessler, DDG; Schmidt, SE; and Verspoor, KM: (2006)
“Distributed Representations of Bio-Ontologies for Semantic Web
Services”, Joint BioLINK and 9th Bio-Ontologies Meeting, 14th
Annual International Conference on Intelligence Systems for Molecular
Biology (ISMB 06).

7. Baader, Franz; Sertkaya, Baris; and Turham, Anni-Yasmi: (2004)
“Computing the Least Common Subsumer w.r.t. a Background
Terminology”, in: Proc. JELIA 2004, Lecture Notes in AI, v. 3229, pp.
400-412.

8. Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept Analysis,
Springer-Verlag.

