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Manipulating biology through the ages 
The natural world around us is not quite so natural. Over

many generations, societies have engaged in a struggle to

mold nature to serve the needs, real and perceived, of their

members. From cultivating grains to mining coal, we have

sought to address local and global demands for food,

shelter, health, and convenience through technology

guided by science. One of the earliest and most profound of

human engineering inventions was biotechnology in the

form of farming, starting about 12,000 years ago. This was

later transformed into a true domestication of animal and

plant species that might be defined as “genetic alteration

through conscious or unconscious selection” [1]. It pro-

vided the key foundation for the spread and stability of

human societies and has become one of the most central

and longest-lived sciences there is. In more modern times,

a scientific/rational basis for domestication and control of

biological organisms has been sought both to make breed-

ing organisms for human purposes quicker and more suc-

cessful, and to limit the spread of infectious disease and

other invasive species. The eradication of smallpox and the

near-eradication of polio stand as reminders of how

advanced medical, industrial and social engineering can

change the health of an entire world. The precision of mol-

ecular biology has led to a whole new form of domestica-

tion and industry. Launched by the first mass production

of a human protein (somatostatin) in bacteria, industrial

genetic engineering became one of the most transforming

industries of the 20th century [2]. After the introduction of

genetically engineered herbicide- and insect-resistant

crops in 1995, genetically engineered maize is now more

than 20% of the US crop, and approximately 80% of the US

soybean crop is now genetically engineered [3].

Engineered biological systems are being used to address a

wide variety of society’s needs. Examples include the pro-

duction of insulin and more than 200 other biopharmaceuti-

cals and countless natural products, industrial catalysts and

bioenergy substrates such as sugars, ethanol, methane and

hydrogen, in microbes, eukaryotic cells and higher organ-

isms; engineered resistance, ripening, oil production and

nutrient overexpression in plants [4]; and more exotic suc-

cesses such as the use of cytokine-expressing Mycobac-

terium bovis BCG as an effective treatment for certain forms

of bladder cancer [5]. These successes have largely been ‘one

offs’, however; each one is a special case, and while lessons

were learned, they do not provide a definitive roadmap for

the next advance. Could it be any different? Could each small

success make the solution of major problems easier? The

increasing number of such special cases, as well as society’s

growing need for solutions to energy and environmental

problems, presages the need for a more rational and inte-

grated approach to engineering biology.

We can learn lessons from other engineering fields. Products

such as the personal computer and cellular phone have at
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their foundation deep fundamental theory and technology

from solid-state physics, materials science, and computa-

tional and information theory. These foundations enable

the predictable control of materials and processes through

the application of physical laws to meet specific objectives.

In addition, the industry surrounding these devices has

defined a set of standards and protocols that make the

parts and systems of these devices (often) interoperable,

extensible and, most importantly, allow the efficient scale-

up of manufacture and distribution of the technology. The

practice of engineering has a broadly successful track

record of addressing social needs (as well as creating addi-

tional problems) when applied to materials like silicon and

steel, where the physical rules are known and the complex-

ity is limited or very well controlled. Engineering as a prac-

tice has not, however, been successful in such endeavors as

controlling the weather or avoiding natural disasters, due

largely to the scale, complexity and uncertainty inherent to

those problems. So we must ask: is the conventional para-

digm of engineering appropriate for biology? Can we

develop, or deal with, the lack of a coherent theoretical and

physical foundation for living systems? Or is control of

biology destined for the same fate as rainmaking?

Why should biology be engineerable? 
Given the complexity of biology, an engineering approach

based on design may seem an unlikely route to success.

Living systems, unlike classical engineered systems, grow

and evolve, and have material properties that are not easily

controlled or predicted and that are often sensitive to their

local environment. Indeed, traditionally directed evolution

through selective breeding of, for example, pest-resistant

or high-yield crops has been the main method for obtain-

ing a desired outcome in biology. This is true at the biomol-

ecular level as well, in which creation of new function in

proteins and nucleic acids is often accomplished through

directed evolution rather than de novo design [6,7]. The tech-

nology for direct, rational manipulation of an organism’s

DNA has improved in precision and efficiency, greatly

increasing our ability to produce therapeutics, natural

products, antibodies and enzymes in heterologous systems.

Yet actually achieving, let alone optimizing, the production

of a given target in a given system is still a time-consuming

art driven by decades of empirical observation. Engineer-

ing of more complex behaviors will require a more princi-

pled understanding of biological system design. 

Basic research over the past few decades has given us con-

fidence that there is at least some organized structure to

the workings of cells - a structure that may be altered or

even rebuilt through an intelligent process of engineering.

This view is emerging from multiple disciplines. Compara-

tive genomics is helping to uncover the structure and evo-

lution of the genome. Large-scale tracking of DNA

expression, protein synthesis, molecular interactions and

intermediates is revealing groups of molecules that work

and play together. Fluorescent imaging of living cells is

identifying time-dependent changes in protein activity and

localization that correlate with behavior. Reconstitution of

biochemical and biophysical processes from ‘minimal

systems’ of proteins has built confidence that top-down

and bottom-up approaches to biology meet somewhere in

the middle. Systems biology has sought to integrate these

results and data to reverse-engineer an understanding of

biological network function and dynamics. Finally, the

infrastructure for storing and disseminating information

on biological systems, and for modeling them, has grown

concurrently. In turn, this allows the rapid access and

cross-comparison of information that is critical to estab-

lishing data quality and creating interoperability standards

that will enable biologists to leverage their efforts and

build scalable systems. 

The key observation that biological systems exhibit some

degree of modularity underlies the current belief that useful

and ‘engineerable’ design principles exist [8]. Whether at

the level of protein motifs with similar binding properties or

groups of proteins that carry out specific functions in a

variety of distinct settings, the modular parts of biological

systems are used and reused to generate and control the

apparently complex behavior of living organisms. The bold

question that was asked at the dawn of recombinant DNA

research, and continues to be asked today, is whether a

growing understanding of this modularity and new tools to

manipulate it can be used to engineer new and useful

behavior. Attempts to directly answer this question - and to

think about its consequences - have resulted in the forma-

tion of a loose assembly of scientists, engineers, ethicists

and other thinkers engaged in what has become known as

‘synthetic biology’.

What sets synthetic biology apart from molecular biology

and its closely allied fields of genetic and metabolic engi-

neering is the ambition to formalize the process of design-

ing cellular systems, in the way that traditional engineering

disciplines have formalized design and manufacture, so

that complex behaviors can be achieved for practical ends.

Such behaviors will require larger biochemical circuits,

typically encoded in DNA, for control. To achieve this, syn-

thetic biologists look to move beyond the qualitative and

often ad hoc engineering pathways that have underlain the

slow progress to this point. The goal, instead, is to create a

systematic engineering science founded on the standard-

ization of a cellular ‘chassis’ - the types of parts available,

their manufacture, their characterization and protocols for

their interconnection - analogous to those that underlie

and enable the scalability of mechanical, electrical and civil

engineering. But the analogy with traditional engineering

should not be taken too far, as there are challenges to engi-

neering biology that no internal combustion engine or

microprocessor has faced. 
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What are the engineering challenges? 
Despite much effort, the dream of engineering biology has

not yet led to simple and rapid construction of biological

organisms that address specific problems. The reasons for

this are twofold. One is the lack of a technology infrastruc-

ture that enables production of biological parts and easy

assembly of these parts into systems, a challenge that has

been addressed in a recent review [9]. The second, which we

focus on here, is the difficulty of predicting what biological

components will do, even when the parts are readily obtain-

able and much is known about them individually [10]. On

this issue, lessons learned from engineering bridges, boats

and planes are of little help, because the operating condi-

tions under which biological systems function are signifi-

cantly different from those of familiar macroscopic systems.

Thermal fluctuations that drive stochastic behavior can typi-

cally be ignored or managed in traditional engineering, but

often not in cells. And in situ evolutionary change in parts

and control systems are simply not problems for inanimate

objects - not so for biology. In fact, biology’s success - its

ability to grow and evolve new solutions and test fitness

through competition - has depended on just those behaviors

that frustrate predictability. Any engineering of biology to

serve our needs must recognize, understand and manage

this drive towards variation and the evolutionary competi-

tion with other organisms. Some of these issues are already

under practical consideration in relation to genetically modi-

fied organisms [11].

Engineering exogenous protein or gene circuits into a new

host organism also faces problems of integration due to ‘par-

asitic’ effects and cross-talk with existing pathways. Parasitic

effects that arise due to direct interaction among new com-

ponents or through indirect interactions via their effects on

the organism into which they are introduced - the chassis -

such as sickening it or draining inputs to other pathways,

often play a dominant role in preventing circuit function. To

be broadly useful, the features of a biological component and

the organism into which it is introduced must be character-

ized such that its function is predictable. Most circuit

designs rely, at least in part, in transferring natural compo-

nents from other organisms into the host chassis. There are

basic problems of adapting the part for operation in the new

host by, for example, adjusting codon usage, and as the part

did not coevolve with the other parts of the chassis it might

cross-react with other components in unforeseen ways.

Zarrinpar et al. [12] elegantly demonstrated this in yeast by

showing that a yeast Pbs2 protein binds specifically to SH3

(Src homology 3) domains from yeast but is promiscuous

with SH3 domains from other organisms. These issues are

compounded when design moves away from the single cell

and towards multicellularity, as some researchers are now

attempting [13,14]. 

To demonstrate the challenges of engineering biology to

control behavior, we use two simple examples: one

addresses how evolution could degrade biological circuit

performance over time; and the other addresses how noise,

possibly external to the system, can have dramatic effects on

system behavior. In the first example, we borrow a model for

competition between multiple strains of a microbe under

nutrient-limiting conditions in continuous culture [15]. We

assume that there are two quasispecies of bacterium, one

bearing a functional version of our synthetic biological

circuit and the other carrying a disabled version created by

deleterious mutation from the first. The deleterious muta-

tion rate is a function of circuit size in base pairs (bp), basal

mutation rate in base pairs per generation, the generation

time itself, and a factor related to the specific circuit design,

which gives the fraction of mutations leading to loss of func-

tion of the circuit. The basal mutation rate, m, in Escherichia

coli is approximately 5.4 x 10-10 base-pairs per cell per gen-

eration; the fraction of mutations that actually disable the

circuit, f, is a free parameter, which for this simulation we

set to 1/1,000. The circuit size for a small two-gene circuit is

approximately 2,000 bp. We vary this parameter in the fol-

lowing calculations, holding f constant for convenience,

although, in reality, for each circuit design f is a variable. We

also assume that having a functioning circuit places a meta-

bolic load on the cell that slows its growth rate. This load has

been observed experimentally in a number of cases, but

there are few hard and fast rules [16-18]. A disabling muta-

tion can release this load, leading to faster growth of the

mutant population. The deleterious mutation rate sets a

threshold above which, over time, the nonfunctional mutant

population can outcompete the wild-type population. 

Figure 1 shows the results of a calculation of the time for the

mutant population to become the majority under different

circuit sizes and growth differences, starting from an initial

condition of a pure wild-type population. Even with rela-

tively modest growth differences and relatively small circuit

sizes it is only a matter of days before the mutant takes over

the population. You et al. [19] observed this in a synthetic

population-control circuit in which mutants that escape the

circuit control arise in 3-6 days (the You circuit is approxi-

mately 4,000 bp long). In many ways, the above example is a

best-case calculation because of the restriction to only the

simplest of mutation mechanisms and the resulting popula-

tion structure, as well as the relative mildness of the growth

differences explored. In practice, the use of selectable

markers could, of course, aid in preventing such takeovers.

However, these markers may be disabled when the circuit

function is disabled, and it is not obvious how to design for

this when complex behaviors are encoded. Error-tolerant

(robust) designs can minimize f, but the principles for apply-

ing this to biological design are still in their early develop-

ment [20-22]. 

A second example of how an engineered biological system

can evade control arises when we consider the biophysics

of reaction networks in cells. It has become clear that the

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2006/7/8/114                            Genome Biology 2006, Volume 7, Issue 8, Article 114 Arkin and Fletcher  114.3

Genome Biology 2006, 7:114



discrete and stochastic nature of chemical reactions can play

an important role in cellular behavior, in part because many

cellular processes are governed by small numbers of mole-

cules. A number of recent papers describe synthetic biologi-

cal constructs for exploring the effect of noise on these

low-molecular number processes [23-30]. Even in cases

where the numbers of molecules are not too small, stochastic

effects can have surprising consequences. Theoretically, the

addition of a small amounts of external noise to a ubiquitous

biological network motif, the enzymatic futile cycle (in which

a protein undergoes continuous cycles of phosphorylation

and dephosphorylation under the control of kinases and

phosphatases), can lead to different qualitative behavior

than that predicted by the deterministic equations [31]. In

fact, different types of noise can lead to dramatically different

behaviors of the futile cycle, including different signal amplifi-

cation, switching and oscillation properties. Figure 2 shows a

simple analysis (from [31]) that shows the bifurcation from

monostable to bistable behavior that occurs in a futile cycle

as the distribution of the small noise term added to the

forward enzyme is changed. There might be different exoge-

nous noise sources under different environmental condi-

tions in which the engineered organism finds itself, and

thus this subcircuit could behave in ‘unexpected’ ways. In

turn, these might impact greatly on the fitness of the organ-

ism [32-34]. 

The first of these two simple examples demonstrates that

two of the key properties of a cellular chassis and its environ-

ment that need to be engineered are the basal mutation rate

and the robustness to circuit load, which should, generally,

both be minimized. Furthermore, the particular design

choices made in part choice and in the mechanisms by which

these parts are hooked together to make a system will affect

the value of f, the deleterious mutation rate. The second of

these examples shows how even a simple biochemical

system can exhibit complex unintended behaviors if the

environment in which it operates changes only its noise

properties (even if the mean values stay the same). Thus a

designed cell that is passing through uncertain or multiple

environments will have to be designed to minimize or even

to exploit these effects. In fact, outside bioreactors, engi-

neered organisms - other than a few agricultural examples -

survive poorly in real-world environments where conditions

and competition with other organisms are less controlled

[35]. Both the cases described here demonstrate special

considerations that must be applied to the engineering of

biological systems in order to meet the challenges to the

scalability of engineered organisms. 

Immediate goals and future prospects 
As we have for millennia, we are shaping the biological world

to meet our needs. There are major problems that cry out for

biologically engineered solutions, such as those in cell and

tissue engineering, gene therapy, biologically derived mate-

rials, biocatalysis and natural product synthesis, optimiza-

tion of agricultural yield and nutrition, pest and disease

control and much more. Synthetic biology, with its focus on

elucidating and harnessing design principles of living

systems, aims to tackle these problems. But unlike other

engineering disciplines, synthetic biology has not developed

to the point where there are scalable and reliable approaches

to finding solutions. Instead, the emerging applications are

most often kludges that work, but only as individual special

cases. They are solutions selected for being fast and cheap

and, as a result, they are only somewhat in control (with

apologies to Errol Morris). 

Yet there is optimism in the field. Engineering biology is

indeed a great challenge, but its potential benefits are even

greater. Through the creative efforts of many investigators,

solutions to robustness and noise suppression may be found

- or we will at least understand why no solutions can be
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Figure 1
The takeover of a nonfunctional mutant with a higher growth rate in a
population. The predicted time (in days) to a nonfunctional mutant strain
of a synthetic microbe becoming the majority of the population as a
function of the log of the circuit size and the ratio of growth rate of the
mutant to that of wild type. The circuit size is a proxy for the cross-
section of the circuit for deleterious mutation, which is also a function of
growth rate, basal mutation rate m and circuit architecture. The larger
the size and larger the growth advantage of the mutant strain, the faster
the population loses function. The inset shows a schematic of the
underlying model which tracks competitive growth (g) of a wild-type (wt)
population and mutant (mut) population on a common resource (S) in
continuous culture. ks is the influx rate of resource into the bioreactor
and d is the dilution rate of cell and substrate out of the reactor. The
parameter m is proportional to circuit size and is the rate of production
of non-functional (and growth competitive) mutants from the wild-type
population.
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found. Further effort and investment are required to develop

robust theories and computational infrastructure for biologi-

cal circuit design and synthesis, to establish standards in

measurement and information about circuits and their inter-

operability, and to create new manufacturing technologies

that allow production of large circuits, creation of novel

chasses (with, for example, new genetic codes [36]), and

environments for the development of artificial tissues.

Excitement among those engaged in engineering biology

stems from the fact that there are clear routes to progress on

all of these fronts and from the incredible pull of the applica-

tions that are possible if these problems are solved.
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Figure 2
The effects of noise on an enzymatic futile cycle. The cycle is formed by
the phosphorylation of a protein X to form X* through the action of a
kinase, E+, which may or may not be subject to noise in its activity. Each
curve is a plot of the stationary-state concentration of X*, from the
system shown schematically in the inset, as a function of the average
forward enzyme activity <E+>. The variable p is related to the noise
power and determines the effective noise distribution around <E+>; p = 0
corresponds, for example, to approximately normally distributed noise
whereas the other values correspond to different distribution shapes. The
(black) curve labeled ‘det’ is the deterministic solution when E+ is not
subject to noise. Whereas the deterministic system defined by p = 0 is
monostable, the system with noise can be bistable and oscillate
stochastically. From an analysis in [31].

0 10 20 30 40 50

S
ta

tio
na

ry
-s

ta
te

 c
on

ce
nt

ra
tio

ns
 o

f X
*

Average forward enzyme activity <E+>

noise(p)

X*X

E+

p = 0

p =

p =

p = 1

0

500

1,000

1,500

2,000

det



26. McAdams HH, Arkin A: Stochastic mechanisms in gene
expression. Proc Natl Acad Sci USA 1997, 94:814-819.

27. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV:
Stochastic gene expression in a lentiviral positive-feedback
loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell
2005, 122:169-182.

28. Golding I, Paulsson J, Zawilski SM, Cox EC: Real-time kinetics of
gene activity in individual bacteria. Cell 2005, 123:1025-1036.

29. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M,
DeRisi JL, Weissman JS: Single-cell proteomic analysis of S. cere-
visiae reveals the architecture of biological noise. Nature
2006, 441:840-846.

30. Raser JM, O’Shea EK: Control of stochasticity in eukaryotic
gene expression. Science 2004, 304:1811-1814.

31. Samoilov M, Plyasunov S, Arkin AP: Stochastic amplification and
signaling in enzymatic futile cycles through noise-induced
bistability with oscillations. Proc Natl Acad Sci USA 2005,
102:2310-2315.

32. Wolf DM, Vazirani VV, Arkin AP: Diversity in times of adversity:
probabilistic strategies in microbial survival games. J Theor
Biol 2005, 234:227-253.

33. Kussell E, Leibler S: Phenotypic diversity, population growth,
and information in fluctuating environments. Science 2005,
309:2075-2078.

34. Thattai M, van Oudenaarden A: Stochastic gene expression in
fluctuating environments. Genetics 2004, 167:523-530.

35. Cases I, de Lorenzo V: Genetically modified organisms for the
environment: stories of success and failure and what we
have learned from them. Int Microbiol 2005, 8:213-222.

36. Wang L, Xie J, Schultz PG: Expanding the genetic code. Annu Rev
Biophys Biomol Struct 2006, 35:225-249.

37. VIMSS: Virtual Institute for Microbial Stress and Survival
[http://VIMSS.lbl.gov]

114.6 Genome Biology 2006, Volume 7, Issue 8, Article 114 Arkin and Fletcher http://genomebiology.com/2006/7/8/114

Genome Biology 2006, 7:114


