EPA420-R-00-013 August 2000

Evaluation of On Board Diagnostics for Use In Detecting Malfunctioning and High Emitting Vehicles

EPA420-R-00-013 August 2000

Evaluation of On Board Diagnostics for Use In Detecting Malfunctioning and High Emitting Vehicles

Edward Gardetto and Ted Trimble Transportation and Regional Programs Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

NOTICE

This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position, or regulatory action.

Executive Summary:

In this report we describe a test program designed to give preliminary answers to the questions:

* Is there a benefit of identifying the emissions problems of vehicles with the OBD system and how does it compare to the available tailpipe tests?

* Will OBD pass any vehicles which are emitting at levels that are of concern in I/M? A total of 201 vehicles qualified for this program, 194 with the MIL illuminated and 7 high emitters with no MIL illumination. After testing these vehicles we concluded that:

* OBD technology is a viable I/M test for 1996 and newer vehicles. The emission reductions available from basing repairs on OBD appear to be at least as large and possibly larger than emission reductions obtained from I/M tailpipe tests.

* OBD did miss some high emitters but performed better than available I/M tailpipe tests.

* Some areas of OBD technology still need to be refined and the vehicles with OBD technology should be monitored for the effect of aging.

* OBD I/M offers preventative maintenance which allows benefits previously unavailable to I/M programs to be claimed.

Background:

On August 6, 1996, under the authority of the Clean Air Act (CAA) as amended in 1990, the EPA published rules requiring the use of On-Board Diagnostics (OBD) in inspection and maintenance (I/M) programs (40 CFR parts 51 and 85). This provision required I/M programs to incorporate an OBD check of OBD equipped vehicles in addition to traditional tailpipe testing on January 1, 1998. The Agency decided to delay the mandatory startup of OBD I/M until January 1, 2001 for a variety of reasons. The primary reason was that there was little data on the performance of OBD systems in-use, given the relative newness of OBD technology. An additional concern existed over the level of understanding of the technology in the states and repair industry. During the delay period the Agency conducted a test program to evaluate the usefulness of OBD for I/M and to determine the associated emission benefits. This effort was coordinated with stakeholders through the Mobile Sources Technical Review Subcommittee, a workgroup formed by the Clean Air Act Advisory Committee (CAAAC). The CAAAC was formed under the 1972 Federal Advisory Committee Act (FACA) in order to advise the Agency on technical matters.

Under the original OBD I/M requirement (Aug. 6, 1996), the Agency intended to collect test data from all I/M programs using both the IM240 tailpipe test and OBD. Using the data collected, the Agency would determine the effectiveness of the OBD test in comparison to the IM240 test and develop emission reduction credits associated with the OBD test. Subsequent to the 1996 regulation, the I/M test environment changed significantly and the use of the IM240 test was not as prevalent as expected. Additional information came to light in the same time frame which indicated that the IM240 test as originally designed has what is known as a "preconditioning" issue¹. Technical discussions about the appropriateness of comparing OBD to a "hot" start test (IM240) and not the Federal Test Procedure (FTP), which is a "cold" start test, were raised both internally at EPA and within the FACA. The cumulative impact of these concerns in I/M was that the comparison of OBD to I/M tailpipe testing, as conducted in the inspection lanes, became of questionable value. The test program described here was undertaken by EPA in order to alleviate the need for states to run dual tests (tailpipe and OBD) in their I/M lanes as a form of data gathering². This report is the result of that test program.

Test Study Design:

It was decided (based on advice from the FACA) to conduct an FTP based test program with a minimum of 200 vehicles³. Vehicle numbers were limited by economics (FTP tests cost several thousand dollars per test per vehicle) and the understanding that the goal of this test program was to provide a first look at the use of OBD compared to tailpipe I/M testing. It is generally accepted that the IM240 is the most accurate I/M test⁴, so we decided that the IM240 would be considered a best case scenario.

In developing the test program several questions had to be considered. First, what is the benefit of using OBD systems to identify emissions exceedences and how does it compare to available tailpipe tests in identifying emissions problems? For this question, vehicles with the malfunction

indicator light (MIL) illuminated would be recruited for the test program. All the post-repair emissions evaluations would have to be based solely on the diagnosis provided by the OBD system as this is accepted industry repair practice for post 1996 model year vehicles.

Second, does OBD miss any vehicles which are emitting at levels that are of concern in I/M (i.e. high tailpipe emissions with no MIL)? For this question, vehicles with potentially high emissions that were not detected by the OBD system would have to be identified.

Because of concerns about the relatively small sample size and the ease of procurement of domestic vehicles it was decided that the sample should be weighted based on manufacturer production for the largest 6 producers. The remaining manufacturers represent a small percentage (<10%) of the entire fleet. "Other" was used to represent the remaining manufacturers. There was also concern that light-duty trucks (LDT) would not be adequately represented unless the sample was weighted for their inclusion. Table 1 below was developed for a 200 vehicle sample based on 1997 sales⁵.

MFR	GM	Ford	Daimler-	Toyota	Honda	Nissan	Other	Total
			Chrysler					
LDV	35	21	10	11	11	7	10	105
LDT	27	29	20	5	1	3	10	95
Total	62	50	30	16	12	10	20	200

Table 1: Procurement Goals Based on Production

Once identified, vehicles would receive the IM240 and FTP emissions tests and an OBD system check prior to any maintenance being performed. This would provide the "As-Received" emissions profile of the vehicle. The FTP would be considered the standard for comparing any emissions reductions and the IM240 and OBD checks would only provide information on identifying vehicles into categories (pass/fail). For vehicles that needed repairs (based on OBD or

tailpipe results), a second series of tests would be run to provide information on the emission changes as a result of the repairs.

Methods:

During a two year period (9/97- 10/99) sampling was conducted at 4 labs [National Vehicles and Fuels Emissions Laboratory (NVFEL) in Ann Arbor, Michigan; Automotive Testing Laboratory (ATL) in Mesa, Arizona; Colorado Department of Health Laboratory (CDH) in Aurora, Colorado; and California Air Resources Board (CARB) in El Monte, California].

For vehicles with the MIL illuminated, any vehicle with a non-evaporative emissions related trouble code (evaporative emissions will be discussed in a separate report) commanding the MIL on was accepted into the program⁶. These vehicles were selected without knowledge of the tailpipe emissions. Vehicles with misfire codes are relatively common, therefore, an upper limit of 25% of any manufacturer's sample was established, based on a fleet survey of 100,000 vehicles in Wisconsin and the relative occurrence of misfire diagnostic trouble codes (DTC)s in the I/M lane⁷. Locating vehicles with MILs illuminated was difficult. Vehicles were solicited through newspaper ads, notices in the E-Mail of large organizations etc., but in the end, recruitment relied heavily on rental fleets, repair facilities, and used car dealers. These businesses provided a more concentrated source of new vehicles to select from and monitor for MIL illumination.

FTP testing was performed using methods described in CFR 86.130-96 with the exception that no diurnal heat build was performed and no SHED testing was conducted. IM240 testing was done in accordance with EPA Technical Guidance EPA-AA RSPD IM 98-1. OBD information was gathered using SAE compliant (SAE 1978) scan tools from various manufacturers. Maintenance on vehicles was performed at either the original manufacturer's dealership or by mechanics following the manufacturer's available service information.

5

Vehicles procured with the MIL illuminated were inspected for safety and OBD information then tested using the LAB240 (see definition in appendix 5) procedure with the fuel that was in the tank (fuel samples were taken and analyzed for sulfur content). The vehicles were then drained of in-use fuel and refueled with indolene test fuel. Next the vehicles received a standard FTP and a second LAB240. These FTP emissions represent the "before" level of emissions. The vehicles were then sent for repairs, if called for by either the OBD status or the FTP emissions levels. After repair it was again tested on the FTP to determine the "after" level of emissions. Any difference measured between the two FTPs represented the air quality improvement attributable to the repair. (See appendix 2 for test sequence details)

Maintenance performed in this program followed OEM published procedures and (in some cases consultation with OEM engineers augmented published information when high tailpipe emissions with no OBD problem existed). In cases where a scan of the OBD system indicated a diagnostic trouble code, but the technicians could find nothing wrong, the OBD system was reset. The OBD system was then allowed to verify the absence of any OBD problem.

Two vehicles came in with emissions extremely high and/or running so poorly that they could not be FTP tested. These were repaired and their costs were included in the cost data but since we had no initial test we could not ascertain an air quality benefit. See discussion in appendix 6, Table x2.

Procurement of High emitting vehicles with no MIL illumination

To recruit vehicles with high emissions and no MIL illumination we used LANE240 (see definition in appendix 5) test data. Additionally some attempts were made at identifying vehicles which experience indicated could have high emissions (e.g. high mileage, driveability problems). The most stringent IM240 standards⁸ were applied even though the actual state I/M program did not fail vehicles based on these values. For testing conducted at the ATL facility an agreement was made with the contractor for one of the local IM240 lanes to test 1996 and newer vehicles

using the full test (no fast pass) and applying the appropriate cut points. When a vehicle was identified, ATL personnel were notified and the owner was approached regarding the use of the vehicle in the test program. ATL also put pamphlets in all of the other Phoenix I/M lanes requesting owners to contact them if they failed the LANE240 test. At the CDH lab, LANE IM240 failing vehicles were identified using the state's computer data base. Owners were contacted via phone or mail to request the use of the vehicle in the test program. For vehicles recruited using LANE IM240, if the vehicle passed the LAB IM240 they were released because they were an error of commission by the LANE IM240. Because the NVFEL lab is not located near an operating I/M program no attempts were made using I/M as a screening tool. NVFEL, along with ATL and CDH did attempt to find vehicles which OBD may have missed by recruiting vehicles that were suspected of having high emissions even without any quantitative verification. These vehicles tended to be ones that local mechanics said were running poorly, or vehicles with very high mileage. On the vehicles which were suspected high emitters without any tailpipe data, the LAB IM240 was also used as a screening tool.

Results:

Sample

201 vehicle tests were conducted in the program, versus a target of 200 vehicles (1 vehicle procured twice). Table 2 represents the breakdown of this sample by manufacturer and vehicle type, cars (LDV) and trucks (LDT).

MFR	GM #procured (% of goal)	Ford	Diamler- Chrysler	Toyota	Honda	Nissan	Other	Total
LDV	45	31	22	5	8	7	14	132
	(128%)	(148%)	(220%)	(45%)	(73%)	(100%)	(140%)	(126%)
LDT	18	28	16	1	0	4	2	69
	(66%)	(96%)	(80%)	(20%)	(0%)	(133%)	(20%)	(73%)
Total	63	59	38	6	8	11	16	201
	(102%)	(116%)	(127%)	(38%)	(67%)	(110%)	(80%)	(100%)

Table2: Description of Sample by Manufacturer and Type

The category of "other" is made up of the following LDVs and LDTs in the sample:

Mazda	n= 2	Kia	n= 1
VW	n= 3	Saab	n= 1
Isuzu	n=2(LDT)	Volvo	n= 1
Hyundai	n= 3	Suzuki	n= 3

Breakout by model year

	1996	1997	1998	1999	2000
LDV	28	33	38	32	1
LDT	27	22	14	6	0

Odometer readings

	LDV	LDT
MINIMUM	29	3981
AVERAGE	26440	54505
MAXIMUM	93575	245000

Of the 201 vehicles in the sample, 194 were procured with the MIL illuminated. Table 3 shows how these vehicles compared to the FTP tailpipe test.

	# with MIL illuminated	# which failed FTP over	subset that failed over 1.5
	(# that MIL went out*)	appropriate cert. standard	times standard
LDV	128 (subset of 5)	40	21
LDT	66 (subset of 6)	18	10
Total	194 (subset of11)	58	31

Table 3: Vehicles with MIL illuminated

* denotes that MIL self-extinguished while vehicle was undergoing FTP testing

Table 3 includes two vehicles which are assumed to have failed their as-received FTP at over 1.5 times the applicable tailpipe standards⁹. These vehicles could not be driven on the FTP trace and therefore no tailpipe readings are available. A description of these vehicles is in appendix 6.

Part of the recruitment process was to find vehicles with high emissions and no MIL illumination. IM lanes or technicians identified eight (8) vehicles which ultimately qualified as having high emissions with no MIL illumination. These vehicles represent vehicles which failed a LAB240 without MIL illumination. Table 4 represents a summary of these data

	# with no MIL	# which failed FTP over cert. standard (includes over 1.5X)	# which failed FTP over 1.5 times standard
LDV	4	2	1
LDT	4*	3*	3*
Total	8	5	4

Table 4: Sample of Vehicles with no MIL Illumination

*CDH04 was recruited for no MIL but subsequent scanning of the OBD systems showed that the MIL was commanded on. This truck is not considered an OBD miss.

The ability of OBD to correctly identify vehicles which are emitting at levels significantly over their applicable certification standard (2x) was also investigated. The subgroup of vehicles making up this sample is listed in Table 5.

	# over twice cert standard	# with MIL on (w/FTP over 2X)	# which failed LABIM240 (w/FTP over 2X)
LDV	15	14	7
LDT	6	5	6

Table 5: Vehicles over twice their certification standard

The one LDV (CDH03) and one LDT (CDH33) which were missed by OBD were failed by the LAB IM240; the eight LDVs which were missed by the LAB IM240 were failed by the OBD scan.

Information on the ability to repair high emitting vehicles based solely on extinguishing the MIL was also collected. Of the 15 LDVs with emissions over twice their standard 12 (80%) retested, after repairing for the MIL illumination, to below the certification standard. For LDTs the number was 4 (80%) of 5 over twice certification standards. All the LDVs tested below 1.5X the applicable standards after repair. The vehicles remaining above their standard after repair but with no MIL are discussed in another section of this report (Table 10).

Repairs conducted in this test program provide information on the cost of repairing for MIL illuminations (Table 6). Many of the vehicles in this program were still within their warranty period and cost details were not given on the repair invoice. Costs for repairs were assigned to them based on parts costs and a labor rate of \$70 per hour. Vehicles with "maintenance not required" (MNR) were charged 1 hour of labor. See appendix 3 for details on how costs were assigned.

	# repaired for MIL	# with MNR	Average cost of repair (includes 1 hr cost for	Average cost of repair excluding MNR
			MNR)	C
LDV	128	25	\$252	\$287
LDT	66	14	\$284	\$322
Total	194	39*		

Table 6: Average Cost of OBD Repair

* 29 of the 39 had misfire or fuel trim OBD codes which we believe would be repaired in the field but were not repaired for this program.

The cost of repairs varied greatly in the sample. The most costly repair was \$2,150 for repair of two cylinder heads on a LDV (CDH 32). The most costly LDT (ATL 090) repair was \$1,974 for replacement of a transmission (OBD transmission fault detected (see discussion in appendix 7). The median repair cost for LDV was \$160 while for LDT the median was \$210. Based on current waiver regulations (~\$600 waiver limit¹⁰), at least 94% of the LDV and 91% of the LDT could be repaired for below current I/M waiver limits.

Emissions reductions attributable to OBD repairs (and LAB IM240) are in Table 7. The IM240 repair data overlap with the OBD repair information in this table based on each test's ability to identify a vehicle. It should be noted that CDH did not measure non-methane hydrocarbon (NMHC) and CARB did not measure total hydrocarbon(THC) for their respective vehicles. The THC and NMHC averages in the tables reflect averages calculated from vehicles with only these measured emissions. LDV and LDT data are presented separately because we think that there is a significant difference in the stringency of the control strategies. The reader may combine these data without hazard as they were all gathered and combined in the same fashion.

LDV	THC	NMHC	СО	NOx	CO2	MPG
average	.138 gpm	0.1 gpm	2.40 gpm	0.1 gpm	6.47	-0.53 mpg
reduction for					gpm	(increase in
OBD repair	n= 114	n= 111	n= 126	n=126	n=114	fuel economy)
N=126						n=114
average	0.1 gpm	0.1 gpm	2.42 gpm	0.1 gpm	6.21	-0.53 mpg
reductions for					gpm	
OBD repairs	n= 108	n= 105	n=118	n=118		n= 108
with \$600					n=108	
repair limit						
n=118						
average	1.04 gpm	0.9 gpm	15.4 gpm	0.6 gpm	14.71	-2.36 mpg
reduction for					gpm	
IM240 repair	n=7	n=5	n=7	n=7	n=7	n=7
n=7						

Table 7: Average Reductions from Repairs

Vehicle ATL78 was not included in the calculations of for either OBD or IM240 since no FTP results were available. Vehicle ATL96 was excluded from the calculations for OBD (IM240 did not identify this vehicle) for the same reason.

Table 7 continued

LDT	THC	NMHC	СО	NOx	CO2	MPG
average reduction	.11 gpm	0.05 gpm	1.56 gpm	0.13 gpm	-2.66gpm	-0.03 mpg
for OBD repair						
n=65	n= 65	n= 49	n=65	n=65	n=64	n=64
average	0.10 gpm	0.05 gpm	1.62 gpm	0.08 gpm	-3.42gpm	-0.02 mpg
reductions for						
OBD repair with	n= 60	n= 46	n= 60	n= 60	n=60	n=59
\$600 limit n=60						
average reduction	0.84 gpm	0.37 gpm	10.47 gpm	0.60 gpm	8.27gpm	-0.79 mpg
for IM240 repair						
n=7	n=7	n=5	n=7	n=7	n=7	n=7

Vehicle CDH04 was not included in the calculations of for either OBD or IM240 since no FTP results were available.

Vehicles that failed the LAB240 with the MIL illuminated were repaired based mainly on the OBD codes and therefore are not completely independent of OBD effects. Another way to look at the same repair reductions is to quantify the total grams per mile reduced over the study and not on a per vehicle average. This is reflected in Table 8.

LDV	THC	NMHC	СО	NOx	CO2	MPG
Summation reduction	15.8 gpm	11.1 gpm	303 gpm	12.0 gpm	737 gpm	-60 mpg
for OBD repair						
Summation reduction	7.2 gpm	4.5 gpm	108 gpm	3.9 gpm	103 gpm	-16 mpg
for IM240 repair						
LDT	THC	NMHC	СО	NOx	CO2	MPG
Summation reduction	7.5 gpm	2.6 gpm	102 gpm	8.2 gpm	-170 gpm	-2 mpg
Summation reduction for OBD repair	7.5 gpm	2.6 gpm	102 gpm	8.2 gpm	-170 gpm	-2 mpg
	7.5 gpm 5.9 gpm	2.6 gpm 1.8 gpm	102 gpm 73 gpm	8.2 gpm 4.2 gpm	-170 gpm 58 gpm	-2 mpg -5 mpg

Table 8: Summation of reductions associated with OBD repairs and IM240

The ability of OBD systems to identify components which are not functioning properly, even when the vehicle was emitting below applicable standards, was investigated in this study. Table 9 lists the result of maintenance performed on vehicles with tailpipe emissions below the applicable certification standards.

Table 9: Maintenance aspect of OBD MIL illumination identification

	MIL on/passing FTP	malfunctioning part	Unable to duplicate
		found	malfunction (MIL
			extinguished)
LDV	88	63	25 (3)
LDT	48	34	14 (6)
Total	136	97	39 (9)

See appendix 4 for a list of parts replaced

During this test program 5 vehicles without MIL illuminations were found to have tailpipe emissions exceeding both their applicable standards and the 1.5 times target trigger level for MIL illumination. These vehicles are listed in Table 10 with the cause of their high emissions. Two of these vehicles are post OBD repairs for MIL illumination (ATL130 and ATL120). These two vehicle's emissions remained above the trigger level even after all reasonable diagnostics had been completed.

Vehicle	FTP Emissions	Problem found
CDH03; 1996 Chrysler	As-Received	OBD error of omission; unanticipated
Neon, odometer 86236	FTP:THC CO NOX	oxygen sensor failure; later model years
LANE IM240 failure	1.73 52 0.25	have revised logic which would have
		illuminated MIL
CDH04; 1996 GM S10	Could not be driven	OBD commanding MIL on but electrical
Pickup Truck, odometer	on FTP	short caused no MIL illumination; Scan
27,063	Projected FTP failure	of system showed MIL commanded
LANE IM240 failure	(See appendix 6, table	"On". This vehicle would be identified
	X2)	in an OBD I/M scenario.
CDH33; 1997 Daimler-	As-Received	THC level is below 1.5 times
Chrysler 1500 Pick-up	FTP:THC CO NOX	certification standard (NMHC is
truck, odometer 113,543	0.55 12.8 2.9	unknown) but CO and NOx are over 1.5
LAB IM240 failure		times. See discussion of catalyst monitor
ATL130; 1996 Isuzu	Post Repair	OBD repair did not return vehicle to
Hombre (GM certified	FTP:THC CO NOX	below 1.5 times certification standards
system) 235K odometer	0.5 17.1 0.6	(HC below CO is over) See discussion
MIL on prior to repair; off		on catalyst monitor.
after repairs.		

Table 10: Discussion of specific vehicles

ATL120; 1997 GM Gr	Post Repair	No problem found during diagnostics
Am odometer 47,173	FTP:THC CO NOX	(HC and CO below trigger levels for
MIL on prior to	0.14 1.6 1.0	OBD; NOx above OBD trigger level)
diagnostics		

LDV CDH03 from the table above is considered an OBD error of omission due to the emissions levels and the lack of MIL illumination. The repair of the oxygen sensor returned this vehicle to acceptable emissions level. Further investigation of this problem by Daimler-Chrysler engineers found an unanticipated failure mode of the rear oxygen sensor. Daimler-Chrysler found that this failure mode would be detected by all later OBD systems in their product line. No additional examples of this type of oxygen sensor failure mode were located in this test program. LDT CDH04 is not considered an OBD error for this study since the OBD computer was commanding the MIL to be illuminated, but the nature of the problem (short in the electrical system) would not allow the MIL to illuminate. This type of problem would be caught by scanning the OBD system, as opposed to just a visual check of the MIL (as required by EPA regulations). LDT CDH33, LDT ATL130 and LDV ATL120 fall into a category of OBD error of omission that is allowable under the current OBD regulations. Each of these vehicles appears to have emissions problems (CO and NOx) due to catalyst efficiency losses (this is based on evaluation of the emission control systems on each vehicle). These vehicles do not exceed the HC trigger level, which is used as the monitor for loss of catalyst efficiency¹¹, therefore, these systems are not in violation of the OBD requirements. In this study, due to the lack of a detailed (complete bench analysis of each emission component) analysis of the entire emissions system, it was not possible to say for certain that these CO and NOx problems were exclusively due to loss of catalyst efficiency. Extensive engineering analysis of the engine controls and catalyst system would be required to address this area. This was beyond the scope of this study.

Recruitment of vehicles from IM lanes with excessive emissions and no MIL resulted in a very low number of vehicles in this program. As shown in Table 11, we recruited 17 vehicles that had failed the LANE240 with no MIL illumination. Fifteen (15) of the 17 passed the LAB 240. We gathered no FTP data on the 15 since the purpose of this area of the test program was to find vehicles with high emissions and no MIL illumination.

 Table 11: Attempts at I/M lane procurement

Failed LANE IM240/No MIL	Passed LAB IM240
17	15

All 17 vehicles failed the LANE IM240 for CO; seven (7) failed exclusively for CO.

Discussion of results:

The vehicle sample from this test program has several aspects which should be noted. First, LDVs are over represented in comparison to LDTs (132 to 69 respectively). This may be due to the LDTs having lower emissions relative to their less stringent emissions standards. Since most of these LDT's emission control systems are very similar to LDV systems, manufacturers may have made the OBD systems less sensitive to specific component degradation. This would cause less MIL illuminations for LDTs than for similar LDVs. Also, because LDTs have higher allowable tailpipe emissions (but similar emission control systems) than LDVs, normal degradation of the emissions to high levels should take longer. How or if this impacts conclusions from this study is not known at this time. Congruent with this fact is the matter of the low age of the fleet of vehicles being evaluated. Because of the short period these vehicles have been in use, procurement for this program was difficult and average mileage low (37,000 miles). We do not believe that this should impact conclusions being drawn from this study since the OBD system is for the most part a software/solid state system and not subject to ageing impacts. The main impact of the newness of these vehicles is in the cost of procuring study vehicles and limited

exposure of input and control hardware to real world effects (heat, cold, water, salt). Continued study of this fleet as it ages and accumulates mileage is recommended but little data exists to draw any meaningful conclusions regarding these impacts at this time (EPA is completing a high-mileage study of OBD vehicles in the fall of 2000). The possibility exists that synergistic effects of multiple components aging may impact the OBD systems ability to detect vehicles which have high emissions. At this time no evidence suggests this possibility will cause dramatic change in OBD's usefulness for I/M.

Within this study, the sample of Honda and Toyota are under represented due to difficulty in finding vehicles made by these manufacturers which met the acceptance criteria. One explanation for this may be that both manufacturers have a reputation of high quality and limited emissions problems. The possibility remains that the OBD systems on these manufacturers vehicles are not functioning as required and therefore MIL illuminations are limited. Given the age of the fleet being evaluated and the limited ability to find Hondas and Toyotas at I/M lanes (Hondas and Toyotas generally have a low failure rate in I/M), no real conclusion can be reached on these manufacturer's OBD systems based on these data. More targeted study of these two major manufacturers appears warranted as their products age. An additional targeted engineering study could be performed to offer a level of comfort on this matter.

Of the 194 vehicles that were accepted into the program with the MIL on, 43 or 22% were sent home without any repairs and were listed as "maintenance not required" (MNR). This segment, which some may characterize as "false failure", requires further explanation. Ten of these vehicles were sent home because the MIL extinguished before initial testing was completed. Since our repair goal was to extinguish the MIL, and self extinguishing is normal operation, we had no more interest in these vehicles and we did no further testing. Of the 33 remaining vehicles 30 passed the FTP. Two (ATL94 and ATL98) were below 1.5 times FTP and one (ATL120) was an acknowledged dirty vehicle, for which we could not find an appropriate repair. We judge that all 43 of these vehicles had intermittent problems. Almost half (15) had misfire codes. Misfires are notoriously intermittent and in some cases we were able to make a vehicle misfire in the lab by spraying the engine compartment with water (similar to real world conditions). In at least one case we were unsuccessful with this technique even though we could plainly see where the misfire was occurring from an ignition wire that was not routed correctly. An additional 11 of the 33 had fuel trim OBD codes which OEM diagnostics failed to identify a specific cause.

While an argument can be made that these nonrepaired vehicles initially having OBD failures found in this test program represent OBD's equivalent to the tailpipe false failure, we believe that this problem is overstated in this study (due to procurement methods which solicited vehicles as soon as MIL illumination occurred) and that OBD offers a better method of dealing with these problems than traditional tailpipe I/M. The OBD technology offers the technician the ability to diagnose the I/M problem directly from the same system that was used to fail the vehicle at the inspection lane. Additionally, if the technician can not find any problem with the system and the system does not retrigger the MIL, the technician has a higher level of assurance that the vehicle will pass the retest at the inspection lane. Smooth implementation of OBD checks in I/M programs will rely on educating the public, I/M inspectors, and the automotive service industry about OBD technology.

It is believed that changes to the OBD regulations which make extinguishing MILs easier for misfire and fuel system problems should reduce this concern (intermittent MILs) on future model years. These intermittent problems that occur are no different than intermittent problems that occur on pre-OBD II vehicles and are merely a by-product of engineering applications. OBD is not designed to eliminate these intermittent problems, only to indicate and provide a possible root

cause for the technician to investigate. It should be acknowledged that these intermittent problems existed prior to OBD technology and are not created by the technology. These problems may cause frustration with consumers and technicians but are believed to be a problem which is addressable through proper education of technicians and owners. Discussions with repair technicians and members of the Service Technician Society (STS) have shown that the intermittent misfire and fuel trim problems are being addressed with real field fixes. Anecdotal evidence indicates that field repairs are limiting the recurrence of these codes.

Conclusions:

From this study we conclude that the OBD technology is a viable I/M test for 1996 and newer vehicles. The magnitude of emissions reductions available from basing repairs on OBD appear at least as large, if not greater, than available I/M tailpipe tests. In direct comparison to the IM240 the OBD technology offers the ability to identify more of the vehicles with tailpipe emissions which exceed certified standards (see Tables 3, 4, and 5). With only a couple of exceptions OBD identifies the same vehicles that IM240 does and additionally identifies components which have degraded and may cause future emissions problems. While the instantaneous emissions benefits of identifying and repairing these components are small, long term durability of expensive components (catalytic converter, fuel injectors, oxygen sensors, transmissions) may be extended from this type of preventative maintenance. Additionally, we found that OBD repairs effectively returned vehicles to their proper operating conditions and that tailpipe emissions, for a majority, returned to below certification levels. The cost of repairs for extinguishing the MIL appears reasonable with a limited number of exceptions. We believe it is almost impossible to separate the cost of repairing IM240 failures from OBD failures since OBD diagnostics are the basis for almost all emission system repairs on these vehicles and in the field.

While OBD does not appear to identify all of the high emitting vehicles, including a tailpipe test as part of an I/M test program design in order to catch the small fraction of failures missed by

OBD, would be questionable due to cost and air quality benefits associated with the gain. The probability of false failure with the tailpipe test appears to be high at this time for these vehicles (model year 1996 and newer). Another problem with tandem testing would be explaining conflicting test results between the OBD test and the tailpipe test. While there exists many plausible engineering explanations for conflicting results, the perception problem created with the general public would not be easily addressed. The high level of confidence in the existing tailpipe test results could be a barrier to the acceptance of the OBD technology.

The rate of IM240 lane false failures (15 out of 17) is troubling. Further investigation concerning IM240 testing accuracy is justified before any recommendation for tailpipe testing these newer vehicles is warranted. Current revisions to the IM240 test cycle (AZ147 cycle) may offer better results but this is unknown at this time. All previous studies on tailpipe testing effectiveness have evaluated fleets in general and not the effectiveness on new vehicles specifically. The results from this test program would support further study of any tailpipe test on this specific technology group before including a tailpipe test. Other I/M tailpipe tests may have similar or worse problems with new vehicles. It should be pointed out that in its comparison of the emission reductions attributable to OBD-I/M versus IM240, the OBD tailpipe study was biased in favor of the IM240 to ensure that the conclusions drawn regarding OBD-I/M relative effectiveness were conservative. Specifically, when a vehicle was identified as a likely IM240 false failure based upon a comparison of LANE240 and LAB240 test results, that vehicle was then dismissed from further participation in the study. As a result, the gpm emission reductions attributed to IM240 were not "watered down" down by the false failures noted between the LANE- and LAB240s. Conversely, potential OBD false failures were included in the sample and were actively recruited. Therefore, the gpm reductions attributed to either test based upon this pilot really do represent the "best case" scenario for IM240 and the "worst case" scenario for OBD-I/M.

In this study the cost of performing OBD repairs to extinguish MILs appear accurate and reasonable in cost. No calculations of cost effectiveness were performed for this report due to the limited scale of this study and any comparisons would be with fleet cost effectiveness values. The average repair costs of \$252 and \$284 for OBD LDV and LDT respectively is higher than the CPI corrected value for IM240 repairs from the 1992 I/M regulation of \$200. We believe that this is mainly due to the very small percentage of very expensive repairs found in this study. We believe that any comparison of cost effectiveness should account for the level of false failures which occur in tailpipe testing demonstrated in this study. Without adjustments for this concern and life-cycle analysis of OBD's preventative repairs any comparison is of limited application.

Recommendations:

Several areas of the OBD technology appear to justify further examination. The no malfunction found vehicles raise concerns of overly sensitive OBD systems that detect problems that cannot be repaired due to their intermittent nature. This could lead to frustration for vehicle owners and technicians and could impact acceptance of OBD technology. In this study, the prevalence of this problem may be overstated due to the nature of recruitment (vehicles were very hard to find and vehicles were recruited as soon as MILs were illuminated). In a "real world" scenario, many of these vehicles would have had the MIL extinguished naturally through normal driving (none of the vehicles which had their MIL extinguish during the test program were procured from the I/M lanes, which adds credence to this hypothesis).

The OBD catalyst efficiency monitoring requirements appear to offer somewhat of a window for vehicles to exceed their tailpipe emissions levels for CO and NOx without any MIL illumination. It is unknown from this study if the vehicles which failed for CO and NOx due to apparent catalyst problems would eventually illuminate the MIL based on loss of efficiency for HC. Further study in this area appears justified and the assumptions in monitoring catalysts should be

revisited for possible refinement. Along these lines CARB has proposed OBD regulation changes which would address catalyst NOx conversion efficiency¹².

This test program was run on vehicles which are relatively new and therefore can not address the impacts of time on these systems. While care was taken not to test vehicles with little or no mileage accumulated, nothing can substitute for exposure of these systems to seasonal changes and mass of fuel through the systems which come with natural aging. Based on this we feel that further monitoring of this technology as it ages is advised. With this understood, we believe that this technology has demonstrated an ability to identify vehicles with high emissions or defective components which is as good or better than available tailpipe tests at this time. Additional study of this technology as mileage is accumulated and as time passes is advised in order to offer continuing confidence in this method of identifying vehicles in the fleet which should be repaired. Vehicles that were not adequately represented in this study, i.e. Hondas, Toyotas, and to some degree trucks, should be also be investigated further.

Appendix:

1 <u>Regulatory Summary</u>

The following discussion provides a summary of the regulatory history and the current regulatory requirements for EPA's OBD program. A detailed discussion of the specific EPA OBD requirements that manufactures are required to comply with are contained in the Federal Register (58 FR 9468 for '94-'97 model years, 63 FR 7081 for '98 and later model years). CARB OBDII requirements can be obtained from the California Air Resources Board. The documents cited throughout this discussion are available on EPA's OBD Web site at "www.epa.gov/oms/obd.htm". CARB documents can be found at "www.arb.ca.gov".

On February 19, 1993, the EPA published a final rulemaking (58 FR 9468) requiring manufacturers of light-duty vehicles (LDV) and light-duty trucks (LDT) to install on-board diagnostic (OBD) systems on such vehicles beginning with the 1994 model year. The regulations promulgated in that final rulemaking require manufacturers to install OBD systems that monitor emission control components for any malfunction or deterioration causing certain emission thresholds to be exceeded. The regulations also require that the driver be notified of the need for repair via a dashboard light when the diagnostic system has detected a problem. Under these regulations, a vehicle's OBD system must be capable of detecting a malfunction or deterioration of emission-related components before such a malfunction or deterioration individually causes an emission increase greater than certain thresholds. For example, the OBD system must identify catalyst deterioration before it results in both exhaust emissions greater than 0.6 g/mi THC and an exhaust emission increase of greater than 0.4 g/mi THC. As mandated by the Clean Air Act Amendments of 1990, the original Federal OBD regulations required manufacturers to monitor the catalyst, oxygen sensors and to detect misfire. The 1993 regulations also required manufacturers to monitor for evaporative system leaks and for any other component malfunction or deterioration that could impact emissions.

The 1993 regulations provided that manufacturers could certify to CARB OBDII requirements to meet Federal OBD requirements, which in most cases are at least as stringent as the Federal OBD requirements. This compliance option was available to manufacturers through the 1998 model year. The 1993 requirements are applicable to MY 1994-1998.

On December 22, 1998 (63 FR 70681), EPA promulgated a final rulemaking to update the original Federal OBD regulations finalized in 1993. One of the primary goals of the 1998 regulation was to redesign the Federal OBD requirements such that they more closely resembled the CARB OBDII requirements. As a result, EPA moved the Federal OBD program away from the additive threshold approach and adopted aspects of CARB multiplicative approach. In other words, OBD systems would be required to monitor deterioration and malfunction of emission-related components at 1.5 times the applicable standard for HC, CO, and NOx. In addition, the Federal OBD monitoring requirements were expanded from the 1993 list (this reflected EPA's requirement from the CAA to move to an OBD system check to enhance or replace traditional tail-pipe tests in Inspection/Maintenance programs).

The 1998 regulations extended indefinitely the CARB OBDII compliance option to manufacturers beyond the 1998 model year. However, EPA is required to update its regulations whenever CARB finalizes changes to their regulations. EPA will publish a Federal Register notice in these instances announcing the adoption of the latest CARB changes and will invite comment from interested parties. The changes finalized in the 1998 regulations are applicable to 1999 and later model years.

2 Test Sequence Used at Laboratories

- i. Procurement and acceptance into the program
- ii. LA-4 cycle (preconditioning for IM240 test)
- iii. IM240 test
- iv. Drain in-use fuel
- v. Fill with indolene (40% fill)
- vi. LA-4 cycle (preconditioning for FTP test)
- vii. 12 hour soak (no diurnal heat build)
- viii. FTP test (no evaporative test)
- ix. IM240 test
- x. Repair if necessary
- xi. OBD Readiness flags cleared thru operation of vehicle
- xii. Repeat starting at iv

3. <u>Estimating Costs</u>

Repair information for vehicles was reported in several different ways. Some work invoices listed the parts that were replaced or the repairs that were made with no indication of cost, others listed the cost of the parts only, while some work invoices listed only the total cost of the repair with no breakdown of parts and labor. Many of the vehicles in the test program were still under warranty and were sent to the dealers for repair. In most of those cases, since there was no charge, there was no cost information. Information was gathered from dealerships to assign repair costs in these cases.

To assign a cost to each vehicle we took the following steps:

1/ List of all the "hard" data, (labor hours, labor charge, parts charge, total charge)

2/ The miscellaneous charges were added as though they were labor or parts

3/ The labor rate was assumed to be \$70 per hour. (Actual rates varied from \$50 to \$70)

4/ The number of labor hours can now be calculated from the labor cost data and this is added to our table of "hard" data.

5/ For multiple repairs that are similar (O2 sensors is the best example) we averaged the parts and labor hours and assigned those values to the vehicles that have no cost data available.

6/ Where we had no "hard" data for labor hours we used the composite judgement of several people that were experienced in these repairs.

7/ All vehicles for which there were no problems found were assigned one hour labor, in the absence of other data, under the assumption that most shops would charge that amount for the DTC scan

We believe this approach to be as conservative as possible, biasing the cost data, if at all, to the high side.

4 <u>Broken parts</u>

A breakdown of the broken parts found for vehicles with passing FTP scores and a MIL illumination is in Table X1.

Table X1: Broken Parts Found with Passing FTP emissions

Systems/Components	LDV	LDT
O2 Sensor	11	15
EGR_System	4	6
Ignition System (spark plugs, ignition wires, other)	10	1
Transmission related components	3	4
PCM, Reprogram or Replace	10	1
Wire Harness problems	6	1
Engine, Mechanical (cylinder head, harmonic balancer, valve springs)	1	1
Vacuum Leaks	4	2
Thermostat, Cooling System	1	0
Fuel Pump	2	0
Cam Sensor	2	0
Secondary Air Combo Valve	2	0
Throttle Position sensor	1	1
Exhaust Leak	0	1
Mass Air Flow sensor	1	0
Intake Air Controller	1	0
Evaporative emissions valve	1	0
Catalyst	3	1

5 Lane IM240 and Lab IM240

There are a number of differences between the way an IM240 test is conducted in an inspection lane and the way that the test is conducted in an emissions laboratory. Some of them are:

- 1/ quality of the test equipment
- 2/ frequency of calibration of test equipment
- 3/ skill of technician
- 4/ control of ambient conditions
- 5/ control of tire pressure
- 6/ operating temperature of the vehicle

The first five items are of critical importance for a certification test in the laboratory but it is our opinion that they are diminished in comparison to the last item for I/M testing.

By far the greatest importance is item six. There is a large variation in emissions between a partly warmed vehicle and a fully warmed vehicle. In the laboratory an LA4 (1372 seconds) test cycle is run before the LAB240 test to assure that the engine is fully warmed up and the catalyst hot. Vehicles arriving at I/M inspection lanes are assumed to be at operating temperature due to the driving prior to arrival at the lane (this may or may not be true). Attempts have been made in I/M systems to address this preconditioning problem through various methods.

6 <u>Non-Testable Vehicles</u>

Table X2 is a description of why each vehicle was not testable and why the FTP is assumed to be over the applicable standards.

Vehicle	FTP dynamometer concerns	Available data
CDH4, 1996 S-10	Truck could not accelerate and would	Lab IM240 results:
Pickup MIL off	stall in 3 rd gear on FTP	(THC/CO/NOx)
(computer		11.8/147/0.02
commanding MIL		Black plume of smoke from
"On")		tailpipe
ATL78, 1999	IM240 test of the vehicle caused	Lab IM240 results:
Malibu	closure of test cell due to hydrocarbon	32.1/45.6/0.14
MIL illuminated	contamination of instruments.	Raw fuel out of the tailpipe
74,000 miles	Decision made to not run FTP.	during testing

Table X2: Description of Vehicles/Trucks Assumed to Fail FTP

7 <u>Vehicle ATL 90</u>

ATL 90, a GM Cheyenne truck.- The transmission of this high mileage truck had been replaced with an incorrect transmission and so is technically a case of tampering. However the truck was clean and the difference between the two transmissions was, in our opinion, insignificant for operation or emissions but was such that the computer was not compatable with the transmission. The only possible repair was replacement of the transmission at high cost (\$2,000) for no benefit and therefore no repair was performed.

Reference

1. SAE paper 962091; "Preconditioning Effects on I/M Test Results Using IM240 and ASM Procedures. Heirigs, Philip; Gordon, Jay

2. Federal Register Volume 61, No. 152; August 6, 1996; page 40940

3. Mobile Source Technical Review Subcommittee meeting of 7/16/97

4. Sierra Research Report under EPA Contract 68-C4-0056; WA 2-03; "Development of a Proposed Procedure for Determining the Equivalency of Alternative Inspection and Maintenance Programs" page 7.

5. Automotive Industries; page 17; February, 1998,.

6. "Recommended Practice for Diagnostic Trouble Code Definitions" SAE J2012; Society of Automotive Engineers, Inc.; Revision date March 1999.

7. "Analysis of the OBDII Data Collected From The Wisconsin I/M Lanes", Ted Trimble, Environmental Engineer, U.S. EPA, August, 2000.

8. "EPA I/M Briefing Book; Everything You Ever Wanted to Know About Inspection and Maintenance"; EPA-AA-EPSD-IM-94-1226, Section Four, page 10; United States Environmental Protection Agency, Office of Air and Radiation, February 1995

9. For LDVs: 40 CFR Part 86.096-8 (a)(1); for LDTs: 40 CFR Part 86.097-9 (a)(1)

10. Clean Air Act, Section 182 (c)((3)(C)(iii); July 1992

11. California Air Resources Board Regulation "Malfunction and Diagnostic System Requirements, 1968.1(b)(1.2.1 - 1.2.4)

12. California Air Resources Board, MSC 99-12, Notice of Proposed Regulation Changes to 1968.1(b)(1.2.4)

Table	x		3							POST F	FTP					
			e	engi			F	т	Р	2	4	0				
lab	Vehicle nur Yr	Make			odometer	THC			Nox OBD Pco				hours par			otal
ARB	1	98 GM	li Lumina	ters r 3.1	niles 5844 initial	gr/mi	gr/mi 0.08	gr/mi 1.0	gr/mi 0.08 302	gr/mi 0.00	gr/mi 0.135	gr/mi 0.02 repair loose plug wire, #2 cyl	labor 1	\$	\$ 70	\$ 70
					final		0.09	1.4	0.06	0.01	0.152	0.18				
ARB	2	98 DC	breeze	2.4	40 initial final		0.09 0.08	1.7 1.4	0.03 700 0.03	0.03 0.01	0.373 0.202	0.00 loose wire, tcm to relay 0.01	2		140	140
ARB	3	97 DC	neon	2	25148 initial		0.18	2.4	0.12 703	0.01	0.31	0.12 brake switch new head coil				1838
ARB	4	98 ford	contour	2	final 29407 initial		0.15 0.06	3.1 0.9	0.19 0.09 133	0.01 0.02	0.23 0.982	0.15 new injectors clean plugs 0.11 mil off prep #1, fixed fuel leak	2.5	70	175	245
					final		0.07	1.0	0.10	0.01	0.242	0.11 new O2 sensor				
ARB	5	97 GM	camero	3.8	21806 initial final		0.29 0.07	4.4 1.6	0.84 102 0.12	0.10 0.01	1.213 0.279	0.75 new MAF sensor,new cat 0.01	4	400	280	680
ARB	6	97 suzuki	metro	1	22779 initial		0.04	2.0	0.09 113	0.01	2.833	0.06 repair IAT circuit/sensor wires	2		140	140
ARB	7	98 honda	accord	2.3	final 2259 initial		0.03 0.04	0.5 0.7	0.10 0.04 135	0.00 0.01	0.775 0.323	0.05 0.01 npf; fuel trim	1		70	70
ARB	8	98 hyundai	accent	1.5	final 16528 initial		0.04 0.06	0.7	0.04 0.13 1614	0.01	0.176	0.12 npf;	1		70	70
AND	0	90 Hyunuai	accent	1.5	final		0.06	0.6		0.01	0.176	0.12 hpt,	I		70	70
ARB	9	97 ford	aspire	1.3	20702 initial final		0.12 0.08	1.6 0.9	0.39 420 0.10	0.06 0.02	3.125 0.281	0.42 cat replaced, front O2 senson 0.33 rear O2 sens mistakenly replaced	3	350	210	560
ARB	10	98 honda	civic	1.6	654 initial		0.08	0.9	0.06 118	0.02	2.86	0.04 overheating on road	0.5		35	35
ARB	11	97 honda	accord	2.2	final 23199 initial		0.11 0.06	0.7 1.0	0.05 0.12 740	0.06 0.01	0.674 0.352	0.06 remove plastc shield from radiator 0.06 npf	1		70	70
AND		97 HUHUA	accoru	2.2	final		0.06	1.0	0.12 740	0.01		0.00 101	1		70	
ARB	12	97 DC	intrepid	3.5	23534 initial final		0.12 0.12	1.1 1.3	0.13 306 0.23	0.03 0.02	0.115 0.023	0.16 spark plug replaced, 0.11	1	2	70	72
ATL	1	97 GM	Malibu	3.1	15386 initial	0.287	0.24	2.7	0.58 420	0.12	1.12	0.61 Replaced Ign. Module, rear O2, .	4	620	280	900
ATL	2	97 GM	Grand Am	2.4	final 22717 initial	0.116 0.092	0.10 0.08	1.5 1.3	0.09 0.60 300	0.01 0.01	0.04 0.15	0.01 cat replaced, 0.94 Replaced Oil Pump.	2.5	45	175	220
					final	0.091	0.08	1.3	0.54	0.02	0.2	0.81				
ATL	3	98 Nissan	Sentra	1.6	309 initial final	0.072 0.066	0.07 0.06	1.3 1.3	0.17 400 0.11	0.02	0.64 0.69	0.17 Replaced EGR 0.11 back pressure tube	2	2.5	140	142.5
ATL	5	97 DC	Sebring	2.5	14036 initial	0.129	0.12	0.9	0.14 740	0.03	0.16	0.09 npf; transmission	1		70	70
ATL	6	97 DC	Neon	2	final 18232 initial	0.129 0.118	0.12 0.11	0.9 0.8	0.14 0.17 300	0.0	0.13	0.08 npf; misfire	1		70	70
					final	0.118	0.11	0.8	0.17			·				
ATL	7	97 GM	Grand Am	2.4	21729 initial final	0.894 0.086	0.86 0.08	2.5 1.2	0.27 300 0.40	0.01 0.01	0.26 0.08	0.49 Replaced Oil Pump. 0.68	2.5	45	175	220
ATL	8	97 Nissan	Maxima	3	18897 initial	0.113	0.10	1.3	0.48 174	0.03	0.55	0.31 Replaced front O2 sensor	2	85	140	225
ATL	9	96 GM	Lumina	3.1	final 40698 initial	0.111 0.182	0.10 0.16	0.9 2.4	0.16 0.25 300	0.03 0.05	0.16 0.48	0.16 replace egr tube gasket 0.21 npf; misfire	1		70	70
ATL	10	97 SUZUKI	Metro	1.3	final 19764 initial	0.182 0.572	0.16 0.52	2.4 9.9	0.25 0.14 113	0.30	6.48	0.01 Repaired broken IAT wires	1.5		105	105
AIL	10	97 SUZUKI	Metro	1.3	final	0.572	0.52	9.9 0.7	0.07	0.30	0.48	0.01 Repaired broken IAT wires	1.5		105	105
ATL	11	97 Hyundai	Elantra	1.8	13373 initial final	0.143 0.143	0.13 0.13	0.7 0.7	0.16 136 0.17	0.02	0.1 0.06	0.09 Replaced rear O2 sensor. 0.17	1.5	70	105	175
ATL	12	98 DC	Breeze	2	2774 initial	0.174	0.15	2.0	0.35 300, 304	0.02	1.53	0.57 npf; misfire	1		70	70
ATL	13	98 Ford	Contour	2	final 4737 initial	0.174 0.076	0.15 0.07	2.0 2.1	0.35 0.12 302	0.02	1.75	0.14 npf; misfire	1		70	70
					final	0.076	0.07	2.1	0.12			·				
ATL	14	98 DC	Neon	2	9468 initial final	0.083 0.083	0.07 0.07	0.8 0.8	0.07 305	0.02	0.1	0.06 npf; misfire	1		70	70
ATL	15	97 Nissan	Sentra	1.6	22470 initial	0.1	0.09	0.7	0.12 136	0.01	0.2	0.03 Replaced O2 sensor	1.5	70	105	175
ATL	16	96 Ford	Mustang	3.8	final 14823 initial	0.089 0.131	0.08 0.11	1.2 1.7	0.07 0.10 304	0.02	0.61 0.24	0.08 0.08 reinstall Spark plug boot on #4	1		70	70
			Ū		final	0.133	0.12	1.7	0.08	0.02	0.36	0.03				
ATL	17	96 GM	lumina	3.1	70600 initial final	.20 0.20	0.17	2.5 2.5	0.56 0.56	0.05	0.45	0.45 fail state I/m NPF				
ATL	18	98 Nissan	Altima	2.4	29 initial	0.084	0.08	0.7	0.01 300	0.01	0.13	0.01 npf; misfire	1		70	70
ATL	19	98 Hyundai	Sonata	2.4	final 3650 initial	0.084 0.186	0.08 0.17	0.7 1.2	0.01 0.18 400	0.00	0.08	0.07 Install vacuum signal line	1.5		105	105
		-			final	0.176	0.16	1.1	0.17	0.01	0.08	0.05 to egr				
ATL	21	96 Ford	Contour	2	41427 initial final	0.129 0.138	0.11 0.11	1.2 1.2	0.17 301, 302, 0.16	3 0.03 0.03	0.7 0.7	0.19 repaired Capacitor wire at coil 0.13	1.5		105	105
ATL	22	97 DC	Neon	2	25862 initial final	0.13 0.13	0.12 0.12	0.9 0.9	0.17 304	0.02	0.23	0.05 npf; misfire	1		70	70
ATL	24	98 DC	Stratus	2.4	3178 initial	0.091	0.08	1.8	0.07 401	0.01	0.21	0.0 New PCM	1.75	200	122.5	322.5
ATL	25	98 Ford	Taurus	3	final 1497 initial	0.07 0.112	0.06 0.10	1.7 1.1	0.09 0.06 500	0.00 0.01	0.2 0.06	0.1 0.0 ppf: vehick ppf	1		70	70
					final	0.112	0.10	1.1	0.06			0.0 npf; vehiclenpf	I			
ATL	26	98 FORD	Grand Mar	4.6	6516 initial	0.098	0.09	1.2	0.04 122, 1120	0.01	0.09	0.01 TPS had been replaced once before. Vehicle taken to a local Ford	1		70	70

					C 1	0.004	0.00	4.0	0.00	0.04	0.05	0.00					
ATL	27	97 Honda	Civic	1.6	final 10570 initial	0.091 0.068	0.08 0.05	1.0 1.6	0.06 0.04 302, 304, 1	0.01 0.04	0.05 1.07	0.00 0.03 npf; misfire		1		70	70
ATL	30	98 Ford	Taurus	3	final 5475 initial	0.068 3.099	0.05 2.63	1.6 122.0	0.04 0.07 172, 175	0.03	0.16	0.05 Replaced sending unit		2	50	140	190
ATL	31	96 GM	Lumina	3.1	final 29197 initial	0.105 0.241	0.09 0.21	1.4 3.3	0.10 0.50	0.01 0.06	0.09 1.54	0.08 0.48 failed state I/M test, npf		1		70	70
ATL	32	98 Ford	Taurus	3	final 6496 initial	0.241 0.121	0.21 0.10	3.3 1.2	0.50 0.07 161	0.01	0.02	0.06 Replaced Fuel Sending Unit		1	50	70	120
ATL	35			3.8	final	0.104	0.09	1.2	0.08	0.02	0.42	0.02					
		98 GM	LeSabre		15916 initial final	0.08 0.08	0.07 0.07	0.9 0.9	0.16 300 0.16	0.02	0.2	0.19 npf; misfire		1.5	12	105	117
ATL	37	97 GM	Achieva	2.4	29233 initial final	0.118 0.118	0.10 0.10	2.6 2.6	0.17 503 0.17			Replaced VSS & Gear	npf	1	70	70	140
ATL	40	96 niss	sentra	1.6	31366 initial final	.15 \$0.15	0.14 0.14	0.8 0.8	0.28 0.28	0.03	0.3	0.09 fail state I/m	NPF				
ATL	43	98 Toyota	Camry	2.2	440 initial final	0.114 0.106	0.10	1.2 1.2	0.22 401	0.02 0.02	0.05 0.15	0.16 Replaced EGR vacuum line 0.08		0.5	10	35	45
ATL	44	98 GM	Camaro	3.8	20051 initial	0.174	0.14	3.0	1.31 120, 135, 1	0.02	0.15	0.06 Repaired Shorted Wiring		1.5		105	105
ATL	49	98 GM	Regal	3.8	final 27501 initial	0.074 0.071	0.06 0.06	1.3 1.1	0.21 0.24 131	0.01	0.28	0.18 npf; fuel trim		1		70	70
ATL	50	98 GM	88 LS	3.8	final 15239 initial	0.07 0.277	0.06 0.25	1.3 1.4	0.24 0.13 304	0.03	0.09	0.22 spark plug and wire replaced		1.5	24	105	129
ATL	53	98 Ford	Escort	2	final 7424 initial	0.079 0.059	0.06 0.05	1.1 1.2	0.14 0.10 171	0.02	0.16 0.58	0.12 0.11 replace manifold vac. hose		1.5	3	105	108
ATL	56	98 FORD	Tracer	2	final 24066 initial	0.078	0.07	0.7 0.9	0.09 0.12 1504	0.01	0.41	0.13 r/r vent sol reprogram		1.6	36	112	148
					final	0.04	0.04	0.5	0.07	0.01	0.08	0.03					
ATL	59	96 GM	Cierra	3.1	54355 initial final	0.181 0.171	0.16 0.15	1.9 1.9	0.35 1406, 300 0.33	0.06 0.04	0.95 0.41	0.13 computer replaced 0.29		2	200	140	340
ATL	60	96 Ford	Taurus GL	3	91173 initial final	0.167 0.146	0.13 0.12	2.6 1.4	0.51 340 0.34	0.06 0.04	2.76 1.06	0.45 replace camshaft sensor and 0.32 drive shaft		2	125	140	265
ATL	61	99 Toyota	Camry	2.2	9795 initial final	0.063 0.063	0.05 0.05	0.9 0.9	0.15 1133 0.15	0.02	0.35	0.09 npf, fuel trim		1		70	70
ATL	62	96 Ford	Taurus	3	55296 initial final	0.124 0.124	0.10 0.10	1.4 1.4	0.32 1504, 153 0.32	0.05	0.67	0.31 npf; fuel trim		1		70	70
ATL	63	98 Ford	Taurus	3	17567 initial	0.104	0.09	1.2	0.09 1309	0.02	0.1	0.32 R/R pcm and throttle valve		2.1	344	147	491
ATL	64	99 GM	Malibu	3.1	final 7834 initial	0.103 0.126	0.10	1.3	0.16 301	0.04	0.02	0.16 npf; misfire		1		70	70
ATL	65	99 DC	Breeze	2	final 9535 initial	0.12 0.145	0.10 0.13	1.4 1.9	0.13 0.20 136	0.01 0.04	0.02 0.59	0.22 0.16 replaced o2 sens and F.P. relay		2	100	140	240
ATL	66	99 GM	Regal	3.8	final 6443 initial	0.082 0.057	0.07 0.05	0.7 1.1	0.14 0.09 131	0.02	0.2 0.1	0.10 0.01 replaced o2 sens		1.5	70	105	175
ATL	68	98 GM	Camaro	3.8	final 9448 initial	0.054 0.085	0.05 0.07	1.0 0.9	0.10 0.06 306	0.02	0	0.06 reprogram PCM		1.2		84	84
ATL	69	99 Toyota	Camry	2.2	final 11508 initial	0.082 0.079	0.07 0.07	0.7	0.07 0.14 1133	0.03	0.05 0.28	0.05 0.05 npf; fuel trim		1		70	70
		-			final	0.079	0.07	1.2	0.14								
ATL	71	97 Kia	Sephia	1.6	32048 initial final	0.103 0.081	0.08 0.07	1.3 0.9	0.30 420 0.05	0.03 0.01	0.58 0.04	0.37 replace exhaust, ox sensor 0.01 and catalyst		3	550	210	760
ATL	73	99 Nissan	Infiniti Q45	4.1	7252 initial final	0.148 0.144	0.13 0.13	1.5 1.4	0.42 505 0.19	0.04	0.06	0.33 idle air control motor		1.75	95	122.5	217.5
ATL	74	98 Ford	Taurus	3	19410 initial final	0.123 0.115	0.10 0.10	1.3 1.1	0.10 1309 0.08	0.02	0.04	0.05 new PCM		1.8	200	126	326
ATL	75	99 Nissan	Altima	2.4	10146 initial final	0.075	0.06	1.2 1.0	0.06 740	0.01 0.01	0.27 0.06	0.01 tfans,pcm new 0.03		2	250	140	390
ATL	76	99 GM	Gr. Am	3.4	23208 initial final	0.224 0.109	0.21	0.9	0.03 0.27 113 0.18	0.02	0.00	0.35 wiring at ECT		1.5		105	105
ATL	77	99 Ford	Contour	2	5860 initial	0.1	0.08	1.3 5.9	0.05 1131	0.91	73.3	0.05 light went out, battery went dead		1		70	70
ATL	78	99 gm	malibu	3.1	final 7400 initial	0.059	0.05	1.3	0.10 201, 301			no initial ftp wiring at #1 injector		1		70	70
ATL	79	99 Toyota	Camry	2.2	final 12848 initial	.08 0.083	0.1 0.1	0.8 1.2	0.09 0.15 1133	0.02	0.29	0.07 R/R MAF		1.5	110	105	215
ATL	81	99 GM	Malibu	3.1	final 7064 initial	0.052	0.0	0.4 1.2	0.08 0.14 131, 306	0.01	0.07	0.03 0.26 R/R O2 B1S1		1.5	70	105	175
ATL	83	99 GM	Lumina	3.1	final 8896 initial	0.126 0.278	0.1	1.5	0.12 0.53 420	0.00	0.01 2.4	0.14 0.61 R/R cat		2	300	140	440
					final	0.076	0.1	0.9	0.09	0.01	0	0.07					
ATL	87	96 GM	Cavalier	2.2	93575 initial final	0.164 0.147	0.1 0.1	1.8 1.7	0.22 141 0.17	0.12 0.10	0.91 0.76	0.26 R/R B1S1 O2 0.18		1.5	73.08	105	178.08
ATL	89	99 GM	Cavalier	2.2	4465 initial final	0.192 0.09	0.2 0.1	5.5 1.6	0.05 1133 0.07	0.10 0.09	6.34 6.06	0.01 light went out; fuel trim 0.00		1	15	70	85
ATL	91	99 GM	Intrigue	3.8	10202 initial final	0.08 0.08	0.1 0.07	1.0 1.1	0.21 131, 1887 0.12	0.04 0.01	0.6 0.2	0.18 R/R O2 0.18		1.5	70	105	175
ATL	96	99 DC	Sebring	2.5	9514 initial				171			fuel pump		1.75	95	122.5	217.5

ATL	95	97 Mazda	626	2	final 36596 initial	0.1 0.11	0.08 0.09	1.0 1.1	0.09 0.18 421	0.00 0.04	0.1 1.1	0.06 0.18 reprogram prom	1		70	70
					final	0.11	0.09	1.1	0.17	0.03	0.8	0.22				
ATL	98	99 GM	Gr. Am	2.4	15618 initial final	0.24 0.24	0.18 0.18	4.0 4.0	0.13 171, 172, 3 0.13	0.13	2.5	0.04 npf; fuel trim	1		70	70
ATL	100	97 Ford	Aspire	1.3	24936 initial	0.19	0.10	1.4	0.15 303, 505	0.06	0.9	0.13 Replaced dist.cap/rotor/plug wire	0.5	15	35	50
ATL	404	00 tauata			final	0.17	0.16	1.2	0.21	0.03 0.02	0.3	0.30				
AIL	101	99 toyota	camray	2.2	11575 initial final	0.07 0.07	0.06 0.06	0.9 0.9	0.14 1133 0.14	0.02	0.2	0.05 light went out; npf; fuel trim				
ATL	102	99 Saab	9-3	2	19237 initial	0.13	0.12	1.4	0.19 1652	0.01	0	0.11 loose connection at PCM	1.5		105	105
ATL	103	98 GM	Cavalier	2.2	final 27140 initial	0.14 0.27	0.12 0.22	1.8 5.8	0.15 0.12 118	0.02 0.06	0 1.74	0.10 0.08 Repair open wires at Coolant Sensor	0.25		17.5	17.5
					final	0.13	0.10	3.2	0.08	0.04	1.3	0.03				
ATL	104	97 Ford	Taurus	3	52650 initial final	0.14 0.13	0.11 0.10	2.3 1.5	0.40 340 0.21	0.04	0.2 0.1	0.32 R/R cam sensor \$124 parts only 0.22	1.2	124	84	208
ATL	105	99 GM	regal	3.8	15563 initial	0.096	0.08	1.1	0.14 131	0.01	0.42	0.25 R/R O2 sensor	2.5	76	173	249
ATL	106	99 Ford	Mustang	3.8	final 13701 initial	0.051 0.18	0.04 0.14	0.9 6.1	0.09 0.08 190, 1132,	0.01 0.12	0.16 2.1	0.02 0.10 Replace PCM, wiring above trans broke	3	350	210	560
AIL	100	331010	wustang	5.0	final	0.077	0.07	0.7	0.05	0.01	0	0.03	5	330	210	500
ATL	108	98 FORD	Tracer	2	20137 initial final	0.052 0.054	0.05 0.05	0.5 0.5	0.19 401 0.09	0.01 0.01	0.15 0.1	0.19 Replace EGR sensor 0.08	2	140	140	280
ATL	110	98 Ford	Escort	2	26205 initial	0.054	0.03	1.0	0.14 172	0.01	0.51	0.08 0.18 Reflashed PCM	1.9		130	130
A.T.		00 BO	Lateral I	07	final	0.054	0.05	0.6	0.07	0.01	0.08	0.05	4.5	70	105	404
ATL	111	99 DC	Intrepid	2.7	14664 initial final	0.328 0.121	0.29 0.10	4.3 0.6	0.29 161, 432, 1 0.28	0.29 0.04	6.12 0.23	0.16 Replace O2 0.25	1.5	76	105	181
ATL	113	98 Ford	Escort	2	35177 initial	0.053	0.05	0.6	0.10 172	0.01	0.19	0.07 Reflashed PCM	1.9		130	130
ATL	114	99 GM	Grand Am	3.4	final 12921 initial	0.047 0.328	0.04 0.30	0.5 2.4	0.09 0.47 121	0.01 0.01	0.08 0	0.12 0.27 Replaced TPS	1.571429	43	110	153
					final	0.084	0.07	1.4	0.13	0.02	0.05	0.14				
ATL	115	99 DC	Stratus	2.4	19475 initial final	0.227 0.067	0.18 0.06	8.3 1.0	0.15 700, 733, 7 0.09	0.32	0.4 0.33	0.11 Replace Tr Input Sensor 0.05	1.285714	15	90	105
ATL	116	99 Ford	Escort	2	15104 initial	0.058	0.05	0.5	0.10 135	0.01	0.24	0.11 Repair Wiring to O2 Sensor	1.857143		130	130
ATL	117	99 FORD	Sable	3	final 5596 initial	0.056 0.28	0.05 0.25	0.7 1.4	0.07 0.18 301	0.01 0.02	0.03 0	0.10 0.34 new head	7.142857		500	500
AIL	117	33 T OILD	Sable	5	final	0.09	0.08	1.4	0.13	0.02	0	0.27	1.142037		500	500
ATL	118	99 GM	Cavalier	2.2	20432 initial final	0.151 0.16	0.13 0.14	2.5 3.7	0.04 141 0.04	0.03	0.22 0.2	0.01 Replaced O2 sensor 0.03	1	164	70	234
ATL	119	97 SUZUKI	Metro	1.3	55195 initial	0.16	0.14	32.3	0.13 113	0.02	33.6	0.05 0.06 Fix iat wiring	1		70	70
A.T.	400	07.014	0		final	0.06	0.05	1.3	0.37	0.01	0.5	0.21			70	70
ATL	120	97 GM	Grand Am	2.4	47,173 initial final	0.14 0.14	0.12 0.12	1.6 1.6	0.97 122, 1404 0.97	0.02	0.4	0.90 npf; fuel trim	1		70	70
ATL	121	99 DC	stratus	2.4	17000 initial	0.1	0.07	1.3	0.09 700, 731, 7 0.10	0.58 0.02	22.6	0.11 R/R trans input sensor 0.03	1.5	20	105	125
ATL	122	99 GM	DeVille	4.6	final 18900 initial	0.09 0.21	0.07 0.18	1.4 1.6	0.21 742	0.02	0.4 0.2	0.03 0.13 R/R trans upper valve body assembly	7.3	425	511	936
			-		final	0.16	0.14	0.7	0.18	0.06	0.2	0.16				
ATL	123	97 ford	Escort	2	71000 initial final	0.08 0.06	0.07 0.06	1.1 0.8	0.10 302 0.12	0.01 0.01	0.4 0.3	0.17 leak at purge line 0.15 harmonic balancer bad	2.5	60	175	235
ATL	124	99 honda	Accord	2.3	5000 initial	0.04	0.03	1.0	0.03 1259	0.00	0.5	0.00 npf; fuel trim	1		70	70
ATL	125	99 GM	Intrigue	3.8	final 28000 initial	0.04 0.07	0.03 0.05	1.0 0.8	0.03 0.43 135, 140	0.01	0.3	0.21 R/R O2 sensor	3.5	58	245	303
			-		final	0.08	0.07	1.1	0.22	0.01	0.5	0.17				
ATL	126	98 GM	sunfire	2.2	31606 initial final	0.12 0.12	0.09 0.09	5.2 5.1	0.20 121, 404, 1 0.07	0.05 0.05	3.5 3.8	0.10 repair tps wiring 0.02	1		70	70
ATL	127	98 gm	sunfire	2.2	26000 initial	0.12	0.10	3.8	0.15 141	0.06	5.2	0.04 O2 sensor	1	125	70	195
ATL	128	96 gm	Lumina	3.1	final 34769 initial	0.1 0.2	0.08 0.17	2.7 2.5	0.17 0.50 141	0.05 0.11	3.0 3.0	0.10 0.65 R/R O2 sensor	1	77	70	147
		-			final	0.1	0.09	0.8	0.17	0.02	0.0	0.21				
ATL	131	98 gm	Cavalier	2.2	31424 initial final	0.28 0.12	0.25 0.09	4.8 2.8	0.08 300 0.11	0.14 0.06	3.6 1.8	0.01 R/R plug wires 2&3 cylinders 0.03	1	17	70	87
EPA	1	98 DC	breeze	2	2405 initial	0.085	0.07	0.7	0.21 401	0.03	1.4	0.19 replace egr back pressure transducer w/sol	2	90	140	230
EPA	2	97 vw	passant	2.8	final 23437 initial	0.071 0.136	0.06 0.10	0.5 1.3	0.13 0.19 411	0.02 0.05	0.3 0.3	0.05 0.12 replace combo valve for secondary air	1.5	280	105	385
		57 VW	passan	2.0	final	0.118	0.10	1.2	0.09	0.03	0.3	0.02	1.5	200	105	
EPA	6	98 GM	deville	4.6	9495 initial final	0.23 0.227	0.21 0.21	1.7 1.8	0.16 606, 741 0.14	0.07 0.05	0.4 0.3	0.08 dealer replaced speedsensor 0.07	1.5	80	105	185
EPA	7	97 HONDA	ACCORD	2.2	17155 initial	0.227	0.08	1.8	0.14 302	0.05	1.0	0.07 0.20 light out; misfire				
EPA	10	97 ford	aspire	1.3	final 38418 initial	0.103 2.093	0.08 1.77	1.5 30.3	0.14 0.03 302	0.95	34.1	0.01 replaced plugs and installed	2	20	140	160
EFA	10	37 1010	aspire	1.3	final	0.181	0.16	1.7	0.12	0.04	0.6	0.14 #2 plug wire	2	20	140	
EPA	11	98 GM	sunfire	2.2	13766 initial final	0.092 0.0872	0.08 0.07	1.7 2.1	0.33 1133 0.13	0.02 0.02	0.8 0.8	0.18 replace front o2 sens and thermostadt 0.10	3	75	210	285
EPA	12	98 GM	cavalier	2.2	16660 initial	2.434	2.37	2.1 10.9	0.13	0.02 1.68	0.8 29.7	0.10 0.01 replace plugs and wires	2.5	40	175	215
EPA	13	07.44	D000071		final	0.109	0.09	2.4	0.11	0.03	1.2	0.05	2.5	250	175	425
EPA	13	97 vw	passant	2.8	38278 initial	0.163	0.13	1.7	0.17 300	0.05	0.6	0.15 replace plugs and wires	2.5	200	1/5	425

						final	0.163	0.13	17	0.17								
EPA	۹. ·	14	97 DC	neon	2	41449 initial	0.1515	0.13	1.7	0.19 303	0.04	0.274	0.15 npf; misfire		2	70	140	210
						final	0.1515	0.14	1.0	0.19								
EPA	A .	17	97 ford	escort	2	35965 initial final	0.087 0.0639	0.07 0.06	1.2 0.8	0.29 402 0.15	0.02 0.01	0.73 0.256	0.41 R/R EGR vacuum sensor 0.21		2	65	140	205
EPA	۹. ·	18	96 mazda	626	2	60615 initial	0.382	0.33	6.9	1.01 171	0.10	4.31	0.89 replace catalyst		5.5	649	242	667
						final	0.0956	0.08	1.0	0.22	0.01	0.1177	0.17					
EPA	а 2	23	96 ford	escort	1.8	31120 initial final	0.346 0.305	0.31 0.27	4.3 4.4	0.20 302 0.16	0.13 0.13	2.95 2.55	0.21 Replace air filter,plugs 0.22 wires and rotor		2	25	140	165
EPA	۹ ۵	26	0 GM	century	3.4	48 initial	0.1141	0.09	0.6	0.09 122	0.03	0.0365	0.04 assembly error; wire clamped by hose clamp.		1.5		105	105
50		~~	00			final	0.0797	0.07	0.6	0.07	0.02	0.0496	0.01		4.0	170		000
EPA	۹. I	28	96 volks	jetta	2	17016 initial final	0.1292 0.1292	0.12 0.12	1.4 1.4	0.09 303 0.09	0.02	0.24	0.02 plugs cap		1.3	170	90	260
EPA	۹ ۵	29	97 ford	escort	2	42038 initial	0.0614	0.06	0.9	0.14 301	0.01	0.203	0.19 ignition wires		1	32	70	102
CDI	н	3	96 DC	neon	2	final 86236 initial	0.0599 1.743	0.06	0.8 52.0	0.09 0.25	1.09	36.4	0.19 repair vacuum leak, no li	lite ever	3.2	70	224	292
				10011	-	final	0.224		2.1	0.13	0.07	0.5	0.19 replace downstream O2 sensor		0.2			
CDI	н	6	96 ford	crown viv	4.6	84848 initial	2.444		39.5	0.66 420, 301	1.28	29.1	0.88 replace coil and plugs,		4.8	152	336	488
CDI	н	7	96 GM	corsica	3.1	final 54048 initial	0.204 0.483		4.8 8.7	0.47 0.36 301	0.04 0.29	3.6 9.3	0.48 clean air flow sensor 0.27 fuel rail replace (sugar in gas)		6	1088	420	1508
						final	0.293		2.5	0.83	0.09	1.3	0.93					
CDI	H ·	15	96 FORD	continen	4.6	62517 initial final	0.319 0.321		4.8 4.4	0.27 304 0.18	0.12 0.10	4.0 2.7	0.22 recalibrate pcm 0.11		0.9		66	66
CDI	н	18	96 volvo	850	2.4	80355 initial	0.197		1.5	4.39 410	0.06	0.8	4.35 Replace the air pump		2.1	406	145	560
						final	0.123		1.0	0.28	0.02	0.2	0.30					
CDI	н з	20	97 honda	civic	1.6	22359 initial final	0.175 0.18		1.8 2.4	0.20 302, 1300, 0.20	0.08 0.10	1.5 3.3	0.01 replace ECM 0.15		2.5	350	175	525
CDI	н :	21	96 GM	cavalier	2.2	39483 initial	0.146		2.1	0.28 1406, 440	0.07	1.6	0.24 replace "W" valve		3.2	219	215	435
CD	ц .	25	96 DC	neon	2	final 76168 initial	0.146 0.134		2.4 1.6	0.22 0.69 403	0.05 0.03	1.4 0.5	0.13 0.52 eqr solenoid scan and replace		1.2	90.83	84	175
				neon		final	0.125		1.2	0.39	0.03	0.2	0.44		1.2			
CDI	н :	26	97 honda		2.7	59734 initial final	0.194		1.3	0.29 302, 303, 1 0.32	0.04	0.2	0.16 replace distributor cap 0.18		0.5	15.48	32	47.48
CD	н :	28	96 GM	camero	5.7	46607 initial	0.169 0.123		1.0 1.5	0.32 0.76 172, 175, 4	0.05 0.03	0.4 0.1	0.18 1.01 replace canister, purge valve		5.1	115.78	357.5	482.02
-						final	0.164		2.0	0.32	0.03	0.3	0.41 & monitor					
CDI	н :	29	96 DC	cirrus	2.4	82626 initial final	0.231 0.225		6.3 6.3	0.32 300, 303 0.33	0.06 0.06	2.3 2.3	0.30 relace coil pack,plugs, and wires 0.29		2.9	224	202	426
CDI	н :	31	96 DC	sebring	2.5	37620 initial	0.328		4.1	0.39 134, 133	0.09	2.4	0.52 scan, replace two o2 sensors		2.4	222.3	134.4	356.7
CD		32	96 GM		3.8	final 78027 initial	0.244 0.394		1.6 2.7	0.34 0.45 304	0.03 0.09	0.1 1.3	0.35 heat 122.85 downstream 99 0.36 \$1298 R/R rear cylinder head	9.45				2150
CDI		32	96 GIVI	regal	3.0	final	0.394		2.7	0.43	0.09	0.7	0.30 \$1296 R/R front cylinder head					2150
CDI	н :	34	96 DC	sebring		81630 initial	0.205		2.1	0.45 134	0.04	0.1	0.35 R/R O2 sensor		1.8	100	104	204
CD	н :	37	96 GM	sl-2	1.9	final 55044 initial	0.188 0.392		1.0 3.2	0.37 0.50 300	0.03 0.36	0.1 3.0	0.40 0.98 plugs and wires		2.5	51	170	221
				0.2		final	0.14		1.5	0.51	0.02	0.2	0.45					
CDI	H :	38	96 DC	neon		40390 initial	0.628 0.208		5.0 2.2	0.34 121, 123 0.19	0.13 0.05	1.3 0.7	0.40 r/r throttle body and reflash computer 0.20	2.82	28571	275	198	473
ATL	_	4	98 Ford	Windstar	3.8	final 20461 initial	0.208	0.07	2.2 0.7	0.06 135, 155	0.05	0.7	0.20 0.04 npf; fuel trim		1		70	70
				_		final	0.073	0.07	0.7	0.06								
ATL	- :	23	98 Ford	Ranger	3	12819 initial final	0.993 0.165	0.82 0.13	21.3 1.8	0.18 1131 0.12	0.63 0.02	11.8 0.18	0.14 Replaced O2 sensor. 0.03		1.5	70	105	175
ATL	_ :	28	98 GM	S10	4.3	18112 initial	0.305	0.26	2.6	0.21 146	0.30	2.19	0.03 repaired three wires burned by exhaust		3	70	210	280
ATL		29	98 GM	Venture	3.4	final 7634 initial	0.204 0.2	0.18 0.18	1.8 3.4	0.25 0.20 305	0.05 0.01	0.43 0.03	0.04 r/r rear O2 sensor repr 0.28 npf; misfire	rogram computer	1		70	70
AIL	- '	29	90 GW	venture	3.4	final	0.2	0.18	3.4	0.20 305	0.01	0.03	0.26 npi, misire		I		70	70
ATL	- :	33	98 GM	Tahoe	5.7	12577 initial	0.305	0.26	2.4	0.20 131, 134, 1	0.05	0.26	0.20 Replace B1S1 O2 Sensor		1.5	70	105	175
ATL		34	98 GM	Safari	4.3	final 14187 initial	0.284 0.166	0.25 0.15	2.2 1.6	0.20 0.24 300	0.05 0.04	0.2 0.07	0.24 0.24 npf; misfire		1		70	70
						final	0.166	0.15	1.6	0.24								
ATL	- :	36	98 DC	Voyager	3.3	initial final	0.053 0.064	0.05 0.06	0.4 0.5	0.16 1698 0.21	0.00 0.00	0	0.40 Replace Trans. Module 0.43		1.5	100	105	205
ATL	_ :	38	97 Ford	F150 PU	4.6	29006 initial	0.282	0.19	7.5	0.29 141	0.00	3.7	0.37 Replaced MAF		3.5	240	245	485
		~~		=		final	0.131	0.11	1.9	0.14	0.02	0.4	0.07					
ATL		39	97 Ford	E-250 Van	4.2	44125 initial final	0.127 0.127	0.11 0.11	2.1 2.1	0.26 503 0.26	0.03	1.4	0.51 npf; vehicle speed sensor		1		70	70
ATL	- '	41	97 GM	Suburban	5.7	28619 initial	0.22	0.18	2.0	0.35 102, 131, 1	0.10	0.7	0.18 two O2 sensors		2	140	140	280
ATL		42	98 GM	Suburban	5.7	final 18137 initial	0.22 0.21	0.18 0.15	2.3 2.4	0.31 0.66 161	0.07 0.06	0.4 0.2	0.25 0.72 O2 sensor		1.5	70	105	175
					0.7	final	0.201	0.14	2.6	0.45	0.05	0.14	0.31		1.0			
ATL	- '	45	97 Ford	F150 PU	4.6	19721 initial	0.145	0.12	1.6	0.76 304, 305, 3	0.03	0.3	0.00 Water in fuel, replaced fuel pump		1.5	105	105	210
ATL		46	98 Ford	Windstar	3.8	final 25188 initial	0.144 0.081	0.13 0.07	2.3 1.1	0.10 0.20 302	0.02	0.12 0.21	0.02 0.22 Bulletin No. 98-15-13		1	100	70	170
						final	0.084	0.07	1.0	0.16	0.01	0.07	0.13					
ATL	- '	47	96 Ford	E-250 Van	4.9	51411 initial	0.18	0.10	1.2	0.62 133, 1131	0.06	-0.02	0.84 Replaced 2 B1S1 O2 sensors		2.5	150	175	325

					final	0.136	0.08	1.3	0.41	0.07	0	0.51				
ATL	48	98 GM	Suburban	5.7	19186 initial	0.136	0.08	1.3	0.41	0.07	0.11	0.51 0.61 Replaced B1S2 O2 Sensor	2.5	76	173	249
					final	0.242	0.20	3.1	0.40	0.06	0.2	0.38				
ATL	51	96 DC	caravan	3	65811 initial final	0.21	0.18	1.0	0.40 134	0.07	0.14	0.40 light out; fuel trim	1			70
ATL	52	96 DC	Caravan	3	73357 initial	0.251	0.22	1.1	0.46 172	0.09	0.54	0.53 npf; fuel trim	1		70	70
					final	0.251	0.22	1.1	0.46							
ATL	54	97 Ford	F-150 Pick	4.2	64735 initial final	0.237 0.118	0.19 0.10	7.9 1.0	0.13 133, 1131 0.10	0.36 0.07	18.6 0.0	0.10 replace o2 sen 0.07	1.5	70	105	175
ATL	55	97 Ford	F-150 Pick	5.4	76029 initial	0.134	0.12	1.5	0.17 174	0.01	0.0	0.06 npf; fuel trim	1		70	70
			-		final	0.134	0.12	1.5	0.17							
ATL	57	97 Ford	Ranger	2.3	19686 initial final	0.087 0.076	0.07 0.07	1.6 0.6	0.11 171 0.14	0.01 0.01	0.11 0	0.18 replace o2 sen 0.15	1.5	70	105	175
ATL	58	97 FORD	Villager	3	89615 initial	0.132	0.10	1.0	0.40 136	0.11	0.9	0.42 replace o2 sen	1.5	70	105	175
ATL	67	97 DC	Corovon	3	final 87889 initial	0.15	0.13 0.24	1.0 1.7	0.51 0.36 133	0.09 0.09	0.42 0.65	0.52 0.33 replaced o2 sens	1.5	70	105	175
AIL	07	97 DC	Caravan	3	final	0.268 0.241	0.24	1.4	0.34	0.09	0.05	0.55 Teplaced 02 Sens	1.5	70	105	175
ATL	70	96 Ford	E-150	4.9	77940 initial	0.18	0.11	1.8	0.65 174	0.11	0.24	0.80 repair exhaust leak	1		70	70
ATL	72	99 Ford	Ranger	3	final 8797 initial	0.216 0.237	0.15 0.20	2.0 2.9	0.61 0.62 1405	0.11 0.18	0.15 2.18	0.65 0.83 npf; EGR	1		70	70
7.12	12	551014	Ranger	0	final	0.256	0.22	3.0	0.43	0.17	1.78	0.60			70	10
ATL	82	96 GM	Tahoe	5.7	58661 initial	0.204	0.17	2.7	0.31 1406, 1122	0.10	1.18	0.27 R/R EGR valve	2.6	117	182	299
ATL	84	99 ford	ranger	3	final 11974 initial	0.237 0.17	0.20 0.14	2.6 2.3	0.33 0.19 351, 352, 3	0.08 0.06	0.89 0.2	0.18 0.08 light out; ignition system	1			70
			5	-	final											
ATL	85	97 NISSAN	Quest	3	79540 initial final	0.183 0.164	0.15 0.14	1.4 1.5	0.33 733 0.37	0.10 0.06	2.32 0.41	0.38 TPS replaced 0.47	1.5	37.52	105	142.52
ATL	86	96 isuzu	Rodeo	3.2	44157 initial	0.164	0.14	1.5	0.30 502	0.06	0.41	0.47 0.35 R/R speedo gear	1.5	20.73	105	125.73
					final	0.113	0.10	1.0	0.34	0.02	0.17	0.38				
ATL	88	97 DC	Ram Van	3.9	122781 initial final	0.497 0.414	0.43 0.35	6.1 4.9	1.16 305, 138, 1 1.07	0.29 0.38	4.79 5.2	1.28 new plugs 1.34	1.5	12	105	117
ATL	90	96 GM	Cheyenne	5	104689 initial	0.279	0.24	2.5	0.27 1860, 306	0.50	5.2	transmission wrong model year cost 1974 to replace			0	1974
		07 5	E 450	4.0	final	0.279	0.24	2.5	0.27	0.05	01.0		10		00.4	500
ATL	92	97 Ford	F-150	4.2	101242 initial final	0.26 0.17	0.21 0.14	8.2 1.6	0.52 0.30	0.25 0.08	21.0 0.9	1.04 R/R all four O2 sensors 0.41	4.2	232	294	526
ATL	93	99 Ford	Ranger	3	7498 initial	1.31	1.17	42.7	0.01 135, 155	1.11	53.0	0.01 Reconnect 2 front O2 sensors	1.5		105	105
ATL	94	97 Ford	F150	4.6	final 29698 initial	0.09 0.28	0.08 0.23	1.5 5.8	0.02 0.21 172, 175	0.01 0.03	0.0 0.3	0.02 0.27 npf; fuel trim	1		70	70
AIL	34	97 Folu	F130	4.0	final	0.28	0.23	5.8	0.21 172, 175	0.03	0.3	0.27 npi, idei ann	I		70	70
ATL	97	96 GM	Astro	4.3	91737 initial	0.33	0.30	2.2	0.66 102, 340	0.16	1.3	0.27 R/R O2 sensor, freed up EGR pintle	2	83	140	223
ATL	99	97 Nissan	Pickup	2.4	final 118117 initial	0.18 0.15	0.15 0.12	1.9 0.7	0.27 0.52 110	0.08 0.09	1 1	0.29 0.22 Replaced IAT and repaired wiring	2	45	140	185
					final	0.16	0.14	1.0	0.42	0.06	0.6	0.37				
ATL	107	99 DC	Caravan	3.3	22560 initial	0.182	0.13	2.4	0.26 401	0.08	0.73	0.11 Replace EGR valve	1.3	142	87	229
ATL	109	96 Ford	F-150	5.8	final 89443 initial	0.161 0.325	0.12 0.25	1.5 3.2	0.12 0.21 171, 174	0.05 0.07	0.25 0.62	0.13 0.87 Replace EGR solenoid	1	23	70	23
					final	0.195	0.15	2.2	0.56	0.07	0.52	1.05				
ATL	112	99 Nissan	Altima GXE	2.4	13322 initial final	0.047 0.05	0.04 0.04	0.8 0.8	0.09 141 0.04	0.00 0.00	0 0.1	0.05 Replace O2 B1S2 0.05	2.5	76	173	249
ATL	129	96 gm	Astro	4.3	175000 initial	0.38	0.32	3.3	0.97 420	0.28	2.9	0.96 Replace cat and 2 O2 sensors	3	466	210	676
	100		the set of		final	0.1	0.09	0.8	0.17	0.02	0	0.21		10	70	
ATL	130	96 isuzu	Hombre	2.2	245000 initial final	0.4	0.32 0.39	10.1 17.1	1.36 108 0.57	0.40 0.33	11.8 14.7	1.33 R/R intake air temp sensor 0.86	1	16	70	86
EPA	3	98 GM	jimmy	4.3	8750 initial	0.288	0.21	3.9	2.14 605, 300, 1	0.04	0.0051	2.08 dealer repair cpi-fuel inj. (fuel rail)	5	450	350	800
EPA	4	98 GM	blazer	4.3	final 6156 initial	0.203 0.208	0.18 0.18	2.2 1.8	0.26 0.25 306, 300	0.05 0.06	2.19 0.257	0.09 0.15 npf; misfire	1		0	70
EFA	4	96 Givi	biazei	4.5	final	0.208	0.18	1.8	0.25 300, 300	0.00	0.257	0.15 hpt, mislie	I		U	70
EPA	8	96 toyota	4-runner	3.4	53052 initial	0.123	0.11	1.7	0.58 130, 133	0.01	0.02	0.61 light out; fuel trim	1			70
EPA	15	98 DC	cheroke	4	final 26959 initial	0.123 0.128	0.11 0.10	1.7 1.2	0.58 0.11 303	0.04	0.284	0.52 replace valve springs	5	55	350	405
2.7.1		00 20	GHOIDIG		final	0.103	0.02	0.9	0.09	0.01	0.005	0.41 clean combustion cxchamber	Ū	00	000	100
EPA	16	99 DC	Caravan	3.3	4439 initial	0.1176	0.09	1.2	0.26 401	0.04	0.1431	0.10 replace egr valve	2	91	140	231
EPA	19	96 DC	cherokee	4	final 42253 initial	0.1092 0.15	0.09 0.11	0.9 3.9	0.98 0.25 138	0.03 0.05	0.0358 2.16	0.04 0.20 replace O2 sensor	1.5	105	105	210
					final	0.1299	0.10	1.9	0.22	0.05	1.2	0.19				
EPA	20	96 ford	explorer	4	46706 initial final	0.1458 0.1082	0.10 0.08	2.4 1.4	0.23 153 0.13	0.04 0.04	1.176 0.699	0.19 r/r left O2 sensor 0.08	2	72	140	212
EPA	21	98 DC	CARAVAN	3.3	12241 initial	0.1082	0.08	0.8	0.13	0.04	0.099	0.08 0.20 light out; PCM communications	1			70
504	~~	00 D2		-	final	0.1128	0.09	0.8	0.22			-	_			0.15
EPA	22	96 DC	grand voya	3	78642 initial final	0.226 0.1868	0.20 0.17	1.2 1.0	0.29 133 0.32	0.06 0.04	0.286 0.1897	0.20 upstream O2 sensor 0.23	2	70	140	210
EPA	24	97 ford	ranger	4	56239 initial	0.1332	0.09	2.3	0.25 171, 174	0.04	1.621	0.16 repl upper intake manifold &fuel rail gaskets	6	40	420	460
CDH	2	96 GM	blazer	4.3	final 55439 initial	0.1373	0.12	2.0 1.8	0.12 0.56 1406	0.01 0.06	0.753	0.05 0.19 replace earlyclyce	1.6	185	109	302
CDU	2	90 GIVI	JIdZel	4.3	SS459 Initial	0.2		1.0	0.00 1400	0.06	0.658	0.19 replace egr valve	1.0	COI	109	302

					final	0.196	1.9	0.41	0.07	0.618	0.09				
CDH	4	96 GM	s10		27063 initial			108, 123, 172	2, 1441		install new pcm	2.1	164	150	314
					final	0.41	4.0	0.51	0.29	5.22	0.57 ran two sulfur purge cycles				
CDH	5	96 ford	f150	4.9	30576 initial	0.196	2.2	0.35 171	0.08	1.256	0.39 replace both hego's	2	91	140	231
					final	0.169	2.0	0.39	0.06	0.265	0.38				
CDH	8	96 ford	windstar	3.8	44305 initial	.108	1.1	0.36 402	0.03	0.68	0.22 light went out;npf; EGR	1			70
					final	0.108	1.1	0.36							
CDH	9	96 ford	windstar	3.8	68870 initial	0.115	1.2	0.96 174	0.03	1.6	1.33 sealed vacuum leak	3.5		242	242
					final	0.131	1.4	0.83	0.05	1.8	1.09 (upper intake manifold)				
CDH	10	96 DC	Voyager	3.3	57820 initial	0.315	4.9	1.07 420	0.15	4.2	1.41 replaced the cat reflash PCM	3	350	210	560
					final	0.019	0.4	0.21	0.10	1.2	0.17				
CDH	12	97 DC	gr cheroke	4	26102 initial	.193	1.2	0.25 301	0.08	0.3	0.28 light went out; npf; misfire	1			70
					final	0.193	1.2	0.25							
CDH	14	96 ford	f150	5.8	107544 initial	0.228	2.6	0.58 750	0.06	0.4	0.47 replace solenoid pack and pcm	5.6	510	395	905
					final	0.221	2.8	0.05	0.06	0.6	0.43				
CDH	16	97 FORD	F150	4.6	86654 initial	0.194	3.3	1.12 141	0.57	1.5	1.37 R/R O2 sensor	2.7	71	191	265
					final	0.17	2.8	1.08	0.05	0.8	1.23				
CDH	17	97 ford	b4000(Maz	4	24651 initial	0.152	2.5	0.28 171, 174, 7	0.03	2.4	0.07 r/r 2 O2 sensors and trans solenoid	3	210	210	420
					final	0.137	1.9	0.26	0.30	0.7	0.21				
CDH	19	96 ford	bronco	5.8	3981 initial	0.319	6.5	0.41 133	0.04	0.1	0.32 R/R O2 sens	1.9	63	133	196
					final	0.176	2.1	0.48	0.04	0.4	0.39				
CDH	22	96 GM	blazer	4.3	100853 initial	0.469	5.8	0.55 147	0.24	3.2	0.29 r/r O2 sen #2	2.5	76	173	249
					final	0.37	4.2	0.55	0.16	2.0	0.32				
CDH	23	97 ford	expedition	5.4	49036 initial	0.123	2.7	0.51 156, 171, 1	0.01	0.1	0.38 replace 2 front hego sensors	3.7	124	255.99	380
					final	0.105	1.2	0.42	0.01	0.1	0.31 rr cat efficicy monitor				
CDH	24	97 DC	ram1500	5.9	67060 initial	3.76	10.7	0.89 201, 753	10.97	32.1	1.62 bare and brocken wires due to tampering	3.4	11.85	237	249.3
					final	0.255	4.2	0.59	0.10	3.7	0.63				
CDH	27	96 GM	yukon	5.7	71905 initial	0.26	2.8	0.56 1406	0.09	0.8	0.32 replace egr	1.8	176	101	276
					final	0.281	3.1	0.47	0.10	0.6	0.46				
CDH	30	97 GM	1500	5.7	45166 initial	0.229	2.9	0.45 300, 1870	0.08	1.3	0.49 r/r transmission valve body	3.2	538	225	763
					final	0.235	2.9	0.46	0.07	1.0	0.40				
CDH	33	97 DC	ram1500	5.9	113543 initial	0.546	12.8	2.88	0.31	9.1	3.00 R/R O2 sei new cat	4.1	528	290	818
					final	0.159	2.3	0.23	0.06	0.9	0.17				
CDH	36	96 DC	caravan		80748 initial	0.366	6.8	1.67 303	0.14	5.2	1.86 plugs and wires replace computer cat	5.2	240	366	608
					final	0.131	2.3	0.52	0.03	0.8	0.49				
CDH	39	96 ford	bronco	5.8	109124 initial						failed state I/M passed lab no ftp			2	276.6993
					final										