Market Specifications and Methods for Fuel Ethanol

SYMPOSIUM ON BIOFUELS

Measurements and Standards to Facilitate the Transition to a Global Commodity US National Institute of Standards and Technology (NIST Brazil's National Institute of Metrology (INMETRO) June 26-29, 2007 José Felix Silva Junior UNICA/IETHA

Complex X Simple

Composition Cleaning tissue alcohol-free for Face and Hands

- Water, parfum
- PPG-1-Peg-9 Lauryl Glycol Ether
- Coceth-7
- Peg-40 Hydrogenated Castor
 Oil
- Imidazolidinyl Urea
- Methylisothiazolinone
- Methylchloroisothiazolinone

Composition of Ethanol For <u>Fuel</u>

- Etanol (92,6 to 99,7%)
- Propanol, isopropanol, butanol, isobutanol, isoamyl (650 mg/L)
- Chloride (<1 mg/kg)
- Sulfate (< 4 mg/kg)</p>
- Conductivity (< 500 uS/m)

Anhydrous is better than some ACS Chemicals

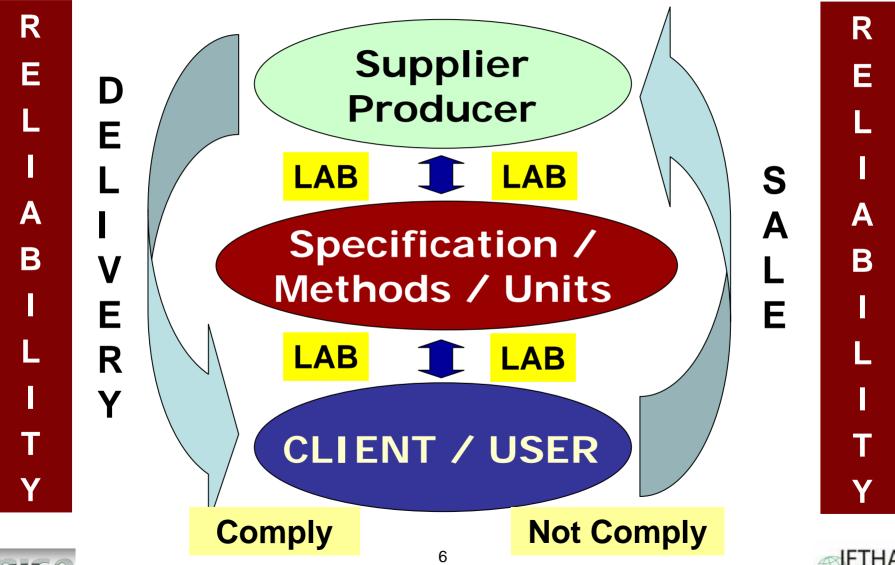
SPECIFICATION

Ethanol Specification

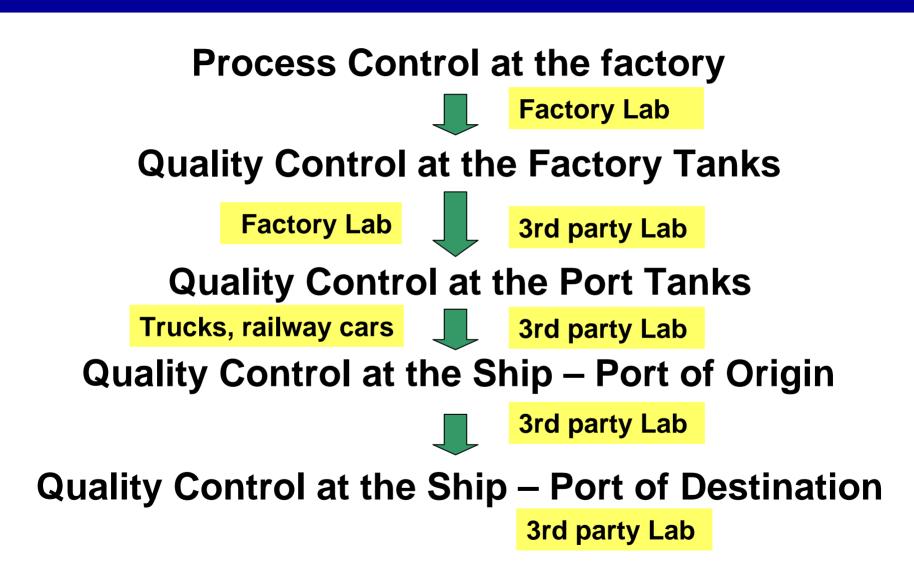
The specification or "statement of needs" has to be clear, concise and logical in functional and performance terms.

It is necessary to know the needs of the client (buyer/user), but at the same time offer an economically viable product.

Ethanol Specification


The product should be evaluated against defined and sound methods of analysis and units, and be understandable by all people involved in the operation.

The definition and implementation of a specification and quality system is a complex task that has to involve skilled people from all the supplier-user chain.



Relationship – Trader - Supplier

Quality Assurance - Reliability

Types of Anhydrous Ethanol

- Denatured Anhydrous Ethanol
 Ethanol which has been rendered toxic or otherwise undrinkable, and in some cases dyed.
- <u>Undenatured Anhydrous Ethanol</u>
 Pure ethanol without any chemical additive.
- Ethanol from oil or gas
- Ethanol from biomass fermentation

Specifications for Fuel Anhydrous Ethanol

Anhydrous Ethanol Specification							
Characteristics	Unit		Brazil	ASTM	Europe		
Density (20°C)	kg/m³	max.	791.5	-			
Alcoholic strength @ 20°C	%m/m	min.	99.3*	-	98,7**		
Alcoholic strength @ 20°C	%v/v	min.	99.6	92.1**			
Water	%v/v (%m/m)	max.	(0.7)	1,0	(0.3)		
Total Acidity - max.	mg/L (%m/m)	max.	30	56 (0.007)	56 (0.007)		
Electrical Condutivity	uS/m	max.	500	-			
рНе	-		-	6.5 a 9.0	?		
Copper	mg/kg	max.	0.07	0.1	0.1		
Chloride	mg/kg (mg/L)	max.	-	40 (32)	(20)		
Solvent-washed gum	mg/100 mL	max.	-	5.0			
Aspect	-		Clear	Clear	Clear		
Methanol	%v/v (%m/m)	max.	-	0.5	(1.0)		
C3-C5 max.	%m/m	max.	-	-	2.0		
Denaturant content	%v/v		-	1.96 a 5.0			
Sulfur	mg/kg	max.	-	30	10		
Sulfate	mg/kg	max.	-	4			
Phosphorus	mg/L	max.	-	-	0.5		
Non-volatil material	mg/L	max.	-	-	100		
* Densimetry ** Gas chromatography							
ASTM International - D4806-06c Europe - Draft prEN 15376 (March 2006)							
98.7 - Ethanol + Higher Saturated alcohols.							

9

More Specification (1)

PROPERTIES	SPECIFICATION / UNITS	METHOD
Alcohol Strength	minimum 99.4% weight	ASTM D5501
- Ethanol	minimum 98.4 %wt	
- Methanol	Maximum 0.6 % wt	
water content	0.6% weight max	ASTM D1744
Higher alcohols	max 200g/hl (= max 0.25% weight)	ASTM D5501
Acidity as acetic acid	max 100 ppm	ASTM D1613
Chlorure	max 10 ppm	IMPCA-002
Esters	max 50 g/hl (= max 0.06% weight)	CEE.L.130
Aldehydes	max 50 g/hl (= max 0.06% weight)	CEE.L.130
Sulfur	max 10 ppm (= max 0.001 % weight)	ASTMD-3961
Cyclohexane	max 20 ppm (= max 0.002 % weight)	ASTM D3054
Benzene	max 10 ppm (= max 0.001 % weight)	ASTM D4534
Iron	Max 1 ppm	
рНе	< 7.5	
Suspended matters	Free]
Non volatiles	Max 50 ppm]

Client Specification and Certificate

Analysis	Specification	Methodology	Unit	Results
Ethanol	99,5 Min	ASTM D 5501	Vol %	99,4 *L
Methanol	0,5 Max	GLC	Vol %	0,0069
Solvent - washed gum	5,0 Max	ASTM D-381	mg/100mL	1
Water	1,0 Max	ASTM E 203	Vol %	0,554
Chloride Content	32 Max	ASTM D-512	mg/L	< 1
Copper content	0,10 Max	ASTM D 1688	mg/kg	< 0,05
Acidity (Acetic acid)	0,007 Max	ASTM D 1613	Wt %	0,0011
рН	6,5 to 9,0	ASTM D 6423		6,5
Sulphur	10 Max	ASTM D 3120	ppm	3
Sulphates	4 Max	Turbidimetric	ppm	< 1
Appearance	Clear	Visual		Clear

Specification for Anhydrous Ethanol

Comments

"Technical Translation" is needed

- Units in volume and mass for ethanol is a big difference, around ±20% from volume to mass and vice-versa.
- Expressions in %, mg/L, mg/100mL, hectolitres, ppm(?), ppm mass(?).
- Many methods for the same parameters.

Characteristics seems to be unnecessary for the use of ethanol as a fuel mixture.

- pHe (in 99,7% v/v)
- Methanol (0.5% v/v)
- C3-C5 alcohols (2.0% v/v)
- Phosphorus (0,5 mg/kg)
- Basic Nitrogen (1 mg/kg)
- Sulfur (50, 10, 2 ,1 mg/kg)

What is the relevance? – Papers, research works.

Anhydrous Ethanol - pHe

pH measurement

- pH is measured to relate it with corrosion.
- Corrosion due to ethanol is insignificant.
- "Steel underground storage tanks have been tested and found to be compatible with ethanol and methanol fuel blends".

Compatibility of Steel with Oxygenated Fuels. Wayne B. Geyer. Steel Tank Institute. 16th Annual ILTA Conference, JUNE 10-11, 1996.

Anhydrous Ethanol - pHe

- What is the meaning?
- Is the measurement stable and reproducible?
- Is the electrode available for all?
- In Brazil, pH is not specified for anhydrous ethanol 25%, but only for hydrated fuel ethanol for flexfuel and alcohols cars.
- No corrosion problems in the gasohol running cars

Corrosion

- All the tanks for anhydrous and hydrated ethanol in Brazil are made of carbon steel.
- The life span is more than 20 years.
- There is no information of leakage or loss of ethanol.
- No special care is necessary.

Anhydrous Ethanol – Organic Compounds

- What is the negative influence of methanol (0.5% v/v) and C3-C5 (2.0% v/v) in fuel ethanol?
- Again in Brazil they are not specified, even for the hydrated ethanol used straight in the flexfuel and alcohol cars.
- No problem is related by the automakers.

Anhydrous Ethanol – Organic Compounds

"The presence of aldehydes, esters and other alcohols in hydrated ethanol, with content 4, 13 and 20 times higher than the emission standard, did not caused any significant difference in the content of the same components in the exhaust gas."

Influence on the car emission of the content of aldehydes, ester, higher alcohols and gasoline in fuel hydrated ethanol. Laerte Graner e Maurício C. Carmona. Volkswagen Emission Laboratory.

Amount of Components in the Fuel mixture (mg)

		E5			E85	
	5L/100L			85L/100L		
Characteristics	Brazil	ASTM	Europe	Brazil	ASTM	Europe
%Ethanol	5	5	5	85	85	85
Water (Karl Fischer)	250	500	150	4.250	8.500	2.040
Total Acidity - max.	1,5	2,8	2,8	26	48	48
Copper	0,003	0,004	0,004	0,05	0,07	0,07
Chloride		1,6	1,0		21,5	13,4
Solvent-washed gum		2,5			42,5	
Methanol		250	500		4.250	8.500
C3-C5 max.			1.000			17.000
Sulfur		1,2	0,4		20	6,7
Sulfate		0,2			2,7	
Phosphorus			0,03			0,43
Non-volatil material			5,0			85
Total (mg)	252	758	1.659	4.276	12.885	27.693

Possible Roadmap – Brussels (Feb/2007)

Possible areas of convergence: US, EU, Brazil specification

• Acidity

- Copper
- Chloride
- Methanol
- Sulphur
- Aspect
- % Alcohol

Possible areas of divergence: US, EU, Brazil specification

- Water
- Denaturant
- Sulfates
- Phosphorous
- Density
- pHe
- Electrical conductivity
- Gum/Non Volatile
 content

This Roadmap was not intensively discussed

Undenatured Anhydrous Ethanol Proposed Specification for Discussion

Characteristics	Unit			Test Method
Density @ 20°C	kg/m3	max.	790.8	NBR 5992 / ASTM D4052
Alcoholic strength @ 20°C	%m/m	min.	99,5*	NBR 5992 / ASTM D4052
Alcoholic strength @ 20°C	%v/v	min.	99,7*	NBR 5992 / ASTM D4052
Water	%m/m	max.	0.5	ASTM E203 / E1064
Total Acidity - max	mg/L	max.	30	NBR 9866 / ASTM D1613-06
Electrical Condutivity	uS/m	max.	500	NBR 10547
Chloride	mg/kg	max.	. 1	NBR 10894, ASTM D7319-07,
				ASTM D7328-07e1
Aspect			Clear	Visual
Sulfur	malka	max	10	ASTM D2622, D3120, D5453,
Sullu	mg/kg	max.	IU	D6428
Sulfate	malka	max	4	NBR 10894, ASTM D7319-07,
	mg/kg	max.	4	D7328-07e1

Test Methods and units have to be homogeneous and validated

Quality of Undenatured Anhydrous Fuel Ethanol

Average Results of 99 Samples and 28 Distilleries São Paulo Region

Characteristics	Unit	Lower	Average	Higher
Total Acidity	mg/L	4.8	10.8	29.6
Chloride	mg/kg	< 0.1	0.2	0.3
Copper	mg/kg	< 0.01	0.07	0.07
Conductivity	uS/m	9	69	346
рН СТС		2.7	6,8	7,9
pH Mill Lab		1.4	5.9	7,9
Sodium	mg/kg	< 0.1	0.4	1.2
Sulfate	mg/kg	< 0.2	1.0	8,1
Methanol	mg/L	6,2	36,3	99,1
C3-C5	mg/L	33.7	649.8	2551.8

Standards Tests for Anhydrous Fuel Ethanol

Characteristics	Brazil	ASTM	Europe	
Density (20°C)	NBR 5992 / ASTM D 4052	-	-	
Alcoholic strength @ 20°C	NBR 5992 / ASTM D 4052	-	-	
Ethanol %	ASTM D 4052	ASTM D 5501	EC/2870/2000 Mehod B	
Water (Karl Fischer)	-	ASTM E 203	prEN 15489	
Total Acidity - max.	NBR 9866 / ASTM D 1613-06	ASTM D 1613-06	prEN 15491	
Electrical Condutivity	NBR 10547	-	-	
рНе	-	ASTM D 6423	?	
Copper	NBR 10893	ASTM D 1688A	prEN 15488	
Chloride	-	ASTM D 7319-07, D 7328- 07e1	prEN 15484 / 15492	
Solvent-washed gum	-	ASTM D 381	-	
Aspect	Visual	Visual	Visual	
Methanol	-	ASTM D 5501	EC/2870/2000, EN 1601 / EN 13132	
C3-C5 max.	-	-	EC/2870/2000 EN 1601 / EN 13132	
Sulphur	-	ASTM D 2622, D 3120, D 5453, D 6468	prEN 15485 / 15486	
Sulfate	-	ASTM D 7319-07, D 7328- 07e1	-	
Phosphorus	-	-	prEN 15487	
Non-volatil material	-	-	EC/2870/2000 , method II	
ASTM - American Society of	Testing Materials	EC - European Community		
NBR - Associação Brasileira	de Normas Técnicas	EN - European Norms / prEN - Draft method		

Methods for Anhydrous Fuel Ethanol

Comments

- ✓ Methods developed for other matrix is used for ethanol. <u>Who tested them</u>?
- Methods for denatured ethanol are asked for undenatured one – <u>unnecessary</u>.
- Tables for density are different IUPAC, OIML, in air, in vacuum.

Methods for Anhydrous Fuel Ethanol

Comments

There are no results from validation and comparison of methods, to know the differences in results (as far as I know).

✓ Uncertainty are not know.

 Repeatability and reproducibility are not know for all methods.

Simple Measurements

- It can be performed in almost any laboratory without special equipment and well-trained technicians.
- Low cost to implement and maintain.
- Easy calibration.
- Easy validation.
- Used easily to control of the process and product.

Complex Measurement

- It can be performed in well-equipped laboratory with special equipment and trained technicians.
- High cost to implement and maintain.
- Special calibration.
- Equipment used only to measure the quality of the ethanol, without any other use for the process.
- Difficult validation

Work Being Done

- Revision of the Brazilian Standards Methods ABNT (Brazilian Assoc. of Technical Standards)
- Production of Certified Reference Material (CRM) for pH and conductivity, water and other characteristics in anhydrous ethanol. INMETRO
- Proficiency test with sugar/ethanol mills Sugar Cane Technology Center (CTC).
- Protocol to develop standards for ethanol. INMETRO – NIST – UNICA – IETHA

WHAT WE SHOULD DO AND GO FOR IT

Collaborate to set International Standards for the Quality of Fuel Ethanol.

Specifications and Methods

- Define what characteristics is necessary for ethanol to be used as a fuel mixture. Rational
- Define specifications for undenatured ethanol and fuel mixture. Simplification
- Define method, units and acceptable limits for each parameter, considering the type of ethanol. Matrix consideration

Specifications and Methods

- For each complex or instrumental methods, find a simple one, to be performed at the industry, even with a low accuracy, but comparable between them. Process control
- Validate the methodology for the ethanol matrix. Metrology
- Provide interlab tests to know the repeatability and reproducibility of the methods. Reliability

Quality Program for Ethanol

- Encourage and sponsor studies and researches for new methods and in the production of a certified reference material. R & D
- Qualify laboratories to analyse ethanol with reliability. Accreditation

José Felix Silva Junior UNICA / IETHA <u>jfelix@unica.com.br</u> Jose.felix@ietha.org

Who is responsible by the specification?

<u>Brazil</u>

Internal Market

- Fuel ethanol (anhydrous and hydrated) ANP
- Industrial hydrated Ethanol Clients

Other countries

- Fuel Ethanol ASTM, NYBOT, Europe, Government, Stakeholders, etc.
- Industrial hydrated Ethanol Clients

Distribution of some components

Sulfate (mg/kg)

Methanol (mg/L)

Class	Freq.	%	% Cum.	Class	Freq.	%	% Cum.
1	88	88,9	88,9	20	18	18,2	18,2
2	4	4,0	92,9	40	51	51,5	69,7
3	2	2,0	94,9	60	25	25,3	94,9
4	1	1,0	96,0	80	1	1,0	96,0
> 4	4	4,0	100,0	100	4	4,0	100,0
	99				99		

C3-C5 (mg/L)

Class	Freq.	%	% Cum.
200	4	4,0	4,0
400	17	17,2	21,2
600	34	34,3	55,6
800	27	27,3	82,8
1000	5	5,1	87,9
> 1000	12	12,1	100,0
	99		

Collaborate to Set International Fuel Quality Standards

In order to develop a significant international biofuel market, fuel quality standards need to be agreed upon and enforced on the international level. This is necessary for consumer confidence and will gain increased importance as international trade in biofuels expands. Automakers need assurances of consistent fuel characteristics so they can honor vehicle warrant

- BIOFUELS FOR TRANSPORTATION GLOBAL POTENTIAL AND IMPLICATIONS FOR SUSTAINABLE AGRICULTURE AND
 ENERGY IN THE 21st CENTURY
- Prepared by Worldwatch Institute for the German Federal Ministry of Food, Agriculture and Consumer Protection

Laboratory Analytical Efficiency

	Sample A33			Sample A34		
	Alcoholic Strength	Acidity	Conduc tivity	Alcoholic Strength	Acidity	Conduc tivity
	%m/m	mg/L	uS/m	%m/m	mg/L	uS/m
Average	99.6	7.0	96	99.4	6.8	64
	Nur	nber of La	aboratorie	es - 69		
Results		Labs %		Labs%		
Good	92	72	85	83	74	89
Questionable	4	8	5	1	4	3
Unsatisfactory	4	20	10	16	22	8

- Simple and complex
- Statement of needs specification
- Sales relationship reliability
- Types of anhydrous ethanol
- Specifications: Brazil ASTM Europe, other specifications, comments and proposed one
- Methods

