
Debugging Agent Interactions:  a Case Study 
David Flater 

National Institute of Standards and Technology 
100 Bureau Drive, Stop 8260 

Gaithersburg, MD  20899-8260 
U.S.A. 

dflater@nist.gov 
 
 

ABSTRACT 
The Contract Net protocol is a general-purpose protocol for 
distributed problem solving.  Many modern agent infrastructures 
facilitate the generation of agents supporting Contract Net.  We 
used one such infrastructure to simulate a Contract Net-based 
approach to job scheduling and found that some jobs failed to get 
scheduled even though the resources were available.  This paper 
describes two phases of the subsequent debugging effort.  The 
first phase was enhancing the visualization of the agent 
community to reveal the causes of failed negotiations.  The 
second phase was formalizing the problem using a Temporal 
Calculus of Communicating Systems (TCCS) and attempting to 
find a solution.  After exploring a number of solutions that would 
not generalize, we found that switching from one-stage to two-
stage commitment sufficed.  For coordination problems in 
general, our case study demonstrates the applicability of rigorous 
methods and the importance of providing run-time visibility into 
agents' logic. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging—
Distributed debugging; D.2.4 [Software Engineering]: 
Software/Program Verification—Model checking 

General Terms 
Experimentation, Verification. 

Keywords 
Agents, coordination, negotiation, scheduling. 

1. INTRODUCTION  
For some time, the manufacturing sector has maintained interest 
in agent-based approaches to supply chain management, planning, 
scheduling, and control.  The difficulty of coordinating the flow 
of information through the many domains of responsibility within 
or among manufacturing enterprises often makes autonomous 

                                                                 
   

 

 

 

 

 

agents seem an attractive way to simplify the problem.  However, 
systems composed of interacting agents are notoriously difficult 
to test and debug.  It is hard enough to achieve sufficient visibility 
into agents' interactions to be able to determine whether 
individual agents are behaving as specified.  It is harder yet to 
know where to begin when the collective behavior of a group of 
apparently sane agents was not as expected. 

Many modern agent infrastructures facilitate the generation of 
agents supporting the general-purpose Contract Net protocol [1] 
for distributed problem solving.  We used one such package, 
Zeus* [7] version 1.02, in a case study of debugging agent 
interactions.  In the following sections, we describe our test 
scenario, the testability enhancements that helped us understand 
its behavior, and the analysis that revealed the true depth of the 
problem we faced.  We conclude with a summary of those 
observations of relevance to agent standards and coordination in 
general. 

2. TEST SCENARIO 
We came upon our test scenario honestly when a learning exercise 
to build an agent-based simulation of job scheduling went awry.  
The scenario contained a merged user interface and supervisory 
agent called the Guardian.  To achieve the user's goals, the 
Guardian had to arrange for jobs to be done by a pool of three 
workcells, aptly named Good, Cheap and Fast (see Figure 1).  By 
refactoring the standard shop floor scheduling problem as 
procurement of labor as a commodity instead of centralized 
choreography of completely subordinated workcells, we opened 
the door to a style of virtual manufacturing wherein the means of 
production would be rented as needed by transient manufacturing 
enterprises.  But it is not really necessary to motivate the 
particular scenario, since the encountered problem and the 
techniques used to analyze it are scenario-independent. 

The Contract Net negotiation in our scenario involved only five 
different message types:  Call For Proposals (CFP), Refuse, 
Propose, Accept-Proposal, and Reject-Proposal.  The Guardian 
sent a CFP message to each workcell to initiate negotiations.  
Each workcell responded with either a Propose message if it was 
willing and able to do the work at some price, or a Refuse 
message if it was unwilling or unable to do the work.  The 
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Guardian collected proposals and then chose one that was 
cheapest.  The "winner" received an Accept-Proposal message; 
any other proposers received Reject-Proposal messages.  If no 
proposals were received, the work did not get done. 

In Zeus, after identifying the Guardian as a Contract Net manager 
and the workcells as Contract Net contractors, it was only 
necessary to set the parameters of the workcells' tasks to be able 
to generate the entire simulation.  We used the following 
parameters in our experiment:  Workcell Good took two time 
slices and charged 1000 units of currency to supply the labor for 
one job; Cheap took two time slices and charged 500; Fast took 
one time slice and charged 1000. 

Having configured three workcells all capable of performing the 
same jobs, we innocently requested the Guardian to accomplish 
three jobs at the same time.  For no particular reason, we expected 
one job to go to each workcell.  It would have been equivalent for 
two jobs to go to Fast and one to go to Cheap.  But, to our shock 
and horror, the simulation routinely gave one job to Fast, one job 
to Cheap, and one job to no one at all. 

 
Figure 1.  Society view with messages in transit 

3. DEBUGGING 
Zeus includes a set of tools for monitoring and analyzing agent 
behavior.  At the forefront, the agent society viewer (Figure 1) 
provides an animated view of the types of messages passing 
between agents at run-time.  We edited the Zeus source code that 
colorizes messages so that Reject-Proposal and Refuse messages 
would be easier to see.  Confusingly, we saw two rejections (one 
to Good, one to Fast) and seven refusals (three from Good, two 
from Cheap, two from Fast).  At that point it was not obvious to 
us why Good rejected all three jobs. 

The Zeus agent viewer permits viewing of the incoming and 
outgoing messages for each agent.  We again edited source code 
to expand the size of the mailbox buffers so that all messages sent 
during the run could be recalled.  Looking at the messages (see 
Figure 2), we saw that refusals arrived with various attributes, but 
with no obvious way to determine the reason for the refusal. 

 
Figure 2.  Refusal in inbox 

We tried different values for the Guardian's budget and the 
workcells' costs, to no effect.  We then tried different confirm and 
end times for the requested jobs.  The confirm time is the deadline 
for the awarding of the contract, while the end time is the deadline 
for completion of the contracted work.  The resulting behaviors 
(see Table 1) showed that there were more potential problems, but 
were not sufficient to diagnose the problem at hand. 

Table 1.  Effects of changing confirm time and end time 

Confirm time End time Behavior 

Now+2 Now+5 Good idle, Fast one job, 
Cheap one job.  Rarely, 
Good idle, Fast two jobs, 
Cheap one job. 

-1 ("Don't care") Now+5 Would not run. 

Now+5 Now+5 Would not run. 

Now+4 Now+5 All workcells idle. 

Now+3 Now+5 Good idle, Fast one job, 
Cheap idle. 

Now+3 Now+6 Indistinguishable from 
+2/+5. 

Now+2 Now+6 Good idle, Fast two jobs, 
Cheap one job. 

Despite its regular success, the last variant (+2/+6) was 
unremarkable because it represented a scenario with substantially 
less schedule pressure. 

We tried running the scenario without Fast.  On the first try, Good 
and Cheap were each awarded one of the jobs; the third job was 
not feasible.  On the second try, Cheap was awarded one job 
while the other two failed. 



We changed the Guardian's negotiation strategy from Default-No-
Negotiation to GrowthFunction.  This increased the amount of 
negotiation, but then all three jobs failed.  When we made the 
analogous change to the Workcell strategies, the behavior was as 
it was before but with more negotiation. 

We turned on verbose debugging, but gained no information from 
it. 

We finally examined the source code implementing the various 
states of negotiation.  The coordination engine view (see Figure 3) 
shows the state graph of the negotiation, with failures in red (in 
monochrome copy, dark gray).  In most states, there are multiple 
places where some condition will cause them to return a failure.  
When this occurs, we see the failure but not its cause. 

 
Figure 3.  Guardian view of failed job 

4. TESTABILITY ENHANCEMENTS 
The Foundation for Intelligent Physical Agents (FIPA) specifies 
that reject and refuse messages should contain a reason field in the 
content.  Slightly paraphrased, the specification reads:  The agent 
receiving a refuse act is entitled to believe that the (causal) reason 
for the refusal is represented by the third term of the tuple, which 
may be the constant true. [4] 

We modified Zeus 1.02 to add a reason field to the content and 
present this information in the coordination engine view.  We also 
attached reason codes to local failures that do not generate 
messages between agents.  Subsequently, the Guardian's view of 
the job that failed (see Figure 4) showed that it failed because all 
three workcells refused it as infeasible.  Good and Fast's views of 
the first job (see Figure 5) showed that they bid on the contract 
but did not win – the first job was awarded to Cheap.  Fast was 
awarded the second job because both Good and Cheap refused it, 

as well as the third job, as being infeasible (see Figure 6).  Fast 
refused only the third job. 

 
Figure 4.  Guardian view with reasons added 

 
Figure 5.  Workcell view of rejection 

 
Figure 6.  Workcell view of refusal 



The behavior of the agents was then more transparent, and we 
could guess what was going on: 

1. Job 1 arrived first, was proposed on by all three workcells 
and awarded to Cheap.  The other two workcells responded 
to the Guardian's Reject-Proposal messages with Refuse 
messages, obfuscating the fact that it was the Guardian 
who called off negotiation.  After the modification, it was 
obvious from the reason embedded in the refusal:  
"Rejected (Received better proposal)." 

2. Job 2 arrived second and was refused by Good and Cheap 
because they already had Job 1 tentatively on their 
schedules.  Fast proposed on it because it theoretically had 
time to do both Job 1 and Job 2, and was awarded the job. 

3. Job 3 arrived last and was immediately refused by all three 
workcells as not feasible. 

Even though we ran it as multiple processes on the same 
computer, the distributed nature of the simulation caused the 
ordering of messages to be semi-random.  In rare instances, these 
random perturbations led Fast to bid on jobs 2 and 3 instead of 1 
and 2, in which case Fast could be awarded two jobs. 

The root of the problem, then, was that tentatively scheduled jobs 
were sufficient to cause the immediate refusal of other jobs that 
would require the same time slot, even though the subsequent 
rejection of the tentative job would make the refused job feasible.  
But we could not simply change the workcells to allow 
overbooking of tentative jobs, because we would then accept 
contracts that were not feasible. 

5. FORMALIZATION OF THE PROBLEM 
We now model a simplified version of our scenario using a 
Temporal Calculus of Communicating Systems (TCCS) [5][6] 
(one of several that exist by the same acronym).  This model is 
then fed into the Edinburgh Concurrency Workbench [2] (CWB) 
version 7.1 for analysis. 

For a minimal introduction to TCCS notation, please refer to the 
Appendix of this paper. 

We originally modeled the complete scenario with three workcells 
and Guardian.  The resulting model exceeded 100K states before 
we had even completed it and could not be analyzed on a 
workstation having a full gigabyte of memory.  The formulas and 
machine-readable TCCS for the original model are available on 
request.  Here we present a simplified model where the workcell 
Good has been removed.  The remaining two workcells are 
sufficient to demonstrate a range of system behaviors. 

The other simplifications are as follows: 

1. We revert to the Default-No-Negotiation and Default-
Fixed-Margin strategies for the Guardian and workcells 
respectively, which reduces the complexity of the 
interactions but does not change the nature of the 
"failure" or the underlying "fault." 

2. We treat negotiation messages as if they were 
instantaneous, whereas workcell labor takes time. 

3. We pretend that work on accepted proposals begins 
immediately and must be completed by t = 2. 

4. We do not model the unnecessary refuse messages that 
are sent by workcells in response to reject-proposal 
messages. 

5. We do not model the many alternative modes of failure, 
such as agents failing to respond. 

6. We do not allow for indefinite future scheduling of jobs, 
but only deal with the scheduling of the three jobs from 
our scenario. 

Let C, F, and N refer to the agents Cheap, Fast, and Guardian 
respectively. 

Actions: 

− Call for proposals to workcell n for job j:  
31},,{,, ≤≤∈ jFCncfp jn

 

− Workcell n proposes to do job j:  proposen,j 

− Workcell n refuses to do job j:  refusen,j 

− Guardian accepts proposal for workcell n to do job j at 
the proposed price:  acceptn,j 

− Guardian rejects proposal for workcell n to do job j at 
the proposed price:  rejectn,j 

5.1 Guardian 
Let CFPj be the Guardian subprocess trying to obtain labor for job 
j. 

∏
<=<=

=
31 j

j

def
CFPN  

jjFjC

def
j FeedbackcfpcfpCFP |0..|0.. ,, δδ=  

Each job produces two CFP messages.  Each of the two workcells 
can send either a proposal or a refusal in response to a CFP, 
giving four distinct cases.  These are multiplied by two 
permutations of the CFP responses.  The actual order is 
unimportant, but failing to accept all permutations leads to 
deadlocks in the TCCS.  Although we have not parameterized the 
messages with the proposed price of the labor, the Guardian's 
preference for cheaper labor is captured in the decision tree below 
based on the known properties of the workcells. 
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obsNilrefuse
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acceptobsFrefuse

rejectacceptobsCFpropose
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obsNilrefuse

acceptobsFpropose
refuse

acceptobsCrefuse

rejectacceptobsCFpropose
propose

Feedback

 

The actions of the form obs… are included for the technical 
reason that system traces from the CWB show communications 
between agents as opaque tau (internal) actions of the system.  
We require observable actions to be able to interpret the traces 
that lead to any given state. 



5.2 Cheap 
C

def
FreeC =  

(Had we a Good workcell, it would be defined as FreeG.) 
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The scheduler policy at the root of our problem is codified in 
Tentative: 
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Finally, in Confirmed, we simulate a task requiring two time 
slices.  The following is sufficient for our purposes, but does not 
allow for scheduling of additional future jobs while the task is 
running. 

�
�

�

�

�
�

�

�

+
⊕=

1,3,3,

1,2,2,
1,

..

..
).2(

nnn

nnn
n

def

n
Confirmedrefusecfp

Confirmedrefusecfp
FreeConfirmed

 

Analogously for Tentativen,2, Tentativen,3, Confirmedn,2, 
Confirmedn,3. 

Although it is feasible to reduce the number of processes by 
merging the three Tentativen,j into a single Tentativen, and 
similarly for Confirmedn, we keep them separated here to clarify 
the intended behaviors of the system. 

5.3 Fast 
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Analogously for Te2, Te3. 
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Analogously for Te13, Te23. 
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Analogously for Te1Co3, Te2Co1, Te2Co3, Te3Co1, Te3Co2. 
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Analogously for Co2, Co3. 

123,3,12 ..).2( CorefusecfpFrCo FF

def
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Analogously for Co13, Co23. 

5.4 Analysis 
To make the analysis terminate, we include an additional process 

0).4(
def

T = that halts the system after four time slices.  The system 
can now be composed as 

( )
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TNFC

System
def \|||  

Loading the model into the CWB, we find that the system has 
approximately 2732 states.∗   There are four distinct "deadlock" 
states, all of which represent intentional haltings of the system at 
t = 4.  Using the CWB function to list all observations of length 
three, we find 66 of them.  Modulo the various combinatorics, we 
only have three distinct system behaviors: 

1. C bids on one job, F bids on the other two.  There are 18 
ways this can happen. 

2. F competes unsuccessfully with C for one job and wins 
another, while the third job is refused by both workcells.  
There are 36 ways this can happen. 

3. F and C collide as in case 2, but F is rejected before the 
CFP for the third job arrives, so F bids on the last job 
and gets it.  There are 12 ways this can happen. 

In practice, the order in which CFP messages arrive at workcells 
is not uniformly random, and it is highly unlikely for one 
negotiation to run to completion while the CFP for another 
languishes en route, so there is a strong bias in favor of case 2.  
But it is interesting to note that if any sequence were as likely as 
any other, one job would still fall through more often than not.  
This would probably not be true of our original, three-workcell 
scenario, where there are more ways for all three jobs to get done. 

6. EVALUATION OF PROSPECTIVE 
SOLUTIONS 
In a free market, both Guardian and workcells would suffer when 
jobs fall through unnecessarily.  Neither side has a motive to leave 
this problem unfixed. 

                                                                 
∗  Quoting from the Edinburgh Concurrency Workbench user 
manual (Version 7.1) dated 1999-07-18:  "The number of states of 
an agent is not as clear a concept as you might think:  treat the 
number as a rough indication of size, only." 



6.1 Workcell-Serialized Negotiations 
One approach that seems completely wholesome and general at 
first glance is for the workcells to delay responding to CFPs while 
their schedules are tentatively full.  We can model this in the 
TCCS by failing to accept CFP messages while in the relevant 
states: 
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The resulting system, unfortunately, contains deadlocks.  For 
example: 
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In the general case, this problem would be a show-stopper.  In our 
particular scenario, if we presume that the Guardian has prior 
knowledge of the price differential between Cheap and Fast and is 
only inquiring to see if their schedules are clear, we could work 
around by accepting the proposal from Cheap before Fast even 
responds: 
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The resulting System has (approximately) 1685 states and 18 
distinct observations, all of which get all three jobs done. 

Even with the stopgap solution, this approach contains an inherent 
tradeoff in that it delays responses to the later CFPs.  Although we 
have not explicitly modeled the time consumed in negotiations, it 
is clear that the delay will get worse as additional CFPs pile up.  
Failure to respond to a CFP is equivalent to a refusal, so in the 
simple case nothing would be lost, but at some point the backlog 
of "bad" CFPs would begin to impact the execution of later 
"good" ones.  Moreover, the delays could have unacceptable 
social consequences in practice, particularly if the Guardian also 
fails to accept or reject proposals in a timely fashion.  Our 
scenario is too limited to permit analysis of these behaviors. 

6.2 Guardian-Serialized Negotiations 
In scenarios having only a single Contract Net manager, it would 
suffice to issue the CFPs one at a time, delaying the next until 
negotiation on the previous has completed.  This is accomplished 
in our model by letting 

1CFPN
def
= , revising Feedback1 and 

Feedback2 to get rid of the parallel operators, and replacing the 
eight nontemporal deadlocks ( )0.δ  remaining in each with 
CFPj+1.  The resulting system has a mere 36 states and only one 
observable behavior – both workcells bid on the first job, which 
goes to Cheap; the second and third jobs are only bid on by Fast. 

Of course, this introduces more of the unmodeled negotiation 
delay that we discussed above.  A more scenario-specific solution 
is to alter the Guardian to issue the CFPs to Fast only after they 
have been refused by Cheap: 
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This is merely an escalation of the "pre-selection" of Cheap that 
we made previously, where proposals from Cheap were accepted 
before Fast had a chance to respond, but this one requires no 
modifications to the workcells' behavior.  The resulting system 
has 431 states and 18 distinct observations, all of which award all 
three jobs without inter-workcell competition. 

6.3 Insistent Guardian 
A simple strategy to implement is to have the Guardian try again 
if a job fails to attract a proposal the first time around.  We can 
attempt this in our modeled scenario by replacing the nontemporal 
deadlock following each obsNilj in Feedbackj with CFPj, 
effectively looping back immediately as soon as a CFP fails.  
Unfortunately, this creates a cycle that is not guaranteed to 
terminate.  The next best thing is to wait one time slice before 
trying again:  (1).CFPj.  In order to handle these CFPs, we must 
extend our Confirmed states slightly.  We know that Cheap would 
be incapable of finishing a job by t = 2 if its CFP arrived at t = 1: 
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The Coj processes already permit Fast to accept CFPs at t = 1.  It 
is not necessary to extend the Cojk states for this scenario; entering 
such states implies that all three jobs will have been allocated. 

The resulting system has 2812 states and 66 distinct observations 
that break down in the same proportions as in the original model, 
with case 2 revised as follows: 

2. F competes unsuccessfully with C for one job and wins 
another, while the third job is refused by both workcells.  
Time passes, and then F accepts the third job on the 
second try.  There are 36 ways this can happen. 



In practice, the number of retries would need to be constrained in 
various ways, as retries of proposals having no chance of success 
tie up valuable resources.  More significantly, this approach, 
while generally applicable, does not help us in all cases.  It is only 
by virtue of the fact that Fast can begin a job one cycle late and 
still finish on time that we achieve acceptable results.  In 
scenarios where all workcells must begin work at t = 0 to achieve 
acceptable results, trying again later is of no help. 

6.4 Better Upward Communication 
The workcells could inform the Guardian that two jobs under 
consideration are mutually exclusive, requiring the same 
resources at the same time, and force the Guardian to make a 
choice.  In our scenario, this would degenerate to centralized 
scheduling with many superfluous interactions.  Obviously, if 
there were multiple requestors with conflicting needs, the decision 
could not be passed upwards in this way. 

6.5 Two-Stage Commitment 
"Two-stage commitment" as described below should not be 
confused with the two-phase commit protocol used in databases. 

Workcells are no longer obliged to a contract when they send a 
proposal, and the Guardian is no longer assured of getting a job 
done by sending an acceptance.  Upon receipt of an acceptance, 
the workcell must either seal the contract or back out of it.  This 
second "commitment" is then firm.  If one proposer backs out, the 
Guardian is able to send an acceptance to another proposer. 

To analyze our scenario with two-stage commitment, we add a 
message type, agree, which is defined by FIPA, and remove the 
reject message for becoming redundant.  The workcell sends 
agree if it is willing to firm up the commitment, otherwise it sends 
refuse. 
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Because the two-stage approach is more complex than the 
original, separating out states that can theoretically be combined 
now becomes a burden.  The following two states enable Cheap to 
react appropriately to all feasible negotiations, assuming sane 
behavior on the part of the Guardian.  If the Guardian were to 
attempt something insane, like accepting a proposal that was 
never issued, the separated processes would block the action, but 
the merged process would blithely progress into a confirmed state. 
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The resulting system has 2304 states and 72 distinct observations, 
none of which allow any jobs to fail.  We again have three distinct 
system behaviors: 

1. C and F each bid on all three jobs.  C is forced to back 
out of two of them, which are then awarded to F.  There 
are 18 ways this can happen. 

2. C and F compete for two jobs, while the third is only 
bid on by F.  C backs out of one of the two contested 
jobs, which is then awarded to F.  There are 36 ways 
this can happen. 



3. C and F compete for one job, which is awarded to C, 
while the other two are only bid on by F.  There are 18 
ways this can happen. 

F never fails to bid on all three jobs because it cannot possibly 
win the first awarded contract. 

7. CONCLUSION 
Our experiences support the accepted wisdom that obtaining 
globally coherent behavior from autonomous agents is an 
ambitious goal.  Nevertheless, a simple change to two-stage 
commitment sufficed in this case.  The generally applicable result 
coming from this study is not our particular solution, which might 
not be appropriate in every coordination scenario, but our 
approach to diagnosing and troubleshooting the agent 
coordination.  Our experiences suggest that run-time visibility into 
the logic determining agents' behaviors is crucial to reaching a full 
understanding of how the coordination failed, which is needed to 
enable rigorous analysis of possible solutions.  Unsophisticated 
tweaking of agents' logic is not likely to yield a completely 
correct solution on its own, yet meaningful validation of potential 
solutions can only occur if the problem itself has been fully 
understood. 

The difficulties that we had in achieving visibility point to areas 
where emerging standards can be improved.  The FIPA 
specification leaves testability out of scope [3], and the reasons 
embedded in Reject and Refuse messages are implementation-
dependent content.  Future standards for agent infrastructures 
might standardize the communication of reasons to enable the 
development of interoperable testing and debugging tools and 
facilitate effective analysis of coordination problems. 

8. APPENDIX:  TCCS NOTATION 
It is not possible to capture accurate and full semantics for TCCS 
in the space available.  For a complete and formal introduction, 
please refer to the cited references [5][6]. 

Table 2.  TCCS notation guide 

Example Semantics 

jCcfp ,  
Send this message to a receiving process.  
Not possible to proceed if no such process 
exists. 

jCcfp ,  
Receive this message from a sending 
process.  Not possible to proceed if no 
such process exists. 

YX .  Do X, then do Y. 

YX |  Do X and Y in parallel. 

∏
<=<= 31 j

jX  
321 || XXX=  

YX +  
Do whichever of X or Y is possible at this 
time.  If both are possible, choose one. 

YX ⊕  

If X or Y can send or receive a message at 
this time, then do it.  Otherwise, progress 
through time, eliminating whichever 
process is not prepared to idle.  

A process cannot idle unless it is explicitly enabled to do so by 
one of the following: 

X).1(  Idle for one clock-tick, then do X. 

X.δ  Idle until X becomes possible, then do it. 

0 signifies a deadlock process that cannot do anything; hence, 
0.δ means "idle forever" and is used in lieu of subprocess 

termination. 
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