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Abstract

We suggest a model describing the CSR bursts observed in recent experiments at
the Advanced Light Source at the LBL. The model is based on the linear theory of
the CSR instability in electron rings. We describe how an initial perturbation of
the beam generated by the laser pulse evolves in time when the beam is unstable
due to the CSR wakefield.
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1 Introduction

In recent experiments at the Advanced Light Source at the LBL it was ob-
served that beam slicing can induce bursts of coherent synchrotron radiation
(CSR) which are correlated with the time of the slicing [1]. The beam cur-
rent in these experiments exceeded the threshold current for the onset of the
CSR instability which was determined in the previous experiments without
slicing. Above the threshold, a pulse of a burst CSR followed the moment
of slicing with a delay of about 25-30 µs. Such correlated with slicing bursts
were observed in a lattice with a relatively large momentum compaction fac-
tor of α = 2.7 · 10−3. The total power in bursts in the case of a large α grew
exponentially with the bunch current. Similar results were obtained in the
slicing experiments at BESSY [2]. The parameters of the slicing experiment
at the ALS are summarized in Table 1.

Table 1: Parameters of slicing experiment at the ALS.

energy, GeV 1.5
revolution frequency, MHz 1.52
beam current, mA 2–20
momentum compaction α, (1.37/2.7) × 10−3

relative energy spread δ0, 1.0 × 10−3

nominal bunch length σz, mm 4.2/5.9

In this paper we propose a model that give a qualitative explanation
of some characteristic of the observed phenomenon. In this model we first
calculate the energy and density perturbation induced by the interaction of
the beam with the laser pulse in the undulator. We then track the evolution
of this perturbation taking into account the CSR wake. Since the initial
length of the density perturbation is much smaller than the bunch length
(the duration of the laser pulse is of the order of 200 fs), it can be considered
as a localized perturbation. During the evolution of this initial perturbation
its amplitude grows with time. The perturbation is also moving with a
group velocity and spread due to dispersion effects. Starting at the center of
the bunch with the maximal peak current, after some time the perturbation
moves to the slope of the distribution function of the beam, where the growth
rate slows down.



In this paper we assume that the size of the slice is much smaller than
the bunch length through the evolution of the slice.

The paper is organized as follows. In Section 2 we derive the initial
perturbation of the beam density generated by the laser. In Section 3 we
review some the theory of the CSR instability with the emphasis on the
group velocity of the unstable perturbation. In Section 4 we compute the
evolution of an initial unstable perturbation in the beam in a coasting beam,
and in Section 5 we discuss modification of our result for a Gaussian bunch.
The results of the paper are summarized in Section 6. In Appendix we show
how to derive the mode amplitudes for a given initial profile of a perturbation.

2 Initial evolution of a slice

In this section, we consider evolution of a density perturbation generated by
interaction of a laser pulse with a beam at an initial stage, when the wake
effect can be neglected.

Interaction of an electron bunch with a short laser pulse in an undulator
changes particle’s energy by δmod. This energy change depends on the am-
plitude and phase of the laser field at the location of the particle and can be
written as δmod(z) = A(z)σδ cos kLz, where σδ is the rms energy spread in the
beam, kL is the wavenumber of the laser light, and A(z) is the dimensionless
amplitude of the modulation. The latter is determined by the laser pulse
profile. For a Gaussian profile we assume that

A(z) = A0e
−z2/2σ2

L , (1)

where σL is the rms laser pulse length, and A0 is the modulation amplitude.
Assuming that the bunch length is much longer than the laser pulse,

we will neglect below the variation of the beam density over the length of
the slice. The initial energy distribution in the beam is characterized by a
Gaussian distribution with an rms energy spread σδ, and the beam distribu-
tion function before slicing is given by

f0(δ) =
1√
2π

e−δ2/2σ2

δ . (2)

The distribution function after the interaction with the laser is

f(z, δ) =
1√
2π

exp

[

− 1

2σ2
δ

(δ + A(z)σδ cos kLz)2

]

. (3)

Since the laser wavelength λL = 2π/kL is very small, we will average this
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distribution function over the laser wavelength

f̄(z, δ) =
1

λL

∫ z+λL/2

z−λL/2

f(z, δ)dz

=
1√
2π

exp

[

− 1

2σ2
δ

δ2 − 1

4
A(z)2

]

R

[

A(z)
δ

σδ

,−1

4
A(z)2

]

, (4)

where the function R is defined by the following formula

R(x, y) = I0(x)I0(y) + 2
∞

∑

n=1

I2n(x)In(y) , (5)

with In the modified Bessel function of the nth order.
The last step in the calculation of the evolution of the density profile is

to take into account the slippage due to the momentum compaction factor
α when the beam travels down the ring after the interaction with the laser.
After time t the slippage ∆z is equal to −αctδ. The (averaged) beam distri-
bution function f(t, z, δ) at time t is related to the initial function f̄ through
f(t, z, δ) = f̄(z+tαcδ, δ). The linear density (or beam current I) distribution
is

I(z, t) = I0

∫

∞

−∞

dδf̄(z + tαcδ, δ) , (6)

where I0 is the value of the unperturbed current at the location of the slice.
Using Eqs. (4) and (5) one can integrate Eq. (6) numerically. The result of
such integration is shown in Fig. 1 for A0 = 6 (that is when the maximal
energy modulation is 6 times larger than the initial rms energy spread of the
beam). As one can see from this plot, the an initially localized perturbation
widens with time and its amplitude goes down. Eventually it smears out and
disappears.

In the next two sections we will consider the dynamics of the initial per-
turbation taking into account the CSR wake.

3 Review of the theory of CSR instability

Before proceeding to the problem of slice dynamics with the CSR wake, we
present here the main elements of the theory of CSR instability [3] neces-
sary for our subsequent calculation. This theory is developed for a coasting
beam model which is valid for perturbation with a characteristic length much
smaller than the bunch length σz. In the model, the equilibrium beam cur-
rent I0 does not depend on z and is equal to the current of the bunch at the
location of the perturbation. The theory also ignores the shielding effect of
conducting walls and assumes a vacuum value for the CSR impedance Z.
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Figure 1: Density distributions at times ctα/σL = 0.05, 0.2, 0.5, 1, 3
(broader distributions correspond to later times) for A0 = 6. The red curve
shows the laser profile Eq. (1). The plot shows only positive values of z—the
curves are symmetric about the value z = 0.

In the linear approximation, the stability is considered for perturbations
in the form ak ei(kz−ω(k)t), where ak is the amplitude of the perturbation and
ω(k) is the frequency which depends on the wavenumber k. This dependence
is found from the dispersion equation. The growth rate of the instability
Γ(k) is given by the imaginary part of the frequency Γ(k) = Im (ω(k)). The
important parameter in the theory [3] is

Λ =
nbre

αγσ2
δ

, (7)

where γ is the relativistic factor, re is the classical electron radius, nb is the
number of particles in the beam per unit length (equal to I0/ec), and σδ is the
relative energy spread of the unperturbed bunch. In a ring with a constant
bending radius R the mode with the wave number k is unstable if

Λ

R2/3
> 0.63k2/3 . (8)

The ALS ring has magnets with various bending radii. In this case,
the parameter Λ/R2/3 has to be properly averaged over the ring (see [4]).
Note that for a given RF voltage in the ring, the linear density nb scales as
nb ∝ σ−1

z ∝ α−1/2. With this scaling, using Eqs. (7) and (8), we find that
the threshold current for the instability Ith can be written as

Ith = Dk2/3α3/2 , (9)

where D is a constant that depends on the bending radii of the magnets in
the ring. In the ALS experiments it was found that D = 1.22×104 mA·cm2/3
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at E = 1.5 GeV [4]. An example of the growth rate Γ(k) calculated for the
ALS ring using this value of D is shown in Fig. 2. The maximum of this
function is reached for k = kmax = 8.7 cm−1 corresponding to the wavelength
7.2 mm, and is equal to 0.45 µs−1.
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Figure 2: The growth rate of the CSR instability versus the wave number k
for the ALS ring with α = 2.7 × 10−3 and the average single bunch current
of 15 mA.

Another important characteristic of the dispersion function ω(k) is the
group velocity of the perturbation

vg(k) =
dReω(k)

dk
. (10)

This group velocity is calculated for the ALS (for the same parameters as
in Fig. 2) and is shown in Fig. 3. The value of the group velocity at the
maximum of the growth rate, which we denote by Vg, is equal to 0.67 mm/µs.
Due to this velocity an initial perturbation will propagate along the z-axis
toward the head of the bunch. It will also spread out due to dispersion effects.

4 Slice evolution in unstable beam

To calculate the time evolution of a localized initial perturbation (slice) in-
duced by the interaction with the laser beam we will use the model of the
coasting beam described in the previous section. This approach is valid while
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Figure 3: Group velocity as a function of the wavenumber k.

the slice remains localized in the vicinity of its initial position and its width
is much shorter than the bunch length σz. We will also use the linear theory
which assumes that the density perturbation δn is much smaller than the
equilibrium beam density n0. Numerically, for the parameters of the ALS
experiment, those approximations turn out to be not very good, however,
this simplified theory gives an insight into the mechanism of the CSR bursts
induced by the laser slicing and can be used for qualitative analysis of the
phenomenon.

To find the time evolution of an initial perturbation, in the linear theory
of a coasting beam instability, we need to integrate ak ei(kz−ω(k)t) over the
spectrum of wavenumbers all the modes (see Section 3):

δn(z, t) = Re

∫

∞

0

a(k)ei[kz−ω(k)t]dk . (11)

The amplitudes ak are determined by the initial perturbation of the dis-
tribution function and can be calculated following the standard technique
described in Appendix 1. For our purposes, the exact expression for this
function is not important.

Note that asymptotically, for large values of t, the dominant contribution
to the integral (11) comes from the harmonics which have the fastest growth
rate Γmax. In this limit, we can expand the function ω(k) about the value of
kmax corresponding to Γmax,

ω(k) ≈ ω(kmax) + ω′(kmax)(k − kmax) +
1

2
ω′′(kmax)(k − kmax)

2 , (12)

and replace a(k) by its value a(kmax) at the point of the maximal increment.
The prime in this equation denotes the derivative with respect to k. Then
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the integral (11) can be calculated analytically

δn(z, t) ∝ 1√
t
ei(z−tVg)2/2tω′′(kmax)eikmaxz−iω(kmax)t . (13)

In this equation, we took into account that Γ′(kmax) = 0 and used notation
Vg = Re ω′(kmax). Note that ω′′(kmax) has both real and (negative) imaginary
parts.

The plot of the function given by Eq. (13) for the ALS parameters is
shown in Fig. 4. Each line gives the profile of the perturbation at a given
time. The line are drawn for the first 5 µs with the time step of 1 µs.
The result shows that an initial perturbation exponentially grows with time,
becomes wider due to the dispersion effects and is moving away from the
center of the bunch. The dashed line in the plot indicates a Gaussian beam
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Figure 4: The time evolution of the initial perturbation.

profile with the rms length of 5.9 mm. We assumed that the initial location
of the slice corresponded to the center of the beam z = 0.

5 Slice evolution in a Gaussian bunch

As we emphasized above, the analysis in the previous section was based on
the coasting beam approximation and is valid in the approximation that the
slice does not move far from its original position.

We can, however, draw some qualitative conclusions about the slice evo-
lution at later times. As we see from Fig. 4 the slice is moving with the
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group velocity Vg (see Eq. (13)). The amplitude of the slice grows expo-
nentially with the growth rate that is determined by the local value of the
beam current I. As the slice moves away from the center, the value of the
current at the location of the slice decreases and the growth rate goes down.
Eventually, the slice arrives at the region where the imaginary part of the
frequency corresponding to the dominant wavenumber in the slice becomes
negative and it starts to decay. The time scale involved into this process can
be estimated as the time needed for traversing of the bunch length with the
group velocity Vg, and for the ALS experiment it is of the order of

t ∼ σz

Vg

∼ 10 µsec . (14)

In our consideration above we neglected nonlinear effects in the slice dy-
namics. They become important when the density perturbation is compara-
ble to the beam density. Due to the large initial density perturbation (see
Fig. 2) they may be of importance in the ALS experiments.

6 Conclusion

We developed a simple model of evolution of the initial perturbation in the
slicing experiments. In the model, the beam dynamics is considered in the
linear approximation. In contrast to the case when the CSR wake is ne-
glected, the model predict that, under certain conditions, the initial pertur-
bation does not decay, but, on contrary, gets amplified. It is moving away
from the center of the bunch, and spreads out. This should be reflected in
the spectrum of coherent synchrotron radiation observed in the experiment.
Although our model gives only a qualitative explanation of the phenomenon
it might be used as a guide for a more detailed studies based on numerical
simulation of the effect.

This work was supported by Department of Energy contract DE–AC02–
76SF00515.

References

[1] J. M. Byrd, Z. Hao, M. C. Martin, D. S. Robin, F. Sannibale, R. W.
Schoenlein, A. A. Zholents, and M. S. Zolotorev, Coherent synchrotron

radiation and microbunching instability induced by laser energy modula-

tion of a relativistc electron beam, Preprint 60002, LBNL (2006).

[2] K. Holldack, S. Khan, R. Mitzner, and T. Quast, Phys. Rev. Lett. 96,
054801 (2006).

8



[3] G. Stupakov and S. Heifets, Phys. Rev. ST Accel. Beams 5, 054402
(2002).

[4] J. Byrd, W. P. Leemans, A. Loftsdóttir, B. Marcelis, M. C. Martin, W. R.
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APPENDIX

Following the derivation from Ref. [3] we consider the beam distribution
function ρ(δ, z, s) as a sum of the equilibrium distribution function ρ0 and a
perturbation ρ1

ρ = ρ0(δ) + ρ1(δ, z, t) , (A1)

with ρ1 ≪ ρ0. Note that the equilibrium beam density (number of particles
per unit length) nb is equal to nb =

∫

ρ0(δ)dδ, and the density perturbation
n1 is given by n1(z, t) =

∫

ρ1(δ, z, t)dδ. Linearizing the Vlasov equation and
assuming that ρ1 has a z dependence ∝ eikz where k is the wavenumber of
the perturbation, we find

∂ρ1

∂t
− ickηδρ1 = −r0c

γ

dρ0

dδ
Z(k)

∫

−∞

−∞

dδ ρ1(δ, t) , (A2)

where Z(k) is the CSR impedance equal to

Z(k) = iA
k1/3

R2/3
. (A3)

with A = 3−1/3Γ
(

2
3

) (√
3i − 1

)

= 1.63i − 0.94, where Γ is the gamma-
function.

To solve the problem with initial condition ρ1(δ, t)|t=0 = ρ
(0)
1 (δ) we define

the Laplace image ρ̂1(δ, p),

ρ̂1(δ, p) =

∫

∞

0

dtρ1(δ, t)e
−pt , (A4)

and make the Laplace transform of Eq. (A2):

pρ̂1 − ickηδρ̂1 = −r0c

γ

dρ0

dδ
Z(k)

∫

−∞

−∞

dδ ρ̂1(δ, p) + ρ
(0)
1 (δ) , (A5)
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The solution of this equation is

ρ̂1 =
ρ

(0)
1 (δ)

p − ickηδ
− cr0Z(k)

γ(p − ickηδ)

dρ0

dδ
n̂1 (A6)

where

n̂1 =
1

D(p, k)

∫

dδ ρ
(0)
1 (δ)

p − ickηδ
, (A7)

and

D(p, k) = 1 +
r0cZ(k)

γ

∫

dδ (dρ0/dδ)

p − ickηδ
. (A8)

With this solution, one can find the time-dependent function ρ1(δ, t) by
making the inverse Laplace transformation

ρ1(δ, t) =
1

2πi

∫ σ+i∞

σ−i∞

dpρ̂1(δ, p)ept . (A9)

From Eq. (A6) we see that there are two contributions to this solution. The
first term, which does not depend on the impedance Z(k) is the ballistic
motion of particles is responsible for the distortion of the slice studied in
Section 2. The second one is due to the collective interaction of the particles
via the impedance Z(k)—it describes the effect of the CSR instability on the
slice.

The standard analysis of the initial value problem (see, e.g., [5], p. 138)
leads to the conclusion that after some transient period, the dominant con-
tribution to the “collective” part of the perturbation comes from the poles
of the function D(p, k), and

ρ1(δ, t) = ρ̃1(δ)e
−ω(k)t , (A10)

where ω(k) satisfies the equation D(−iω, k) = 0. Eqs. (A6-A8) allow to

explicitly relate the function ρ̃1(δ) through the initial perturbation ρ
(0)
1 (δ).
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