Debugging Agent Interactions: a Case Study

David Flater
National Institute of Standards and Technology
100 Bureau Drive, Stop 8260
Gaithersburg, MD 20899-8260
U.S.A.

dflater@nist.gov

ABSTRACT

The Contract Net protocol is a genera-purpose protocol for
distributed problem solving. Many modern agent infrastructures
facilitate the generation of agents supporting Contract Net. We
used one such infrastructure to simulate a Contract Net-based
approach to job scheduling and found that some jobs failed to get
scheduled even though the resources were available. This paper
describes two phases of the subsequent debugging effort. The
first phase was enhancing the visudization of the agent
community to reveal the causes of failed negotiations. The
second phase was formalizing the problem using a Temporal
Calculus of Communicating Systems (TCCS) and attempting to
find a solution. After exploring a number of solutions that would
not generalize, we found that switching from one-stage to two-
stage commitment sufficed. For coordination problems in
general, our case study demonstrates the applicability of rigorous
methods and the importance of providing run-time visibility into
agents logic.

Categories and Subject Descriptors
D.25 [Software Engineering]: Testing and Debugging—
Distributed debugging; D.24 [Software Engineering]:
Software/Program V erification—Model checking

General Terms
Experimentation, Verification.

Keywords

Agents, coordination, negotiation, scheduling.

1. INTRODUCTION

For some time, the manufacturing sector has maintained interest
in agent-based approaches to supply chain management, planning,
scheduling, and control. The difficulty of coordinating the flow
of information through the many domains of responsibility within
or among manufacturing enterprises often makes autonomous

agents seem an attractive way to simplify the problem. However,
systems composed of interacting agents are notorioudly difficult
to test and debug. It is hard enough to achieve sufficient visibility
into agents interactions to be able to determine whether
individual agents are behaving as specified. It is harder yet to
know where to begin when the collective behavior of a group of
apparently sane agents was not as expected.

Many modern agent infrastructures facilitate the generation of
agents supporting the general-purpose Contract Net protocol [1]
for distributed problem solving. We used one such package,
Zeus [7] version 1.02, in a case study of debugging agent
interactions. In the following sections, we describe our test
scenario, the testability enhancements that helped us understand
its behavior, and the analysis that reveaded the true depth of the
problem we faced. We conclude with a summary of those
observations of relevance to agent standards and coordination in
general.

2. TEST SCENARIO

We came upon our test scenario honestly when alearning exercise
to build an agent-based simulation of job scheduling went awry.
The scenario contained a merged user interface and supervisory
agent cdled the Guardian. To achieve the user's goals, the
Guardian had to arrange for jobs to be done by a pool of three
workcells, aptly named Good, Cheap and Fast (see Figure 1). By
refactoring the standard shop floor scheduling problem as
procurement of labor as a commodity instead of centralized
choreography of completely subordinated workcells, we opened
the door to a style of virtual manufacturing wherein the means of
production would be rented as needed by transient manufacturing
enterprises. But it is not really necessary to motivate the
particular scenario, since the encountered problem and the
techniques used to analyze it are scenario-independent.

The Contract Net negotiation in our scenario involved only five
different message types: Cal For Proposads (CFP), Refuse,
Propose, Accept-Proposal, and Reject-Proposa. The Guardian
sent a CFP message to each workcell to initiate negotiations.
Each workcell responded with either a Propose message if it was
willing and able to do the work a some price, or a Refuse
message if it was unwilling or unable to do the work. The

" Commercia equipment and materials are identified in order to
describe certain procedures. In no case does such identification
imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the
purpose.

mailto:dflater@nist.gov

Guardian collected proposals and then chose one that was
cheapest. The "winner" received an Accept-Proposal message;
any other proposers received Reject-Proposal messages. If no
proposals were received, the work did not get done.

In Zeus, after identifying the Guardian as a Contract Net manager
and the workcells as Contract Net contractors, it was only
necessary to set the parameters of the workcells' tasks to be able
to generate the entire simulation. We used the following
parameters in our experiment: Workcell Good took two time
dlices and charged 1000 units of currency to supply the labor for
one job; Cheap took two time dices and charged 500; Fast took
one time slice and charged 1000.

Having configured three workcells all capable of performing the
same jobs, we innocently requested the Guardian to accomplish
three jobs at the same time. For no particular reason, we expected
one job to go to each workcell. It would have been equivalent for
two jobs to go to Fast and one to go to Cheap. But, to our shock
and horror, the simulation routinely gave one job to Fast, one job

to Cheap, and onejob to no one &t all.

Visualiser1

Nameserver1

Guardian

[

Figure 1. Society view with messagesin transit

3. DEBUGGING

Zeus includes a set of tools for monitoring and analyzing agent
behavior. At the forefront, the agent society viewer (Figure 1)
provides an animated view of the types of messages passing
between agents at run-time. We edited the Zeus source code that
colorizes messages so that Reject-Proposal and Refuse messages
would be easier to see. Confusingly, we saw two rejections (one
to Good, one to Fast) and seven refusals (three from Good, two
from Cheap, two from Fast). At that point it was not obvious to
us why Good rejected all three jobs.

The Zeus agent viewer permits viewing of the incoming and
outgoing messages for each agent. We again edited source code
to expand the size of the mailbox buffers so that all messages sent
during the run could be recaled. Looking at the messages (see
Figure 2), we saw that refusals arrived with various attributes, but
with no obvious way to determine the reason for the refusal.

H[=] B3

&4 Mail In:1

Suhject Type
Cheap refuse | 4]
Cheap refuse
Cheap propose
Cheap propose
Cheap propose
Fast refuse
Fast propose
Fast ropose
bronno -l
Reply With —‘
In Reply To ‘Guardian_local_dstruct,lﬂz “
Content (:id Guardian subgoaldt :desired by Guardian :type true
ifact (itype Labor ;id war &8 :modifiers 1) :end_time 4
scost 0.0 :priority 1 :root_id Guardian goald?
ireply time 1.53125 :confirm time 2.0)

Sent Hl 1122666666666667 “

Recieved Hl 0695666666666667 “

Figure 2. Refusal in inbox

We tried different values for the Guardian's budget and the
workcells' costs, to no effect. We then tried different confirm and
end times for the requested jobs. The confirm time is the deadline
for the awarding of the contract, while the end time is the deadline
for completion of the contracted work. The resulting behaviors
(see Table 1) showed that there were more potential problems, but
were not sufficient to diagnose the problem at hand.

Table 1. Effects of changing confirm time and end time

Confirmtime End time Behavior
Now+2 Now+5 Good idle, Fast one job,
Cheap one job. Rarely,
Good idle, Fast two jobs,
Cheap one job.
-1 ("Don't care") Now+5 | Would not run.
Now+5 Now+5 Would not run.
Now+4 Now+5 | All workcdlsidle.
Now+3 Now+5 Good idle, Fast one job,
Cheapidle.
Now+3 Now+6 Indistinguishable from
+2/+5.
Now+2 Now+6 Good idle, Fast two jobs,
Cheap one job.

Despite its regular success, the last variant (+2/+6) was
unremarkable because it represented a scenario with substantially
less schedule pressure.

We tried running the scenario without Fast. On thefirst try, Good
and Cheap were each awarded one of the jobs; the third job was
not feasible. On the second try, Cheap was awarded one job
while the other two failed.

We changed the Guardian's negotiation strategy from Default-No-
Negotiation to GrowthFunction. This increased the amount of
negotiation, but then all three jobs failed. When we made the
analogous change to the Workcell strategies, the behavior was as
it was before but with more negotiation.

We turned on verbose debugging, but gained no information from
it.

We finaly examined the source code implementing the various
states of negotiation. The coordination engine view (see Figure 3)
shows the state graph of the negotiation, with failures in red (in
monochrome copy, dark gray). In most states, there are multiple
places where some condition will cause them to return a failure.
When this occurs, we see the failure but not its cause.

[coordination Engine:1
Graphs I
s0-0
s0-1
02 |
roeu;.-l Rnrlm-.-.l Sdecll All | Calapse |Expand| Hide |3hcw|
= |
321 -|
i g e
s0-2 d3r23
[T
SS*33|
-
4 | »
Key
B NOT_READY READY WWAITIMG
RUMMIMNG DOME M FAILED

Figure 3. Guardian view of failed job

4. TESTABILITY ENHANCEMENTS

The Foundation for Intelligent Physical Agents (FIPA) specifies
that reject and refuse messages should contain areason field in the
content. Slightly paraphrased, the specification reads: The agent
receiving a refuse act is entitled to believe that the (causal) reason
for the refusal is represented by the third term of the tuple, which
may be the constant true. [4]

We modified Zeus 1.02 to add a reason field to the content and
present this information in the coordination engine view. We aso
attached reason codes to local failures that do not generate
messages between agents. Subsequently, the Guardian's view of
the job that failed (see Figure 4) showed that it failed because all
three workcells refused it as infeasible. Good and Fast's views of
the first job (see Figure 5) showed that they bid on the contract
but did not win — the first job was awarded to Cheap. Fast was
awarded the second job because both Good and Cheap refused it,

as well as the third job, as being infeasible (see Figure 6). Fast
refused only the third job.

[coordination Engine:1 =] A |
Graphs

s0-0
s0-1

Posit '| Rnrlm-.-.'l Sdecll All | Collepse |Expand| Hide |Shcw| |

LD

:

1 d2-17

|

.

Kl 1

Key
B NOT_READY READY WAITING
RUMNNING DOMNE M FAILED

Figure4. Guardian view with reasons added

& coordination Engine:1 IH[=] E3

Graphs |
-0 .|

s0-1
s0-2

Fceil-r--lrenrlm-.-:l Se!ecll All | r.‘:::|:::::|Expand| Hidelshcwl ml

S0} s3> o5 IORIRBEHENRERENEN BeERaRasa |

1
Key

B NOT_READY READY WAITING
RUNMING DOME M FAILED

LD

"l

Figure5. Workcell view of rejection

[coordination Engine:1

Graphs |

s0-0

50-1

Faail-:-'l RNIm‘.'l Sdec:l All | Calyse |Expand| Hide | showl
s0-2 s7-6 Goal not feasible
v
4 | 3
Key
B NOT_READY READY WAITING
RUNMING DONE B FAILED

Figure 6. Workcell view of refusal

The behavior of the agents was then more transparent, and we
could guess what was going on:

1. Job 1 arrived first, was proposed on by all three workcells
and awarded to Cheap. The other two workcells responded
to the Guardian's Reject-Proposal messages with Refuse
messages, obfuscating the fact that it was the Guardian
who called off negotiation. After the modification, it was
obvious from the reason embedded in the refusal:
"Rejected (Received better proposal).”

2. Job 2 arrived second and was refused by Good and Cheap
because they aready had Job 1 tentatively on their
schedules. Fast proposed on it because it theoretically had
time to do both Job 1 and Job 2, and was awarded the job.

3. Job 3 arrived last and was immediately refused by all three
workcells as not feasible.

Even though we ran it as multiple processes on the same
computer, the distributed nature of the simulation caused the
ordering of messages to be semi-random. In rare instances, these
random perturbations led Fast to bid on jobs 2 and 3 instead of 1
and 2, in which case Fast could be awarded two jobs.

The root of the problem, then, was that tentatively scheduled jobs
were sufficient to cause the immediate refusal of other jobs that
would require the same time dot, even though the subsequent
rejection of the tentative job would make the refused job feasible.
But we could not simply change the workcells to allow
overbooking of tentative jobs, because we would then accept
contracts that were not feasible.

5. FORMALIZATION OF THE PROBLEM
We now model a simplified version of our scenario using a
Tempora Calculus of Communicating Systems (TCCS) [5][6]
(one of severd that exist by the same acronym). This model is
then fed into the Edinburgh Concurrency Workbench [2] (CWB)
version 7.1 for anaysis.

For a minimal introduction to TCCS notation, please refer to the
Appendix of this paper.

We originally modeled the compl ete scenario with three workcells
and Guardian. The resulting model exceeded 100K states before
we had even completed it and could not be anayzed on a
workstation having a full gigabyte of memory. The formulas and
machine-readable TCCS for the originad model are available on
request. Here we present a simplified model where the workcell
Good has been removed. The remaining two workcells are
sufficient to demonstrate a range of system behaviors.

The other simplifications are as follows:

1. We revert to the Default-No-Negotiation and Default-
Fixed-Margin strategies for the Guardian and workcells
respectively, which reduces the complexity of the
interactions but does not change the nature of the
"failure" or the underlying "fault.”

2. We treat negotiation messages as if they were
instantaneous, whereas workcell labor takes time.

3. We pretend that work on accepted proposas begins
immediately and must be completed by t = 2.

4. We do not model the unnecessary refuse messages that
are sent by workcells in response to reject-proposal

Messages.

5. We do not model the many alternative modes of failure,
such as agents failing to respond.

6. Wedo not allow for indefinite future scheduling of jobs,
but only deal with the scheduling of the three jobs from
our scenario.

Let C, F, and N refer to the agents Cheap, Fast, and Guardian
respectively.

Actions:

- Cal for proposads to workcell n for job j:
cfp,;, NO{C,F},1< j<3

- Workeell n proposesto do job j: propose,;
- Workeell nrefusestodojobj: refuse,;

— Guardian accepts proposa for workcell nto do job j at
the proposed price: accept,;

— Guardian rejects proposa for workcell n to do job j at
the proposed price: reject,;

5.1 Guardian

Let CFP; be the Guardian subprocess trying to obtain labor for job
j-

def
N = |_| CFP.

]
1<=j<=3

def
CFP; = cfp. ;.0.0|cfpg ;.0.0 | Feedback,

Each job produces two CFP messages. Each of the two workcells
can send either a proposal or a refusa in response to a CFP,
giving four distinct cases. These are multiplied by two
permutations of the CFP responses. The actua order is
unimportant, but failing to accept al permutations leads to
deadlocks in the TCCS. Although we have not parameterized the
messages with the proposed price of the labor, the Guardian's
preference for cheaper labor is captured in the decision tree below
based on the known properties of the workcells.

oropose propose; ;.0bsCF; .(acceptaJ 0.0] reject;vi.é.o)
N+ refuse; ;.obsC;.accept. ;.5.0
propose, ;.obsF;.accept;. ;.0.0
+refuse . beNil S
cedback oo +refuse; ;.0bsNil;.0.0
F =
i © ropose. proposem.obsCFi.(acceptC‘i.cS.O|rejectp‘i.5.0)
P+ refuse, ; .obsF;.accept;. ;.0.0
e propose, ;.obsC;.accept, ;.5.0
P + refuse, , .obsNil 8.0

The actions of the form obs... are included for the technical
reason that system traces from the CWB show communications
between agents as opaque tau (internal) actions of the system.
We require observable actions to be able to interpret the traces
that lead to any given state.

5.2 Cheap
Cd;f Free.
(Had we a Good workcell, it would be defined as Freeg.)

cfp, ,. propose, , Tentative, ,
def

Free, = 3, +cfp, ,. propose, , Tentative, ,
+Cfp, 5. propose, , Tentative, ,

The scheduler policy at the root of our problem is codified in
Tentative:

accept,, ,.Confirmed,

) d@f| +reject, ,.Free,
Tentative,, =|)
+cfp, ,.refuse, ,.Tentative, |

+cfp, ,.refuse, ;. Tentative, ,

Finally, in Confirmed, we simulate a task requiring two time
dices. The following is sufficient for our purposes, but does not
allow for scheduling of additiona future jobs while the task is
running.

_ oo cfp,,.refuse, ,.Confirmed, ,
Confirmed, , =(2).Free, 0| _* ' '
' +cfp, 5.refuse, ;.Confirmed, ,

Analogously for
Confirmed,, 3.

Although it is feasible to reduce the number of processes by
merging the three Tentative,; into a single Tentative, and
similarly for Confirmed,, we keep them separated here to clarify
the intended behaviors of the system.

Tentative,,, Tentative,3, Confirmed, ,

53 Fast
def
F=Fr
cfp; ,. propose; ,.Te,
def N
Fr =4 +cfp, ,.propose; ,.Te,
+cfp;. ;. propose;. ,.Te,

cfp;. ,. propose; , Te,
T def +Cf7p|:,3-pr0poser=,3-Te13
+accept . ,.Co,

+reject. .Fr
Analogously for Te,, Tes.

cfp; refuse; ;. Te,

+accept . ,.Te,Co,
def
Te, =| +reject, . Te,

+accept,. ,.Te,Co,
+reect. ,.Te

Anaogously for Teys, Tes.

cfp; o.refuse; ;. Te,Co,
def
Te Co, =| +accept, ,.Co,,
+reject.,.Co,

Anaogoudy for Te;Cos, Te,Coy, Te,Cos, TesCo;, TesCo,.

et cfp. ,.propose. ,.Te,Co
Co, =(1).Fr O Pr.2- PIOROS 2-1&X0,
+cfpg 5. propose; ;.Te,Co,

Analogously for Co,, Cos.

def o
Coy, =(2).Fr O cfp, ;.refuse; ,.Co,,

Analogously for Coyz, Coys.

5.4 Analysis

To make the anaysis terminate, we include an additional process
def . .

T =(4).0that hats the system after four time slices. The system

can now be composed as

djf[(C|F|N|T)\ j

System = . . .
{... list of unobservable actions elided ..}

Loading the model into the CWB, we find that the system has
approximately 2732 states” There are four distinct "deadlock”
states, all of which represent intentional haltings of the system at
t=4. Using the CWB function to list all observations of length
three, we find 66 of them. Modulo the various combinatorics, we
only have three distinct system behaviors:

1. Chbidsononejob, F bids on the other two. There are 18
ways this can happen.

2. F competes unsuccessfully with C for one job and wins
another, while the third job is refused by both workcells.
There are 36 ways this can happen.

3. FandCcollideasin case 2, but F is rejected before the
CFP for the third job arrives, so F bids on the last job
and getsit. There are 12 ways this can happen.

In practice, the order in which CFP messages arrive at workcells
is not uniformly random, and it is highly unlikely for one
negotiation to run to completion while the CFP for another
languishes en route, so there is a strong bias in favor of case 2.
But it is interesting to note that if any sequence were as likely as
any other, one job would still fall through more often than not.
This would probably not be true of our original, three-workcell
scenario, where there are more ways for all three jobs to get done.

6. EVALUATION OF PROSPECTIVE
SOLUTIONS

In afree market, both Guardian and workcells would suffer when
jobsfall through unnecessarily. Neither side has amotiveto leave
this problem unfixed.

© Quoting from the Edinburgh Concurrency Workbench user
manual (Version 7.1) dated 1999-07-18: "The number of states of
an agent is not as clear a concept as you might think: treat the
number as arough indication of size, only."

6.1 Workcell-Serialized Negotiations

One approach that seems completely wholesome and genera at
first glance is for the workcells to delay responding to CFPs while
their schedules are tentatively full. We can model this in the
TCCS by failing to accept CFP messages while in the relevant
states:

) def [accept ,,.Confirmed, ,
Tentative, , = ' '

+reject, .Free,

accept . .Te,Co,
wf| +reject. .Te,
Te,=| —
+accept, ,.Te,Co,

+reject, . Te,

def -
Te,Co, = accept, ,.Co,, +reject ,.Co,
The resulting system, unfortunately, contains deadlocks. For
example:

C = Tentative,
F=>Te,

propose, , obsCF, (accept,. ;0.0 rejecthl.d.O)D

0.0]cfp. ,.0.0|
' +refuse, ,.0bsC, .accept. ,.5.0

propose. , 0bsCF, (accept. ,.5.0 | reject, , .6.0)}]

N=|||cfp.,.0.0[0.0|
+refuse ,.obsF,.accept;. ,.0.0

[cfpc 5050] [pmﬁec‘S.obsCFs.(acceptcvs.dO | rejectpv3.5.0)}]

' +refuse,, ,.0bsF;.accept,. ;.0.0
In the general case, this problem would be a show-stopper. In our
particular scenario, if we presume that the Guardian has prior
knowledge of the price differential between Cheap and Fast and is
only inquiring to see if their schedules are clear, we could work
around by accepting the proposal from Cheap before Fast even
responds:

propose, | 0bsCF reject; | .6.0}

f| pro ..acc i
PIOPOSS ;- B068Pe. [+ refuse; .obsC,.5.0

ke
Feedback; =

+ { .. other permutations are unchanged }

The resulting System has (approximately) 1685 states and 18
distinct observations, all of which get al three jobs done.

Even with the stopgap solution, this approach contains an inherent
tradeoff in that it delays responsesto the later CFPs. Although we
have not explicitly modeled the time consumed in negotiations, it
is clear that the delay will get worse as additional CFPs pile up.
Failure to respond to a CFP is equivalent to a refusal, so in the
simple case nothing would be lost, but at some point the backlog
of "bad" CFPs would begin to impact the execution of later
"good" ones. Moreover, the delays could have unacceptable
socia consequences in practice, particularly if the Guardian aso
fails to accept or rgject proposals in a timely fashion. Our
scenario istoo limited to permit analysis of these behaviors.

6.2 Guardian-Serialized Negotiations

In scenarios having only a single Contract Net manager, it would
suffice to issue the CFPs one at a time, delaying the next until
negotiation on the previous has completed. This is accomplished

in our model by letting ng CFPR, revising Feedback; and
Feedback, to get rid of the parallel operators, and replacing the
eight nontemporal deadlocks (5.0) remaining in each with

CFPj,;. The resulting system has a mere 36 states and only one
observable behavior — both workcells bid on the first job, which
goes to Cheap; the second and third jobs are only bid on by Fast.

Of course, this introduces more of the unmodeled negotiation
delay that we discussed above. A more scenario-specific solution
is to dter the Guardian to issue the CFPs to Fast only after they
have been refused by Cheap:

def

CFP; = cfp. ;.0.0 | Feedback;

propose,, ; .obsC; .accept, ;.5.0

def
Feedback; = propose, ; .obsF; .accept,. ;.0.0

+) .
refuse. ;.cfpe ;. + refuse;. ;.obsNil .6.0

This is merely an escalation of the "pre-selection” of Cheap that
we made previously, where proposals from Cheap were accepted
before Fast had a chance to respond, but this one requires no
modifications to the workcells' behavior. The resulting system
has 431 states and 18 distinct observations, al of which award all
three jobs without inter-workcell competition.

6.3 Insistent Guardian

A simple strategy to implement is to have the Guardian try again
if ajob fails to attract a proposal the first time around. We can
attempt thisin our modeled scenario by replacing the nontemporal
deadlock following each obsNil; in Feedback with CFPj,
effectively looping back immediately as soon as a CFP falls.
Unfortunately, this creates a cycle that is not guaranteed to
terminate. The next best thing is to wait one time slice before
trying again: (1).CFP;. In order to handle these CFPs, we must
extend our Confirmed states slightly. We know that Cheap would
beincapable of finishingajob by t=2if its CFParrived at t = 1:

' e .+ (cfp, ,.refuse, ,.Confirmed, ,
Confirmed, , =(1).Confirmed , 0 ' ' '

+cfp, ;.refuse, ,.Confirmed, ,

oo cfp_, refuse , Confirmed.
Confirmedml:(l).FreenD[Pn.2 S, ni J

+cfp, 5.refuse, ;.Confi rmed:L1

The Co; processes already permit Fast to accept CFPsat t = 1. It
is not necessary to extend the Coj states for this scenario; entering
such states implies that all three jobs will have been allocated.

The resulting system has 2812 states and 66 distinct observations
that break down in the same proportions as in the original model,
with case 2 revised as follows:

2. F competes unsuccessfully with C for one job and wins
another, while the third job is refused by both workcells.
Time passes, and then F accepts the third job on the
second try. There are 36 ways this can happen.

In practice, the number of retries would need to be constrained in
various ways, as retries of proposals having no chance of success
tie up valuable resources. More significantly, this approach,
while generally applicable, does not help usin al cases. Itisonly
by virtue of the fact that Fast can begin a job one cycle late and
still finish on time that we achieve acceptable results. In
scenarios where all workcells must begin work at t = 0 to achieve
acceptable results, trying again later is of no help.

6.4 Better Upward Communication

The workcells could inform the Guardian that two jobs under
consideration are mutually exclusive, requiring the same
resources at the same time, and force the Guardian to make a
choice. In our scenario, this would degenerate to centralized
scheduling with many superfluous interactions. Obvioudly, if
there were multiple requestors with conflicting needs, the decision
could not be passed upwards in this way.

6.5 Two-Stage Commitment
"Two-stage commitment” as described below should not be
confused with the two-phase commit protocol used in databases.

Workcells are no longer obliged to a contract when they send a
proposal, and the Guardian is no longer assured of getting a job
done by sending an acceptance. Upon receipt of an acceptance,
the workcell must either seal the contract or back out of it. This
second "commitment” is then firm. If one proposer backs out, the
Guardian is able to send an acceptance to another proposer.

To analyze our scenario with two-stage commitment, we add a
message type, agree, which is defined by FIPA, and remove the
reject message for becoming redundant. The workcell sends
agreeif it iswilling to firm up the commitment, otherwise it sends
refuse.

agree; ;.0bsCF';.5.0

propose, | .accept. ;| + refuse. ;.accept; ;.

propose, | | agree; ;.0bsC'F;.5.0
+refuse; ;.0bsC'F';.5.0

def
Feedback; =

— agree. ;.0bsC;.0.0
+refuse; ;.accept. ;| '

+refuse ;.0bsC';.5.0

- agree; ;.obsF;.5.0
propose,. ;.accept ;. i 0

+refuse ;| +refuse; ;.0bsF';.0.
+refuse; ;.0bsNil;.0.0

+ ...other permutation elided ...

Because the two-stage approach is more complex than the
original, separating out states that can theoretically be combined
now becomes a burden. The following two states enable Cheap to
react appropriately to all feasible negotiations, assuming sane
behavior on the part of the Guardian. If the Guardian were to
attempt something insane, like accepting a proposal that was
never issued, the separated processes would block the action, but
the merged process would blithely progress into a confirmed state.

def
C =Uncommitted

cfp, . propose, , Uncommitted,
+cfp,, .- propose, , Uncommitted,
s« _| +cfp, ,.propose, , Uncommitted
Uncommitted, = 3. Pra- PIOPOSEh "
+accept, ,.agree, ,.Confirmed,

+accept, ,.agres, ,.Confirmed |

+accept, ;.agree, ,.Confirmed,

cfp,,.refuse, ,.Confirmed,
+accept,,,.refuse, ;. Confirmed,
ot +cfp, ,.refuse, ,.Confirmed
Confirmed,, =(2).Uncommitted, O CPn2 TEUSh2 o
+accept, , refuse, ,.Confirmed,

+cfp, .refuse, ,.Confirmed,

+accept,, ,.refusg, ;.Confirmed,
def

F =Unc

cfp, 1-Propose; , Unc

+cfp,. ,.propose; ,.unc

UnCdg 5 +@FI3.proposeF13.Unc

+accept. ,.agree; ,.Co

+accept,. ,.agree; ,.Co

+ accept . ;.agree; ;.Co

cfpe.,. propose; ;.Co
+accept ., .agree; ,.Co'
det +cfp, ,.propose. ,.Co
Co=()UncO Pe.2- PrOPOSE: »
+accept. ,.agree; ,.Co'

+ Cfp;. 5. propose;. ,.Co

+accept,. ;.agree; ;.Co'

cfp; , refuse; ,.Co'
+accept ., .refuse ,.Co'
e +cfp,. ,.refuse, ,.Co'
Co' =(2)UncO Prz F2
+accept ¢ ,.refuse, ,.Co'

+cfp, ,.refuse; ,.Co'

+accept . ;.refuse; ;.Co'

The resulting system has 2304 states and 72 distinct observations,
none of which allow any jobsto fail. We again have three distinct
system behaviors:

1. CandF each bid on al three jobs. Cis forced to back
out of two of them, which are then awarded to F. There
are 18 ways this can happen.

2. C and F compete for two jobs, while the third is only
bid on by F. C backs out of one of the two contested
jobs, which is then awarded to F. There are 36 ways
this can happen.

3. C and F compete for one job, which is awarded to C,
while the other two are only bid on by F. There are 18
ways this can happen.

F never fails to bid on al three jobs because it cannot possibly
win the first awarded contract.

7. CONCLUSION

Our experiences support the accepted wisdom that obtaining
globaly coherent behavior from autonomous agents is an
ambitious goal. Nevertheless, a simple change to two-stage
commitment sufficed in this case. The generally applicable result
coming from this study is not our particular solution, which might
not be appropriate in every coordination scenario, but our
approach to diagnosing and troubleshooting the agent
coordination. Our experiences suggest that run-time visibility into
the logic determining agents' behaviorsis crucia to reaching afull
understanding of how the coordination failed, which is needed to
enable rigorous analysis of possible solutions. Unsophisticated
tweaking of agents' logic is not likely to yield a completely
correct solution on its own, yet meaningful validation of potential
solutions can only occur if the problem itself has been fully
understood.

The difficulties that we had in achieving visibility point to areas
where emerging standards can be improved. The FIPA
specification leaves testability out of scope [3], and the reasons
embedded in Reject and Refuse messages are implementation-
dependent content. Future standards for agent infrastructures
might standardize the communication of reasons to enable the
development of interoperable testing and debugging tools and
facilitate effective analysis of coordination problems.

8. APPENDIX: TCCSNOTATION

It is not possible to capture accurate and full semantics for TCCS
in the space available. For a complete and formal introduction,
please refer to the cited references [5][6].

Table2. TCCSnotation guide

Example Semantics
Send this message to a receiving process.
Cfpcv i Not possible to proceed if no such process
exists.
N Receive this message from a sending
Cfpc i process. Not possible to proceed if no
' such process exists.
XY Do X, thendo V.
XY Do X and Y in parallel.
X, —
r.l) =X, | X, | X,
1<=j<=3

Do whichever of X or Y is possible at this
time. If both are possible, choose one.

X+Y

If X or Y can send or receive a message at
this time, then do it. Otherwise, progress
through time, eliminating whichever
process is not prepared to idle.

Xxgy

A process cannot idle unless it is explicitly enabled to do so by
one of the following:

(1).X

Idle for one clock-tick, then do X.

0.X Idle until X becomes possible, then do it.

Osignifies a deadlock process that cannot do anything; hence,
0.0means "idle forever" and is used in lieu of subprocess
termination.

9. REFERENCES

[1] Davis, R., and Smith, R.G. Negotiation as a metaphor for
distributed problem solving. Artificia Intelligence 20, 1
(1983), 63-103.

[2] Edinburgh Concurrency Workbench home page.
http://www.dcs.ed.ac.uk/home/cwb/.

[3] FIPA Architectural Overview (99/07/09), section 6.1.13.
Available from http://www.fipa.org/.

[4] FIPA '97 Specification, Version 2.0, Part 2 (Agent
Communication Language), section 6.5.16. Available from
http://www.fipa.org/.

[5] Milner, R. Communication and concurrency. Prentice Hall,
1989.

[6] Moller, F., and Tofts, C. A temporal calculus of
communicating systems. Lecture Notesin Computer
Science #458, Springer-Verlag, 1990, 401-415.

[7] Zeushome page.
http://193.113.209.147/proj ects/agents/zeus/index.htm.

BIOGRAPHY

David Flater is a computer scientist at the U.S. Nationa Institute
of Standards and Technology. He came to NIST in 1992 while
completing his Ph.D. in Computer Science from the University of
Maryland. Since his transfer to the Manufacturing Engineering
Laboratory in 1996 he has contributed to a number of projects
involving object- and agent-oriented systems for engineering and
manufacturing. Presently he is active in the Manufacturing
Domain Task Force and the Test and Validation Special Interest
Group of the Object Management Group.

http://www.dcs.ed.ac.uk/home/cwb/
http://www.fipa.org/
http://www.fipa.org/
http://193.113.209.147/projects/agents/zeus/index.htm

	INTRODUCTION€
	TEST SCENARIO
	DEBUGGING
	TESTABILITY ENHANCEMENTS
	FORMALIZATION OF THE PROBLEM
	Guardian
	Cheap
	Fast
	Analysis

	EVALUATION OF PROSPECTIVE SOLUTIONS
	Workcell-Serialized Negotiations
	Guardian-Serialized Negotiations
	Insistent Guardian
	Better Upward Communication
	Two-Stage Commitment

	CONCLUSION
	APPENDIX: TCCS NOTATION
	REFERENCES
	BIOGRAPHY

