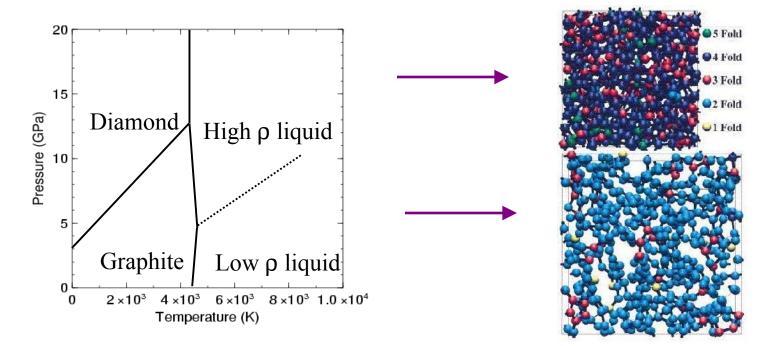


1

<u>Philip Heimann</u>, Ernie Glover, Howard Padmore (Advanced Light Source) Steven Johnson, Aaron Lindenberg, Donnacha Lowney, Andrew MacPhee, Roger Falcone (UC Berkeley) and Robert Schoenlein (MSD LBNL)

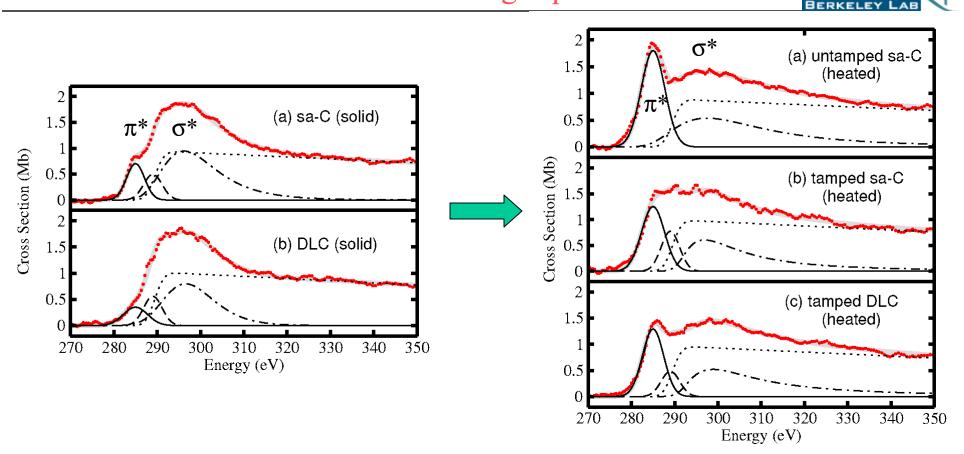
- Introduction: time-resolved x-ray absorption spectroscopy, liquid carbon
- Bunch slicing
- ALS beamline 6.0


- Time-resolved Near-Edge (XANES) and Extended X-ray Absorption Fine Structure (EXAFS): use these probes of electronic states and structure with time resolution approaching molecular vibration ~ 100 fs
- Applications at bend magnet BL 5.3.1: with ALS pulse duration 70 ps, streak camera ~ 2 ps, slicing 100 fs
 - Phase transitions: VO_2 insulator to metal (A. Cavalleri et al.)
 - Photochemistry in solution: $[Ru^{II}(bpy)_3]^{2+} \rightarrow [Ru^{III}(bpy)_3]^{3+}$
 - (W. Gawelda poster 10.6 Wed)
 - Atomic physics: K⁺ (A. Belkacem et al.)
 - High temperature materials: liquid silicon, liquid carbon (S. Johnson thesis)
- Observe laser-induced transient states that cannot be made statically

- In planets Uranus and Neptune, middle layer of CH_4 , H_2O and NH_3 at high T, P. CH_4 expected to be dissociated. Liquid carbon not stable ambient pressure
- Molecular dynamics calculations

- Low density ρ liquid predominantly sp coordination, high ρ liquid mainly sp³, Glosli and Ree, PRL 82, 4659 (1999)

Continuous change from sp sp² mixture to sp² sp³ mixture as density is increased, Wu et al., PRL 89, 135701 (2002)



Carbon K-edge spectra

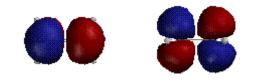
.....

LiF C LiF

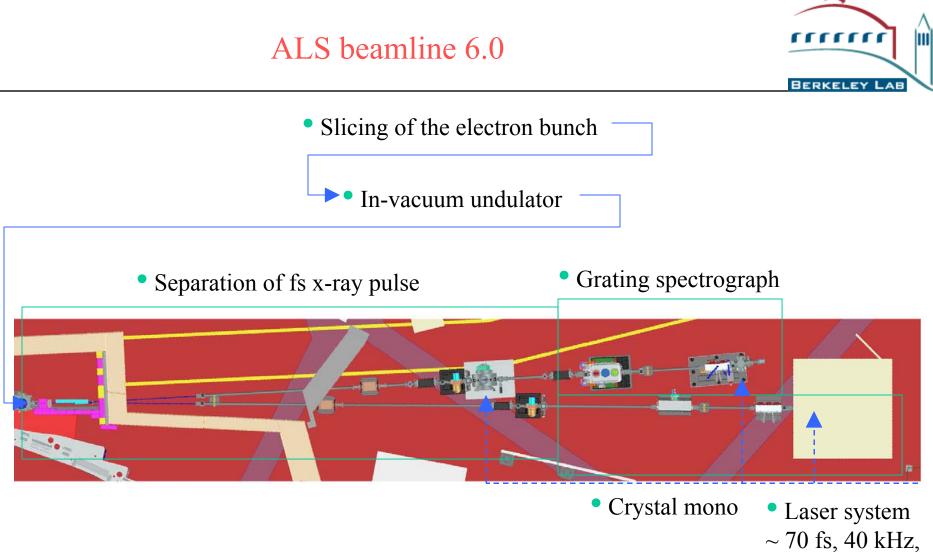
Ш

- Initial sample: soft amorphous carbon ρ , 2.2 g/cm³, DLC ρ , 2.6 g/cm³,
- Heated spectrum shows increase in π^* resonance, decrease in σ^* resonance
- Tamp carbon with LiF, to keep density constant spectra at 100 and 300 ps are the same

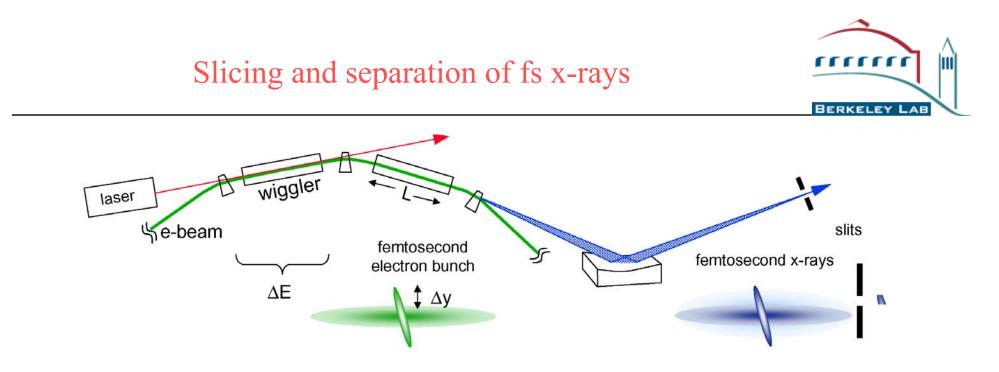
Material	π* area	π^* states/site	π^* states/site calculation ¹				
soft a-C	0.047	0.70					
DLC	0.030	0.45					
untamped	0.135	2.01					
liquid							
2.2 g/cc	0.090	1.35	1.29				
liquid							
2.6 g/cc	0.087	1.29	1.16				
liquid							
¹ Morris et al. Phys. Rev. B 52, 4138 (1995)							


Unoccupied π orbitals

Ethane sp³ None

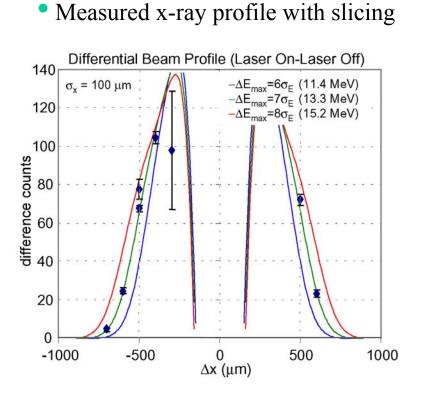

Ethylene sp²

Acetylene sp

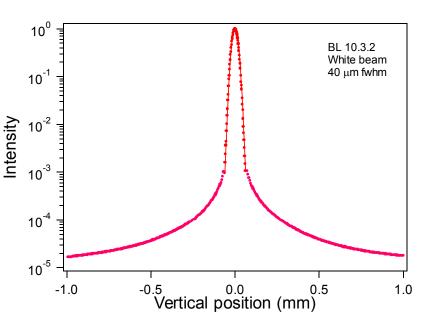

- At low density (untamped), liquid C is sp bonded
- At higher density, liquid C has mixture of different bonding, agrees with calculations
- Goals: Improved energy resolution, EXAFS sensitivity

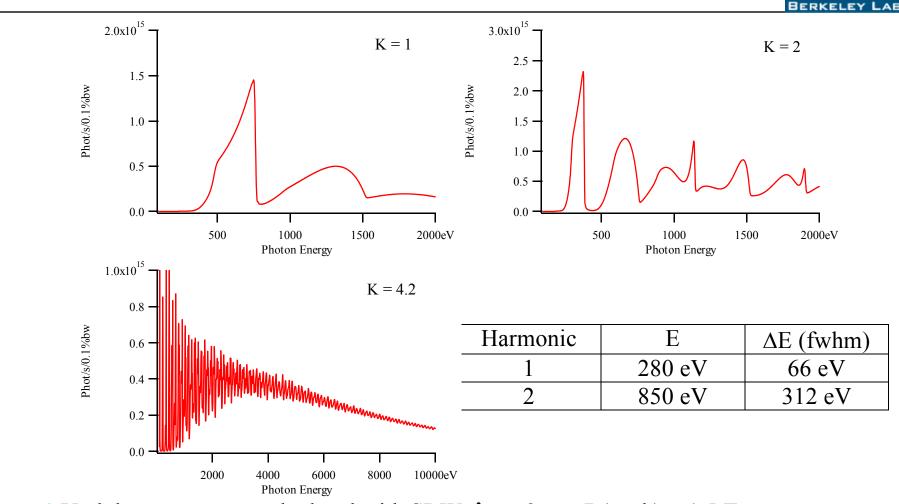
1 mJ, 2 arms

- Photon energy range < 250 eV 10 keV:
 - Use both undulator and wiggler radiation
 - Use both grating and crystal optics
- Clean separation of fs x-ray pulse
- High efficiency: relatively large angular aperture, limited number of reflections
- Dispersive soft x-ray absorption spectroscopy: grating spectrograph
- Energy resolution: 0.5 eV at Ni L edge (850 eV), for hard x-rays approach perfect crystal limited resolution
- Detectors: high quantum efficiency, gateable
- Laser system: high repetition rate, 40 kHz, to increase useable x-ray flux



- Laser modulation of e-beam energy (ΔE)
- Storage ring dispersion ($\Delta E \rightarrow \Delta y$)
- Beamline imaging
- Zholents and Zolotorev, Physical Review Letters 76, 916 (1996), Schoenlein et al., Science 287, 223 (2000).


 phase factor 	$\eta_1 = 0.1$ (fraction of electrons in optimum phase)		
 pulse duration 	$η_2 = τ_{laser} / τ_{synchrotron} = 10^{-3}$ ($τ_{x-ray} \approx 170 \text{ fs}$) (70 fs) (70 ps)		
 repetition rate 	$\eta_3 = f_{\text{laser}} / f_{\text{synchrotron}} = 2 \times 10^{-6}$		
	$ \begin{array}{l} f_{laser} / f_{synchrotron} \\ (40 \text{ kHz}) (500 \text{ MHz}) \end{array} \qquad $		


• Laser 0.8 mJ, 75 fs

• Background from optical scattering

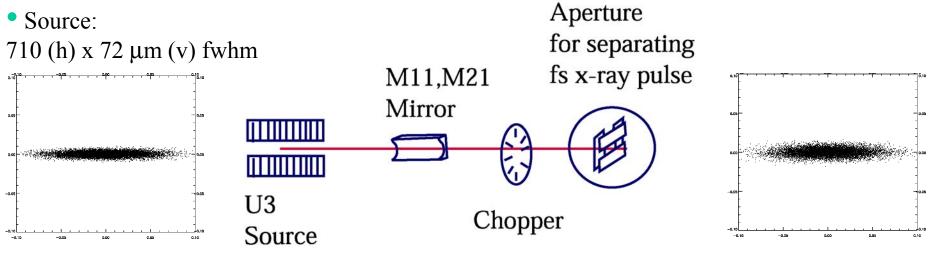
- Challenge: isolate fs x-ray intensity of 10⁻⁴ at displacement of 0.3 mm
- fs signal / 70 ps background, estimate ~ 1:1
- S. Khan (BESSY): scheme to use angular separation of sliced x-ray pulse, with no optic before aperture

In-vacuum undulator / wiggler source spectrum

.....

11

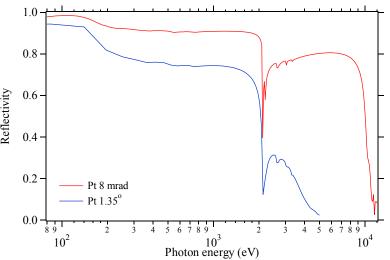
Ш


• Undulator spectrum calculated with SRW: $\lambda u = 3$ cm, B(peak) = 1.5 T

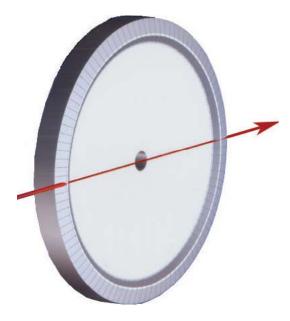
- Into 0.5 (h) x 0.5 (v) mrad² aperture, use harmonics 1, 2, 3, 4, up to 2 keV

• Wiggler radiation into 0.5 (h) x 0.3(v) mrad² aperture, up to 10 keV

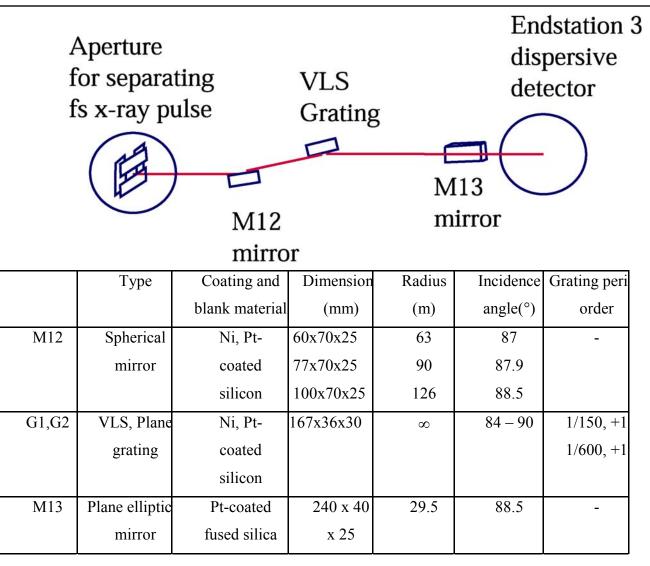
Separation of fs x-ray pulse



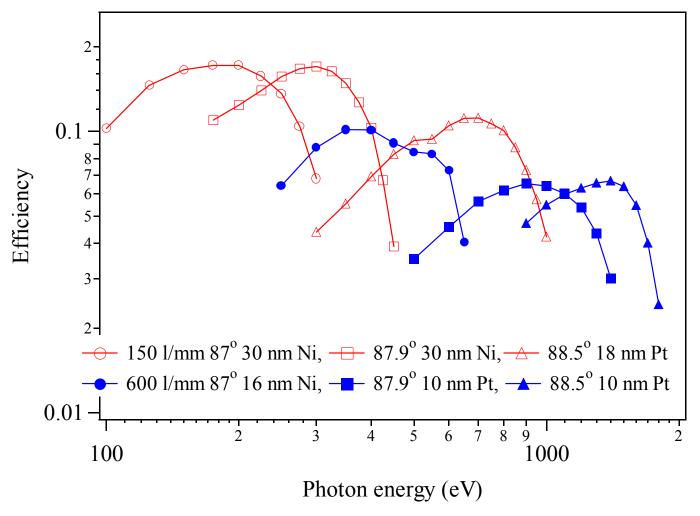
Intermediate focus: 720 (h) x 100 μm (v) fwhm 70 μm (v) for central cone


	Туре	Coating and	Dimensions	Radius	Incidence
		blank material	(mm)	(m)	angle (°)
M11	Toroidal	Pt-coated	320 x 90	449 (R)	88.6552
	mirror	silicon	x 25	0.2472 (ρ)	
M21	Toroidal	Pt-coated	800 x 40	1458 (R)	89.54
	mirror	silicon	x 75	0.0933 (ρ)	

 Single reflection in sagittal focusing reduces x-ray scattering background



- Absorbed power: 430 W on hard x-ray branch, reduces power on samples in pink beam and on downstream optics
- Frequency: 40 kHz matched to laser repetition rate
- Acceptance: 2 %
- Design based on Rigaku rotating anode

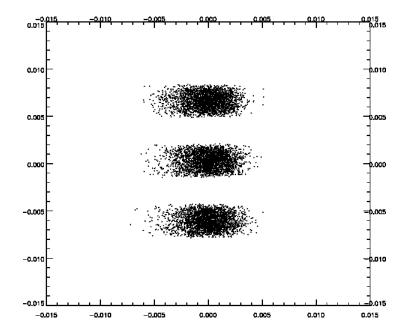


• VLS grating produces flat field spectrum at detector

14

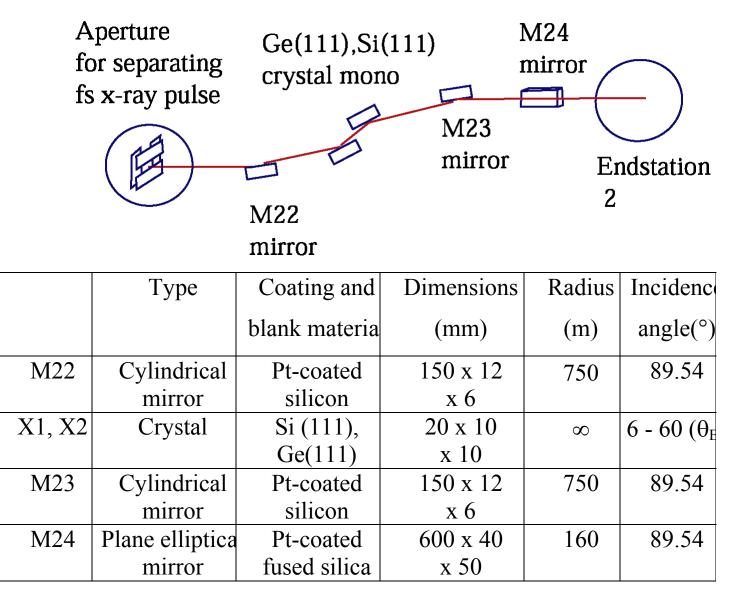
 Includes grating efficiencies from Neviere code and M11, M12 and M13 reflectivities

15


Energy resolution at 850 eV, range of spectrum across detector

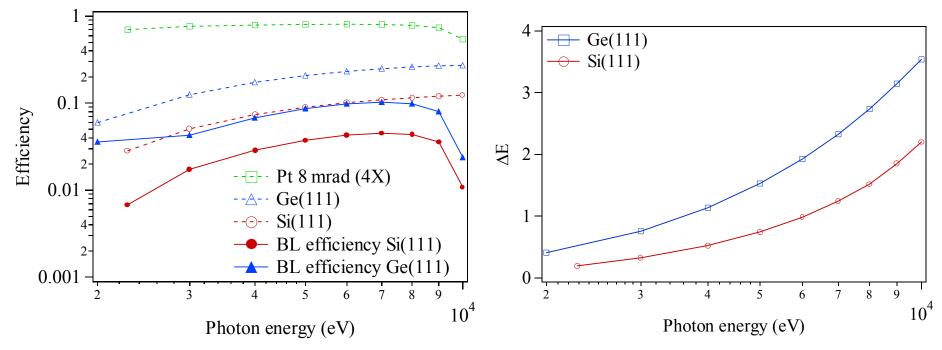
• Goals:

- Energy resolution match core hole linewidths, 0.5 eV at Ni L edge
- Energy range for XAS across detector, 60 eV at C K edge
- Parameters:
- Size of spectrograph: r = r' = 3 m
- Entrance slit matched to beam fwhm (for undulator central cone)
- Detector: 25 μm spatial resolution, 10 mm slit length (based on streak camera)
- M12 magnification 1


Photon energy	Grating(l/mm),	Energy	Energy
	m, θ	resolution	range
280 eV	150, +1, 87.9°	0.27 eV	64 eV
850 eV	600, +1, 87.9°	0.56 eV	160 eV

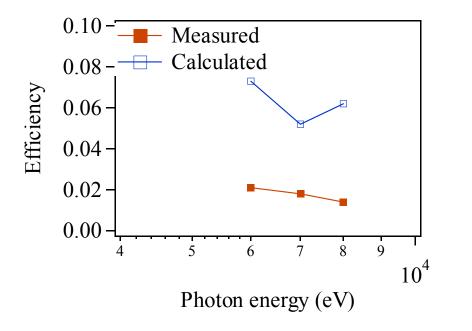
• Photon energies 849, 850, and 851 eV, 600 l/mm grating and 60 µm entrance slit.

Crystal monochromator

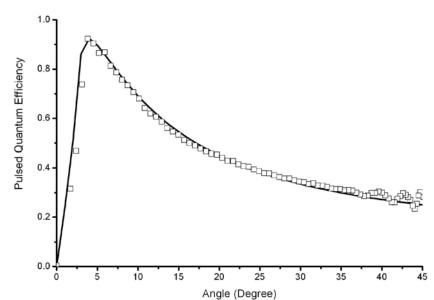


17

Efficiency and energy resolution of crystal monochromator branchline


- Crystal efficiency calculated from $\varepsilon = (1/\tan\theta) \int R^2(\theta) d\theta$
- Normalized to 0.1 % bandwidth
- Ge(111) crystals for sliced beam, Si(111) for full beam +/- 11 μrad thermal distortion
- Contributions
 - Crystal rocking widths: Si(111) 54 μrad, Ge(111) 125 μrad at 5 keV
 - Collimation of M22 mirror: s/r = 106 μ m/3 m = 35 μ rad,

19


- Goal: with hard x-rays take advantage of wide bandwidth of wiggler, take whole EXAFS spectrum in parallel
- Crystal polychromator not a solution, each part of crystal diffracts narrow bandwidth
- Multilayer grating have demonstrated high efficiency 34% at 8 keV, limited bandwidth, Martynov et al. SPIE (1997)
- Total external reflection gratings
 - Tests on an available laminar grating: 380 l/mm, 12 nm groove depth, nickel coating, measured at $\theta g = 0.4$ degrees

- Efficiency may be limited by surface roughness

Detectors: Streak Camera

- X-ray streak cameras achieved resolution of Δt ~700 fs in averaging mode
- Combined with slicing the streak camera could suppress the background because most ps x-rays will be swept to a different position on the time axis
- High quantum efficiency by using grazing incidence to match x-ray penetration depth and electron escape depth
- Quantum efficiency of CsI vs θ at 500 eV,
 D. Lowney et al. SPIE 5194b (2003)

- Time-resolved x-ray absorption spectroscopy, example of liquid carbon
- Source: in-vacuum undulator / wiggler
- Beamline optimized for TR XAS
 - Separation of slicing fs x-ray pulses: sagittal focusing toroidal mirrors
 - Grating spectrograph: measure entire x-ray absorption spectrum simultaneously
 - Crystal monochromator: using Ge(111) and Si(111) crystals
- Detectors: grazing-incidence streak camera and avalanche photodiodes
- Schedule:
 - Insertion device, Soft x-ray branchline, Laser system: Jan. 2005
 - Hard x-ray branchline:
- Poster: R. Schoenlein (today 6.94)

Sept. 2005