
NISTIR 5691

Unravel: A CASE Tool to
Assist Evaluation of
High Integrity Software
Volume 2: User Manual

James R. Lyle
Dolores R. Wallace
James R. Graham
Keith B. Gallagher
Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Computer Systems Laboratory
Gaithersburg, MD 20899

NISTIR 5691

Unravel: A CASE Tool to
Assist Evaluation of
High Integrity Software
Volume 2: User Manual

James R. Lyle
Dolores R. Wallace
James R. Graham
Keith B. Gallagher
Joseph P. Poole
David W. Binkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Computer Systems Laboratory
Gaithersburg, MD 20899

August 8, 1995

DOC Seal

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary
TECHNOLOGY ADMINISTRATION

Mary L. Good, Under Secretary for Technology
NATIONAL INSTITUTE OF STANDARDS

AND TECHNOLOGY

Arati Prabhaker, Director

Unravel: A CASE Tool to Assist Evaluation
of High Integrity Software

Volume 2

Abstract

This is the second volume of a two volume report onunravel, a Computer Aided Software
Engineering (CASE) tool for software written in ANSI C, that can assist evaluation of high
integrity software by using program slices to extract computations for examination. In this
volume, we provide a user manual forunravel. This manual is intended to provide the user with
enough information to useunravel without any other reference. To this end, a brief simplified
description of program slicing is provided in addition to a tutorial example and a detailed
description ofunravel operation. This user manual also discusses limitations ofunravel and
how to deal with code containing extensions to ANSI C that would inhibit the correct operation
of unravel.

Certain trade names and company products are mentioned in the text or identified. In no
case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products are necessarily
the best available for the purpose.

Trademarks

UNIX is a trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of M. I. T.

iii

iv

Contents

Abstract . iii

1 Introduction . 1

2 Unravel Description. 3
2.1 Program Slicing . 4

2.1.1 Creating a Flow-Graph. 4
2.1.2 Computing Program Slices. 7
2.1.3 Slicing Example. 8

2.2 Unravel Architecture. 10
2.3 Operational Scenario. 11
2.4 Tutorial Example. 13

2.4.1 Orientation. 13
2.4.2 Slice Criteria Selection. 15
2.4.3 Setting Source Directory. 15
2.4.4 Executing Unravel. 15
2.4.5 Executing the Analyzer. 16
2.4.6 Analysis Review. 18
2.4.7 Using the Slicer. 18

2.4.7.1 Selecting a Program to Slice. 18
2.4.7.2 Executing the Slicer. 19

2.4.8 Exiting Unravel . 21

3 Operating Unravel. 27
3.1 Using The Interface Control Panels. 27

3.1.1 Using a Mouse. 27
3.1.2 Display Label. 27
3.1.3 Button . 28
3.1.4 Pull Down Menu . 28
3.1.5 Pop-up List . 28
3.1.6 Text Input Window. 28
3.1.7 Scroll Bar . 28
3.1.8 Text Window . 29

3.2 User Interface Control Panels. 29
3.2.1 Main Control Panel. 30
3.2.2 Analyzer Control Panel. 32

v

3.2.3 Selection Control Panel. 34
3.2.4 Slice Control Panel. 34
3.2.5 Help/History Pop-up. 38

4 Solving Problems . 39
4.1 Source Code Not ANSI C. 39

4.1.1 Additional Data Types. 39
4.1.2 Additional Data Attributes. 39
4.1.3 Preprocessor Extensions. 40

4.2 Ambiguous procedures. 40
4.2.1 Separate Directories. 40
4.2.2 One at a Time. 41

5 Unravel Limitations and Assumptions. 43
5.1 Casts. 43
5.2 Address Operator. 43
5.3 Pointers . 43
5.4 Unions. 44
5.5 Goto and Branch Statements. 44
5.6 Libraries . 44

Appendix A: Unravel Quick Reference. 45

vi

List of Tables

2-1: Planned Slices. 15

3-1: Operation Description. 36

vii

List of Figures

2-1: Slicing Example 1 flavors.c. 5
2-2: Unravel Slicing Example 1 Flow Graph. 6
2-3: Slicing Example 1 Data-Flow Sets. 9
2-4: Slicing Example 1 Active Sets ForS<18,sweet> . 10
2-5: Unravel Structure Overview. 11
2-6: Unravel Operation Checklist. 12
2-7: Slicing Example 2 refinery.h. 13
2-8: Slicing Example 2 input.c. 13
2-9: Slicing Example 2 cool.c. 14
2-10: Slicing Example 2 pressure.c. 14
2-11: Slicing Example 2 refinery.c. 14
2-13: Initial Main Control Panel . 16
2-14: Initial Analyzer Control Panel. 17
2-15: Analyzer Control Panel During Analysis. 17
2-16: Main Control Panel After Analysis. 18
2-17: Selection Control Panel. 19
2-18: Slice onpump_ok . 22
2-19: Slice onlevel_ok . 23
2-20: Intersection of Slices onpump_okand level_ok. 24
2-21: Slice ona_dump . 25

4-1: Ambiguous Example. 40

A-1: Unravel Operation Checklist. 45

viii

1 Introduction

This volume describes the operation of version 2.1 of the program slicing tool,unravel,
developed by the National Institute of Standards and Technology (NIST). Development of
unravel was funded by both the United States Nuclear Regulatory Commission (NRC) and the
National Communications System (NCS) under contracts RES-92-005, FIN #L24803, and
DNRO46115, respectively. The tool can be used to compute program slices of programs written
in ANSI C.

Program slicing can be used to transform a large program into a smaller one containing only
those statements relevant to the computation of a given variable. Program slices aid program
debugging, program maintenance, program understanding, and automatic integration of program
variants.

The users ofunravel are assumed to have a working knowledge of computers and ANSI C, but
they may not be familiar with UNIX, POSIX† or program slicing.

Unravel is intended to support the understanding and evaluation of software by allowing the user
to investigate a program through program slices.

To achieve the goal of makingunravel a portable and easy to use slicing tool, the following
general requirements were met:

• The user must be able to executeunravel with minimal knowledge of the platform on
which it resides.

• The user must be able to interactively specify criteria for computing program slices.

• The user must be able to view program slices on-screen.

• The user must be able to perform logical set operations (e.g., intersections) on program
slices.

• The user must be able to useunravel without needing to understand the intrinsics of the
program; hence a user manual and user interface must contain all operational information.

• The implementation must comply with standards for operating system interface POSIX,
ANSI C, and the X Window System.

†POSIX, Portable Operating Systems, FIPS 151-2 (ISO/IEC 9945-1).

1

Section 2 explains program slicing and gives an example of usingunravel to examine a small
program. Details ofunravel operation are given in section 3. Section 4 discusses usingunravel
on non-ANSI C programs. The limitations ofunravel and assumptions about source code to be
analyzed are discussed in section 5.

2

2 Unravel Description

Unravel is a tool for program understanding that uses program slicing to identify statements
relevant to some computation. This section describes program slicing, the software architecture
of unravel, a scenario for usingunravel, and presents a detailed example of usingunravel. The
description of program slicing is a simplified discussion of the theory followed by an example
illustrating the steps in computing a program slice.

Some terminology about programs and program components needs to be clearly defined so that
the reader understands howunravel views an ANSI C program. It is important to understand
thatunravel sees a program as a collection of procedures executed as a unit. A program has one
main procedure (calledmain) and some number of other procedures that are arbitrarily grouped
in one or more source files.

Source Program Statement:A statement written in a programming language. Statements
may bedeclarations, that define data types and variables, orexecutable, that specify some
action.

Procedure: A named set of source program statements, possibly with parameters, that
performs some action. Functions and subroutines are considered procedures.

Source Program File: A file containing source program statements for zero or more
procedures and declarations. A source program file is also called amodule.

C Preprocessor:A standard part of any ANSI C compiler used to processpreprocessor
directives identified by a pound sign (#) as the first non-blank character on a line.
Preprocessor directives are used to define constants, insert include files, select statements
for conditional compilation and define source macros.

Include File: A source file, specified by a#include directive, that the C preprocessor
inserts in the compilation of another source file. By convention, an include file name
should end in.h and should contain only declarations and C preprocessor directives; it
should not contain procedures or parts of procedures.

Program: A main procedure and the set of procedures called transitively by the main
procedure.

Source Program: The set of source program files and include files that define all the
procedures of a program. When a source program is compiled and linked, an executable
program is produced.

3

2.1 Program Slicing

Program slicing is a family of program decomposition techniques based on extracting statements
relevant to a computation in a program. A slice is a smaller program that reproduces a subset
of the original program’s behavior. This is advantageous since the slice can, by excluding
irrelevant statements, collect an algorithm for a given calculation that may be scattered
throughout a program. It is easier for a programmer interested in a subset of the program’s
behavior to understand the corresponding slice than to deal with the entire program. The utility
and power of program slicing comes from the potential automation of tedious and error prone
tasks. Research on program slicing is being conducted on program debugging, program testing,
program integration, parallel program execution and software maintenance. Several variations on
this theme have been developed, includingprogram dicing, dynamic slicinganddecomposition
slicing.

An informal definition of aprogram slice(taken at statementn on variablev) is all statements
that might affect the value thatv has just before control reaches statementn. A slicing criterion
defines the starting place for a program slice. It is composed of the statementn and the variable
v. Statements are included in a program slice with either a direct influence or an indirect
influence on the criterion variable. A statement assigning a value to a variable that could
influence the value of the criterion variable at the criterion statement is a direct influence. A
compound statement (e.g.,for or while) that controls execution of another statement included in
the slice is an indirect influence.

This is not intended to be a complete discussion of program slicing but, an overview to give the
user insight into the behavior ofunravel. Some language features such as pointers and procedure
calls introduce complications that would require lengthy discussion.

2.1.1 Creating a Flow-Graph

To compute program slices, a program is first represented as a flow-graph of nodes annotated
with lists of variables assigned a value or used at each node and directed edges indicating
control-flow. A flow-graph node roughly corresponds to an executable statement, however some
statements such as afor statement are divided into several nodes to represent the various parts
of the for statement that do control variable initialization, loop termination testing and control
variable modification. The edges of the flow-graph connect each node,n, to the nodes
(statements) that could be executed aftern. An example program is presented in Figure 2-1 with
the corresponding flow-graph in Figure 2-2 and the node number to line number mapping in
Figure 2-3. To understand the basics of transforming a program into a flow-graph here are the
rules to follow for programs composed only of assignment statements,if statements andwhile
statements. The flow-graph is composed of nodes that represent the statements and edges that
represent execution flow between pairs of statements.

• Each statement is represented by one or more flow-graph nodes. If the statement
generates more than one node then one node will be designated theentry nodeand one

4

node designated theexit node. The entry and exit nodes are used to connect directed
edges to the entry and exit nodes of other statements.

• An assignment statement is represented by a single node. The node functions as both
entry and exit. An edge connects the node to the entry node of the next statement. An
edge connects the exit node of the previous statement to the assignment statement node.

• In addition to the nodes representing the body, anif statement without anelsepart is
represented by two nodes; anif statement with anelseneeds three nodes. The entry node
represents theif and conditional expressionand is connected to the entry node of the
statement in thethen partof the if . The exit node of the then part is connected to a
separate exit node created for theif statement. If there is an else part, theif statement
entry node connects to a third node that represents theelse keyword. The else node
connects to the entry node of the statement in the else part. The exit node of the else part
connects to theif statement exit node. The exit node of theif statement connects to the
entry node of the next statement. The exit node of the previous statement connects to the
if statement entry node.

• A while statement is represented by two nodes, an entry node representing thewhile
(condition)and an exit node. The entry node is connected to the entry node of the loop
body and to the exit node of thewhile. The exit node of the loop body is connected to
the entry node of thewhile. The exit node of the previous statement connects to the
while statement entry node.

1 main()
2 {
3 int red, green, blue, yellow;
4 int sweet,sour,salty,bitter;
5 int i;
6
7 red = 1;
8 blue = 5;
9 green = 8;

10 yellow = 2;
11
12 red = 2*red;
13 sweet = red*green;
14 sour = 0;
15 i = 0;
16 whil e (i < red) {
17 sour = sour + green;
18 i = i + 1;
19 }
20 salty = blue + yellow;
21 yellow = sour + 1;
22 bitter = yellow + green;
23
24 printf ("%d %d %d %d\n",
25 sweet,sour,salty,bitter);
26 exit(0);
27 }

Figure 2-1: Slicing Example 1 flavors.c

5

1

2

6

8

9

10

13

12

3

4

5

7

20

19

18

17

16

15

11

14

Figure 2-2: Unravel Slicing Example 1 Flow Graph

6

2.1.2 Computing Program Slices

A program slice is computed for a given slicing criterion from an annotated flow-graph. These
annotations include variables referenced and defined at each flow-graph node and the active
variable set. The active set is the set of variables that the criterion variable depends on just
before program execution reaches the associated node.

A program can be represented by a flow-graph annotated by variables referenced and defined at
each flow-graph node. A program slice can be computed on a program for a given slicing
criterion with the help of one more annotation to the flow-graph, called theactive variable set
or active set. The active set is the set of variables that the criterion variable depends on just
before program execution reaches the associated node.

The computation begins with all the active sets except for the active set for the slicing criterion
statement initialized to the empty set. The active set for the criterion statement is initialized to
the criterion variable. The slice is computed by propagating active sets across flow-graph nodes
until the active sets stabilize (i.e., stop changing). Computation of the active set for an arbitrary
node,n, is controlled by comparing variables defined at noden with the active sets of immediate
successor nodes by the following rules:

1. If none of the immediate successor active sets contain a variable defined at noden, then
noden is not in the slice unless it is part of a compound statement controlling execution
of other statements included in the slice. The active set of noden is the union of the
immediate successor active sets.

2. If node n assigns a value to a variable that is a member of the active set of some
immediate successor ofn, then noden is included in the slice. The active set for node
n is the set of variables referenced at noden unioned with the union of immediate
successor active sets without the variable assigned.

When a statement is included in a slice that is part of a compound statement such asif or while,
the framework of the compound statement is included in the slice and any variables used in a
controlling condition are added to the active set of the compound statement.

To summarize the algorithm for computing a slice:

1. Create the flow-graph.

2. Select slicing criterion.

3. Set active set for criterion location to the criterion variable.

4. Propagate active sets over the entire flow-graph until no changes occur.

7

5. A statement is included in the slice if it changes the active set or is a compound statement
containing a statement in the slice.

2.1.3 Slicing Example

Figure 2-3 presents the data-flow sets annotating the flow-graph from Figure 2-2 used in
computing program slices on the program of Figure 2-1. The columns labeledNodeandSucc
(successor) represent the flow-graph of the program. The columns labeledRefsandDefscontain
the variables referenced and assigned-to (defined) at each node. The column labeledReqis the
required setfor the node, used to list other nodes that are required by any slice containing the
given node. The required set is used to capture both syntactic relations such as the inclusion of
the opening and closing program braces (nodes 2 and 20), and control relations ofif , while and
other compound statements (e.g., node 12 at line 17 requires node 11, thewhile on line 16).

For example, suppose we want to know how the value of the variablesweetprinted at line 25
of Figure 2-3 is computed. The specification of a slicing criterion requires a variable and a node
in the flow-graph. Node 18 corresponds to theprintf statement at line 25, therefore, the criterion
would beS<18,sweet>. The active set for node 18 is initially {sweet}. Since nodes 9 through 18
do not assign a value tosweet no changes take place to the active set as it is propagated
backward, and these nodes are not included in the slice. Node 8 assigns a value tosweetbased
on red andgreen and so node 8 (line 13) is included in the slice andsweet is replaced in the
active set byred and green at node 8. Node 7 is included in the slice because the active
variablered is assigned a value, however the active set does not really change withred being
replaced byred. At node 3,red is assigned a constant value and the node is added to the slice
and red is dropped from the active set. Node 5 is included in the slice andgreen is dropped
from the active set sincegreen is assigned a constant value at node 5. The active sets are
summarized in Figure 2-4. The slice is now complete except for some syntactic dependencies
(nodes 1, 2 and 20) that are captured by therequires set.

8

Line Statement Node Succ Req Defs Refs

1 main() 1 2 -- -- --

2 { 2 3 1,20 -- --

7 red = 1; 3 4 2 red --

8 blue = 5; 4 5 2 blue --

9 green = 8; 5 6 2 green --

10 yellow = 2; 6 7 2 yellow --

12 red = 2*red; 7 8 2 red red

13 sweet = red*green 8 9 2 sweet red,green

14 sour = 0; 9 10 2 sour --

15 i = 0; 10 11 2 i --

16 while (i < red) { 11 12,14 2,14 -- i,red

17 sour = sour + green; 12 13 11 sour sour,green

18 i = i + 1; 13 11 11 i i

19 } 14 15 -- -- --

20 salty = blue + yellow; 15 16 2 salty blue,yellow

21 yellow = sour + 1; 16 17 2 yellow sour

22 bitter = yellow + green; 17 18 2 bitter yellow,green

24 printf ("%d %d %d %d\n", 18 19 2 -- sweet,sour

25 sweet,sour,salty,bitter); salty,bitter

26 exit(0); 19 -- -- -- --

27 } 20 -- --

Figure 2-3: Slicing Example 1 Data-Flow Sets

9

Line Statement Active Node

1 main() 1

2 { 2

7 red = 1; 3

8 blue = 5; red 4

9 green = 8; red 5

10 yellow = 2; red,green 6

12 red = 2*red; red,green 7

13 sweet = red*green; red,green 8

14 sour = 0; sweet 9

15 i = 0; sweet 10

16 while (i < red) { sweet 11

17 sour = sour + green; sweet 12

18 i = i + 1; sweet 13

19 } sweet 14

20 salty = blue + yellow; sweet 15

21 yellow = sour + 1; sweet 16

22 bitter = yellow + green; sweet 17

24 printf ("%d %d %d %d\n", sweet 18

25 sweet,sour,salty,bitter);

26 exit(0); 19

27 } 20

Figure 2-4: Slicing Example 1 Active Sets ForS<18,sweet>

2.2 Unravel Architecture

This section describes the software architecture ofunravel. Unravel operates on the source files
from a single directory. Figure 2-5 presents an overview ofunravel. The circles represent files
and the boxes represent processing steps. Source files are transformed to correspondinglanguage
independent format(LIF) files by the analyzer. The LIF files for a given program are bound
together by thelinker into a singlelink file. The link file is the primary input to the slicer. To

10

useunravel, the source program files must first be analyzed and linked. A window based user
interface gives the user ofunravel access to these components and helps manage the results.

Source

File

Source

File

Linked

LIF code
Analyzer

LIF Code

LIF Code

Linker Slicer

Figure 2-5: Unravel Structure Overview

2.3 Operational Scenario

This section is a tutorial talking a user through an example of usingunravel. The two most
important steps for usingunravel successfully take place beforeunravel is executed. The user
should have a general understanding of the architecture of the source code in order to select
slicing criteria that can provide relevant information. Figure 2-6 presents an operational checklist
that serves as an overview and guide tounravel operation. The figure is repeated in Appendix
A for quick reference. The steps to usingunravel follow.

1. Receive orientation to source code. Determine all the source files and#include files
that make up the program. Theunravel user should have a general idea about global
variables, procedures and program structure in the source code.

2. Select slicing criteria. Theunravel user should develop a list of questions about the
source code that can be answered by program slicing. For each planned slice, the user
should note the file name and line number where the slice should be computed along with
the file name, where the variable of a slicing criterion is declared. For local variables,
the procedure where the local variable is declared is needed for specifying the slicing
criterion.

3. Make the directory containing the program to analyze the current directory.

4. Execute the command:unravel. Theunravel command displays a control panel called
the Main Control Panel.

11

1 Orientation Examine program structure

2 Select Slices Plan slices to compute

3 cd to source directory Make source code directory current

4 Unravel Executeunravel

5 Analyzer Click on Run Analyzer

Select Files Select files to analyze

Analyze Click on Analyze Selected Files

Exit Click on Exit to return toMain Control Panel

6 Review Results ExamineLast Analysis in Review History menu

Navigate Use scroll bar to navigate

Done Click on Done to exit

7 Slicer Click on Run Slicer

Select Variable UseSelectmenu to pick variable

Select Location Click on criterion location to do slice

Navigate Use scroll bar to examine source code

Operations UseOperations menu to combine slices

Exit Click on Exit to return toMain Control Panel

8 Exit Click on Exit to stopunravel

Figure 2-6: Unravel Operation Checklist

5. Click on theRun Analyzer button from theMain Control Panel. This displays the
Analyzer Control Panel. Select source files to analyze, then click on theAnalyze
Selected Filesbutton to analyze each source file in turn. A message is displayed if any
source files are not ANSI C. Click on theExit Analyzer button to return to theMain
Control Panel.

6. Review analysis results. TheLast Analysis entry of theReview History menu of the
Main Control Panel pops-up a summary of each analysis. If any source files are not
ANSI C, an error message identifies the problem location. The source file needs to be
brought into conformance with ANSI C by changing the source file and running the
analyzer again.

12

7. Click on theRun Slicer button. If there is more than one program theSelection Control
Panel is displayed; click on the desired program to start the slicer on the selected
program. If there is only one main program, theSelection Control Panelis skipped and
the slicer starts on that program. The user selects slicing criteria and displays the slices.
When the user is finished computing slices, click on theExit button to return to theMain
Control Panel.

2.4 Tutorial Example

This section describes usingunravel on a short tutorial example. We will go through the steps
to run theanalyzer and theslicer.

2.4.1 Orientation

The example source code in Figures 2-7 through 2-11 and in Figure 2-1 is provided with the
unravel distribution. The source code is located in theexample subdirectory of theunravel
distribution. There are two example programs,flavors and refinery . The programflavors is
completely contained in the fileflavors.c. The other program,refinery , is spread over five files:
refinery.c, refinery.h, input.c, cool.candpressure.c.

1 typedef struct {
2 int value;
3 } sensor_rec,*sensor_ptr;
4
5 int pressure,flow,volt,level;
6 int pump_ok,flow_ok;
7 int presure_ok,level_ok;

Figure 2-7: Slicing Example 2 refinery.h

1 # include "refinery.h"
2 get_sensor_v (sensor_ptr s) { s->value = read_sensor(); }
3 get_sensor_f (sensor_ptr s) { s->value = read_sensor(); }
4 get_sensor_l (sensor_ptr s) { s->value = read_sensor(); }
5 get_sensor_p (sensor_ptr s) { s->value = read_sensor(); }

Figure 2-8: Slicing Example 2 input.c

13

1 # include "refinery.h"
2 int coolant_sys(p,f)
3 sensor_ptr p,f;
4 {
5
6 volt = p->value;
7 flow = f->value;
8 pump_ok = pump_undervolt(volt);
9 flow_ok = coolant_flow(flow);

10 }

Figure 2-9: Slicing Example 2 cool.c

1 # include "refinery.h"
2 int pressure_sys(p,w)
3 sensor_ptr p,w;
4 {
5
6 pressure = p->value;
7 level = w->value;
8 pressure_ok = check_pressure(pressure);
9 level_ok = water_level(level);

10 }

Figure 2-10: Slicing Example 2 pressure.c

1 # include "refinery.h"
2 main()
3 {
4 int p_alarm,c_alarm,alarm;
5 sensor_rec pump_sensor,flow_sensor;
6 sensor_rec pressure_sensor,level_sensor;
7
8 while (1){
9

10 get_sensor_v(&pump_sensor);
11 get_sensor_f(&flow_sensor);
12 get_sensor_p(&pressure_sensor);
13 get_sensor_l(&level_sensor);
14
15 pressure_sys(&pressure_sensor,&level_sensor);
16 coolant_sys(&pump_sensor,&flow_sensor);
17 p_alarm = !(pressure_ok && level_ok);
18 c_alarm = !(pump_ok && flow_ok);
19 alarm = c_alarm || p_alarm;
20 if (alarm) system_shutdown();
21 }
22 }

Figure 2-11: Slicing Example 2 refinery.c

14

2.4.2 Slice Criteria Selection

For the programflavors we would like to examine the computation ofsweet and sour and
evaluate any code common to these two computations. For the programrefinery we would like
to examine the computation ofpump_ok, level_ok, anda_dump.

After due consideration, the slices in Table 2-1 were selected.

Slicing Criteria

Variable Location

File Procedure Name File Procedure Line No.

refinery.h global pump_ok cool.c main 10

refinery.h global level_ok cool.c main 10

refinery.c main a_dump refinery.c main 22

flavors.c main sweet flavors.c main 25

flavors.c main sour flavors.c main 25

Table 2-1: Planned Slices

2.4.3 Setting Source Directory

The user should locate the source directory for this example, then use the UNIXcd command
to set the current directory.

2.4.4 Executing Unravel

Figure 2-13 displays the initialMain Control Panel on the example directory. Note the
following:

• Five source files are identified.

• None of the files have been analyzed or linked. Even though there are twomain
programs in the directory, the programs have not been analyzed yet byunravel.

• At this point the user should run the analyzer. After the analysis is finished, then the
slicer can be run.

• To run the analyzer, the user moves the mouse cursor to the button labeledRun Analyzer
and clicks the left mouse button. TheAnalyzer Control Panel should appear in a few
seconds.

15

2.4.5 Executing the Analyzer

The analyzer examines the current directory for source program files and automatically places
the file on either a list of files to be analyzed or a list to be ignored. A source file that has been
analyzed since the last change to the source file is placed on theFiles Not Selectedlist; a source
file that has not been analyzed or has been changed since its last analysis is placed on the
Selected Fileslist.

Figure 2-13: Initial Main Control Panel

Figure 2-14 displays the initialAnalyzer Control Panel. Note the following:

• The five files are already selected since they have not been analyzed. All files need to
be analyzed so the user should click on theAnalyze Selected Filesbutton.

• When analysis starts, theAnalyze Selected Filesbutton changes its label toStop
Analysis as in Figure 2-15. If the user clicks the left mouse button onStop Analysisthe
analysis stops after the current program analysis is finished.

• While the analysis is being performed, the status line indicates which program is being
analyzed and how many programs are selected for analysis.

• The status line indicates if any source programs were not ANSI C and could therefor not
be analyzed. This is usually caused by a missing include file or a non-ANSI language.

16

• After the analysis is complete, the user clicks onExit Analysis to return to themain
control panel. Figure 2-16 displays theMain Control Panel after the analysis is
complete.

Figure 2-14: Initial Analyzer Control Panel

Figure 2-15: Analyzer Control Panel During Analysis

17

Figure 2-16: Main Control Panel After Analysis

2.4.6 Analysis Review

After the analysis is done the user should return to theMain Control Panel and review the
analysis results. To display the analysis results select theLast Analysis entry on theReview
History menu.

A summary of each source file analyzed is presented. If any syntax errors were found (i.e., the
source is not ANSI C), the location of the error in the source file is indicated. The error should
be repaired and the analyzer run again until there are no errors. Section 5.1 discusses what to
do with some common extensions to ANSI C.

2.4.7 Using the Slicer

This section describes invoking and using the slicer. This is a two step process; first, the
program to be sliced is selected, then the slicing criteria is specified and the slices examined.

2.4.7.1 Selecting a Program to Slice

After the analysis is complete and any syntax errors have been repaired, the user runs the slicer
by clicking on theRun Slicer button of theMain Control Panel. If there is more than one
program to choose from, theSelection Control Panelis displayed as in Figure 2-17. The user
should either click on a program file name or click on theExit button. If the user clicks on the
Exit button, theSelection Control Panelpops-down and control returns to themain panel. To
select the programrefinery.c the user clicks on that program name.

18

Figure 2-17: Selection Control Panel

2.4.7.2 Executing the Slicer

After a program is selected from theSelection Control Panel, theSlice Control Panelpops-up.
The user can do the following with theSlice Control Panel:

1. Select a variable for a slicing criterion.

2. Select a statement location for a slicing criterion.

3. Navigate through the source file to examine the results of the slice.

4. Select an operation for combining two slices.

To compute the first slice from our list of planned slices in Table 2.1, the user needs to select
the global variablepump_ok. To selectpump_ok the user does the following:

1. Move the mouse pointer over theSelectbutton.

2. Push and hold the left mouse button. A menu with several choices should appear under
the Selectbutton.

3. Drag the mouse down to the choice labeledGlobal Variable. The text should highlight
in reverse video.

4. Release the left mouse button. A pop-up list with two file names should appear. This
is a list of files where global variables are declared.

5. Click the left mouse button on the entryrefinery.h. A second pop-up list of the global
variables declared in the selected file should appear.

19

6. Click the left mouse button onpump_ok. Note that the second line on the display
contains the currently selected criterion variable.

To specify the location for the slicing criterion and initiate computing the slice do the following:

1. Find the location for the slice, line 10 in filecool.c, by moving the scroll bar until line
10 of the filecool.ccomes into view. To move the scroll bar, position the mouse cursor
in the scroll bar, push and hold the middle mouse button, then drag the mouse up and
down to move the source text. When line 10 comes into view release the mouse button.

2. Move the mouse pointer to line 10 and click the left mouse button. This starts computing
the slice. The fourth line of the window should change color to indicate that a slice is
in progress. When the slice is finished, the color returns to normal.

3. Statements in the slice are highlighted in reverse video. Along the right edge of the
source text display window there is a vertical stripe called atick bar that gives a visual
summary over the entire program of statements in the slice. Figure 2-18 illustrates the
results on the screen.

Figure 2-19 presents the results of slicing onlevel_okat the same location. Note from the figure
that this slice is labeledsecondary slicewhile the other slice is labeledprimary slice. The terms
primary andsecondaryare used to label two slices for computing set operations on the slices.
To compute a secondary slice, the user clicks the criterion location with the middle mouse button
rather than the left mouse button.

Now that we have two slices we can intersect slices to determine if there is shared code. To
compute the intersection displayed in Figure 2-20, the user moves the mouse cursor to the
Operation button, pushes and holds the left mouse button, drags the mouse to theIntersection
entry and releases.

The slice ona_dump can be computed in similar fashion:

1. Select criterion variable (a_dump) by dragging the left mouse button down theSelect
button menu to theLocal Variable entry and then release the left mouse button.

2. To display the list of variables defined inmain, select themain procedure in the pop-
up list of procedure names by clicking the left mouse button while the mouse cursor is
over main.

3. When the pop-up list of local variables declared inmain appears select the variable
a_dump by clicking the left mouse button overa_dump.

4. Move the mouse pointer over line 22 and click the left mouse button to compute a slice
labeledprimary, or click the middle mouse button to compute a slice labeledsecondary.

20

When the user is finished computing slices, the user clicks onExit in the Slice Control Panel.

2.4.8 Exiting Unravel

When the user is finished withunravel, the user clicks onExit in the Main Control Panel.

21

Figure 2-18: Slice onpump_ok

22

Figure 2-19: Slice onlevel_ok

23

Figure 2-20: Intersection of Slices onpump_okand level_ok

24

Figure 2-21: Slice ona_dump

25

26

3 Operating Unravel

Unravel is implemented in ANSI C under UNIX with a user interface built with the Athena
Widgets of the MIT X Window System, running the X window system under the UNIX operating
system.

3.1 Using The Interface Control Panels

The interface control panels are each composed of several interface objects from the MIT Athena
Widget Set that the user can manipulate using the mouse to communicate withunravel. This
section discusses how the user can interact with each Athena Widget used byunravel.

Unravel uses the following interface objects, each of which is described in subsequent sections.

Object Function
Display Label Presents some information
Button Invokes some action (function) when pushed
Pull Down Menu Displays a fixed list of buttons
Pop-up List Displays a variable list of items for selection
Text Input Window Allows the user to enter text
Text Window Used to display more than one line of text
Scroll Bar Used to specify visible subset of text window

3.1.1 Using a Mouse

Unravel uses a mouse with three buttons, referred to asleft, middleandright. To interact with
an object the user first positions the mouse cursor, an image on the screen that tracks mouse
motion, over the object. Then the user does one of the following: types on the keyboard, clicks
a mouse button or drags the mouse. Toclick a mouse button means to push the button on the
mouse and then release the button. Adouble clickis two mouse button clicks in a short (about
one second) time. Todrag the mouse means to push a mouse button, move the mouse while
holding the button down and then release the button.

3.1.2 Display Label

Display labelsare used to display information to the user. As the user requestsunravel to do
tasks the displayed information changes to inform the user of actions taken. The user has no
direct input to a display label.

27

3.1.3 Button

A button on anunravel control panel has an oval border. To push a button, position the mouse
cursor over the button and click the left mouse button. When the mouse button is pushed, the
button is highlighted in reverse video. If the mouse cursor is dragged outside the button,
highlighting is turned off and nothing happens if the button is released, otherwise, the button
invokes its function when the button is released.

3.1.4 Pull Down Menu

A pull down menu button has an oval border.Unravel uses menus to group related actions for
invocation by the user dragging the mouse. The user positions the mouse cursor over themenu
button, then presses and holds the left mouse button. The menu appears in a window under the
menu button. The user may drag the mouse cursor over the menu entries and release the button
on the entry that should be invoked. The current entry is indicated by reverse video. If the
button is released outside the menu nothing happens.

3.1.5 Pop-up List

Unravel usespop-up lists for the user to select files, procedures or variables, usually for
specifying a variable in a slicing criterion. To select an item from a pop-up list, position the
mouse cursor over the item and click the left mouse button.

3.1.6 Text Input Window

A text input windowis used to get text from the user. The mouse cursor must be positioned
somewhere within thetext input window. The text input windowhas a text cursor shaped like
the caret character (^). Any characters typed are inserted at the text cursor. The text cursor can
be moved by positioning the mouse cursor over the desired location and clicking the left mouse
button. The character to the left of the text cursor can be removed by thedeletekey.

3.1.7 Scroll Bar

A scroll bar is usually used to control the display of information that needs more space than
allocated on the screen.Unravel uses scroll bars on text windows, text input windows and
pop-up lists. Scroll bars may be either horizontal or vertical. All three mouse buttons can be
used to manipulate the scroll bar when the mouse cursor is positioned within the scroll bar.

Left Click: Move the text forward by some amount (depends on the actual object but is
usually about 45% of the window length). The text in the controlled window does not
change until the button is released. A drag has no effect.

Middle Drag: The length of the scroll bar is scaled to the length of the text being
displayed. When the middle mouse button is pushed the text displayed in the window is

28

adjusted so that the location of the start of displayed text corresponds to the location of
the mouse cursor in the scroll bar. If the mouse is dragged, the displayed text is
continuously updated to reflect the mouse cursor position. The drag does not have to
remain within the bounds of the scroll bar.

Right Click: Move the text backward by some amount (depends on the actual object but
is usually about 45% of the window length). The text in the controlled window does not
change until the button is released. A drag has no effect.

3.1.8 Text Window

A text windowis used byunravel to display history logs and help screens. A text window has
scroll bars if the window is too small to display the text. The user can navigate through the file
by either the scroll bar or by searching for a string. To search for a string typeCTRL-S to
pop-up a search control window. Enter the target string in the text input box just after the
Search for: label. Either thereturn key or theSearchbutton starts the search. The next
instance of the search target can be found by either thereturn key or theSearchbutton. There
is a Cancel button to pop-down the search control window when done.

3.2 User Interface Control Panels

The user interface displays four control panels and two pop-up information windows. The four
control panels are the following:

Main Control Panel: Allows the user to invoke analyzer and slicer and provides
relevant information about the current directory, directory name, number of source files,
number analyzed, number of main programs found and other information. The main
control panel is invoked by running the programunravel. The command takes an
optional command line argument of a directory name for the location of the source files
to analyze. If the source files are in the current directory, the command line argument
can be omitted. All the other control panels are invoked from the main control panel.

Analyzer Control Panel: Allows the user to select files, run the analyzer and
automatically scan formain programs.

Selection Control Panel:Allows the user to select amain program and runs thelinker
on the selectedmain program followed by running the slicer on the linked program.

Slice Control Panel: Gives the user access to the program slicer, accepts a slicing
criterion interactively and displays the source program text in a scrollable window with
slice statements highlighted.

29

All control panels have the following features:

• Control buttons on top row of the panel

• Leftmost button pops-down (exits) the panel

• Rightmost button pops-up thehelp display for the panel

• Help button sticks to right window edge on resize

• Other buttons keep same distance from left edge on resize

• Panel name in the window title bar

• Last line of panel displays a brief description of the object under the mouse pointer

• Help button short cuts (accelerators): pressing anywhere on the panel outside a text
window h, H or ? invokes help

• Exit button short cuts (accelerators): pressing anywhere on the panel outside a text
window q or Q exits the panel

• All top level control panel windows are created with an X Windows application class
name ofUnravel so that X resources can be set for all panels at once (e.g., to set the
foreground color to red for all the control panels give the following resource specification
to xrdb : *Unravel*Foreground: red .)

Two application resources,runningFG and runningBG , are defined foranalyzer and slicer.
These resources are a foreground and a background color that are used to indicate a lengthy
operation is in progress.

The two information pop-ups display a history of user activities and help text for each panel.
Both pop-ups are displayed by the same program. An information pop-up window consists of
a done button to dismiss (pop-down) the window and a scrollable text window.

3.2.1 Main Control Panel

The function of theMain Control Panel is to respond to user interaction with the panel. All
files are assumed to be in the current directory.

Unravel performs the following initializations:

1. Change to the directory specified on the command line, if one is provided.

30

2. Initialize slice history toNo slices computed this session

3. Initialize analysis history toNo analysis done this session

4. Initialize history of current session toUNRAVEL directory namecurrent date and time

The Main Control Panel displays the following information:

• Current directory name.

• Number of source files. This is a count of files with a.c extension.

• Number of files analyzed and up to date. The number of C files that have analysis files
such that the C file is older than the analysis files (i.e., the C file has not been changed
since the analysis files were created).

• Number of source files not analyzed. This is a count of files with the.c extension that
do not have analysis files.

• Number of files analyzed and out of date. The number of C files where the C file is
younger than the analysis files.

• Number of main program files analyzed. The number of main program files identified.

• Number of main program files linked. The number of main program files identified that
also have been linked.

• Number of duplicate procedures found. The number of procedures identified as
ambiguous (appearing in more than one file). This indicates thatunravel cannot
determine which file contains the source code for some procedures. See section 5.2 for
an explanation of how to remove ambiguous procedures.

• Last line of panel displays a brief description of the object under the mouse pointer.

The Main Control Panel buttons invoke the following actions:

Exit: Performs the following:

1. Append the file HISTORY to HISTORY.LOG
2. Delete HISTORY file
3. Exit

Run Analyzer: The Run Analyzer button pops-up theAnalyzer Control Panel.

31

Review History: Pops-up a four item menu (Last Analysis, Last Slice, This Sessionor
All History), and displays the indicated history in a pop-up window.

Run Slicer: Pop-up a list of main programs that can be selected for slicing.

Help: Display general information aboutunravel and theMain Control Panel in a
pop-up window.

3.2.2 Analyzer Control Panel

The Analyzer Control Panel presents the user with:

• Buttons to control file selection, run the analyzer, clear analysis files and pop-up a help
window.

• A status line to give the user feedback on progress of the analysis of a set of files.

• Two text windows for specifying command line options to the C preprocessor and to the
unravel analyzer.

• A list of selectedsource files from the current directory.

• A list of not selectedsource files in the current directory.

• Last line of panel displays a brief description of the object under the mouse pointer

The Analyzer Control Panel buttons invoke the following actions:

Exit Analyzer This button Appends the fileHISTORY-A to HISTORY and then exits.

File SelectionThe File Selectionbutton pops-up a menu with the following four choices and
actions:

All Files: All source file names are placed in theselectedlist window. Thenot selected
list window will be empty.

No Files: All source file names are placed in thenot selectedlist window. Theselected
list window will be empty.

Analyzed Files: All source file names of files that have older.LIF , .T and .H files are
placed in theselectedlist window. The remaining source file names are placed in thenot
selectedlist window.

32

Files Not Analyzed: All source file names of files that have older.LIF , .T and .H files
are placed in thenot selectedlist window. The remaining source file names are placed
in the selectedlist window.

Analyze Selected Files/Stop AnalysisThis button runs the analyzer on each selected file,
adding the contents of the C preprocessor options window to the C preprocessor command
line and adding the contents of the parser options window to the parser command line.
When theAnalyzer Control Panel button is pushed the button label is changed from
Analyze Selected Filesto Stop Analysis. If the Stop Analysis button is pressed,
unravel will not analyze any more of the selected files after the file currently being
analyzed is finished. As each file is analyzed, the file name currently being analyzed is
displayed on the status line along with a progress indication. The progress indication is
defined by the following: number each file in sequence starting from 1 in the order that
the files will be analyzed. Display the file’s sequence number and the total number of
files. The status line is set to the foreground and background colors specified in the
application resourcesrunningFG and runningBG .

After all selected files have been analyzed, themap program is run automatically.

Clear Deletes the analysis files (.LIF , .H and .T) for each selected file and deletes the
SYSTEM file.

Help: The Help button displays a pop-up window of information about the analyzer
control panel.

The C preprocessor options text window allows the user to specify any C preprocessor options
that are normally used to compile the source code to be analyzed. The two most common
options arepreprocessor symbol definition (-D)and include directory path (-I). When and how
to use the-D option depends on how the source code is usually compiled. The-I option is used
to specify the location (directory path) of include files not located in the current directory.

Theparser optionstext window allows the user to specify options to the parser. The parser has
two options related to dynamic memory allocation that might be needed. There is a list of
function names that are assumed to allocate dynamic storage. Whenunravel encounters a call
to one of these functions a dynamic variable is created in the form@file_name #line
number [sequence number] to represent any memory allocated by the statement. If the
function call result is cast to apointer to a base type, the generated variable is declared to be of
the base type.

1. The -a option is specified to remove the default list of memory allocation procedures.
The default list is:malloc(), realloc() andcalloc().

2. The option-f nameadds procedurenameto the list of memory allocation functions.

33

There are several other options to the parser, intentionally undocumented, that are not useful to
the user ofunravel but are important for debugging and performance analysis.

3.2.3 Selection Control Panel

The Selection Control Panel presents the user with:

• Exit andHelp buttons

• A status line

• A list of main program source files from the current directory

• Last line of panel displays a brief description of the object under the mouse pointer

The Exit button pops-down the panel with no further action.

If a file from the list is selected, the file is linked, theSelection Control Panelis popped-down
and theslicer is called.

The status lineinitially indicates thatselect is waiting for the user to make a selection. After
a file is selected, the status line indicates that a file is being linked.

If there is exactly one main program file, the file is linked and the slicer is called without
bringing up theSelection Control Panel.

The Help button pops-up a file of information about theSelection Control Panel.
The slice history file is updated with a message indicating the file to be linked before the linker
is called. Any linker output is appended to the slice history file.

3.2.4 Slice Control Panel

The slicer accepts slicing criteria from the user, computes a program slice for each criterion
given, saves each slice for later recall and displays the program in a scrollable window. The
slicer presents the user with:

• Buttons to exit, to pop-up help and to interrupt a lengthy slice calculation.

• A display indicating slice size and slice calculation progress.

• A display of the currently selected slicing criterion variable.

• Menu of selection options for selecting slicing criterion variables, or previously computed
slices.

34

• Menu of operations that can be performed on two selected slices.

• Display describing the contents of the scrollable window.

• Display of program source text in a scrollable window.

• Last line of panel displays a brief description of the object under the mouse pointer.

• Clicking a mouse button in the text window specifies the statement for the slicing
criterion and initiates the slice computation.

Primary sliceandsecondary slicehas no significance other than being convenient names for two
slices when an operation such as intersection is performed on two slices.

The buttons do the following:

Exit: Append slice history to session history and then exit.

Interrupt: The Interrupt button does the following:

1. Stop computation of the slice and display partial results.

2. Mark the slice as partial and save.

Help: Pop-up the panel help file.

There are six information display windows on the control panel.

1. Slice Progress Windowdisplays the current size of the slice being computed (or last
computed) in units of flow graph nodes. This window is located between theInterrupt
andHelp buttons on the top line of the panel.

2. Criterion Variable Window displays the currently selected criterion variable, the file
where the variable is declared and the declaration scope. If the variable isglobal then
the scope is the wordglobal, otherwise the name of the local procedure containing the
variable declaration. If an element is not defined, the wordnone is displayed. This
window is the second line of the panel.

3. Primary-Secondary Window displays the criteria for the current primary and secondary
slices. If there is no such slice, the wordnone is displayed. This window is the third
line of the panel.

4. Text Description Window describes the contents of theText Window using one
Message in Table 3-1. This window is the fourth line of the panel.

35

Contents Message

None Source File:file name

Slice Slice oncriterion

Intersection Intersection ofprimary criterion & secondary criterion

Union Union of primary criterion & secondary criterion

Dice Primary criterion diced bysecondary criterion

Dice S-P Secondary criteriondiced byprimary criterion

Marked Location ofprocedure namein file name

Call Tree Call tree ofprocedure name

Table 3-1: Operation Description

5. Text Window displays the program text with a scroll bar for navigation. Statements can
be designated for highlighting by the text window. Highlighting is used to indicate
statements that are members of a slice or the results of an operation on two slices. The
right margin of the text window contains atick bar that is used to visually indicate the
location of highlighted statements throughout the entire program. The vertical length of
the tick bar is scaled to the length of the program in source file lines. A tick (horizontal
line) in the tick bar indicates that at that relative position in the display there are one or
more highlighted lines. The tick bar is adjacent to the scroll bar to facilitate scrolling to
highlighted regions of the text. Clicking the left or middle mouse button on the tick bar
scrolls the text window to the corresponding area of the program. Above the scroll bar
is an arrow shaped button that scrolls the text window up one line each time the left
mouse button is clicked when the mouse cursor is over the arrow button. Below the
scroll bar is a similar arrow shaped button to scroll text down.

6. Current Object Window describes the function of the object currently under the mouse
pointer. This window is the last line of the panel.

TheSelectmenu is used to specify a criterion variable, to aid navigation by marking the location
of a procedure in the tick bar and to select a previously computed slice for display.

The Selectmenu has the following selections:

Local Variable: This entry is a two-step selection. First, a list of procedure names is
popped-up for the user to select one item. The list consists of all procedures that are
defined somewhere in the program. Procedures such as library routines that are used, but
not defined are not included in the list. The first entry in the list isNo Selection. If a

36

procedure is selected, the procedure header, opening brace and closing brace are
highlighted, a list of variables declared local to the selected procedure is popped-up and
the list of procedure names is popped-down. If no procedure is selected, the procedure
list is popped-down. TheCriterion Variable Window is updated with the selected items.

Global Variable: This entry is a two-step selection. First, a list of file names is
popped-up for the user to select one item. The list includes all source files (.c) in the
program and all header files (.h) that are included in the program. The first entry in the
list is No Selection. If a file is selected, a list of global variables declared in the
selected file is popped-up and the file list is popped-down. If no file is selected, the file
list is popped-down. TheCriterion Variable Window is updated with the selected items.

Mark Proc: A list of procedure names is popped-up for the user to select one item. The
first entry in the list isNo Selection. If a procedure is selected, the procedure header,
opening brace and closing brace are highlighted. The list is popped-down.

Show Call Tree: A list of procedure names is popped-up for the user to select one item.
The first entry in the list isNo Selection. If a procedure is selected, the procedure
header, opening brace, closing brace and all the call sites for the selected procedure are
highlighted. The highlighting continues for each procedure containing a highlighted call
site until no more unhighlighted procedures are found. If a call site in controlled by a
conditional statement (e.g.,if or while), the conditional statement is highlighted. The list
is popped-down.

Primary: Pops-up a list of previously computed slices. The first entry in the list isNo
Selection. If an entry is selected, make the slice theprimary and display the slice. The
list is popped-down.

Secondary:Pops-up a list of previously computed slices. The first entry in the list isNo
Selection. If an entry is selected, make the slice thesecondaryand display the slice. The
list is popped-down.

The Operation menu has the following selections:

Dice: Highlights the statements of theprimary slice that are not members of the
secondaryslice and updates thetext description window.

Dice S-P:Highlights the statements of thesecondaryslice that are not members of the
primary slice and updates thetext description window.

Intersection: Highlights the statements in both theprimary and secondaryslice and
updates theText Description Window.

37

Union: Highlights the statements in either theprimary or secondaryslice and updates the
Text Description Window.

Clear: Removes all highlighting and updates theText Description Window.

Clear Slice History: Deletes the saved slices.

The text window has four actions triggered by the mouse.

1. Clicking a mouse button in the tick bar area scrolls the window to the corresponding area
of the program text.

2. The leftmost mouse button computes a primary slice.

3. The middle mouse button computes a secondary slice.

4. The rightmost mouse button highlights the current line.

The source program line under the mouse pointer when the mouse button is clicked specifies the
statement for the slicing criterion. If the specified slicing criterion has already been used to
compute a slice (without interruption), then the slice is not computed, but is retrieved and
displayed.

3.2.5 Help/History Pop-up

History and help information pop-ups are handled by a single program. The text may have either
horizontal or vertical scroll bars as needed. It is possible to search for a string by typing
CTRL-S and typing the target string in the search pop-up. There is aCancel button to
pop-down the search control window when done.

38

4 Solving Problems

This section discusses how to resolve two problems that can arise when usingunravel. The first
problem occurs when the software to be analyzed is not strict ANSI C. The second problem can
occur when more than one program is being analyzed.

4.1 Source Code Not ANSI C

Unravel is designed for ANSI C and is strict about the language accepted. There exist C
compilers that for a variety of reasons have implemented extensions to the C language. When
these extensions involve additional data types, additional data attributes, additional keywords, or
changes to the language syntax,unravel cannot be used without first modifying the source code.
This section discusses how to accomplish these modifications.

Any unknown keywords or data types bring theunravel analyzer to a stop at that point with a
message indicating the line number and file. If there are a few deviations from ANSI C, it is
sometimes possible to make the program acceptable tounravel with a few small changes to the
source program under analysis. If there are a large number of extensions or there are any
significant syntactic additions then modifications to the source program may be too
time-consuming to be practical.

4.1.1 Additional Data Types

A common extension is to include additional data types in the C language. Provided that the
added data types do not also add significantly new semantics they can be handled by inserting
a #define preprocessor command to equate the new type to an existing builtin type. For
example, if a compiler adds abooleantype, the following preprocessor statement could be used
to equatebooleanwith int :

#define boolean int

4.1.2 Additional Data Attributes

Another common extension is additional data attributes. For example, a compiler might add the
keywordextendedto indicate that floating point numbers should use 128 bits rather than the 64
bits used in double precision. This keyword can be eliminated by defining the keyword to be
null:

#define extended

39

4.1.3 Preprocessor Extensions

Sometimes the C preprocessor is extended. The extensions must be replaced in such a way that
the result of the ANSI C preprocessor used byunravel produces the same result as the vendor
C preprocessor. An alternative to replacing the extensions is to use the extended preprocessor
to preprocess the source program.

4.2 Ambiguous procedures

If the unravel user is interested in more than one source program the source files for all the
source program files can be in the same directory, however, if there are two or more functions
with the same name,unravel cannot determine which is the procedure that belongs with a given
main program.

The example in Figure 4-1 presents five source files (alpha.c, beta.c, theta.c, phi.c andweb.c)
that correspond to two source programs. Source programalpha requires the filesalpha.c, theta.c
andweb.c. The second source program,beta, requires the filesbeta.c, phi.candweb.c.

If we run theunravel analyzer on all the these files, the analyzer reports that the procedureangle
is defined in more than one file (theta.c andphi.c). There are two possible ways to deal with
the problem, either move each set of source files for a given source program to a separate
directory or only analyze the source files for one source program at a time.

alpha.c beta.c
int x; int y;
main(){ main(){

angle(); angle();
mangle(); tangle();

} }

theta.c phi.c
int x; int y;
angle() { x = 1;} angle() { y = 2;}

web.c
int x,y;
mangle(){ printf ("x = %d\n",x);}
tangle(){ printf ("y = %d\n",y);}

Figure 4-1: Ambiguous Example

4.2.1 Separate Directories

To put each source program in separate directories, use the UNIXmkdir command to create a
directory for each program (i.e., one subdirectory for eachmain procedure), then move source
files (with themv command) to the subdirectories where they belong. If a source file is used

40

by more than one source program, use the link command,ln, to place a link to the source file
in each subdirectory.

mkdir alpha beta
mv alpha.c theta.c alpha
mv beta.c phi.c beta
ln web.c alpha
ln web.c beta

4.2.2 One at a Time

Alternatively, the user can analyze only filesalpha.c, theta.candweb.c. Then the user runs the
slicer and selectsalpha. After slicing onalpha is finished, the user can go back to theAnalyzer
Control Panel and clearalpha.c and theta.c, then analyzebeta.c andphi.c and run the slicer
on beta.

41

42

5 Unravel Limitations and Assumptions

Unravel has limitations for several reasons. For example, an approximate solution to some
aspect of slicing may be implemented to avoid a severe performance penalty. Other limitations
arise from the static nature of program slicing. This section presents the most serious limitations.

5.1 Casts

Unravel ignorescast operations except where the cast is on the return value of themalloc
function. This can cause a problem when a variable is declared as one data type and then cast
to another data type. For example, consider the following code:

1 typedef struct {
2 int a;
3 int b; } ab_type;
4 int x[2];
5 ab_type *y;
6 . . .
7 y = (ab_type *) x;
8 y->b = 10;

Unravel loses the connection between the variablex and the object pointed to byy. Unravel
expects thaty points to an object of typeab_type, however whenunravel finds thaty points to
x, unravel is unable to see thaty->b is really x[1] becauseunravel expects to findx.b.

As a result, statements that influence the value ofx are not in the slice. If there is one such cast
then a second slice could be computed onx at the cast statement and the two slices unioned
together.

5.2 Address Operator

Unravel expects the address operator (&) to be applied only to variables and not applied to
expressions. This turns out to be a design error that causes expression such as&a->b to be
ignored. This can cause statements to be omitted from a slice.

5.3 Pointers

When computingactive setsfor a statement that dereferences a pointer variable each object that
the variable might point to should be added to the active set. At different locations in a program
the set of objects that a pointer could point to may be different. For each pointer,unravel
identifies all objects that the pointer might point to. This can cause statements to be included
in a slice that could be excluded with a more precise pointer tracking algorithm.

43

Pointers to functions are ignored.

5.4 Unions

Unions are treated like structures byunravel. The union members appear tounravel as separate
data objects rather than overlapping objects.

5.5 Goto and Branch Statements

Unravel ignores unconditional branch statements (i.e.,goto, break, and continue). In most
programs this does not change the content of computed slices in a significant way however, some
statements that should be in some slices are omitted. For example, in the following code a slice
on x should include all lines shown, however, if thebreak statement is ignored, lines 4 and 1
are omitted. Note that the statements missing are concerned with the calculation of another
variable (z) and do not have a direct role in the calculation ofx. This problem will be addressed
in a later release ofunravel.

1 z = a;
2 while (y) {
3 y--;
4 if (z) break;
5 x = w;
6 }

5.6 Libraries

Unravel has no knowledge of any libraries that might be used by vendor code. This includes
the ANSI C library. Any library procedure call is assumed to not use or change any global
variable. Any variable whose address is passed to a library procedure is assumed to be changed,
and if a structure all members are assumed to be changed.

44

Appendix A: Unravel Quick Reference

1 Orientation Examine program structure

2 Select Slices Plan slices to compute

3 cd to source directory Make source code directory current

4 Unravel Executeunravel

5 Analyzer Click on Run Analyzer

Select Files Select files to analyze

Analyze Click on Analyze Selected Files

Exit Click on Exit to return toMain Control Panel

6 Review Results ExamineLast Analysis in Review History menu

Navigate Use scroll bar to navigate

Done Click on Done to exit

7 Slicer Click on Run Slicer

Select Variable UseSelectmenu to pick variable

Select Location Click on criterion location to do slice

Navigate Use scroll bar to examine source code

Operations UseOperations menu to combine slices

Exit Click on Exit to return toMain Control Panel

8 Exit Click on Exit to stopunravel

Figure A-1: Unravel Operation Checklist

45

