
IMS/ESA

Application Programming:Transaction
Manager
Version 6

SC26-8729-05

���

IMS/ESA

Application Programming:Transaction
Manager
Version 6

SC26-8729-05

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xiii.

Sixth Edition (July 2000) (Softcopy Only)

This edition replaces and makes obsolete the previous edition, SC26–8729–04. This edition is available in softcopy
format only. The technical changes for this edition are summarized under “Summary of Changes” on page xix and
are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3

P.O. Box 49023

San Jose, CA, 95161-9023

U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . xiii
Programming Interface Information xiii
Trademarks . xiv
Product Names. xiv

Preface . xv
Summary of Contents . xv
Prerequisite Knowledge . xv
Terminology . xvi
Change Indicators . xvi
Syntax Diagrams . xvi

Summary of Changes . xix
Changes to the Current Edition of the Book for Version 6 xix
Changes to This Book for Version 6 xix
Library Changes for Version 6 xix

Part 1. Writing Application Programs. 1

Chapter 1. How Application Programs Work with the IMS Transaction
Manager . 7

Application Program Environments 7
The Application Programming Interface 7

Your Application in the System 8
Using LU 6.2 Devices . 9
How IMS TM Schedules Application Programs 10

Getting Started with DL/I . 10
Relationship of AIB and PCB with Language Interfaces 11

Language Unique Interfaces 12
Language Independent Interfaces 12

Using DL/I Calls . 12
Message Call Functions . 12
System Service Call Functions 13
Status Codes, Return Codes, and Reason Codes 13
Exceptional Conditions . 14
Error Routines . 14

How Your Program Processes Messages 14
Message Types. 14
What Happens When a Message is Processed 17
Results of a Message: I/O PCB 19

How IMS TM Edits Messages 19
Printing Output Messages . 20
Using Basic Edit . 20
Using Intersystem Communication Edit 21
Using Message Format Service 21
Using LU 6.2 User Edit Exit (Optional) 28

DB2 Considerations . 28

Chapter 2. Defining Application Program Elements 31
Formatting DL/I Calls for Language Interfaces 31
Application Programming for Assembler Language 32

Format . 32
Parameters . 33

© Copyright IBM Corp. 1974, 2000 iii

Example DL/I Call Formats 34
Application Programming for C Language 34

Format . 34
Parameters . 35
I/O Area . 36
Example DL/I Call Formats 37

Application Programming for COBOL. 37
Format . 37
Parameters . 38
Example DL/I Call Formats 39

Application Programming for Pascal 39
Format . 39
Parameters . 41
Example DL/I Call Formats 42

Application Programming for PL/I 42
Format . 42
Parameters . 43
Example DL/I Call Formats 44

Relationship of Calls to PCB Types 44
Specifying the I/O PCB Mask 45
Specifying the Alternate PCB Mask 48
Specifying the AIB Mask . 49
Specifying the I/O Areas . 51
Using the AIBTDLI Interface . 51

Overview . 51
Defining Storage for the AIB 52

Specifying the Language-Specific Entry Point. 52
Assembler Language . 52
C Language . 52
COBOL . 53
Pascal . 53
PL/I . 53
Interface Considerations . 54

PCB Lists . 54
Format of a PCB List . 54
Format of a GPSB PCB List 54
PCB Summary . 55

Using Language Environment 55
The CEETDLI interface to IMS 56
LANG= Option on PSBGEN for PL/I Compatibility with Language

Environment . 56
Special DL/I Situations . 56

Mixed-Language Programming 57
Using Language Environment Routine Retention 57
Using the Extended Addressing Capabilities of MVS/ESA 57
Preloaded Programs . 57
DCCTL. 57

Chapter 3. Writing DL/I Calls for Transaction Management 59
AUTH Call . 59

Format . 59
Parameters . 60
I/O Area . 60
Usage . 63
Restrictions . 64

CHNG Call . 64

iv IMS/ESA V6 Appl Pgm: TM

Format . 64
Parameters . 65
Usage . 66
Error Codes . 71
Restrictions . 72

CMD Call . 72
Format . 72
Parameters . 72
Usage . 73
Restrictions . 73

GCMD Call . 74
Format . 74
Parameters . 74
Usage . 74
Restrictions . 75

GN Call . 75
Format . 75
Parameters . 75
Usage . 76
Restrictions . 76

GU Call . 76
Format . 76
Parameters . 76
Usage . 77
Restrictions . 78

ISRT Call . 78
Format . 78
Parameters . 78
Usage . 79
Restrictions . 80

PURG Call . 80
Parameters . 80
Usage . 81
Restrictions . 82

SETO Call . 82
Format . 82
Parameters . 82
Usage . 84
Error Codes . 86
Restrictions . 87

Chapter 4. Writing DL/I Calls for System Services 89
APSB Call . 90

Format . 90
Parameters . 90
Usage . 90
Restrictions . 91

CHKP (Basic) Call . 91
Format . 91
Parameters . 91
Usage . 92
Restrictions . 92

CHKP (Symbolic) Call . 92
Format . 92
Parameters . 92
Usage . 93

Contents v

Restrictions . 93
DPSB Call . 93

Format . 93
Parameters . 94
Usage . 94
Restrictions . 94

GMSG Call . 94
Format . 94
Parameters . 94
Usage . 95
Restrictions . 96

GSCD Call . 96
Format . 96
Parameters . 96
Usage . 97
Restrictions . 97

ICMD Call. 97
Format . 97
Parameters . 97
Usage . 99
Restrictions . 99

INIT Call . 99
Format . 100
Parameters . 100
Usage. 100

INQY Call . 102
Format . 102
Parameters . 102
Usage. 103
Restrictions. 109

LOG Call . 109
Format . 109
Parameters . 109
Usage . 111
Restrictions . 111

RCMD Call . 111
Format . 111
Parameters . 111
Usage. 112
Restrictions . 112

ROLB Call . 112
Format . 112
Parameters . 112
Usage. 113
Restrictions . 113

ROLL Call . 114
Format . 114
Parameters . 114
Usage. 114
Restrictions . 114

ROLS Call . 114
Format . 115
Parameters . 115
Usage. 115
Restrictions . 116

SETS/SETU Call . 116

vi IMS/ESA V6 Appl Pgm: TM

Format . 116
Parameters . 116
Usage. 117
Restrictions . 117

SYNC Call . 118
Format . 118
Parameters . 118
Usage. 118
Restrictions . 118

XRST Call . 118
Format . 119
Parameters . 119
Usage. 120
Restrictions. 121

Chapter 5. More about Message Processing 123
Sending Messages to Other Terminals and Programs 123

Sending Messages to Other Terminals 124
Sending Messages to Other Application Programs 126
How the VTAM I/O Facility Affects Your VTAM Terminal 127

Communicating with Other IMS TM Systems Using MSC 128
Implications of MSC for Program Coding 128
Receiving Messages from Other IMS TM Systems 129
Sending Messages to Alternate Destinations in Other IMS TM Systems 130

IMS Conversations . 131
A Conversational Example 131
Conversational Structure . 132
Replying to the Terminal . 136
Using ROLB, ROLL, and ROLS in Conversations. 137
Passing the Conversation to another Conversational Program 137
Message Switching in APPC Conversations 139

Processing Conversations with APPC 141
Standard IMS Application Programs. 142
Modified IMS Application Programs 142
CPI-C Driven Application Programs 143

Processing Conversations with OTMA 145
Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls 145

Using ROLL . 146
Using ROLB . 146
Using ROLS . 148

Backing out to an Intermediate Backout Point: SETS/SETU and ROLS 149
Using SETS/SETU . 149
Using ROLS . 150

Writing a Message-Driven Program 151
Coding DC Calls and Data Areas. 152

Your Input . 152
Skeleton MPP. 152
Coding Your Program in Assembler Language 153
Coding Your Program in C Language 153
Coding Your Program in COBOL 155
Coding Your Program in Pascal 157
Coding Your Program in PL/I 160

Part 2. Message Format Service . 163

Chapter 6. Introduction to MFS 169

Contents vii

Advantages of Using MFS . 169
Simplify Development and Maintenance 169
Improve Online Performance of a Terminal 170

MFS Control Blocks . 171
MFS Examples . 171
Relationship Between MFS Control Blocks and Screen Format. 175

Overview of MFS Components and Operation 177
MFS Language Utility . 178
MFS Service Utility . 179
MFS Device Characteristics Table Utility 179
MFS Message Editor . 179
MFS Pool Manager . 179
MFSTEST Pool Manager. 180

Devices and Logical Units That Operate with MFS 180
Using Distributed Presentation Management (DPM) 182

Chapter 7. Message Formatting Functions 183
Input Message Formatting . 183

How MFS Is Selected . 183
How MFS Formats Input Messages 186

General Rules for Multiple DPAGE Input 200
3270 and SLU 2 Input Substitution Character 201
Input Format Control for ISC (DPM-Bn) Subsystems 201

Input Message Formatting 201
Input Modes . 202
Paging Requests. 203

Output Message Formatting. 203
How MFS Is Selected . 203
How MFS Formats Output Messages 204

Output Format Control for ISC (DPM-Bn) Subsystems 228
Format Control . 228
Function Management (FM) Headers 228
Paged Output Messages . 228
Output Modes . 229
Variable-Length Output Data Stream 230
FILL=NULL Specification . 231
Trailing Blank Compression 232
Data Structure Name . 235
Version Identification . 235

Your Control of MFS . 235
Operator Logical Paging . 236
Operator Control Tables . 237
3270 or SLU 2-Only Feature Definitions 237
Paging Action at the Device. 238
Unprotected Screen Option 242
The 3290 in Partitioned Format Mode 243
The 3180 in Partitioned Format Mode 245

MFS Format Sets Supplied by IMS 246
System Message Format. 246
Multisegment System Message Format 246
Output Message Default Format 247
Block Error Message Format 247
/DISPLAY Command Format 247
Multisegment Format . 247
MFS 3270 or SLU 2 Master Terminal Format 247
MFS Sign-On Device Formats 247

viii IMS/ESA V6 Appl Pgm: TM

MFS Formatting for the 3270 or SLU 2 Master Terminal 247
MFS Device Characteristics Table 249
Version Identification Function for DPM Formats 250

Chapter 8. MFS Application Program Design 251
Relationships Between MFS Control Blocks 251

Device Considerations Relative to Control Block Linkages 256
Format Library Member Selection 258
3270 or SLU 2 Screen Formatting 261

3290 Screen Formatting . 263
3180 Screen Formatting . 265

Performance Factors . 265
All MFS-Supported Devices. 265
3270 or SLU 2 Display Devices 266
3270 or SLU 2 Devices with Large Screens 267
SLU P and ISC Subsystems with DPM 267
Loading Programmed Symbol Buffers 268

Chapter 9. Application Programming Using MFS 273
Input Message Formats . 273

Logical Pages . 273
Device-Dependent Input Information (3270 or SLU 2) 273

Output Message Formats . 275
Logical Pages . 275
Segment Format . 276
Field Format (Options 1 and 2) 277
Field Format (Option 3) . 278
Device-Dependent Output Information 278
Dynamic Attribute Modification 281
Dynamic Modification of Extended Field Attributes 283
Dynamic Modification of EGCS Data 289
Dynamic Modification of DBCS/EBCDIC Mixed Data 290
Specification of Message Output Descriptor Name 291
MFS Bypass for the 3270 or SLU 2 292

Chapter 10. MFS Language Utility 311
Utility Control Statements . 311

Control Statement Syntax 311
Summary of Control Statements 314
EXEC Statement Parameters 316
Message Definition Statements 317
Format Definition Statements 330
Partition Set Definition Statements 386
Table Definition Statements 389
Compilation Statements . 391

Part 3. IMS Adapter for REXX . 397

Chapter 11. IMS Adapter for REXX 399
Addressing Other Environments 400
REXX Transaction Programs 400

IMS Adapter for REXX Overview Diagram 402
IVPREXX Sample Application 403

REXXTDLI Commands . 404
Addressable Environments 405

REXXTDLI Calls . 405

Contents ix

Return Codes . 405
Parameter Handling . 406
Example DL/I Calls . 407

REXXIMS Extended Commands 408
DLIINFO . 409
IMSRXTRC. 410
MAPDEF . 410
MAPGET . 413
MAPPUT . 413
SET . 414
SRRBACK and SRRCMIT 415
STORAGE . 416
WTO, WTP, and WTL . 417
WTOR . 418
IMSQUERY Extended Functions 418

Chapter 12. IMS Adapter for REXX Exit Routine 421
Environment . 421
Parameters . 421

Chapter 13. Sample Execs Using REXXTDLI 425
SAY Exec: For Expression Evaluation 425
PCBINFO Exec: Display PCBs Available in Current PSB 426
PART Execs: Database Access Example 429

PARTNUM Exec: Show Set of Parts Near a Specified Number 430
PARTNAME Exec: Show a Set of Parts with a Similar Name 431
DFSSAM01 Exec: Load the Parts Database. 431

DOCMD: IMS Commands Front End 432
IVPREXX: MPP/IFP Front End for General Exec Execution 436

Part 4. For Your Reference . 437

Chapter 14. Summary of TM Message and System Service Calls 439
Transaction Management Call Summary 439
System Service Call Summary. 440

Chapter 15. DL/I Status Codes 443
Status Code Tables . 443

Categories of DL/I Status Codes 443
Status Code Explanations . 452

Chapter 16. DL/I Return and Reason Codes 475
Return and Reason Code Tables 475
DL/I Return and Reason Code Explanations 491

Part 5. Appendixes . 501

Appendix A. Sample Applications. 503

Appendix B. MFS Definitions for Intersystem Communication. 505

Appendix C. Device Compatibility with Previous Versions of MFS 507
Using STACK/UNSTACK to Convert MFS Device Formats to Symbolic Name

Formats . 508
3270 Device Format Conversion Example 509

x IMS/ESA V6 Appl Pgm: TM

3270 Printer and SLU 1 Compatibility 511
SLU P Compatibility . 512
IBM 3278-52/3283-52 and IBM 5550 Family (as 3270) Compatibility 512
Existing 3270 and IBM 5550 Family (as 3270) Compatibility 512

Appendix D. Spool API . 515
Understanding Parsing Errors 515

Keywords . 515
Status Codes . 515
Error Codes . 515
Diagnosis Examples . 516

Understanding Allocation Errors 519
Understanding Dynamic Output for Print Data Sets 519

CHNG Call with PRTO Option 519
CHNG Call with TXTU Option 520
CHNG Call with OUTN Option 520

Sample Program Using the Spool API 520
Application PCB Structure 520
GU Call to I/O PCB. 521
CHNG Call to Alternate PCB 521
ISRT Call to Alternate PCB 522
Program Termination . 523

Appendix E. Using the DL/I Test Program (DFSDDLT0) 525
Control Statements . 525
Planning the Control Statement Order 527
ABEND Statement . 528

Examples of ABEND Statement 528
CALL Statement . 528

CALL FUNCTION Statement 528
CALL DATA Statement . 531
OPTION DATA Statement 533
FEEDBACK DATA Statement 534
Call Functions. 534
Examples of DL/I Call Functions 537
CALL FUNCTION Statement with Column-Specific SSAs 546
DFSDDLT0 Call Functions 547
Examples of DFSDDLT0 Call Functions 548

COMMENT Statement. 549
Conditional COMMENT Statement 549
Unconditional COMMENT Statement 549
Example of COMMENT Statement 549

COMPARE Statement . 549
COMPARE DATA Statement 550
COMPARE AIB Statement 551
COMPARE PCB Statement 552
Examples of COMPARE DATA and PCB Statements 554

IGNORE Statement. 556
Example of IGNORE (N or .) 556

OPTION Statement . 556
Example of OPTION Control Statement 557

PUNCH Statement . 557
Example of PUNCH CTL Statement. 559
Example of PUNCH CTL Statement for All Parameters. 559

STATUS Statement . 559
Examples of STATUS Statement 562

Contents xi

WTO Statement . 563
Example of WTO Statement 563

WTOR Statement . 563
Example of WTOR Statement 564

JCL Requirements . 564
SYSIN DD Statement . 565
SYSIN2 DD Statement . 565
PRINTDD DD Statement . 565
PUNCHDD DD Statement 565
Using the PREINIT Parameter for DFSDDLT0 Input Restart 566

Execution of DFSDDLT0 in IMS Regions 567
Explanation of DFSDDLT0 Return Codes 568
Hints on Using DFSDDLT0 . 568

To Load a Database . 568
To Print the Segments in a Database 569
To Retrieve and Replace a Segment 569
To Delete a Segment . 570
To Do Regression Testing 570
To Use as a Debugging Aid 570
To Verify How a Call Is Executed 570

Bibliography . 571
IMS/ESA Version 6 Library . 571

Index . 573

xii IMS/ESA V6 Appl Pgm: TM

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation
555 Bailey Avenue, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This book is intended to help the application programmer write IMS application
programs. This book primarily documents General-use Programming Interface and
Associated Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS.

However, this book also documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
IMS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed to run with new
product releases or versions, or as a result of service.

© Copyright IBM Corp. 1974, 2000 xiii

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

Trademarks
The following terms, are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle IMS
C/370 IMS/ESA
C/MVS Language Environment
C++/MVS MVS
CICS MVS/ESA
COBOL/370 MVS/XA
DATABASE 2 RACF
DB2 SAA
IBM Series/1

VTAM

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Product Names
In this book, the following licensed programs have shortened names:

v “C/C++ for MVS/ESA” is referred to as either “C/MVS” or “C++/MVS”.

v “COBOL for MVS & VM” is referred to as “COBOL”.

v “DB2 for MVS/ESA” is referred to as “DB2”.

v “Language Environment for MVS & VM” is referred to as “Language
Environment”.

v “PL/I for MVS & VM” is referred to as “PL/I”.

xiv IMS/ESA V6 Appl Pgm: TM

Preface

This book is a guide to application programming in a Data Communication (DC)
environment. This book provides guidance for the tasks involved in creating and
running application programs. It covers basic information on coding transaction
management message calls for DC programs, and it provides information on
creating REXX EXECs under Time-Sharing Option Extensions (TSO/E).

This book is designed for IMS/ESA (hereafter referred to in this book as IMS)
application and system programmers who use the DC environment of the IMS
Transaction Manager (TM). The combination of the IMS Transaction Manager and
the IMS Database Manager is equivalent to IMS DB/DC.

This book also contains information on the Data Communications Control (DCCTL)
environment. DCCTL is generated by IMS TM, contains no database components,
and is designed to function as a transaction manager for non-IMS database
management systems.

Summary of Contents
This publication has five parts:

v Part 1. Writing Application Programs provides basic information on coding DL/I
calls for IMS TM application programs.

v Part 2. Message Format Service discusses application programming with MFS.

v Part 3. IMS Adapter for REXX discusses the IMS interface for REXX
(REXXTDLI), and provides information you can use to interactively develop
REXX EXECs under TSO/E and execute them in IMS MPPs, BMPs, IFPs, or
batch regions.

v Part 4. For Your Reference provides additional reference information you need to
write your application program.

v Part 5, Appendixes contains the following:

– Sample exit routines

– Sample applications

– MFS definitions for intersystem communication

– Device compatibility with previous versions of MFS

– Spool API

– Using the DL/I test program

Prerequisite Knowledge
IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list, see the IMS home page on the World Wide Web at:
http://www.software.ibm.com/data/ims

Before using this book, you should understand the concepts of application design
presented in IMS/ESA Application Programming: Design Guide, which assumes you
understand basic IMS concepts and the IMS/ESA environments.

This book is an extension to IMS/ESA Application Programming: Design Guide. The
IMS concepts explained in this manual are limited to those concepts pertinent to
developing and coding application programs. You should also know how to use
assembler language, C language, COBOL, Pascal, or PL/I.

© Copyright IBM Corp. 1974, 2000 xv

Terminology
In this book, the term external subsystems refers to subsystems that are not CCTL
subsystems, unless indicated otherwise. One example of an external subsystem is
DATABASE 2 (DB2).

For definitions of terminology used in this book and references to related
information in other books, see IMS/ESA Master Index and Glossary.

Change Indicators
Technical changes are indicated in this publication by a vertical bar (|) to the left of
the changed text. If a figure has changed, a vertical bar appears to the left of the
figure caption.

Syntax Diagrams
The following rules apply to the syntax diagrams used in this book:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

��─── Indicates the beginning of a statement.

───� Indicates that the statement syntax is continued on the next line.

�─── Indicates that a statement is continued from the previous line.

───�� Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
�─── symbol and end with the ───� symbol.

Conventions

v Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase for MVS and OS/2 operating systems, and lowercase for
UNIX operating systems. These items must be entered exactly as shown.

v Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

v When entering commands, separate parameters and keywords by at
least one blank if there is no intervening punctuation.

v Enter punctuation marks (slashes, commas, periods, parentheses,
quotation marks, equal signs) and numbers exactly as given.

v Footnotes are shown by a number in parentheses, for example, (1).

v A � symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

�� REQUIRED_ITEM ��

Optional Items
Optional items appear below the main path.

xvi IMS/ESA V6 Appl Pgm: TM

�� REQUIRED_ITEM
optional_item

��

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

��
optional_item

REQUIRED_ITEM ��

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

�� REQUIRED_ITEM required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the
main path.

�� REQUIRED_ITEM
optional_choice1
optional_choice2

��

Repeatable items
An arrow returning to the left above the main line indicates that an item can
be repeated.

�� REQUIRED_ITEM repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items
with a comma.

�� REQUIRED_ITEM

,

repeatable_item ��

A repeat arrow above a stack indicates that you can specify more than one
of the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the
remaining choices are shown below the main path. In the parameter list
following the syntax diagram, the default choices are underlined.

Preface xvii

�� REQUIRED_ITEM
default_choice

optional_choice
optional_choice

��

IMS-specific syntax information

Fragments
Sometimes a diagram must be split into fragments. The fragments
are represented by a letter or fragment name, set off like this: | A |.
The fragment follows the end of the main diagram. The following
example shows the use of a fragment.

�� STATEMENT item 1 item 2 A ��

A:

item 3
item 4

KEYWORD
item 5

item 6

Substitution-block
Sometimes a set of several parameters is represented by a
substitution-block such as <A>. For example, in the imaginary
/VERB command you could enter /VERB LINE 1, /VERB EITHER
LINE 1, or /VERB OR LINE 1.

�� /VERB
<A>

LINE line# ��

where <A> is:

�� EITHER
OR

��

Parameter endings
Parameters with number values end with the symbol '#', parameters
that are names end with 'name', and parameters that can be
generic end with '*'.

�� /MSVERIFY MSNAME msname
SYSID sysid#

��

The MSNAME keyword in the example supports a name value and
the SYSID keyword supports a number value.

xviii IMS/ESA V6 Appl Pgm: TM

Summary of Changes

Changes to the Current Edition of the Book for Version 6
This edition, which is in softcopy format only, includes technical and editorial
changes.

Changes to This Book for Version 6
This book contains new and changed information about the following line items:

v Distributed Sync Point

v Shared Queues

v New Time-Stamp Format

Library Changes for Version 6
The IMS/ESA Version 6 library differs from the IMS/ESA Version 5 library in these
major respects:

v IMS/ESA Common Queue Server Guide and Reference

This new book describes the IMS Common Queue Server (CQS).

v IMS/ESA DBRC Guide and Reference

This new book describes all the functions of IMS Database Recovery Control
(DBRC).

v The IMS Application Programming summary books (IMS/ESA Application
Programming: Database Manager Summary, IMS/ESA Application Programming:
Transaction Manager Summary, and IMS/ESA Application Programming: EXEC
DLI Commands for CICS and IMS Summary) are no longer included with the IMS
library.

v The Softcopy Master Index is not included.

v All information about IRLM 1.5 and data sharing using IRLM 1.5 has been
removed from the IMS V6 books. If you use IRLM 1.5, and want to migrate to
using IRLM 2.1 and Sysplex data sharing, see IMS/ESA Release Planning Guide.

v The chapter that was titled ″Database Control (DBCTL) Interface″ in the
IMS/ESA Customization Guide has been revised for Open Databse Access
(ODBA) and moved to ″Appendix A, Using the Database Resource Adapter
(DRA)″ in the IMS/ESA Application Programming: Database Manager.

© Copyright IBM Corp. 1974, 2000 xix

xx IMS/ESA V6 Appl Pgm: TM

Part 1. Writing Application Programs

Chapter 1. How Application Programs Work with the IMS Transaction
Manager . 7

Application Program Environments 7
The Application Programming Interface 7

Your Application in the System 8
The DB/DC Environment. 8
The DCCTL Environment 8
The TM Batch Environment. 9

Using LU 6.2 Devices . 9
How IMS TM Schedules Application Programs 10

Getting Started with DL/I . 10
Relationship of AIB and PCB with Language Interfaces 11

Language Unique Interfaces 12
Language Independent Interfaces 12

AIBTDLI . 12
CEETDLI . 12

Using DL/I Calls . 12
Message Call Functions . 12
System Service Call Functions 13
Status Codes, Return Codes, and Reason Codes 13
Exceptional Conditions . 14
Error Routines . 14

How Your Program Processes Messages 14
Message Types. 14

What Input Messages Look Like 15
What Output Messages Look Like 16

What Happens When a Message is Processed 17
Results of a Message: I/O PCB 19

How IMS TM Edits Messages 19
Printing Output Messages . 20
Using Basic Edit . 20

Editing Input Messages . 20
Editing Output Messages 21

Using Intersystem Communication Edit 21
Editing Input Messages . 21
Editing Output Messages 21

Using Message Format Service 21
Terminals and MFS . 22
MFS Input Message Formats. 22
MFS Output Message Formats 27

Using LU 6.2 User Edit Exit (Optional) 28
DB2 Considerations . 28

Chapter 2. Defining Application Program Elements 31
Formatting DL/I Calls for Language Interfaces 31
Application Programming for Assembler Language 32

Format . 32
Parameters . 33
Example DL/I Call Formats 34

Application Programming for C Language 34
Format . 34
Parameters . 35
I/O Area . 36

© Copyright IBM Corp. 1974, 2000 1

Example DL/I Call Formats 37
Application Programming for COBOL. 37

Format . 37
Parameters . 38
Example DL/I Call Formats 39

Application Programming for Pascal 39
Format . 39
Parameters . 41
Example DL/I Call Formats 42

Application Programming for PL/I 42
Format . 42
Parameters . 43
Example DL/I Call Formats 44

Relationship of Calls to PCB Types 44
Specifying the I/O PCB Mask 45
Specifying the Alternate PCB Mask 48
Specifying the AIB Mask . 49
Specifying the I/O Areas . 51
Using the AIBTDLI Interface . 51

Overview . 51
Defining Storage for the AIB 52

Specifying the Language-Specific Entry Point. 52
Assembler Language . 52
C Language . 52
COBOL . 53
Pascal . 53
PL/I . 53
Interface Considerations . 54

CEETDLI . 54
AIBTDLI . 54

PCB Lists . 54
Format of a PCB List . 54
Format of a GPSB PCB List 54
PCB Summary . 55

Using Language Environment 55
The CEETDLI interface to IMS 56
LANG= Option on PSBGEN for PL/I Compatibility with Language

Environment . 56
Special DL/I Situations . 56

Mixed-Language Programming 57
Using Language Environment Routine Retention 57
Using the Extended Addressing Capabilities of MVS/ESA 57
Preloaded Programs . 57
DCCTL. 57

Chapter 3. Writing DL/I Calls for Transaction Management 59
AUTH Call . 59

Format . 59
Parameters . 60
I/O Area . 60

I/O area before the AUTH call 61
I/O area after the AUTH call 62

Usage . 63
Restrictions . 64

CHNG Call . 64
Format . 64

2 IMS/ESA V6 Appl Pgm: TM

Parameters . 65
Usage . 66

In the OTMA environment 67
Advanced Print Function Options 67
APPC Options . 69
Options List Feedback Area 70

Error Codes . 71
Restrictions . 72

CMD Call . 72
Format . 72
Parameters . 72
Usage . 73
Restrictions . 73

GCMD Call . 74
Format . 74
Parameters . 74
Usage . 74
Restrictions . 75

GN Call . 75
Format . 75
Parameters . 75
Usage . 76
Restrictions . 76

GU Call . 76
Format . 76
Parameters . 76
Usage . 77
Restrictions . 78

ISRT Call . 78
Format . 78
Parameters . 78
Usage . 79

Spool API Functions . 79
Restrictions . 80

PURG Call . 80
Parameters . 80
Usage . 81

In the OTMA environment 81
Spool API Functions . 82

Restrictions . 82
SETO Call . 82

Format . 82
Parameters . 82
Usage . 84

In the OTMA environment 85
Advanced Print Function Options 85
APPC Options . 85
Options List Feedback Area 86

Error Codes . 86
Restrictions . 87

Chapter 4. Writing DL/I Calls for System Services 89
APSB Call . 90

Format . 90
Parameters . 90
Usage . 90

Part 1. Writing Application Programs 3

Restrictions . 91
CHKP (Basic) Call . 91

Format . 91
Parameters . 91
Usage . 92
Restrictions . 92

CHKP (Symbolic) Call . 92
Format . 92
Parameters . 92
Usage . 93
Restrictions . 93

DPSB Call . 93
Format . 93
Parameters . 94
Usage . 94
Restrictions . 94

GMSG Call . 94
Format . 94
Parameters . 94
Usage . 95
Restrictions . 96

GSCD Call . 96
Format . 96
Parameters . 96
Usage . 97
Restrictions . 97

ICMD Call. 97
Format . 97
Parameters . 97
Usage . 99
Restrictions . 99

INIT Call . 99
Format . 100
Parameters . 100
Usage. 100

Determining Database Availability: INIT DBQUERY 100
Automatic INIT DBQUERY 101
Performance Considerations for the INIT Call (IMS Online Only) 101

INQY Call . 102
Format . 102
Parameters . 102
Usage. 103

Querying Information from the PCB: INQY Null 103
Querying Data Availability: INQY DBQUERY 106
Querying the Environment: INQY ENVIRON. 107
Querying the PCB Address: INQY FIND 108
Querying the Program Name: INQY PROGRAM 109
INQY Return Codes and Reason Codes 109
Map of INQY Subfunction to PCB Type 109

Restrictions. 109
LOG Call . 109

Format . 109
Parameters . 109
Usage . 111
Restrictions . 111

RCMD Call . 111

4 IMS/ESA V6 Appl Pgm: TM

Format . 111
Parameters . 111
Usage. 112
Restrictions . 112

ROLB Call . 112
Format . 112
Parameters . 112
Usage. 113
Restrictions . 113

ROLL Call . 114
Format . 114
Parameters . 114
Usage. 114
Restrictions . 114

ROLS Call . 114
Format . 115
Parameters . 115
Usage. 115
Restrictions . 116

SETS/SETU Call . 116
Format . 116
Parameters . 116
Usage. 117
Restrictions . 117

SYNC Call . 118
Format . 118
Parameters . 118
Usage. 118
Restrictions . 118

XRST Call . 118
Format . 119
Parameters . 119
Usage. 120

Starting Your Program Normally 120
Restarting Your Program 120

Restrictions. 121

Chapter 5. More about Message Processing 123
Sending Messages to Other Terminals and Programs 123

Sending Messages to Other Terminals 124
To One Alternate Terminal 124
To Several Alternate Terminals. 124

Sending Messages to Other Application Programs 126
How the VTAM I/O Facility Affects Your VTAM Terminal 127

Communicating with Other IMS TM Systems Using MSC 128
Implications of MSC for Program Coding 128
Receiving Messages from Other IMS TM Systems 129
Sending Messages to Alternate Destinations in Other IMS TM Systems 130

IMS Conversations . 131
A Conversational Example 131
Conversational Structure . 132

What the SPA Contains 134
What Messages Look Like in a Conversation 136
Saving Information in the SPA 136

Replying to the Terminal . 136
Using ROLB, ROLL, and ROLS in Conversations. 137

Part 1. Writing Application Programs 5

Passing the Conversation to another Conversational Program 137
Restrictions on Passing the Conversation. 137
Defining the SPA Size . 138
Conversational Processing and MSC 138
Ending the Conversation 139

Message Switching in APPC Conversations 139
DFSAPPC Format . 140
Option Keywords. 140

Processing Conversations with APPC 141
Standard IMS Application Programs. 142

Standard IMS Application Programs and MSC 142
Modified IMS Application Programs 142

Modified IMS Application Programs and MSC 143
CPI-C Driven Application Programs 143

Ending the APPC Conversation 144
Coding a Conversational Program 144

Processing Conversations with OTMA 145
Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls 145

Using ROLL . 146
Using ROLB . 146

In MPPs and Transaction-Oriented BMPs. 147
In Batch Programs . 147

Using ROLS . 148
Backing out to an Intermediate Backout Point: SETS/SETU and ROLS 149

Using SETS/SETU . 149
Using ROLS . 150

Writing a Message-Driven Program 151
Coding DC Calls and Data Areas. 152

Your Input . 152
Skeleton MPP. 152
Coding Your Program in Assembler Language 153
Coding Your Program in C Language 153
Coding Your Program in COBOL 155
Coding Your Program in Pascal 157
Coding Your Program in PL/I 160

6 IMS/ESA V6 Appl Pgm: TM

Chapter 1. How Application Programs Work with the IMS
Transaction Manager

Your application program uses IMS Transaction Manager (IMS TM) to process input
and output messages, and uses Data Language I (DL/I) to communicate with IMS.
This chapter provides an overview of the transaction management process.

In this Chapter:

v “Application Program Environments”

v “The Application Programming Interface”

v “Getting Started with DL/I” on page 10

v “Using DL/I Calls” on page 12

v “How Your Program Processes Messages” on page 14

v “How IMS TM Edits Messages” on page 19

v “DB2 Considerations” on page 28

Application programming techniques and the application programming interface are
discussed here as they apply to IMS. IMS furnishes transaction management
functions for the Database Data Communication (DB/DC) and the Data
Communications Control (DCCTL) environments.

Related Reading: If your installation uses IMS Database Manager (IMS DB), refer
to IMS/ESA Application Programming: Database Manager for information on the
database functions required by your application programs.

Application Program Environments
IMS has various environments in which you can execute application programs. The
three IMS online environments are:

v DB/DC

v DBCTL

v DCCTL

The two IMS batch environments are:

v DB batch, which is generated from DB/DC and DBCTL class system generations

v TM batch, which is generated from DCCTL class system generations

This book explains the DB/DC, DCCTL, and TM batch environments.

Related Reading: For information on DBCTL and DB batch environments, see
IMS/ESA Application Programming: Database Manager.

The Application Programming Interface
This section provides an overview of the role your application program plays in the
IMS TM system. For additional, system-level information on IMS TM, see IMS/ESA
Administration Guide: Transaction Manager and IMS/ESA Administration Guide:
System.

© Copyright IBM Corp. 1974, 2000 7

Your Application in the System
The IMS environments described within this subsection are DB/DC, DCCTL, and
TM batch.

The DB/DC Environment
An application program must reside in a dependent region of IMS. Figure 1 shows
how an application program can be positioned in a DB/DC environment.

Messages from terminals and application programs are processed by the IMS
control region. The requested database segments or messages from other parts of
the system (for example, status codes, system messages, or responses from
terminals) are also processed by IMS and returned to the application.

The online environment can be used to access other types of database subsystems
using the External Subsystem Attach facility (ESAF). It permits applications running
with IMS to obtain data from external subsystems, such as DB2. Programming
considerations for DB2 are described in the section “DB2 Considerations” on
page 28.

The transaction management portion of the IMS DB/DC environment can be used
separately to provide transaction management for external subsystems. This is the
DCCTL environment.

The DCCTL Environment
The DCCTL environment functions like IMS TM in a DB/DC environment, except
that DCCTL has no inherent database facilities. Instead, the DCCTL environment is
used to access external subsystems, such as DB2. GSAM databases, which
contain sequential non-IMS data sets, can be accessed by BMPs.

Most DL/I message processing and system service calls are supported in DCCTL.
Supported calls are listed in “Transaction Management Call Summary” on page 439.

┌───────────┬──────────┬──────────┬───────────┐ ┌────────────┐ ┌────────────┐
│ │ │ │ │ │ │ │ | │
│ IMS │ A │ A │ A │ │ │ │ C C │
│ │ P │ P │ P │ │ │ │ | O O │

┌─────────┐ │ CONTROL │ P │ P │ P │ │ │ │ O N │
│TERMINALS├──┤ │ L │ L │ L │ │ EXTERNAL │ │ | R T │
└─────────┘ │ REGION │ I │ I │ I │ │ │ │ D R │

│ │ C │ C │ C │ │ SUBSYSTEM │ │D| I O │
│ │ A │ A │ A │ │ │ │R N L │

┌─────────┐ │ │ T │ T │ T │ │ │ │A| A L │
│DATABASE ├──┤ │ I │ I │ I │ │ │ │ T E │
└─────────┘ │ │ O │ O │ O │ │ │ │ | O R │

│ │ N │ N │ N │ │ │ │ R │
│ │ │ │ │ │ │ │ | │

┌───────┐ │ │ │ │ │ │ │ │ │
│IMS LOG├────┤ │ MPP │ BMP │ IFP │ │ │ │ | │
└───────┘ │ │ REGION │ REGION │ REGION │ │ │ │ │

└───────────┴──────────┴────┬─────┴───────────┘ └────────────┘ └────────────┘
│

┌─┴──┐
│GSAM│
└────┘

Figure 1. Application View of DB/DC Environment

The Application Programming Interface

8 IMS/ESA V6 Appl Pgm: TM

DL/I calls that require access to IMS databases are not valid. Figure 2 shows the
DCCTL environment with an external subsystem.

Application programs in the DCCTL environment can execute in the MPP, BMP, or
IFP dependent regions. Except for the restriction on DL/I calls to databases,
application programs in the DCCTL environment are the same as IMS TM
applications.

Related Reading: For more information on IMS TM environments, refer to
IMS/ESA Administration Guide: System or IMS/ESA Administration Guide:
Transaction Manager.

The TM Batch Environment
TM Batch is the batch environment generated from DCCTL system generations.
The TM Batch environment consists of a single address space which contains both
IMS code and the application program. The batch region can be started as either a
DLI or DBB type batch region. TM Batch application programs have access to DB2
databases through structured query language (SQL) calls, and to GSAM databases
through DL/I calls.

Restriction: TM Batch applications cannot access DL/I databases. To access DB2,
use the DB2 Batch Attach facility.

Related Reading: For more information on Batch Attach facility, see DATABASE 2
Application Programming and SQL Guide.

Using LU 6.2 Devices
Your applications can originate from or send messages to LU 6.2 devices. A
standard IMS application program with no modification can send messages to LU
6.2 devices by specifying the devices as destinations in an alternate PCB or I/O
PCB. To fully utilize the LU 6.2 protocol, you must use the Common Programming
Interface (CPI) communications interface.

┌───────────┬──────────┬──────────┬───────────┐ ┌────────────┐
│ │ │ │ │ │ │
│ IMS │ A │ A │ A │ │ │
│ │ P │ P │ P │ │ │

┌─────────┐ │ CONTROL │ P │ P │ P │ │ │
│TERMINALS├──┤ │ L │ L │ L │ │ EXTERNAL │
└─────────┘ │ REGION │ I │ I │ I │ │ │

│ │ C │ C │ C │ │ SUBSYSTEM │
│ │ A │ A │ A │ │ │
│ │ T │ T │ T │ │ │
│ │ I │ I │ I │ │ │
│ │ O │ O │ O │ │ │
│ │ N │ N │ N │ │ │
│ │ │ │ │ │ │

┌───────┐ │ │ │ │ │ │ │
│IMS LOG├────┤ │ MPP │ BMP │ IFP │ │ │
└───────┘ │ │ REGION │ REGION │ REGION │ │ │

└───────────┴──────────┴────┬─────┴───────────┘ └────────────┘
│

┌─┴──┐
│GSAM│
└────┘

Figure 2. Application View of the DCCTL Environment

The Application Programming Interface

Chapter 1. How Application Programs Work with the IMS Transaction Manager 9

IMS TM and MVS provide support for the Advanced Program-to-Program
Communication (APPC) facilities used for CPI Communications driven application
programs. CPI-C driven applications use IMS TM to issue schedule requests, but
rely on APPC/MVS to schedule and manage transactions.

Related Reading: For more information on writing application programs for
APPC/IMS see IMS/ESA Application Programming: Design Guide. For more
information on LU 6.2 and APPC, see IMS/ESA Administration Guide: Transaction
Manager.

How IMS TM Schedules Application Programs
IMS TM begins the scheduling process for an application program when a message
generated from a terminal or another application program requires processing. The
transaction manager assigns this input message, or transaction, to an available
dependent region and verifies that the application program is available to process
the message. While the application processes the message, IMS TM controls
availability to other requests for scheduling.

The PSB (defined by the PSBGEN utility) describes an application program to IMS
TM and contains the program control blocks (PCBs) required by the application. If
your application program requires only the I/O PCB and one modifiable alternate
PCB, you can define the application with a generated PSB (GPSB) with the
APPLCTN macro. PSBGEN is not required for GPSBs.

Related Reading: GPSBs and PSBs are discussed in more detail in “Chapter 5.
More about Message Processing” on page 123.

Getting Started with DL/I
The information in this section applies to all programs that run in IMS environments.
Figure 3 on page 11 shows the main elements in an IMS application program. The
numbers on the right correspond to the notes that follow the figure.

The Application Programming Interface

10 IMS/ESA V6 Appl Pgm: TM

Notes to Figure 3:

1. Program entry. IMS passes control to the application program with a list of any
associated PCBs.

2. PCB or AIB. IMS describes the results of each DL/I call using the AIBTDLI
interface in the application interface block (AIB) and, when applicable, the
program communication block (PCB). To find the results of a DL/I call, your
program must use the PCB referenced in the call. To find the results of the call
using the AIBTDLI interface, your program must use the AIB.

Your application program can use the PCB address returned in the AIB to find
the results of the call. To use the PCB, the program defines a mask of the PCB
and can then reference the PCB after each call to find out about the success or
failure of the call. An application program cannot change any fields in a PCB; it
can only check the PCB to determine what happened when the call was
completed.

3. Input/output (I/O) area. IMS passes segments to and from the program in the
program’s I/O area.

4. DL/I calls. The program issues DL/I calls to perform the requested function.

5. Program Termination. The program returns control to IMS TM when it has
finished its processing. In a batch program, your program can set the return
code and pass it to the next step in the job. If your program does not use the
return code in this way, it is a good idea to set it to zero as a programming
convention. Your program can also use the return code for this purpose in
BMPs.

Restriction: MPPs cannot pass return codes.

Relationship of AIB and PCB with Language Interfaces
IMS provides several language interfaces. These interfaces are either language
unique or language independent.

Figure 3. DL/I Program Elements

Getting Started with DL/I

Chapter 1. How Application Programs Work with the IMS Transaction Manager 11

Language Unique Interfaces
Language unique interfaces require the application to use the PCB address as one
of the parameters. When IMS returns the results of the call to the application, the
PCB mask must be used to analyze the call result. The following are
language-unique interfaces:

v ASMTDLI: Assembler language interface to IMS

v CTDLI: C language interface to IMS

v CBLTDLI: COBOL language interface to IMS

v PASTDLI: PASCAL language interface to IMS

v PLITDLI: PL/I language interface to IMS

Language Independent Interfaces

AIBTDLI
AIBTDLI can be used by all IMS-supported languages. The application uses the AIB
address as one of the parameters. When IMS returns the results of the call to the
application, the AIB contains the address of the PCB used. You use the AIB mask
to analyze the AIB and the call result. Similarly, you use the PCB mask to analyze
the PCB and the call result.

CEETDLI
CEETDLI can only be used by programs running under either Language
Environment for MVS & VM or under Language Environment for OS/390 & VM. The
application can use either the PCB address or the AIB address as one of the
parameters passed on IMS calls. If the AIB address is passed on the call, then after
IMS returns the results of the call to the application, the AIB will contain the PCB
address.You then use the AIB mask to analyze the AIB and the call result. If the
PCB address was passed on the call, then after IMS returns the results of the call
to the application, you use the PCB mask to analyze the PCB and the call result.

Using DL/I Calls
A DL/I call consists of a call statement and a list of parameters. The parameters for
the call provide information IMS needs to execute the call. This information consists
of the call function, the name of the data structure IMS uses for the call, the data
area in the program into which IMS returns, and any condition the retrieved data
must meet.

You can issue calls to perform transaction management functions (message calls)
and to obtain IMS TM system services (system service calls):

Message Call Functions
The IMS TM message processing calls are:

AUTH Authorization

CHNG Change

CMD Command

GCMD Get Command

GN Get Next

GU Get Unique

ISRT Insert

Language Interfaces

12 IMS/ESA V6 Appl Pgm: TM

PURG Purge

SETO Set Options

System Service Call Functions
The IMS TM system service calls are:

APSB Allocate PSB

CHKP Checkpoint (Basic)

CHKP Checkpoint (Symbolic)

DPSB Deallocate PSB

GMSG Get Message

GSCD 1 Get System Contents Directory

ICMD Issue Command

INIT Initialize

INQY Inquiry

LOG Log

RCMD Retrieve Command

ROLB Roll Back

ROLL Roll

ROLS Roll Back to SETS

SETS Set Synchronization Point

SETU Set Synchronization Point (Unconditional)

SYNC Synchronization

XRST Extended Restart

Related Reading: The DL/I calls are discussed in detail in “Chapter 3. Writing DL/I
Calls for Transaction Management” on page 59 and “Chapter 4. Writing DL/I Calls
for System Services” on page 89. Reference tables for the calls appear in
“Transaction Management Call Summary” on page 439.

Status Codes, Return Codes, and Reason Codes
To provide information on the results of each call, IMS TM places a 2-character
status code in the PCB after each IMS TM call your program issues. Your program
should check the status code after every IMS TM call it issues. If it does not, it
might continue processing even though the last call caused an error.

The status codes your program should test for are those that indicate exceptional
but valid conditions. Your program should first check for blanks, which indicate that
the call was completely successful. If the status code IMS TM returns after a call is
not one that you expected, your program should branch to an error routine.

Status codes returned in the PCB, return and reason codes returned in the AIB, or
both, supply information for your calls.

1. GSCD is a Product-sensitive programming interface.

Using DL/I Calls

Chapter 1. How Application Programs Work with the IMS Transaction Manager 13

Related Reading: For detailed information on these codes, see “Chapter 15. DL/I
Status Codes” on page 443 and “Chapter 16. DL/I Return and Reason Codes” on
page 475.

Exceptional Conditions
Some status codes do not mean that your call was successful or unsuccessful; they
just give you information about the results of the call. Your program uses this
information to determine what to do next. The meanings of these status codes
depend on the call.

In a typical program, the status codes that you should test for apply only to the get
calls. Some status codes indicate exceptional conditions for other calls. When your
program is retrieving messages, these are situations that you should expect and for
which you should provide routines other than error routines. For example, QC
means that no additional input messages are available for your program in the
message queue, and QD means that no additional segments are available for this
message.

Error Routines
If, after checking for blanks and exceptional conditions in the status code, you find
that there has been an error, your program should branch to an error routine and
print as much information as possible about the error before terminating. Print the
status code as well. Information that is helpful in understanding the error include:
which call was being executed when the error occurred, what were the parameters
of the IMS call, and what were the contents of the PCB.

Two kinds of errors can occur in your program. First, programming errors are
usually your responsibility; they are the ones you can find and fix. These errors are
caused by things like an invalid parameter, an invalid call, or an I/O area that is too
long. The other kind of error is something you cannot usually fix; this is a system or
I/O error. When your program has this kind of error, the system programmer or the
equivalent specialist at your installation should be able to help.

Because every application program should have an error routine available to it, and
because each installation has its own ways of finding and debugging program
errors, installations usually provide their own standard error routines.

How Your Program Processes Messages
To retrieve and send messages, an IMS TM application program issues calls to IMS
TM. When your program issues a call to retrieve a message, IMS TM places the
input message in the I/O area you name in the call. Before you issue a call to send
a message, you must build the output message in an I/O area in your program.

Message Types
An operator at a terminal can send four kinds of messages to IMS TM. The
destination of an IMS TM message identifies which kind of message is being sent:

v Another terminal. A logical terminal name in the first 8 bytes means that this is
a message switch destined for another terminal. For a user at a logical terminal
to send a message to another logical terminal, the user enters the name of the
receiving logical terminal followed by the message. The IMS TM control region
routes the message to the specified logical terminal. This kind of message does
not involve an MPP.

Using DL/I Calls

14 IMS/ESA V6 Appl Pgm: TM

v An application program. A transaction code in the first 8 bytes means that the
message is destined for an application program. IMS TM uses a transaction code
to identify MPPs and transaction-oriented BMPs. To use a particular application
program to process requests, the user enters the transaction code for that
application program.

v IMS TM. A “/” (slash) in the first byte means that the message is a command
destined for IMS TM.

v Message switch service. A system service DFSAPPC request is destined for
the message switch service.

An application program can send three kinds of messages:

v Commands. A “/” in the first byte of the message text means that the message is
a command for IMS TM. Programmers design applications to issue commands
when they want a program to perform tasks that an operator at a terminal usually
performs. This is called automated operator interface (AOI) and is described in
IMS/ESA Customization Guide.

Use the CMD call to issue commands. Do not use the ISRT call for issuing
commands, because a message created with ISRT can contain a slash in the first
byte without being a command.

v Messages to logical terminals by specifying a logical terminal name.

v Program-to-program switches using a transaction code.

The messages that your program receives and sends are made up of segments.
Use a GU call to retrieve the first segment of a new message, and use GN calls to
retrieve the remaining segments of the message. Figure 4 shows three messages.
Message A contains one segment; message B contains two segments; and
message C contains three segments.

To retrieve message A, you only have to issue a GU call. To retrieve messages B
and C, issue one GU call to retrieve the first segment, then a GN call for each
remaining segment. This assumes that you know how many segments each
message contains. If you do not know this, issue GN calls until IMS TM returns a QD
status code, indicating that all of the segments for that message have been
retrieved.

What Input Messages Look Like
The input message that an application program receives from a terminal or another
program always has these fields: the length field, the ZZ field, and the text field.
Figure 5 on page 16 shows the format of an input message.

Message A Message B Message C
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Segment A1 │ │ Segment B1 │ │ Segment C1 │
└─────────────┘ ├─────────────┤ ├─────────────┤

│ Segment B2 │ │ Segment C2 │
└─────────────┘ ├─────────────┤

│ Segment C3 │
└─────────────┘

Figure 4. Message Segments

How Your Program Processes Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 15

The contents of the input message fields are:

LL or LLLL
The length field contains the length of the input message segment in binary,
including LL (or LLLL) and ZZ. IMS TM supplies this number (in the length field
when you retrieve the input message).

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI
interfaces, define the LL field as 2 bytes long.

For the PLITDLI interface, define the LLLL field as 4 bytes long. The value in
the LLLL field is the input message length minus 2 bytes. For example, if the
text is 12 bytes, then the fullword LLLL contains a value of 24. This value is the
total of LLLL (4 bytes) + ZZ (2 bytes) + TRANCODE (8 bytes) + text (12 bytes)
− 2 bytes.

TRANCODE
The TRANCODE is the transaction code for the incoming message.

ZZ The ZZ field is a 2-byte field that is reserved for IMS TM. Your program does
not modify this field.

Text
This field contains the message text sent from the terminal to the application
program. The first segment of a message can also contain the transaction code
associated with the program in the beginning of the text portion of the message.
Input messages do not have to include the transaction code, but you can
provide it for consistency.

The contents of the text field in the input message, and formatting of the contents
when your program receives the message, depends on the editing routine your
program uses.

What Output Messages Look Like
The format of the output message that you build to send back to a terminal or to
another program is similar to the format of the input message, but the fields contain
different information.

Output messages contain four fields: the length field, the Z1 field, the Z2 field, and
the text field. Figure 6 on page 17 shows the format of an output message.

For the
AIBTDLI
ASMTDLI
CBLTDLI ┌────┬────┬────────┬────────────────┐
CEETDLI │ LL │ ZZ │TRANCODE│ Text │
CTDLI and ├────┼────┼────────┼────────────────┤
PASTDLI │ 2 │ 2 │ 8 │ variable │
interfaces: └────┴────┴────────┴────────────────┘

┌─────────┬────┬────────┬────────────────┐
For the │ LLLL │ ZZ │TRANCODE│ Text │
PLITDLI ├─────────┼────┼────────┼────────────────┤
interface: │ 4 │ 2 │ 8 │ variable │

└─────────┴────┴────────┴────────────────┘

Figure 5. Input Message Format

How Your Program Processes Messages

16 IMS/ESA V6 Appl Pgm: TM

The contents of the output message fields are:

LL or LLLL
The output and input message length fields are the same. It contains the length
of the message in binary, including the LL (or LLLL), Z1, and Z2 fields. For
output message segments, supply this length when you are ready to send the
message segment.

For the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI
interfaces, the LL field must be 2 bytes long. For the PLITDLI interface, the
LLLL field must be 4 bytes long and contains the length of the message
segment, minus 2 bytes.

Z1 The Z1 field is a 1-byte field that must contain binary zeros. It is reserved for
IMS TM.

Z2 The Z2 field is a 1-byte field that can contain special device-dependent
instructions (such as instructions to ring the alarm bell, instructions to
disconnect a switched line, or paging instructions) or device-dependent
information (such as information about structured field data or bypassing MFS).

If you do not use any of these instructions, the Z2 field must contain binary
zeros. For MFS, this field contains the number of the option that is being used
for this message.

Text
The text portion of the message segment contains the data that you want to
send to the logical terminal or to an application program. (Message texts are
typically EBCDIC characters.) The length of the text depends on the data that
you want to send.

What Happens When a Message is Processed
What a program does when it receives a message depends on the kind of message
it receives. A transaction code associates a request for information from a terminal
with the application program that can process and respond to that request. IMS TM
schedules an MPP when there are messages to be processed that contain the
transaction code associated with that MPP.

Example: For example, suppose you have an MPP that processes the transaction
code “INVINQ” for inventory inquiry. The MPP receives a request from a user at a

For the
AIBTDLI
ASMTDLI
CBLTDLI ┌────┬────┬────┬─────────────────────────┐
CEETDLI │ LL │ Z1 │ Z2 │ Text │
CTDLI and ├────┼────┼────┼─────────────────────────┤
PASTDLI interfaces: │ 2 │ 1 │ 1 │ variable │

└────┴────┴────┴─────────────────────────┘

┌─────────┬────┬────┬─────────────────────────┐
For the │ LLLL │ Z1 │ Z2 │ Text │
PLITDLI ├─────────┼────┼────┼─────────────────────────┤
interface: │ 4 │ 1 │ 1 │ variable │

└─────────┴────┴────┴─────────────────────────┘

Figure 6. Output Message Format

How Your Program Processes Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 17

terminal for information on the inventory of parts. When the user enters the
transaction code for that application program, IMS TM schedules the application
program that can process the request.

When you enter INVINQ and one or more part numbers, the MPP sends your
program the quantity of each part on hand and the quantity on order.

When you enter INVINQ at the terminal, IMS TM puts the message on the message
queue for the MPP that processes INVINQ. Then, after IMS TM has scheduled the
MPP, the MPP issues GU and GN calls to retrieve the message. To retrieve the
messages from LTERM1, the application program issues a GU for the first segment
of a message, then issues GN calls until IMS TM returns a QD status code. This
means that the program has retrieved all of the segments of that message. The
program then processes the request, and sends the output message to the queue
for your logical terminal. (The logical terminal name is in the I/O PCB.) When the
MPP sends the output message, IMS TM sends it to the queue for that logical
terminal, and the message goes to the physical terminal. Figure 7 shows the flow of
a message between the terminal and the MPP.

Figure 8 on page 19 shows the calls you use, the status codes, and what the input
and output for the inventory inquiry would look like. To show you how you use GU
and GN to retrieve messages, and how you insert multiple-segment messages, this
example shows messages containing three segments. If input and output messages
in this example were single segment messages, the program would issue only a GU
to retrieve the entire message, and only one ISRT to send the message.

The message formats shown in Figure 8 on page 19 are examples; not all
messages are in this format. When the program receives the input message in the
I/O area, the first field of each segment contains the length of that segment. This is
the LL field in the figure. For clarity, Figure 8 on page 19 shows this length in
decimal; in the input message, however, it is in binary. The second field (ZZ) is
reserved for IMS TM; it is 2 bytes long. The text of the message follows the
reserved 2 bytes. The first message segment contains the transaction code in the 8
bytes following the ZZ field. These are the first 8 bytes of the text portion of the
message.

The format of the output messages is the same. You do not need to include the
name of the logical terminal, because it is in the first 8 bytes of the I/O PCB.

┌───────────────────┐ ┌────────────────────┐
│ Physical Terminal ├───────────� │ Transaction Queue │
└───────────────────┘ └──────────┬─────────┘

│
│
H

┌─────────────────────┐
│ Application Program │
└──────────┬──────────┘

│
H

┌───────────────────┐ ┌──────────────────────┐
│ Physical Terminal │ �───────────┤Logical Terminal Queue│
└───────────────────┘ └──────────────────────┘

Figure 7. Transaction Message Flow

How Your Program Processes Messages

18 IMS/ESA V6 Appl Pgm: TM

PART, QTY, and ON ORDER in Figure 8 are headings. These are values that you
can define as constants that you want to appear on the terminal screen. To include
headings in MFS output messages, define them as literals.

Results of a Message: I/O PCB
After your program issues a call, IMS TM returns information about the results of
the call in the I/O PCB. To find out about the results of the call, your application
program must check the information that IMS TM returns to the I/O PCB.

When your application program retrieves a message, IMS TM returns the following
information about the message to the I/O PCB:

v The name of the terminal that sent the message.

v A 2-character status code describing the results of the call. If the program
receives a status code of QC after issuing a call to retrieve a message, no more
messages are available for the program to process.

v The current date, time, and sequence number for the message.

v The user ID of the person at the terminal or the transaction code for the program
that sent the message.

Because the I/O PCB resides outside of your program, you define a mask of the
PCB in your program to check the results of IMS TM calls. The mask contains the
same fields in the same order as the I/O PCB.

Related Reading: For more information on I/O PCB masks, see “Specifying the I/O
PCB Mask” on page 45.

How IMS TM Edits Messages
When an application program passes messages to and from a terminal, IMS TM
edits the messages before the program receives the message from the terminal and
before the terminal receives the message from the application program. IMS TM
gives you many choices about how you want your messages to appear both on the
terminal screen and in the program’s I/O area. You need to know which editing
routines have been specified for your program and how they affect your
programming.

MPP for INVINQ Transaction Code
┌──┐
│ DC Calls I/O Area Status Code │

LTERM 1 │ │
┌──────────────────────┐ │ LLZZ TEXT │
│INVINQ PART 12X───────┼───┼──GU─────────1900INVINQ PART 12X──────� bb │
│PART 72B──────────────┼───┼──GN─────────1200PART 72B─────────────� bb │
│PART 37Y──────────────┼───┼──GN─────────1200PART 37Y─────────────� bb │
└──────────────────────┘ │ GN──────────────────────────────────� QD │

LTERM 1 │ . │
┌──────────────────────┐ │ . │
│PART QTY ON ORDER │ │ . LLZZ TEXT │
│12X 90 0�────┼───┼──ISRT───────130012X090000───────────── bb │
│72B 41 15�────┼───┼──ISRT───────130072B041015───────────── bb │
│37Y 3 25�────┼───┼──ISRT───────130037Y003025───────────── bb │
└──────────────────────┘ │ │

│ │
└──┘

Figure 8. Inventory Inquiry MPP Example

How Your Program Processes Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 19

The three editing routines available to non-LU 6.2 terminals in IMS TM are:

Basic Edit
Performs basic edit functions if you do not use MFS and if the message
does not originate at an LU 6.1 device. You must provide control characters
for some formatting functions.

Intersystem Communication (ISC) Edit
Provides the default edit for messages that originate from an LU 6.1 device.
You can enter binary data in addition to text.

Message Format Service (MFS)
Formats messages through control blocks. You define the way the
messages look with the control blocks.

For LU 6.2 devices, use the LU 6.2 Edit Exit to edit input and output messages.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager. For more information on LU 6.2 Edit Exit, see
IMS/ESA Customization Guide.

Printing Output Messages
You must provide the horizontal and vertical control characters that are necessary
to format your output messages.

To print your output at a printer terminal, include these control characters where
necessary within the text of the message:

X'05' Skip to the tab stop, but stay on the same line.

X'15' Start a new line at the left margin.

X'25' Skip to a new line, but stay at the same place horizontally.

If you want to skip multiple lines, you can start a new line (X'15'), then skip as many
lines as necessary (X'25').

Using Basic Edit
If you do not use MFS or an LU 6.1 device, IMS TM does some editing
automatically. The editing IMS TM does to the first message segment is different
from the editing IMS TM does for subsequent message segments. See IMS/ESA
Administration Guide: Transaction Manager for a complete description of Basic Edit.

Editing Input Messages
When IMS TM receives the first segment of an input message for your application
program, IMS TM:

v Removes leading and trailing control characters.

v Removes leading and trailing blanks.

v Removes backspaces (from a printer terminal).

v Translates to uppercase, if this is specified with the EDIT=UC specification on the
system definition TRANSACT macro.

If the message segment contains a password, IMS TM edits the segment by:

v Removing the password and inserting a blank in place of the password.

v Removing the password if the first character of the text is a blank. IMS TM does
not insert the blank.

v Left-justifying the text of the segment.

How IMS TM Edits Messages

20 IMS/ESA V6 Appl Pgm: TM

For subsequent input message segments, IMS TM does not remove leading blanks
from the text of the message. The other formatting features are the same.

Editing Output Messages
For output messages, Basic Edit:

v Changes nongraphic characters in the output message before the data goes to
the output device.

v Inserts any necessary idle characters after new line, line feed, and tab
characters.

v Adds line control characters for the operation of the communication line.

Using Intersystem Communication Edit
Intersystem Communication (ISC) Edit is the default edit for messages from LU 6.1
devices. It is not valid for any other device types. One advantage of using ISC edit
is that IMS TM does not edit the text of a message, allowing you to enter binary
data.

Editing Input Messages
The editing IMS TM does to input messages depends on whether the Function
Management (FM) header contains the SNA-defined primary resource name (PRN)
parameter. In either case, IMS TM removes the FM header before the input
message is received by the application program.

If the FM header does not contain the PRN parameter:

v IMS TM removes leading control characters and blanks when it receives the first
segment of an input message for your application program.

v If the message segment contains a password, IMS TM removes the password
and inserts a blank where the password was.

v IMS TM does not edit the text of the message (the data following the password).

If the FM header does contain the PRN parameter:

v The PRN is treated as the transaction code and is received by your application
program as the first field in the message segment.

v The message segment is not edited by IMS TM.

Editing Output Messages
ISC Edit does not edit output messages.

Using Message Format Service
Message Format Service (MFS) is a part of IMS TM that uses control blocks that
you define to format messages between a terminal and an MPP. The MFS control
blocks indicate to IMS TM how you want your input and output messages arranged:

v For input messages, MFS control blocks define how the message that the
terminal sends to your MPP is arranged in the I/O area.

v For output messages, MFS control blocks define how the message that your
MPP sends to the terminal is arranged on the screen or at the printer. You can
also define words or other data that appear on the screen (headings, for
example) but do not appear in the program’s I/O area. This data, called a literal,
can be a field in the output message from the application program or a field in
the input message from the terminal.

For detailed information on MFS, see “Part 2. Message Format Service” on
page 163.

How IMS TM Edits Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 21

Terminals and MFS
Whether your program uses MFS depends on the types of terminals and secondary
logical units (SLUs) your network uses. You can bypass MFS formatting of an
output message for a 3270 device or for SLU Type 2 devices. When MFS is
bypassed, you construct the entire 3270 data stream from within your program.

Restriction: MFS cannot be used with LU 6.2 devices (APPC).

Related Reading: For more information on LU 6.2 and APPC, see IMS/ESA
Administration Guide: Transaction Manager.

The decisions about using MFS are high-level design decisions that are separate
from the tasks of application design and application programming; many
installations that use MFS have a specialist who designs MFS screens and
message formats for all applications that use MFS.

MFS makes it possible for an MPP to communicate with different types of terminals
without having to change the way it reads and builds messages. When the MPP
receives a message from a terminal, the message’s format in the MPP I/O area
depends on the MFS options specified and not on what kind of terminal sent it.
MFS shields the MPP from the physical device that is sending the message in the
same way that a DB PCB shields the program from what the data in the database
actually looks like and how it is stored.

MFS Input Message Formats
When you define a message to MFS, you do so in fields—just as you define fields
within a database segment. When you define the fields that make up a message
segment, you give MFS information such as:

v The length of the field

v The fill character to use when the length of the input data is less than the length
that has been defined for the field

v Whether the data in the field is left-justified or right-justified

v If the field is truncated, whether it is truncated on the left or right

The order and length of these fields within the message segment depends on the
MFS option that your program is using. You specify the MFS option in the MID.
Which option to use for an application program is a design decision based on how
complex the input data is, and how much it varies; the language the application
program is written in; and the complexity of the application program. Performance
factors are also involved in this decision.

The Z2 field in MFS messages contains the MFS formatting option being used to
format the messages to and from your program. If something is wrong in the way
that IMS TM returns the messages to your I/O area, and you suspect that the
problem might be with the MFS option used, you can check this field to see if IMS
TM is using the correct option. A X'00' in this field means that MFS did not format
the message at all.

One way to understand how each of the MFS options formats your input and output
messages is to look at examples of each option.

Example: Suppose that you have defined the four message segments shown in
Figure 9 on page 23. Each of the segments contains a 2-byte length field and a
2-byte ZZ field. The first segment contains the transaction code that the person at

How IMS TM Edits Messages

22 IMS/ESA V6 Appl Pgm: TM

the terminal entered to invoke the application program. The number of bytes
defined for each field appears below the name of the field in the figure.

When you use the PLITDLI interface, you must define the length field as a binary
fullword, LLLL. When you use the AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI,
or PASTDLI interfaces, you must define the length field as a halfword, LL. The
value provided by the PL/I application program must represent the actual segment
length minus 2 bytes. For example, if the output text is 10 bytes, then the value of
the fullword LLLL is 14 and is the sum of the length of LLLL (4 bytes − 2 bytes) +
Z1 (1 byte) + Z2 (1 byte) + TEXT (10 bytes).

For these examples, assume the following:

v The transaction code is defined in the MID as a literal.

v All of the fields are left-justified.

v The fill character is defined as a blank. When the length of the data in a field is
less than the length that has been defined for that field, MFS pads the field with
fill characters. Fill characters can be:

– Blanks

– An EBCDIC character

– An EBCDIC graphic character

– A null, specified as X'3F'

When you specify that the fill character is to be a null, MFS compresses the field
to the length of the data if that length is less than the field length.

The fields of the message segments in Figure 9 are arranged on the terminal
screen in the format shown in Figure 10 on page 24.

Segment 1
LL ZZ

┌─────┬──────┬──────────┬──────────┬─────────────────────┐
│0027 │ XXXX │ TRANCODE │ PATIENT# │ NAME │
├─────┼──────┼──────────┼──────────┼─────────────────────┤
│ 2 │ 2 │ 8 │ 5 │ 10 │
└─────┴──────┴──────────┴──────────┴─────────────────────┘

Segment 2
┌─────┬──────┬───┐
│0054 │ xxxx │ ADDRESAF │
├─────┼──────┼───┤
│ 2 │ 2 │ 50 │
└─────┴──────┴───┘

Segment 3
┌─────┬──────┬──────────┬──────────┐
│0016 │ xxxx │ CHARGES │ PAYMENTS │
├─────┼──────┼──────────┼──────────┤
│ 2 │ 2 │ 6 │ 6 │
└─────┴──────┴──────────┴──────────┘

Segment 4
┌─────┬────────┬─────────────┬──────────────┐
│0024 │ xxxx │ TREATMNT │ DOCTOR │
├─────┼────────┼─────────────┼──────────────┤
│ 2 │ 2 │ 10 │ 10 │
└─────┴────────┴─────────────┴──────────────┘

Figure 9. Message Segment Formats

How IMS TM Edits Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 23

Example: Assume the person enters the name of a patient, and the charges and
payments associated with that patient.

MFS provides three options for message format:

Option 1 Use this option when the program receives and transmits most of
the fields in the message segments.

Option 2 Use this option when the program processes multisegment
messages where most of the fields are transmitted but some of the
segments are omitted.

Option 3 Use this option when the program receives and transmits only a
few of the fields within a segment.

A description of each of these choices follows.

Option 1 Format: The way in which option 1 formats messages depends on
whether you have defined a null as the fill character for any of the fields in the
segment.

If none of the fields in the message were defined as having a fill character of null:

v The program receives all the segments in the message.

v Each segment is the length that was specified for it in the MID.

v Each segment contains all its fields.

v Each field contains data, data and fill characters, or all fill characters.

Figure 11 on page 25 shows what the message segments that the application
program received would look like.

PATIENT#: NAME: MC ROSS

ADDRESAF:

CHARGES: 106.50 PAYMENTS: 90.00

TREATMENT:

DOCTOR:

Figure 10. Terminal Screen for MFS Example

How IMS TM Edits Messages

24 IMS/ESA V6 Appl Pgm: TM

The message format for option 1 output messages is the same as the input
message format. The program builds output messages in an I/O area in the format
shown above. The program can truncate or omit fields in one of two ways:

v Inserting a short segment

v Placing a null character in the field

If one or more of the fields are defined as having a null fill character, the message
is different. In this case, the message has these characteristics:

v If a field has been defined as having a fill character of null and the terminal offers
not data, the field is eliminated from the message segment.

v If all of the fields in a segment have a null fill character and none of the fields
contains any literals, the segment is eliminated from the message.

v If only some of the fields in a segment have a null fill character, any field
containing nulls is eliminated from the segment. The relative positions of the
fields remaining within the segments are changed.

v When the length of the data that is received from the originating terminal is less
than the length that is been defined for the field, the field is truncated to the
length of the data.

Option 2 Format: Option 2 formats messages in the same way that option 1
does, unless the segment contains no input data from the terminal after IMS TM
has removed the literals. If this is true, and if no additional segments in the
message contain input data from the terminal, IMS TM ends the message. The last
segment that the program receives is the last segment that contains input data from
the terminal.

Sometimes a segment that does not have any input data from the terminal is
followed by segments that do contain input data from the terminal. When this

Segment 1
LL Z Z

┌─────┬────┬────┬───────────┬────────────┬──────────┐
│0027 │ XX │ 01 │TRANCODE │ blanks │MCROSSbbbb│
├─────┼────┼────┼───────────┼────────────┼──────────┤
│ 2 │ 1 │ 1 │8 │ 5 │10 │
└─────┴────┴────┴───────────┴────────────┴──────────┘

Segment 2
┌─────┬────┬───┬──┐
│0054 │ XX │ 01│ blanks │
├─────┼────┼───┼──┤
│ 2 │ 1 │ 1 │ 50 │
└─────┴────┴───┴──┘

Segment 3
┌─────┬────┬────┬────────┬─────────┐
│0016 │ XX │ 01 │ 010650 │ 009000 │
├─────┼────┼────┼────────┼─────────┤
│ 2 │ 1 │ 1 │ 6 │ 6 │
└─────┴────┴────┴────────┴─────────┘

Segment 4
┌─────┬────┬────┬───────────┬─────────────────┐
│0024 │ XX │ 01 │ blanks │ blanks │
├─────┼────┼────┼───────────┼─────────────────┤
│ 2 │ 1 │ 1 │ 10 │ 10 │
└─────┴────┴────┴───────────┴─────────────────┘

Figure 11. Option 1 Message Format

How IMS TM Edits Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 25

happens, MFS gives the program the length field and the Z fields for the segment,
followed by a 1-byte field containing X'3F' This indicates to the program that this is
a null segment.

If the message segments shown in Figure 9 on page 23 are formatted by option 2,
they appear in the format shown in Figure 12.

Segment 2 in Figure 12 contains only a X'3F' because that segment is null, but
Segment 3 contains data. This message does not contain a segment 4 because it
is null.

Option 3 Format: When you use option 3, the program receives only those fields
that have been received from the terminal. The program receives only segments
that contain fields received from the originating terminal. Segments and fields can
be of variable length if you have defined option 3 as having a null fill character.

A segment in an option 3 message is identified by its relative segment number—in
other words, what position in the message it occupies. The fields within a segment
are identified by their offset count within the segment.

Example: The NAME field in Segment 1 (MCROSS����) has an offset value of 17.
The value 17 is the sum of the lengths of the fields preceding the NAME field and
includes an 8-byte transaction code and a 5-byte field of blanks. It does not include
the 2-byte relative segment number field (field A in Figure 13 on page 27), the
2-byte length field (field B), or the 2-byte relative offset field (field C).

Option 3 messages do not contain literals defined in the MID. This means that the
transaction code is removed from the message, except during a conversation. If the
transaction that the program is processing is a conversational transaction, the
transaction code is not removed from the message. The transaction code still
appears in the Scratch Pad Area (SPA).

Each segment the program receives contains the relative number of this segment in
the message (field A in Figure 13 on page 27). In addition, each data field within the
segment is preceded by two fields:

Segment 1
LL Z Z

┌─────┬────┬────┬──────────┬────────┬─────────────┐
│0027 │ XX │ 02 │ TRANCODE │ blanks │ MCROSSbbbb │
├─────┼────┼────┼──────────┼────────┼─────────────┤
│ 2 │ 1 │ 1 │ 8 │ 5 │ 10 │
└─────┴────┴────┴──────────┴────────┴─────────────┘

Segment 2
┌─────┬────┬────┬────┐
│0005 │ XX │ 02 │ 3F │
├─────┼────┼────┼────┤
│ 2 │ 1 │ 1 │ 1 │
└─────┴────┴────┴────┘

Segment 3
┌─────┬────┬────┬────────┬─────────┐
│0016 │ XX │ 02 │ 010650 │ 0090000 │
├─────┼────┼────┼────────┼─────────┤
│ 2 │ 1 │ 1 │ 6 │ 6 │
└─────┴────┴────┴────────┴─────────┘

Figure 12. Option 2 Message Format

How IMS TM Edits Messages

26 IMS/ESA V6 Appl Pgm: TM

v A 2-byte length field (B). This length includes the length field itself, the 2-byte
relative field offset, and the data in the field.

v A 2-byte relative field offset (C), giving the field’s position in the segment as
defined in the MID.

These two fields are followed by the data field. MFS includes these fields for each
field that is returned to the application program.

If the message segments shown in Figure 9 on page 23 are formatted by option 3,
they appear in the format shown in Figure 13. The notes following the figure explain
the letters A, B, C, and D above Segment 1 and Segment 3.

Notes to Figure 13:

v The fields marked A contain the relative segment number. This number gives the
segment’s position within the message.

v The fields marked B contain the field length. This length is the sum of the lengths
of B field (2 bytes) + C field (2 bytes) + D field (the length of the data).

v The fields marked C contain the relative field offset. This gives each field’s
position within the segment.

v The fields marked D contain the data from the terminal. In this example, the fill
character was defined as blank, so the data field is always its defined length.
IMS TM does not truncate it. If you define the fill character as null, the lengths of
the data fields can differ from the lengths defined for them in the segment. With a
null fill character, if the length of the data from the terminal is less than the length
defined for the field, IMS TM truncates the field to the length of the data. Using a
null fill with option 3 reduces the space required for the message even further.

MFS Output Message Formats
For output messages, define to MFS what it is to receive from the application
program. If using option 1 or option 2, the output message format is the same as it
is for input messages. Present all fields and segments to MFS. You can present null
segments. All fields in output messages are fixed length and fixed position. Output
messages do not contain option numbers.

Option 3 output messages are similar to input messages, except that they do not
contain option numbers. The program submits the fields as required in their
segments with the position information.

Segment 1
LL Z Z A B C D

┌─────┬────┬────┬──────┬──────┬──────┬───────────────────┐
│0020 │ XX │ 03 │ 0001 │ 0014 │ 0017 │ MCROSSbbbb │
├─────┼────┼────┼──────┼──────┼──────┼───────────────────┤
│ 2 │ 1 │ 1 │ 2 │ 2 │ 2 │ 10 │
└─────┴────┴────┴──────┴──────┴──────┴───────────────────┘

Segment 3
LL Z Z A B C D B C D

┌─────┬────┬────┬──────┬──────┬──────┬────────┬──────┬──────┬────────┐
│0000 │ XX │ 03 │ 0003 │ 0010 │ 0004 │ 010650 │ 0010 │ 0010 │ 009000 │
├─────┼────┼────┼──────┼──────┼──────┼────────┼──────┼──────┼────────┤
│ 2 │ 1 │ 1 │ 2 │ 2 │ 2 │ 6 │ 2 │ 2 │ 6 │
└─────┴────┴────┴──────┴──────┴──────┴────────┴──────┴──────┴────────┘

Figure 13. Option 3 Message Format

How IMS TM Edits Messages

Chapter 1. How Application Programs Work with the IMS Transaction Manager 27

Using LU 6.2 User Edit Exit (Optional)
This exit edits input and output messages from LU 6.2 devices when the implicit
application program interface support is used. If it is not provided then messages
are presented without modification. IMS does not invoke the exit for CPI-C driven
transactions because IMS does not participate in the data flows when the
application program uses the CPI directly.

The LU 6.2 User Edit Exit is called once for each message segment or inbound
control flow. You can call the exit for data messages and use it to:

v Examine the contents of a message segment.

v Change the contents of a message segment.

v Expand or compact the contents of a message segment.

v Discard a message segment and process subsequent segments, if any.

v Use the Deallocate_Abend command to end the conversation.

For more information on LU 6.2 User Edit Exit, see IMS/ESA Customization Guide
and IMS/ESA Administration Guide: Transaction Manager.

DB2 Considerations
For the most part, the message processing function of a dependent region that
accesses DB2 databases is similar to that of a dependent region that accesses only
DL/I databases. The method each program uses to retrieve and send messages
and back out database changes is the same. Differences include the following:

v DL/I statements are coded differently from SQL (structured query language)
statements.

v When an IMS TM application program receives control from IMS TM, IMS has
already acquired the resources the program is able to access. IMS TM schedules
the program, although some of the databases are not available. DB2 does not
allocate resources for the program until the program issues its first SQL
statement. If DB2 cannot allocate the resources your program needs, your
program can optionally receive an initialization error when it issues its first SQL
call.

v When an application issues a successful checkpoint call or a successful
message GU call, DB2 closes any cursors that the program is using. This means
that your program should issue its OPEN CURSOR statement after a checkpoint
call or a message GU.

IMS TM and DB2 work together to keep data integrity in these ways:

v When your program reaches a commit point, IMS TM makes any changes that
the program has made to DL/I databases permanent, releases output messages
for their destinations, and notifies DB2 that the program has reached a commit
point. DB2 then makes permanent any changes that the program has made to
DB2 databases.

v When your program terminates abnormally or issues one of the IMS TM rollback
calls (ROLB, ROLS without a token, or ROLL), IMS TM cancels any output messages
your program has produced, backs out changes your program has made to DL/I
databases since the last commit point, and notifies DB2. DB2 backs out the
changes that the program has made to DB2 databases since the last commit
point.

Through the Automated Operator Interface (AOI), IMS TM application programs can
issue DB2 commands and IMS TM commands. To issue DB2 commands, the

How IMS TM Edits Messages

28 IMS/ESA V6 Appl Pgm: TM

program issues the IMS TM /SSR command followed by the DB2 command. The
output of the /SSR command is routed to the master terminal operator (MTO).

DB2 Considerations

Chapter 1. How Application Programs Work with the IMS Transaction Manager 29

DB2 Considerations

30 IMS/ESA V6 Appl Pgm: TM

Chapter 2. Defining Application Program Elements

This chapter describes the elements of your application program that are used to
communicate with IMS. Your application program must define these elements. The
chapter also describes formatting DL/I calls for language interfaces and provides
language calls information for assembler language, C language, COBOL, Pascal,
and PL/I.

In this Chapter:

v “Formatting DL/I Calls for Language Interfaces”

v “Application Programming for Assembler Language” on page 32

v “Application Programming for C Language” on page 34

v “Application Programming for COBOL” on page 37

v “Application Programming for Pascal” on page 39

v “Application Programming for PL/I” on page 42

v “Relationship of Calls to PCB Types” on page 44

v “Specifying the I/O PCB Mask” on page 45

v “Specifying the Alternate PCB Mask” on page 48

v “Specifying the AIB Mask” on page 49

v “Specifying the I/O Areas” on page 51

v “Using the AIBTDLI Interface” on page 51

v “Specifying the Language-Specific Entry Point” on page 52

v “PCB Lists” on page 54

v “Using Language Environment” on page 55

v “Special DL/I Situations” on page 56

Related Reading: For detailed information on specific parameters for the DL/I calls
see “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59 and
“Chapter 4. Writing DL/I Calls for System Services” on page 89.

Formatting DL/I Calls for Language Interfaces
When you use DL/I calls in a programming language supported by IMS (assembler
language, C language, COBOL, Pascal, or PL/I), you must call the DL/I language
interface to initiate the functions specified with the DL/I calls. IMS offers several
interfaces for DL/I calls:

v A language-independent interface for any programs that are Language
Environment conforming (CEETDLI)

v Language-specific interfaces for all supported languages (xxxTDLI)

v A non-language-specific interface for all supported languages (AIBTDLI)

Because the exact syntax for calling the language interfaces varies among the
programming languages, the following sections describe the language-specific
format.

Not every DL/I call uses all the parameters shown.

Related Reading: For descriptions of the call functions and the parameters they
use, see “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59
and “Chapter 4. Writing DL/I Calls for System Services” on page 89.

© Copyright IBM Corp. 1974, 2000 31

Application Programming for Assembler Language
This section contains the format, parameters, and sample DL/I call formats for IMS
application programs in assembler language. In assembler language programs, all
DL/I call parameters that are passed as addresses can be passed in a register,
which, if used, must be enclosed in parentheses.

Format

�� CALL �

�
(2)

ASMTDLI , (function
(1) , i/o pcb A

parmcount , B
, alternate pcb

A
C

(2)
AIBTDLI , (function , aib

(1) A
parmcount , B

C

�

�)
(1)

,VL

��

A:

, i/o area
, mod name
, token
, options list

, feedback area

B:

, i/o area length , i/o area

 , area length , area

C:

, destination name
, options list

, feedback area

Notes:

1 Assembler language must use either parmcount or VL.

2 See “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59

Assembler Language

32 IMS/ESA V6 Appl Pgm: TM

and “Chapter 4. Writing DL/I Calls for System Services” on page 89
for descriptions of call functions and parameters.

Parameters
parmcount

Specifies the address of a 4-byte field in user-defined storage that contains the
number of parameters in the parameter list that follows parmcount. Assembler
language application programs must use either parmcount or VL.

function
Specifies the address of a 4-byte field in user-defined storage that contains the
call function to be used. The call function must be left-justified and padded with
blanks. An example would be (GU��).

i/o pcb
Specifies the address of the PCB or alternate PCB to be used for the call. The
PCB address must be one of the PCB addresses passed on entry to the
application program in the PCB list.

alternate pcb
Specifies the address of the PCB or alternate PCB to be used for the call. The
PCB address must be one of the PCB addresses passed on entry to the
application program in the PCB list.

aib
Specifies the address of the application interface block (AIB) in user-defined
storage. For more information on the contents of the AIB, see “Using the
AIBTDLI Interface” on page 51.

i/o area
Specifies the address of the I/O area in user-defined storage used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the address of a 4-byte field in user-defined storage that contains the
I/O area length (specified in binary).

area length
Specifies the address of a 4-byte field in user-defined storage that contains the
length (specified in binary) of the area immediately following it in the parameter
list. Up to seven area length/area pairs can be specified.

area
Specifies the address of the area in user-defined storage to be checkpointed.
Up to seven area length/area pairs can be specified.

token
Specifies the address of a 4-byte field in user-defined storage that contains a
user token.

options list
Specifies the address of the options list in user-defined storage that contains
processing options used with the call.

feedback area
Specifies the address of the feedback area in user-defined storage that receives
information about options list processing errors.

Assembler Language

Chapter 2. Defining Application Program Elements 33

mod name
Specifies the address of an 8-byte area in user-defined storage that contains
the user-defined MOD name used with the call. The mod name parameter is
used only with MFS.

destination name
Specifies the address of an 8-byte field in user-defined storage that contains the
name of the logical terminal or transaction code to which messages resulting
from the call are sent.

VL
Signifies the end of the parameter list. Assembler language programs must use
either parmcount or VL.

Example DL/I Call Formats
DL/I AIBTDLI interface:

CALL AIBTDLI,(function,aib,i/o area),VL

DL/I language-specific interface:
CALL ASMTDLI,(function,i/o pcb,i/o area),VL

Application Programming for C Language
This section contains the format, parameters, and sample DL/I call formats for IMS
application programs in C language.

Format

�� (1)
rc=CTDLI(function

parmcount , , i/o pcb
A
B

, alt pcb
A
C

(2) (1)
rc=AIBTDLI(parmcount , function , aib

A
B
C

(1)
CEETDLI (function

parmcount , , i/o pcb
A
B

, alt pcb
A
C

, aib
A
B
C

�

�) ; ��

Assembler Language

34 IMS/ESA V6 Appl Pgm: TM

A:

, i/o area
, mod name
, token
, options list

, feedback area

B:

, i/o area length , i/o area

 , area length , area

C:

, destination name
, options list

, feedback area

Notes:

1 See “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59
and “Chapter 4. Writing DL/I Calls for System Services” on page 89
for descriptions of call functions and parameters.

2 For AIBTDLI, parmcount is required for C language applications.

Parameters
rc Receives the DL/I status or return code. It is a 2-character field shifted into the

2 lower bytes of an integer variable (int). If the status or return code is two
blanks, 0 is placed in the field. You can test the rc parameter with an if
statement; for example, if (rc == 'IX'). You can also use rc in a switch
statement. You can choose to ignore the value placed in rc and use the status
code returned in the PCB instead.

parmcount
Specifies the name of a fixed-binary (31) variable in user-defined storage that is
a pointer to the number of parameters in the parameter list that follows
parmcount. The parmcount field is a pointer to long.

function
Specifies the name of a character (4) variable, left-justified, in user-defined
storage, which contains the call function to be used. The call function must be
padded with blanks. An example would be (GU��).

i/o pcb
Specifies the name of a pointer variable that contains the address of the PCB
or alternate PCB passed upon entry to the application program.

alternate pcb
Specifies the name of a pointer variable that contains the address of the PCB
or alternate PCB passed upon entry to the application program.

C Language

Chapter 2. Defining Application Program Elements 35

aib
Specifies the name of the pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage. For more information on the contents of the AIB, see “Using the
AIBTDLI Interface” on page 51.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage to be used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the length of the area immediately following it in the parameter list. Up
to seven area length/area pairs can be specified.

area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage to be checkpointed. Up to seven
area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

options list
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that contains processing options
used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that receives information about
options list processing errors.

mod name
Specifies the name of a character (8) variable in user-defined storage that
contains the user-defined MOD name used with the call. The mod name
parameter is used only with MFS.

destination name
Specifies the name of a character (8) variable in user-defined storage that
contains the name of the logical or terminal transaction code to which
messages resulting from the call are sent.

I/O Area
In C language, the I/O area can be of any type, including structure or array. The
ceetdli declarations in leawi.h and the ctdli declarations in ims.h do not have any
prototype information, so no type checking of the parameters is done. The I/O area
can be auto, static, or allocated (with malloc or calloc). Give special consideration
to C-strings because DL/I does not recognize the C convention of terminating
strings with nulls ('\0'). Instead of using the strcpy and strcmp functions, you
might want to use the memcpy and memcmp functions.

C Language

36 IMS/ESA V6 Appl Pgm: TM

Example DL/I Call Formats
DL/I CEEDTLI interface:
#include <leawi.h>
ceetdli(function,aib,i/o_area)

DL/I AIBTDLI interface:
int rc;...
rc = aibtdli(parmcount,function,aib,i/o_area)

DL/I language-specific interface:
#include <ims.h>
int rc;...
rc = ctdli(function,i/o_pcb,i/o_area)

Application Programming for COBOL
This section contains the format, parameters, and DL/I call sample formats for IMS
application programs in COBOL.

Format

�� CALL �

�
(1)

' CBLTDLI ' USING function
parmcount , , i/o pcb

A
B

, alt pcb
A
C

(1)
' AIBTDLI ' USING function , aib

parmcount , A
B
C

(1)
' CEETDLI ' USING function

parmcount , , i/o pcb
A
B

, alt pcb
A
C

, aib
A
B
C

�

� . ��

C Language

Chapter 2. Defining Application Program Elements 37

A:

, i/o area
, mod name
, token
, options list

, feedback area

B:

, i/o area length , i/o area

 , area length , area

C:

, destination name
, options list

, feedback area

Notes:

1 See “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59
and “Chapter 4. Writing DL/I Calls for System Services” on page 89
for descriptions of call functions and parameters.

Parameters
parmcount

Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the number of parameters in the parameter list that
follows parmcount.

function
Specifies the identifier of a usage display (4) byte data item, left-justified, in
user-defined storage, which contains the call function to be used. The call
function must be padded with blanks. An example would be (GU��).

i/o pcb
Specifies the identifier of the PCB group item from the PCB list passed to the
application on entry.

alternate pcb
Specifies the identifier of the PCB group item from the PCB list passed to the
application on entry.

aib
Specifies the identifier of the group item that defines the application interface
block (AIB) in user-defined storage. For more information on the contents of the
AIB, see “Using the AIBTDLI Interface” on page 51.

COBOL

38 IMS/ESA V6 Appl Pgm: TM

i/o area
Specifies the identifier of a group item, table, or usage display data item that
defines the I/O area to be used for the call. The I/O area must be large enough
to contain the returned data.

i/o area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the I/O area length.

area length
Specifies the identifier of a usage binary (4) byte data item in user-defined
storage that contains the length of the area immediately following it in the
parameter list. Up to seven area length/area pairs can be specified.

area
Specifies the identifier of the group item that defines the area to be
checkpointed. Up to seven area length/area pairs can be specified.

token
Specifies the identifier of a usage display (4) byte data item that contains a user
token.

options list
Specifies the identifier of the group item that defines the user-defined storage
that contains processing options used with the call.

feedback area
Specifies the identifier of the group item that defines the user-defined storage
that receives information about options list processing errors.

mod name
Specifies the identifier of a usage display (8) byte data item in user-defined
storage that contains the user-defined MOD name used with the call.

destination name
Specifies the identifier of a usage display (8) byte data item that contains the
name of the logical terminal or transaction code to which messages resulting
from the call are sent.

Example DL/I Call Formats
DL/I CEETDLI interface:
CALL 'CEETDLI' USING function, aib,i/o area.

DL/I AIBTDLI interface:
CALL 'AIBTDLI' USING function, aib,i/o area.

DL/I language-specific interface:
CALL 'CBLTDLI' USING function, i/o pcb, i/o area.

Application Programming for Pascal
This section contains the format, parameters, and DL/I call sample formats for IMS
application programs in Pascal.

Format

COBOL

Chapter 2. Defining Application Program Elements 39

�� PASTDLI (A
, VAR i/o pcb

B
C

, VAR alt pcb
B
D

AIBTDLI (A , VAR aib ,
B
C
D

) ; ��

A:

(1)
CONST function

CONST parmcount ,

B:

, VAR i/o area �

�
, VAR mod name
, CONST token
, VAR options list

, VAR feedback area

C:

, VAR i/o area length , VAR i/o area �

�

 , VAR area length , area

D:

, VAR destination name
, VAR options list

, VAR feedback area

Notes:

1 See “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59
and “Chapter 4. Writing DL/I Calls for System Services” on page 89
for descriptions of call functions and parameters.

Pascal

40 IMS/ESA V6 Appl Pgm: TM

Parameters
parmcount

specifies the address of a fixed-binary (31) variable in user-defined storage that
contains the number of parameters in the parameter list that follows parmcount.

function
Specifies the name of a character (4) variable, left-justified, in user-defined
storage, which contains the call function to be used. The call function must be
padded with blanks. An example would be (GU��).

i/o pcb
Specifies the name of a pointer variable that contains the PCB defined in the
procedure statement used for the call. This is the name used to declare the
PCB in the procedure statement.

alternate pcb
Specifies the name of a pointer variable that contains the PCB defined in the
procedure statement used for the call. This is the name used to declare the
PCB in the procedure statement.

aib
Specifies the name of a pointer variable that contains the address of the
structure that defines the application interface block (AIB) in user-defined
storage. For more information on the contents of the AIB, see “Using the
AIBTDLI Interface” on page 51.

i/o area
Specifies the name of a pointer variable to a major structure, array, or character
string that defines the I/O area in user-defined storage to be used for the call.
The I/O area must be large enough to contain the returned data.

i/o area length
Specifies the name of a fixed-binary (31) variable in user-defined storage that
contains the I/O area length.

area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the length (specified in binary) of the area immediately following it in
the parameter list. Up to seven area length/area pairs can be specified.

area
Specifies the name of a pointer variable that contains the address of the
structure that defines the area in user-defined storage to be checkpointed. Up
to seven area length/area pairs can be specified.

token
Specifies the name of a character (4) variable in user-defined storage that
contains a user token.

options list
Specifies the name of a pointer variable that contains the address of the
structure that defines the user-defined storage that contains processing options
used with the call.

feedback area
Specifies the name of the pointer variable that contains the address of the
structure that defines the user-defined storage that receives information about
options list processing errors.

Pascal

Chapter 2. Defining Application Program Elements 41

mod name
Specifies the name of a character (8) variable in user-defined storage that
contains the user-defined MOD name used with the call.

destination name
Specifies the name of a character (8) variable in user-defined storage that
contains the name of the logical terminal or transaction code to which
messages resulting from the call are sent.

Example DL/I Call Formats
DL/I AIBTDLI interface:
AIBTDLI(CONST function,

VAR aib,
VAR I/O area);

DL/I language-specific interface:
PASTDLI(CONST function,
area VAR I/O PCB

VAR I/O area);

Application Programming for PL/I
This section contains the format, parameters, and DL/I call sample formats for IMS
application programs in PL/I.

For the PLITDLI interface all parameters except parmcount are indirect pointers; for
the AIBTDLI interface, all parameters are direct pointers.

Format

�� CALL �

� PLITDLI (parmcount , function
, i/o pcb

A
B

, alt pcb
A
C

AIBTDLI (parmcount , function , aib
A
B
C

CEETDLI (parmcount , function
, i/o pcb

A
B

, alt pcb
A
C

, aib
A
B
C

) ; ��

Pascal

42 IMS/ESA V6 Appl Pgm: TM

A:

, i/o area
, mod name
, token
, options list

, feedback area

B:

, i/o area length , i/o area

 , area length , area

C:

, destination name
, options list

, feedback area

Notes:

1 See “Chapter 3. Writing DL/I Calls for Transaction Management” on page 59
and “Chapter 4. Writing DL/I Calls for System Services” on page 89
for descriptions of call functions and parameters.

Parameters
parmcount

Specifies the name of a fixed-binary (31-byte) variable that contains the number
of arguments that follow parmcount.

function
Specifies the name of a character (4-byte) variable, left justified, blank padded
character string that contains the call function to be used. An example would be
(GU��).

i/o pcb
Specifies the name of the PCB to be used for the call.

alternate pcb
Specifies the name of the PCB to be used for the call.

aib
Specifies the name of the structure that defines the application interface block
(AIB). For more information on the contents of the AIB, see “Using the AIBTDLI
Interface” on page 51.

i/o area
Specifies the name of the I/O area used for the call. The I/O area must be large
enough to contain the returned data.

PL/I

Chapter 2. Defining Application Program Elements 43

i/o area length
Specifies the name of a fixed binary (31) variable in user-defined storage that
contains the I/O area length (specified in binary).

area length
Specifies the name of a fixed binary (31) variable that contains the length
(specified in binary) of the area immediately following it in the parameter list. Up
to seven area length/area pairs can be specified.

area
Specifies the name of the area to be checkpointed. Up to seven area
length/area pairs can be specified.

token
Specifies the name of a character (4) variable that contains a user token.

options list
Specifies the name of a structure that contains processing options used with the
call.

feedback area
Specifies the name of a structure that receives information about options list
processing errors.

mod name
Specifies the name of a character (8) variable character string containing the
user-defined MOD name used with the call.

destination name
Specifies the name of a character (8) variable character string containing the
logical terminal or transaction code to which messages resulting from the call
are sent.

Example DL/I Call Formats
DL/I CEETDLI interface:
%INCLUDE CEEIBMAW;
CALL CEETDLI (function, i/o pcb, i/o area);

DL/I AIBTDLI interface:
CALL AIBTDLI (parmcount, function, aib, i/o area);

DL/I language-specific interface:
CALL PLITDLI (parmcount, function, i/o pcb, i/o area);

Relationship of Calls to PCB Types
Table 1 shows the relationship of DL/I calls to I/O PCBs and alternate PCBs. The
PCB can be specified in one of two ways, depending on which xxxTDLI interface is
used:

v As a parameter in the call list

v In the AIB

Table 1. Call Relationship to PCBs and AIBs

Call I/O PCBs ALT PCBs

APSB 1

AUTH X

CHKP (basic) X

PL/I

44 IMS/ESA V6 Appl Pgm: TM

Table 1. Call Relationship to PCBs and AIBs (continued)

Call I/O PCBs ALT PCBs

CHKP (symbolic) X

CHNG 2 X

CMD X

DPSB 1

GCMD X

GN X

GSCD X

GU X

INIT X

INQY X X

ISRT X X

LOG X

PURG X X

ROLB X

ROLS X

ROLL 1

SETO X X

SETS X

SETU X

SYNC X

XRST X

Notes:

1. This call is not associated with a PCB.

2. The alternate PCB used by this call must be modifiable.

Specifying the I/O PCB Mask
After your program issues a call with the I/O Program Communications Block (I/O
PCB), IMS returns information about the results of the call to the I/O PCB. To
determine the results of the call, your program must check the information that IMS
returns.

Issuing a system service call requires an I/O PCB. Because the I/O PCB resides
outside your program, you must define a mask of the PCB in your program to check
the results of IMS calls. The mask must contain the same fields, in the same order,
as the I/O PCB. Your program can then refer to the fields in the PCB through the
PCB mask.

An I/O PCB contains 10 fields. Table 2 shows these fields, their lengths, and the
applicable environment for each field.

PCB Types

Chapter 2. Defining Application Program Elements 45

Table 2. I/O PCB Mask

Descriptor Byte
Length

DB/DC DBCTL DCCTL DB Batch TM Batch

Logical terminal
name 1

8 X X

Reserved for IMS 2 2 X X

Status code 3 2 X X X X X

Local date and
time 4

8 X X

Input message
sequence number 5

4 X X

Message output
descriptor name 6

8 X X

Userid 7 8 X X

Group name 8 8 X X

12-Byte Time
Stamp 9

Date
Time
UTC Offset

4
6
2

X
X
X

X
X
X

Notes:

1. Logical Terminal Name

This field contains the name of the terminal that sent the message. When your
program retrieves an input message, IMS places the name of the logical
terminal that sent the message in this field. When you want to send a message
back to this terminal, you refer to the I/O PCB when you issue the ISRT call, and
IMS takes the name of the logical terminal from the I/O PCB as the destination.

2. Reserved for IMS

This 2-byte field is reserved.

3. Status Code

IMS places the status code describing the result of the DL/I call in this field. IMS
updates the status code after each DL/I call that the program issues. Your
program should always test the status code after issuing a DL/I call.

The three status code categories are:

v Successful status codes or status codes with exceptional but valid conditions.
This category does not contain errors. If the call was completely successful,
this field contains blanks. Many of the codes in this category are for
information only. For example, a QC status code means that no more
messages exist in the message queue for the program. When your program
receives this status code, it should terminate.

v Programming errors. The errors in this category are usually ones that you
can correct. For example, an AD status code indicates an invalid function
code.

v I/O or system errors.

For the second and third categories, your program should have an error routine
that prints information about the last call that was issued before program
termination. Most installations have a standard error routine that all application
programs at the installation use.

I/O PCB Mask

46 IMS/ESA V6 Appl Pgm: TM

4. Local Date and Time

The current local date and time are in the prefix of all input messages except
those originating from non-message-driven BMPs. The local date is a
packed-decimal, right-aligned date, in the format yyddd. The local time is a
packed-decimal time in the format hhmmsst. The current local date and time
indicate when IMS received the entire message and enqueued it as input for the
program, rather than the time that the application program received the
message. To obtain the application processing time, you must use the time
facility of the programming language you are using.

For a conversation, for an input message originating from a program, or for a
message received using Multiple System Coupling (MSC), the time and date
indicate when the original message was received from the terminal.

5. Input Message Sequence Number

The input message sequence number is in the prefix of all input messages
except those originating from non-message-driven BMPs. This field contains the
sequence number IMS assigned to the input message. The number is binary.
IMS assigns sequence numbers by physical terminal, which are continuous
since the time of the most recent IMS startup.

6. Message Output Descriptor Name

You only use this field when you use MFS. When you issue a GU call with a
message output descriptor (MOD), IMS places its name in this area. If your
program encounters an error, it can change the format of the screen and send
an error message to the terminal by using this field. To do this, the program
must change the MOD name by including the MOD name parameter on an ISRT
or PURG call.

Although MFS does not support APPC, LU 6.2 programs can use an interface to
emulate MFS. For example, the application program can use the MOD name to
communicate with IMS to specify how an error message is to be formatted.

Related Reading: For more information on the MOD name and the LTERM
interface, see IMS/ESA Administration Guide: Transaction Manager.

7. Userid

The use of this field is connected with RACF signon security. If signon is not
active in the system, this field contains blanks.

If signon is active in the system, the field contains one of the following:

v The user’s identification from the source terminal.

v The LTERM name of the source terminal if signon is not active for that
terminal.

v The authorization ID. For batch-oriented BMPs, the authorization ID is
dependent on the value specified for the BMPUSID= keyword in the
DFSDCxxx PROCLIB member:

– If BMPUSID=USERID is specified, the value from the USER= keyword on
the JOB statement is used.

– If USER= is not specified on the JOB statement, the program’s PSB name
is used.

– If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at
all, the program’s PSB name is used.

8. Group Name

The group name, which is used by DB2 to provide security for SQL calls, is
created through IMS transactions.

Three instances that apply to the group name are:

I/O PCB Mask

Chapter 2. Defining Application Program Elements 47

v If you use RACF and SIGNON on your IMS system, the RACROUTE SAF
(extract) call returns an eight-character group name.

v If you use your own security package on your IMS system, the RACROUTE
SAF call returns any eight-character name from the package and treats it as
a group name. If the RACROUTE SAF call returns a return code of 4 or 8, a
group name was not returned, and IMS blanks out the group name field.

v If you use LU 6.2, the transaction header can contain a group name.

Related Reading: See IMS/ESA Administration Guide: Transaction Manager
for more information on LU 6.2.

9. 12-Byte Time Stamp

This field contains the current date and time fields, but in the IMS internal
packed-decimal format. The time stamp has the following parts:

Date yyyydddf

This packed-decimal date contains the year (yyyy), day of the
year (ddd), and a valid packed-decimal + sign such as (f).

Time hhmmssthmiju

This packed-decimal time consists of hours, minutes, and
seconds (hhmmss) and fractions of the second to the
microsecond (thmiju). No packed-decimal sign is affixed to this
part of the timestamp.

UTC Offset aqq$

The packed-decimal UTC offset is prefixed by 4 bits of attributes
(a). If the 4th bit of (a) is 0, the time stamp is UTC; otherwise,
the timestamp is local time. The control region parameter,
TSR=(U/L), specified in the DFSPBxxx PROCLIB member,
controls the representation of the time stamp with respect to
local time versus UTC time.

The offset value (qq$) is the number of quarter hours of offset to
be added to UTC or local time to convert to local or UTC time
respectively.

The offset sign ($) follows the convention for a packed-decimal
plus or minus sign.

Field 4 on page 47 always contains the local date and time.

Related Reading: For a more detailed description of the internal
packed-decimal time-format, see IMS/ESA DBRC Guide and Reference.

Specifying the Alternate PCB Mask
An alternate PCB mask contains three fields. Table 3 shows these fields, the field
length, and in which environment the field applies.

Table 3. Alternate PCB Mask

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

Logical terminal name 1 8 bytes X X

Reserved for IMS 2 2 bytes X X

Status code 3 2 bytes X X

I/O PCB Mask

48 IMS/ESA V6 Appl Pgm: TM

Notes:

1. Logical Terminal Name

This field contains the name of the logical terminal, LU 6.2 descriptor or the
transaction code to which you want to send the message.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager.

2. Reserved for IMS

This 2-byte field is reserved.

3. Status Code

This field contains the 2-byte status code that describes the results of the call
that used this PCB most recently.

For information on when to use an alternate PCB, see “Sending Messages to Other
Terminals and Programs” on page 123.

Specifying the AIB Mask
The AIB is used by your program to communicate with IMS, when your application
does not have a PCB address or the call function does not use a PCB. The AIB
mask enables your program to interpret the control block defined. The AIB structure
must be defined in working storage on a fullword boundary, and initialized according
to the order and byte length of the fields as shown in Table 4. The notes below the
figure describe the contents of each field.

Table 4. AIB Fields

Descriptor Byte Length DB/DC DBCTL DCCTL DB
Batch

TM
Batch

AIB identifier 1 8 X X X X X

DFSAIB allocated
length 2

4 X X X X X

Subfunction code 3 8 X X X X X

Resource name 4 8 X X X X X

Reserved 5 16

Maximum output area
length 6

4 X X X X X

Output area length
used 7

4 X X X X X

Reserved 8 12

Return code 9 4 X X X X X

Reason code 10 4 X X X X X

Error code extension 11 4 X X

Resource address 12 4 X X X X X

Reserved 13 48

Notes:

1. AIB Identifier (AIBID)

This 8-byte field contains the AIB identifier. You must initialize AIBID in your
application program to the value DFSAIB�� before you issue DL/I calls. This
field is required. When the call is completed, the information returned in this
field is unchanged.

Alternate PCB Mask

Chapter 2. Defining Application Program Elements 49

2. DFSAIB Allocated Length (AIBLEN)

This field contains the actual 4-byte length of the AIB as defined by your
program. You must initialize AIBLEN in your application program before you
issue DL/I calls. The minimum length required is 128 bytes. When the call is
completed, the information returned in this field is unchanged. This field is
required.

3. Subfunction Code (AIBSFUNC)

This 8-byte field contains the subfunction code for those calls that use a
subfunction. You must initialize AIBSFUNC in your application program before
you issue DL/I calls. When the call is completed, the information returned in
this field is unchanged.

4. Resource Name (AIBRSNM1)

This 8-byte field contains the name of a resource. The resource varies
depending on the call. You must initialize AIBRSNM1 in your application
program before you issue DL/I calls. When the call is complete, the information
returned in this field is unchanged. This field is required.

For PCB related calls where the AIB is used to pass the PCB name instead of
passing the PCB address in the call list, this field contains the PCB name. The
PCB name for the I/O PCB is IOPCB��. The PCB name for other types of
PCBs is defined in the PCBNAME= parameter in PSBGEN.

5. Reserved

This 16-byte field is reserved.

6. Maximum Output Area Length (AIBOALEN)

This 4-byte field contains the length of the output area in bytes that was
specified in the call list. You must initialize AIBOALEN in your application
program for all calls that return data to the output area. When the call is
completed, the information returned in this area is unchanged.

7. Used Output Area Length (AIBOAUSE)

This 4-byte field contains the length of the data returned by IMS for all calls
that return data to the output area. When the call is completed this field
contains the length of the I/O area used for this call.

8. Reserved

This 12-byte field is reserved.

9. Return code (AIBRETRN)

When the call is completed, this 4-byte field contains the return code.

10. Reason Code (AIBREASN)

When the call is completed, this 4-byte field contains the reason code.

11. Error Code Extension (AIBERRXT)

This 4-byte field contains additional error information depending on the return
code in AIBRETRN and the reason code in AIBREASN.

12. Resource Address (AIBRSA1)

When the call is completed, this 4-byte field contains call-specific information.
For PCB related calls where the AIB is used to pass the PCB name instead of
passing the PCB address in the call list, this field returns the PCB address.

13. Reserved

This 48-byte field is reserved.

The application program can use the returned PCB address, when available, to
inspect the status code in the PCB and to obtain any other information needed by
the application program.

Specifying the AIB Mask

50 IMS/ESA V6 Appl Pgm: TM

Related Reading: See IMS/ESA Application Programming: Transaction Manager for
more information about the return codes and reason codes.

Specifying the I/O Areas
Use an I/O area to pass segments between the application program and IMS TM.
What the I/O area contains depends on the type of call you are issuing:

v When your program retrieves a segment, IMS TM places the segment your
program requested in the I/O area.

v When your program adds a new segment, your program first builds the new
segment in the I/O area.

v Before modifying a segment, your program must first retrieve the segment. When
your program retrieves the segment, IMS TM places the segment in an I/O area.

The format of the record segments you pass between your program and IMS can
be fixed length or variable length. Only one difference is important to the application
program: a message segment contains a 2-byte length field (or 4 bytes for the
PLITDLI interface) at the beginning of the data area of the segment.

The I/O area for IMS TM calls must be large enough to hold the largest message
segment your program retrieves from or sends to IMS TM.

Using the AIBTDLI Interface
This section explains how to use the application interface block (AIB), an interface
between your application program and IMS.

Restriction: No fields in the AIB can be used by the application program except as
defined by IMS.

Overview
When you use the AIBTDLI interface, you specify the PCB requested for the call by
placing the PCB name (as defined by PSBGEN) in the resource name field of the
AIB. You do not specify the PCB address. Because the AIB contains the PCB
name, your application program can refer to the PCB name rather than the PCB
address. Your application program does not need to know the relative PCB position
in the PCB list. At completion of the call, the AIB returns the PCB address that
corresponds to the PCB name passed by the application program.

The names of DB PCBs and alternate PCBs are defined by the user during
PSBGEN. All I/O PCBs are generated with the PCB name IOPCB���. For a
generated program specification block (GPSB), the I/O PCB is generated with the
PCB name IOPCB���, and the modifiable alternate PCB is generated with the PCB
name TPPCB1��.

The ability to pass the PCB name means that you do not need to know the relative
PCB number in the PCB list. In addition, the AIBTDLI interface enables your
application program to make calls on PCBs that do not reside in the PCB list. The
LIST= keyword controls whether the PCB is included in the PCB list. The LIST=
keyword is defined in the PCB macro during PSBGEN.

Related Reading: See IMS/ESA Utilities Reference: System for more information.

Specifying the AIB Mask

Chapter 2. Defining Application Program Elements 51

Defining Storage for the AIB
The AIB resides in user-defined storage that is passed to IMS for DL/I calls that use
the AIBTDLI interface. Upon call completion, IMS updates the AIB. Allocate at least
128 bytes of storage for the AIB.

Specifying the Language-Specific Entry Point
IMS gives control to an application program through an entry point. The formats for
coding entry statements in assembler language, C language, COBOL, Pascal, and
PL/I are shown in this section. Your entry point must refer to the PCBs in the order
in which they are defined in the PSB.

IMS passes the PCB pointers to a PL/I program differently than it passes them to
an assembler language, C language, COBOL, or Pascal program. In addition,
Pascal requires that IMS pass an integer before passing the PCB pointers. IMS
uses the LANG keyword or the PSBGEN statement of PSBGEN to determine the
type of program to which it is passing control. Therefore, you must be sure that the
language specified during PSBGEN is consistent with the language of the program.

Application interfaces that use the AIB structure (AIBTDLI or CEETDLI) use the
PCB name rather than the PCB structure and do not require the PCB list to be
passed at entry to the application program.

When you code each DL/I call, you must provide the PCB you want to use for that
call. For all IMS TM application programs, the list of PCBs the program can access
is passed to the program at its entry point.

Assembler Language
You can use any name for the entry statement to an assembler language DL/I
program. When IMS passes control to the application program, register 1 contains
the address of a variable-length fullword parameter list. Each word in the list
contains the address of a PCB. Save the parameter list address before you
overwrite the contents of register 1. IMS sets the high-order byte of the last fullword
in the list to X'80' to indicate the end of the list. Use standard MVS linkage
conventions with forward and backward chaining.

C Language
When IMS passes control to your program, it passes the addresses, in the form of
pointers, for each of the PCBs your program uses. The usual argc and argv
arguments are not available to a program invoked by IMS. The IMS parameter list
is made accessible by using the __pcblist macro. You can directly reference the
PCBs by __pcblist[0], __pcblist[1], or you can define macros to give these more
meaningful names. I/O PCBs must be cast to get the proper type:
(IO_PCB_TYPE *)(__pcblist[0])

The entry statement for a C langu age program is the main statement.
#pragma runopts(env(IMS),plist(IMS))
#include <ims.h>

main()
{...
}

AIBTDLI Interface

52 IMS/ESA V6 Appl Pgm: TM

The env option specifies the operating environment in which your C language
program is to run. For example, if your C language program is invoked under IMS
and uses IMS facilities, specify env(IMS). The plist option specifies the format of
the invocation parameters received by your C language program when it is invoked.
When your program is invoked by a system support services program such as IMS,
the format of the parameters passed to your main program must be converted into
the C language format: argv, argc, and envp. To do this conversion, you must
specify the format of the parameter list received by your C language program. The
ims.h include file contains declarations for PCB masks.

You can finish in three ways:

v End the main procedure without an explicit return statement.

v Execute a return statement from main.

v Execute an exit or an abort call from anywhere, or alternately issue a longjmp
back to main, and then do a normal return.

One C language program can pass control to another by using the system function.
The normal rules for passing parameters apply. For example, when using the
system function, the argc and argv arguments can be used to pass information.
The initial __pcblist is made available to the invoked program.

COBOL
The procedure statement must refer to the I/O PCB first, then to any alternate PCB
it uses, and finally to the DB PCBs it uses. The alternate PCBs and DB PCBs must
be listed in the order in which they are defined in the PSB.
Procedure division using the PCB-NAME-1 [,...,PCB-NAME-N]

On previous versions of IMS, using might be coded on the entry statement to
reference PCBs. However, IMS continues to accept such coding on the entry
statement.

Recommendation: Use the procedure statement rather than the entry statement to
reference the PCBs.

Pascal
The entry point must be declared as a REENTRANT procedure. When IMS passes
control to a Pascal procedure, the first address in the parameter list is reserved for
Pascal’s use and the other addresses are the PCBs the program uses. The PCB
types must be defined before this entry statement. The IMS interface routine
PASTDLI must be declared with the GENERIC directive.
procedure ANYNAME(var SAVE: INTEGER;

var pcb1-name: pcb1-name-type[;
...
var pcbn-name: pcbn-name-type]); REENTRANT;

procedure ANYNAME;
(* Any local declarations *)

procedure PASTDLI; GENERIC;
begin

(* Code for ANYNAME *)
end;

PL/I

The entry statement can be any valid PL/I name and must appear as the first
executable statement in the program. When IMS passes control to your program, it

Entry Point

Chapter 2. Defining Application Program Elements 53

passes the addresses of each of the PCBs your program uses in the form of
pointers. When you code the entry statement, make sure you code the parameters
of this statement as pointers to the PCBs, and not the PCB names.
anyname: PROCEDURE (pcb1_ptr [,..., pcbn_ptr]) OPTIONS (MAIN);...
RETURN;

Interface Considerations
This section explains the interfaces: CEETDLI and AIBTDLI

CEETDLI
The considerations are:

v For PL/I programs, the CEETDLI entry point is defined in the CEEIBMAW include
file. Alternatively, you can declare it yourself. But it must be declared as an
assembler language entry (DCL CEETDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plist(IMS); these
specifications enable the application to accept the PCB list of arguments. The
CEETDLI function is defined in <leawi.h>; the CTDLI function is defined in
<ims.h>.

AIBTDLI
The considerations are:

v When using the AIBTDLI interface for C/MVS, COBOL, or PL/I language
applications, the language run-time options for suppressing abend interception
(that is, NOSPIE and NOSTAE) must be specified. However, for Language
Environment-conforming applications, the NOSPIE and NOSTAE restriction is
removed.

v The AIBTDLI entry point for PL/I programs must be declared as an assembler
language entry (DCL AIBTDLI OPTIONS(ASM);).

v For C language applications, you must specify env(IMS) and plist(IMS); these
specifications enable the application to accept the PCB list of arguments.

PCB Lists
This section describes the formats of PCB lists and GPSB PCB lists and provides a
a description of PCBs in various types of application programs.

Format of a PCB List
PSBs have the following format:
[IOPCB]
[Alternate PCB ... Alternate PCB]
[DB PCB ... DB PCB]
[GSAM PCB ... GSAM PCB]

Each PSB must contain at least one PCB. An I/O PCB or alternate PCB is required
for transaction management calls, and an I/O PCB is required for most system
service calls. DB PCBs for DL/I databases are used only with the IMS Database
Manager, but can be present even though your program is running under DCCTL.
(A DB PCB can be a full-function PCB, a DEDB PCB, or an MSDB PCB.) GSAM
PCBs can be used with DCCTL.

Format of a GPSB PCB List
A generated program specification block (GPSB) has the following format:

Entry Point

54 IMS/ESA V6 Appl Pgm: TM

[IOPCB]
[Alternate PCB]

A GPSB contains only an I/O PCB and one modifiable alternate PCB. It can be
used by all transaction management application programs, and permits access to
the PCBs specified without the need for PSBGEN.

The PCBs in a GPSB have predefined PCB names. The name of the I/O PCB is
IOPCB��. The name of the alternate PCB is TPPCB1��.

PCB Summary
This section summarizes the information concerning I/O PCBs and alternate PCBs
in various types of application programs.

TM Batch Programs
Alternate PCBs are always included in the list of PCBs supplied to the
program by IMS TM. The I/O PCB is always present in the PCB list
regardless of the CMPAT options specified in PSBGEN.

BMPs, MPPs, and IFPs
I/O PCBs and alternate PCBs are always passed to BMPs, MPPs, and
IFPs.

The PCB list always contains the address of the I/O PCB followed by the
addresses of any alternate PCBs, followed by the addresses of the DB
PCBs.

Using Language Environment
IBM Language Environment for MVS & VM provides the strategic execution
environment for running your application programs written in one or more high level
languages. It provides not only language-specific run-time support, but also
cross-language run-time services for your applications, such as support for
initialization, termination, message handling, condition handling, storage
management, and National Language Support. Many of Language Environment’s
services are accessible explicitly through a set of Language Environment interfaces
that are common across programming languages; these services are accessible
from any Language Environment-conforming program.

Language Environment-conforming programs can be compiled with the following
compilers:

v IBM C/C++ for MVS/ESA

v IBM COBOL for MVS & VM

v IBM PL/I for MVS & VM

These programs can be produced by programs coded in Assembler. All of these
programs can use CEETDLI, the Language Environment-provided
language-independent interface to IMS, as well as older language-dependent
interfaces to IMS, such as CTDLI, CBLTDLI, and PLITDLI.

Although they do not conform to Language Environment, programs compiled with
the following older compilers can run under Language Environment:

v IBM C/370

v COBOL

v IBM OS PL/I

PCB Lists

Chapter 2. Defining Application Program Elements 55

Restriction: These programs cannot use CEETDLI, but they can use the older
language-dependent interfaces to IMS.

The CEETDLI interface to IMS
The language-independent CEETDLI interface to IMS is provided by Language
Environment. It is the only IMS interface that supports the advanced error handling
capabilities provided by Language Environment. The CEETDLI interface supports
the same functionality as the other IMS application interfaces, and it has the
following characteristics:

v The parmcount variable is optional.

v Length fields are 2 bytes long.

v Direct pointers are used.

Related Reading: For more information about Language Environment, see IBM
Language Environment for MVS & VMIBM Language Environment for MVS & VM
Programming Guide and Language Environment for MVS & VM Installation and
Programming.

LANG= Option on PSBGEN for PL/I Compatibility with Language
Environment

For IMS PL/I applications running in a compatibility mode that uses the PLICALLA
entry point, you must specify LANG=PLI on the PSBGEN. Your other option is to
change the entry point and add SYSTEM(IMS) to the EXEC PARM of the compile
step so that you can specify LANG=blank or LANG=PLI on the PSBGEN. Table 5
summarizes when you can use LANG=blank and LANG=PLI.

Table 5. Using LANG= Option in a Language Environment for PL/I Compatibility

Compile exec statement is
PARM=(...,SYSTEM(IMS)...

and entry point name is
PLICALLA

Then LANG= is as stated below:

Yes Yes LANG=PLI

Yes No LANG=blank or LANG=PLI

No No Note: Not valid for IMS PL/I
applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility with Language Environment. If a PL/I
application using PLICALLA entry at link-edit time is link-edited using Language
Environment with the PLICALLA entry, the link-edit will work; however, you must
specify LANG=PLI in the PSB. If the application is re-compiled using PL/I for MVS
& VM Version 1 Release 1 or later, and then link-edited using Language
Environment Version 1 Release 2 or later, the link-edit will fail. You must remove the
PLICALLA entry statement from the link-edit.

Special DL/I Situations
This section contains information on mixed-language programming, using the
extended addressing capabilities of MVS/ESA, COBOL compiler options for
preloaded programs, and considerations for the DCCTL environment.

Using Language Environment

56 IMS/ESA V6 Appl Pgm: TM

Mixed-Language Programming
When an application program uses the Language Environment
language-independent interface, CEETDLI, IMS does not need to know the
language of the calling program.

When the application program calls IMS in a language-dependent interface, IMS
determines the language of the calling program according to the entry name
specified in the CALL statement:

v CALL CBLTDLI indicates the program is in COBOL.

v CALL PLITDLI indicates the program is in PL/I.

v CALL PASTDLI indicates the program is in Pascal.

v ctdli(...) indicates the program is in C language.

v CALL ASMTDLI indicates the program is in assembler language.

If a PL/I program calls an assembler language subroutine and the assembler
language subroutine makes DL/I calls by using CALL ASMTDLI, the assembler
language subroutine should use the assembler language calling convention, not the
PL/I convention.

In this situation, where the I/O area uses the LLZZ format, the LL is a halfword, not
the fullword that is used for PLITDLI.

For more information on Language Environment, see “Using Language
Environment” on page 55.

Using Language Environment Routine Retention
If you run programs in an IMS TM dependent region that requires Language
Environment (such as an IMS message processing region), you can improve
performance if you use Language Environment library routine retention along with
the existing PREINIT feature of IMS TM. For more information on this, see IBM
Language Environment for MVS & VM Programming Guide and IBM Language
Environment for MVS & VM Installation and Customization.

Using the Extended Addressing Capabilities of MVS/ESA
The two modes in MVS/ESA with extended addressing capabilities are: the
addressing mode (AMODE) and the residency mode (RMODE). For more detailed
information about the AMODE and RMODE, see MVS/ESA System Programming
Library: 32-bit Addressing. IMS places no constraints on the RMODE and AMODE
of an application program. The program can reside in the extended virtual storage
area. The parameters referenced in the call can also be in the extended virtual
storage area.

Preloaded Programs
If you compile your COBOL program with the COBOL for MVS & VM compiler and
preload it, you must use the COBOL compiler option RENT. Alternatively, if you
compile your COBOL program with the VS COBOL II compiler and preload it, you
must use the COBOL compiler options RES and RENT.

DCCTL
In a DCCTL environment, the application can only reference an I/O PCB, alternate
PCB, or GSAM PCB. Entry statements for COBOL, PL/I, C, and Pascal must refer

IMS Problem Determination

Chapter 2. Defining Application Program Elements 57

to all PCBs that are to be referenced. This includes all PCBs prior to the last
referenced PCB and can include DB PCBs. If you used a GSAM PCB, all PCBs
ahead of it must be referenced.

IMS Problem Determination

58 IMS/ESA V6 Appl Pgm: TM

Chapter 3. Writing DL/I Calls for Transaction Management

This chapter describes the format for DL/I calls you can use with IMS TM to
perform transaction management functions in your application program. Calls within
the section are in alphabetical order. Transaction management calls must use either
i/o pcb or aib parameters.

Each call description contains:

v A syntax diagram

v A definition for each parameter that can be used in the call

v Details on how to use the call in your application program

v Restrictions on the use of the call

Each parameter is described as an input or output parameter. “Input” refers to input
to IMS from the application program. “Output” refers to output from IMS to the
application program.

The syntax diagrams for the following calls do not contain the complete call
structure. Instead, the calls begin with the function parameter. The call, the call
interface (xxxTDLI), and parmcount (if it is required) are not included in the
following syntax diagrams. See language-specific information (for COBOL, C
language, Pascal, PL/I, and assembler language) in “Chapter 2. Defining Application
Program Elements” on page 31 for the complete structure.

In this Chapter:

v “AUTH Call”

v “CHNG Call” on page 64

v “CMD Call” on page 72

v “GCMD Call” on page 74

v “GN Call” on page 75

v “GU Call” on page 76

v “ISRT Call” on page 78

v “PURG Call” on page 80

v “SETO Call” on page 82

Related Reading: The DL/I calls used for database management are described in
IMS/ESA Application Programming: Database Manager. EXEC DL/I commands
used in CICS are described in IMS/ESA Application Programming: EXEC DLI
Commands for CICS and IMS. DCCTL users can issue calls using GSAM database
PCBs, which are described in IMS/ESA Application Programming: Database
Manager.

AUTH Call
An Authorization (AUTH) call verifies each user’s security authorization. It determines
whether a user is authorized to access the resources specified on the AUTH call.

Format

© Copyright IBM Corp. 1974, 2000 59

�� AUTH i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

AUTH X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area used for the call. This parameter is an input and output
parameter.

I/O Area
Figure 14 on page 61 shows the format of the parameter list in the I/O area before
the AUTH call is issued. Figure 15 on page 62 shows the I/O area after the AUTH call.

TM Message Call: AUTH

60 IMS/ESA V6 Appl Pgm: TM

I/O area before the AUTH call

LL or LLLL
specifies a 2-byte field that contains the length of the parameter list, including
two bytes for LL. For the PLITDLI interface, use the 4-byte field LLLL. However,
if you use the AIBTDLI interface, PL/I programs require only a 2-byte field.

ZZ specifies a 2-byte field that contains binary zeros.

CLASSNAME
specifies an 8-byte field that contains one of the following values:

TRAN����
DATABASE

SEGMENT�
FIELD���
OTHER���

All parameters are 8 bytes in length, left-justified, and must be padded to the
right with blanks.

The use of a generic class name in the call parameter list eliminates the need
for the application to be sensitive to the actual Resource Access Control Facility
(RACF) class names being used. Since transaction authorization must be
active, only the RACF class associated with the generic class name identifier
for the transaction class must be defined. The generic class name in the call
parameter list causes the authorization function to select the proper RACF class
and request access checking for that class.

RESOURCE
specifies the 8-byte field that contains the name of the resource to be checked.
Except for the generic class TRAN, the resource name can be whatever the
application designates because the name has no meaning for IMS TM.

IMS TM performs no validity checking of the resource name.

USERDATA
specifies the 8-byte keyword constant USERDATA is the only value supported.

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌────┬────┬───────────┬──────────┬──────────┐
CEETDLI, │ LL │ ZZ │ CLASSNAME │ RESOURCE │ USERDATA │
CTDLI and ├────┼────┼───────────┼──────────┼──────────┤
PASTDLI interfaces: │ 2 │ 2 │ 8 │ 8 │ 8 │

└────┴────┴───────────┴──────────┴──────────┘

┌──────┬────┬───────────┬──────────┬──────────┐
For the │ LLLL │ ZZ │ CLASSNAME │ RESOURCE │ USERDATA │
PLITDLI ├──────┼────┼───────────┼──────────┼──────────┤
interface: │ 4 │ 2 │ 8 │ 8 │ 8 │

└──────┴────┴───────────┴──────────┴──────────┘

Figure 14. I/O Area before the AUTH Call is issued

TM Message Call: AUTH

Chapter 3. Writing DL/I Calls for Transaction Management 61

Its presence in the parameter list means that the application program wants any
RACF installation data that exists in the RACF Accessor Environment Element
(ACEE).

I/O area after the AUTH call

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes for
LL. For the PLITDLI interface, use the 4-byte field LLLL. However, if you use
the AIBTDLI interface, PL/I programs require only a 2-byte field.

ZZ specifies a 2-byte field that contains binary zeros.

FEEDBACK
specifies a 2-byte field that contains one of the following RACF return codes:

0000 User is authorized.

0004 Resource or class not defined.

0008 User is not authorized.

000C RACF is not active.

0010 Invalid installation exit return code.

EXITRC
specifies a 2-byte field that contains the return code from the user exits if they
were used. The EXITRC field contains the return code from the last user exit
that was entered. If none of the user exits are present or invoked, the field
contains binary zeros. If installation data is returned from the exit, the EXITRC
field is set to zero to indicate an authorized return code from the exit.

STATUS
specifies a 2-byte field that contains the hexadecimal status code indicating
installation data status:

0000 RACF installation data is present in the I/O area.

0004 Security exit installation data present in then I/O area.

0008 User is not currently signed on.

000C User is not authorized, so installation data is not made available, or
user is authorized, but no installation data has been defined.

0010 User was authorized, but installation data was not requested.

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌────┬────┬──────────┬────────┬────────┬──────────┬────┬──────────┐
CEETDLI, │ LL │ ZZ │ FEEDBACK │ EXITRC │ STATUS │ RESERVED │ UL │ USERDATA │
CTDLI and ├────┼────┼──────────┼────────┼────────┼──────────┼────┼──────────┤
PASTDLI interfaces: │ 2 │ 2 │ 2 │ 2 │ 2 │ 16 │ 2 │ Variable │

└────┴────┴──────────┴────────┴────────┴──────────┴────┴──────────┘
┌──────┬────┬──────────┬────────┬────────┬──────────┬────┬──────────┐

For the │ LLLL │ ZZ │ FEEDBACK │ EXITRC │ STATUS │ RESERVED │ UL │ USERDATA │
PLITDLI ├──────┼────┼──────────┼────────┼────────┼──────────┼────┼──────────┤
interface: │ 4 │ 2 │ 2 │ 2 │ 2 │ 16 │ 2 │ Variable │

└──────┴────┴──────────┴────────┴────────┴──────────┴────┴──────────┘

Figure 15. I/O Area after the AUTH Call is issued

TM Message Call: AUTH

62 IMS/ESA V6 Appl Pgm: TM

0014 USERDATA exceeds PSBWORK area length.

0018 RACF not active and TRN=N defined.

RESERVED
Binary zeros (reserved)

UL
specifies a 2-byte field that specifies the length of the installation data, including
the length of the UL parameter.

USERDATA
specifies a variable-length field that contains installation data from ACEE or a
user security exit. The length of the installation data is limited to 1026 bytes,
including the length (UL) field. If a security exit returns a value greater than
1026, IMS truncates the installation data and adjusts the length field to
represent the amount of installation data actually returned to the application
program. If security exit installation data is returned, IMS passes it to the
application program even if the parameter list did not contain the USERDATA
parameter.

Any available installation data is returned if the return code from RACF
indicates that the user is authorized to the resource named in the call
parameter list. No installation data is returned if the user who originated the
transaction is no longer signed on to the terminal associated with the
transaction. Installation data might or might not be provided by the security exits
when they are involved in the security decision. However, when either of the
exits returns installation data, IMS passes it on to the application program.

If provided, installation data is returned from a security exit to the application
even when the call parameter list does not specify the USERDATA parameter.
In that case, the STATUS field of the I/O area contains the code X'0004'
indicating the presence of the installation data.

Usage
The AUTH call determines whether a user is authorized to access the resources
specified on the AUTH call. AUTH is issued with an I/O PCB and its function depends
on the application program. Authorization checking depends on the dependent
region type and whether a GU call has been issued. The call functions are as
follows:

v In BMPs, AUTH uses the user ID of the IMS control region or installation specific
user exits to determine the status of the call.

v For BMPs that have issued a successful GU call to the I/O PCB, AUTH functions as
it does in an MPP.

v In MPPs, AUTH verifies user authorization with RACF for the specified resource
classes of those resources used by the application program.

Because the call can request RACF user data to be passed back in the I/O area as
installation data, the processing of the call always results in changes to the STATUS
field in the I/O area. This STATUS field notifies the application of the status of
installation data in the I/O area: available or not available. It might not be available
because the installation data is not defined or the originating user is no longer
signed on to the IMS system.

Either of the supported security exits for transaction authorization (DFSCTRN0 or
DFSCTSE0) can present installation data upon return to IMS. If an exit returns
installation data, the data is returned to the application even if the parameter list did

TM Message Call: AUTH

Chapter 3. Writing DL/I Calls for Transaction Management 63

not contain the USERDATA parameter. The STATUS field is set to indicate the
origination of the installation data. The STATUS field indicates the presence of
either RACF installation data or security exit installation data.

The application program also receives notification of the actual RACF return code.
This return code, presented as FEEDBACK in the I/O area, can be used by the
application program to detect inconsistent operational modes and take alternate
action. Examples of inconsistent operational modes are the proper RACF classes
not being defined or the requested resource not properly defined to RACF.

By checking the FEEDBACK, EXITRC, and STATUS in the I/O area, the application
program can be sensitive to issues such as the proper RACF definitions and
resources not being defined. If RACF is being used, and the AUTH call references
any resources that are not defined, the PCB status code is set to blanks and the
FEEDBACK field of the I/O area is set to indicate that the resource is not protected.

Because the value for EXITRC is provided by a user security exit, use of this field
must be made with an understanding of exit operation and the knowledge that any
changes to the exit can result in application errors. If due to operational errors, the
proper resources are not protected, the application can deal with the error in any
way. This feedback can make operational control simpler and give the application
more flexibility.

Related Reading: RACF terms and concepts are discussed in more detail in other
books. For additional information, see IMS/ESA Administration Guide: System and
IMS/ESA Customization Guide.

Restrictions
The AUTH call must not be issued before a successful GU call to the I/O PCB.

CHNG Call
The Change (CHNG) call sets the destination of a modifiable alternate PCB to the
logical terminal, LU 6.2 descriptor, or transaction code that you specify. You can
also use the CHNG call with the Spool Application Program Interface (Spool API) to
specify print data set characteristics.

Format

�� CHNG alternate pcb
aib

destination name �

�
options list

feedback area

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHNG X X

TM Message Call: AUTH

64 IMS/ESA V6 Appl Pgm: TM

Parameters
alternate pcb

Specifies the modifiable alternate PCB to use for this call. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
modifiable alternate PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

destination name
Specifies an 8-byte field containing the destination name (the logical terminal or
transaction code) to which you want messages sent. This parameter is an input
parameter. The destination name can be up to 8 bytes. When you specify LU
6.2 options, IMS TM sets the destination name in the alternate PCB to
DFSLU62�. If an LU 6.2 options list is specified the destination name parameter
is ignored.

For more information on LU 6.2, see IMS/ESA Administration Guide:
Transaction Manager.

Restriction: Some destination names are invalid. For more information on
resource naming rules, see IMS/ESA Installation Volume 2: System Definition
and Tailoring.

options list
Specifies one of several option keywords. This parameter is an input parameter.
The options in the list are separated by commas and cannot contain embedded
blanks. Processing for the options list terminates when the first blank in the list
is reached or when the specified options list length has been processed. You
can specify options for advanced print functions or for APPC (see “Advanced
Print Function Options” on page 67 and “APPC Options” on page 69).

For more information on APPC, see IMS/ESA Administration Guide: Transaction
Manager.

The format for the options list is as follows:

LL or LLLL 1, 2, 3 ZZ keyword1=variable1

Halfword length of the options
string, including the 4-byte
length of LLZZ or LLLLZZ.

Halfword of zero. CHNG options separated by
commas.

TM Message Call: CHNG

Chapter 3. Writing DL/I Calls for Transaction Management 65

LL or LLLL 1, 2, 3 ZZ keyword1=variable1

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the CHNG
call as if the options list parameter was not specified.

3. A keyword must be separated from the following variable by an equal sign (=). A keyword
with no variable must be delimited by a comma or blank.

feedback area
Specifies an optional parameter used to return error information about the
options list to the application program. This parameter is an output parameter.
The amount of information that the application program receives is based on
the size of the feedback area. If no feedback area is specified, the status code
returned is the only indication of an options list error. If you specify a feedback
area 1½ to 2 times the size of the specified options list (a minimum of eight
words), IMS TM returns more specific information about errors in the options
list.

The format for the feedback area passed to IMS in the call list is as follows:

LL or LLLL 1, 2 ZZ

Halfword length of the feedback area,
including the 4-byte length of the LLZZ fields.

Halfword of zero.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the
CHNG call as if the feedback area parameter was not specified.

The output format returned to the application program from IMS for the
feedback area is as follows:

LLZZ or LLLLZZ LL feedback data

The length field as specified
in the input format for the
feedback area.

Halfword length of the
feedback data returned by
IMS TM, including the 2-byte
LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a
4-byte EBCDIC code in
parentheses that indicates the
reason for the error. Multiple
errors are separated by
commas.

Usage
Use the CHNG call to send an output message to an alternate destination in your
system or in another system. When you issue the CHNG call, you supply the name of
the destination to which you want to send the message. The alternate PCB you
name then remains set to that destination until you do one of the following:

v Issue another CHNG call to reset the destination.

TM Message Call: CHNG

66 IMS/ESA V6 Appl Pgm: TM

v Issue a Get Unique (GU) call to the message queue to start processing a new
message. In this case, the name of the PCB you specify with the CHNG call still
appears in the alternate PCB, even though it is no longer valid.

v Terminate the application program. When you terminate the application, IMS TM
resets the destination to blanks.

For more information on sending messages to alternate terminals, see “ISRT Call”
on page 78 and “PURG Call” on page 80.

You can use the CHNG call to perform Spool API functions.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a
separate JES spool data set. (PURG calls have no effect when issued against a
nonexpress, alternate PCB.) If the destination of the PCB is the JES spool, it
cannot be CHNGed to a non-JES spool destination until the data set(s) have been
released by a sync point. Keywords that can be specified on the CHNG call are
discussed in “Advanced Print Function Options” and “APPC Options” on page 69.

In the OTMA environment
If an IMS application program issues a CHNG call to an alternate PCB and specifies
an options list, then the output destination cannot be an IMS Open Transaction
Manager client.

An IMS application program that issues a CHNG call to an alternate PCB (specifying
an options list) does not cause IMS to call the OTMA Prerouting and Destination
Resolution exit routines to determine the destination. But an IMS application
program that issues a CHNG call to an alternate PCB (specifying an APPC descriptor)
does cause IMS to call the OTMA exit routines to determine the destination. For
information on these exit routines, see IMS/ESA Customization Guide.

The application program can still issue ISRT calls to the I/O PCB to send data to an
OTMA destination.

OTMA application programs can use CHNG and ISRT calls for APPC destinations. For
more information, see IMS/ESA Application Programming: Design Guide.

Advanced Print Function Options
The IAFP keyword identifies the CHNG call as a request for Spool API functions. The
parameters of the IAFP keyword are:

Keyword Description

IAFP=abc a — specifies carriage control options

b — specifies integrity options

c — specifies message processing options

The following options specify advanced print functions for the CHNG call.

Carriage Control Options: The 1-character carriage control options indicate the
type of carriage control that is present in the message data when the ISRT or PURG
call is issued. Your application program must insert the proper carriage control
characters in the data stream. You can specify one of the following values for the
IAFP keyword:

A The data stream contains ASA carriage control characters.

M The data stream contains machine carriage control characters.

TM Message Call: CHNG

Chapter 3. Writing DL/I Calls for Transaction Management 67

N The data stream does not contain carriage control characters.

Integrity Options: The 1-character integrity options indicate the method IMS TM
uses in allocating the IMS Spool data set that contains the IAFP message. You can
specify one of the following options for the IAFP keyword:

0 IMS TM attempts no data set protection. Your application program must
provide any disposition or hold status by using the appropriate OUTPUT
descriptor options. IMS TM does attempt to prevent a partial message from
printing and to deallocate data sets that contain messages that have
already reached a sync point. To control whether error messages about the
IMS Spool data set are issued, use the message processing options for the
IAFP keyword.

1 The IMS Spool data set is placed on the SYSOUT HOLD queue when it is
allocated. If IMS TM issues message DFS00121 or DFS00141, the operator
must query the SYSOUT HOLD queue to locate the appropriate data sets.
IMS TM releases the data set and deallocates it to be printed at syncpoint.

When you specify 1 for the integrity option, you must specify M for the
message processing option of the IAFP keyword.

2 A remote destination is specified in the destination name parameter on the
CHNG call. The IMS Spool data set, when allocated, is placed on a SYSOUT
remote workstation, IMSTEMP. This destination must be included in the
definitions as nonselectable so that the data set is not automatically
selected to be printed. If IMS TM issues message DFS00121 or DFS00141,
the operator must query IMSTEMP to locate the appropriate data sets. At
sync point, IMS TM releases the data set and deallocates it to the remote
workstation ID specified in the destination name parameter. The value 2
overrides any destination specified in the IAFP OUTPUT options.

Message Processing Options: The 1-character message processing options
indicate whether IMS TM issues message DFS00141 during restart and message
DFS00121 for dynamic allocation failures. You can specify one of the following
options:

0 DFS00121 and DFS00141 are not issued. Your application program
controls IAFP message integrity.

M DFS00121 and DFS00141 are issued if necessary. IMS TM controls IAFP
message integrity.

The CHNG call can provide the data set characteristics in the following ways:

v Directly, using the PRTO= option

v Referencing prebuilt text units, using the TXTU= option

v Referencing an OUTPUT JCL statement in the dependent region’s JCL, using the
OUTN= option

When you use the IAFP keyword, you must also specify the PRTO, TXTU, or
OUTN option. (The options PRTO, TXTU, and OUTN are mutually exclusive.) If you
do not specify one of these additional options, or if you specify more than one of
these options, or if you specify IAFP with an invalid value, IMS TM returns an AR
status code to your application program.

Keyword Description

PRTO=outdes options Describes the data set processing options as they
are specified on the TSO OUTDES statement.

TM Message Call: CHNG

68 IMS/ESA V6 Appl Pgm: TM

The format for the PRTO= keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer
options.

Note: For information on TSO OUTDES options, see MVS/ESA Application Development
Guide: Authorized Assembler Language Programs. Some options depend on the release
level of MVS/ESA.

TXTU=address
specifies the address of a list of text-unit pointers. The list (with the
associated text units) can be created by a previous SETO call, or it can be
created by your application program. The LLZZ or LLLLZZ prefix must be
included on the buffer that contains the list. TXTU allows your application
program to issue a SETO call to build the text units for the OUTDES options
before the CHNG call is issued.

If your application program issues several CHNG calls with the same
OUTDES printer options, the TXTU option means you do not need to build
OUTDES options for each CHNG call.

OUTN=name
specifies a character string up to eight characters long that contains the
name of an OUTPUT JCL statement that identifies the printer processing
options to be used. If the specified OUTPUT DD statement is not included
in the JCL for the region in which the application program runs, a dynamic
allocation error occurs when the application attempts to insert data to the
data set.

APPC Options
The following APPC options are available for the CHNG call:

Keyword Description

LU=logical unit name
Specifies the logical unit (LU) name of a partner for an LU 6.2
conversation with a partner application program. It is used in
conjunction with the MODE and TPN options to establish the
conversation. The LU name can be any alphanumeric string
including national characters, but the first character cannot be a
number. If the LU name is a network-qualified name, it can be up to
seventeen characters long and consist of the network ID of the
originating system, followed by '.', then the LU name. (for example,
netwrkid.luname). The LU name and the network ID are both one to
eight characters long. The default for this option is DFSLU.

Related Reading: For more information on LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

MODE=mode name
Specifies the mode of the partner for an LU 6.2 conversation with a
partner application program. It is used in conjunction with the LU
and TPN options to establish the conversation. The mode name
can be any alphanumeric string up to eight characters long,
including national characters, but the first character cannot be a
number. If both MODE and SIDE options are specified, the mode
name specified in the SIDE entry is ignored but is not changed. The
default for this option is DFSMODE.

TM Message Call: CHNG

Chapter 3. Writing DL/I Calls for Transaction Management 69

Related Reading: For more information on LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

TPN=transaction program name
Specifies the transaction program (TP) name of the partner
application program in an LU 6.2 conversation. The option is used
in conjunction with the LU and MODE keywords to establish the
conversation.

Related Reading: For more information on LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

TP names can be up to 64 characters long and can contain any
character from the 00640 character set except a blank. The 00640
character set includes the letters A-Z, the digits 0-9, and 20 special
characters. The default for this option is DFSASYNC. For more
information on the 00640 character set, see Common Programming
Interface Communications Reference. The format for the TPN
option is as follows:

LL tpn

Halfword length of the TP name, including the
2-byte length of LL.

The TP name, which can be up to 64
characters long.

TP names that are processed with the IMS command processor
must contain characters that are valid to IMS. For example, names
that contain lower case letters cannot be processed and are
rejected if they are used as operands for IMS commands.

SIDE=side information entry name
Specifies the side information entry name that can be used to
establish an LU 6.2 conversation with a partner application
program. For more information on LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager. The SIDE name can
contain up to eight characters, including the uppercase alphabet
(A-Z), and the digits 0-9. If the LU, MODE, or TPN keywords are
specified, they override the SIDE keyword, but they do not change
the side information entry name. This option has no default.

SYNC=N|C Overrides the APPC/IMS conversation synchronization level. N sets
the synchronization level to NONE. C sets the synchronization level
to CONFIRM. The default for this option is C.

TYPE=B|M Overrides the APPC/IMS conversation type. B sets the conversation
type to BASIC. M sets the conversation type to MAPPED. The
default for this option is M.

Related Reading: For more information on APPC and the default options, see
IMS/ESA Administration Guide: Transaction Manager.

Options List Feedback Area
When errors are encountered in the options list, the options list feedback area is
used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many
errors as possible. If the feedback area is not large enough to contain all the error
information, only as much information is returned as space permits. The status code
is the only indication of an option list error if you do not specify the area.

TM Message Call: CHNG

70 IMS/ESA V6 Appl Pgm: TM

The feedback area must be initialized by the application with a length field
indicating the length of the area. A feedback area approximately 1½ to 2 times the
length of the options list or a minimum of 8 words should be sufficient.

Error Codes
This section contains information on error codes that your application can receive.

Error Code Reason

(0002) Unrecognized option keyword.

Possible reasons for this error are:

v The keyword is misspelled.

v The keyword is spelled correctly but is followed by an invalid
delimiter.

v The length specified field representing the PRTO is shorter than
the actual length of the options.

v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option
variable. An option variable following a keyword in the options list
for the call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be
contained in the options list. The options list length field (LL)
indicates that the options list ends before the end of the specified
option variable.

(0008) The option variable contains an invalid character or does not begin
with an alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:

v One or more additional keywords are required because one or
more keywords were specified in the options list.

v The specified length of the options list is more than zero but the
list does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible
causes for this error are:

v The keyword is not allowed because of other keywords specified
in the options list.

v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing
the print data set descriptors. IMS usually uses MVS/ESA services
(SJF) to validate the print descriptors (PRTO= option variable).
When IMS calls SJF, it requests the same validation as for the TSO
OUTDES command. Therefore, IMS is insensitive to changes in
output descriptors. Valid descriptors for your system are a function
of the MVS/ESA release level. For a list of valid descriptors and
proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a
format that allows the use of SJF services. If it is not, IMS returns
the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error

TM Message Call: CHNG

Chapter 3. Writing DL/I Calls for Transaction Management 71

message from SJF will include information of the form
(R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the
error.

Related Reading: For more information on SJF return and reason
codes, see MVS/ESA Application Development Guide: Authorized
Assembler Language Programs.

The range of some variables is controlled by the initialization
parameters. Values for the maximum number of copies, allowable
remote destination, classes, and form names are examples of
variables influenced by the initialization parameters.

Restrictions
Before you can use the CHNG call to set or alter the destination of an alternate PCB,
you must issue the PURG call to indicate to IMS that the message that you have
been building with that PCB is finished.

LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call in an LU
6.2 conversation. The LU 6.2 conversation can only be associated with the IOPCB.
The application sends a message on the existing LU 6.2 conversation
(synchronous) or has IMS create a new conversation (asynchronous) using the
IOPCB. Since there is no LTERM associated with an LU 6.2 conversation, only the
IOPCB represents the original LU 6.2 conversation.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a
separate JES spool data set. (PURG calls have no effect when issued against a
nonexpress, alternate PCB.) If the destination of the PCB is the JES spool, it
cannot be CHNGed to a non-JES spool destination until the data set(s) have been
released by a sync point.

CMD Call
The Command (CMD) call enables an application program to issue IMS commands.

Format

�� CMD i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CMD X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

TM Message Call: CHNG

72 IMS/ESA V6 Appl Pgm: TM

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage
Use the CMD call with the GCMD call to send commands to and receive responses
from IMS TM. After the CMD call issues the command to IMS TM, IMS TM processes
the command and returns the first segment of the response message to the
application program’s I/O area, but only if a CC status code is returned on the CMD
call. Your application program must then issue GCMD calls to retrieve all subsequent
message segments one segment at a time. For more information, see “GCMD Call”
on page 74. The CMD and GCMD command calls are typically used to perform
functions that are usually handled by someone at a terminal. These programs are
called automated operator (AO) applications.

Related Reading: For more information on the automated operator interface (AOI),
see IMS/ESA Customization Guide.

Before you issue a CMD call, the IMS command that you want to execute must be in
the I/O area that you refer to in the call. When you issue a CMD call, IMS TM passes
the command from the I/O area to the IMS control region for processing. IMS TM
places your application program in a wait state until the command is processed.
The application program remains in a wait state until IMS TM returns a response.
(Response means that IMS TM has received and processed the command.) For
asynchronous commands, you receive a response when the command is
processing, but not when it is complete.

You can also issue DB2 commands from your IMS TM application program. Issue
the command call and use the /SSR command, followed by the DB2 command. IMS
TM routes the command to DB2. DB2 issues a response to the command, and IMS
TM routes the DB2 response to the master terminal operator (MTO).

Restrictions
The AIB must specify the I/O PCB for this call.

Any application program that uses this call must be authorized by the security
administrator.

You cannot issue a CMD call from a CPI-C driven application program.

This call is not supported in an IFP or non-message-driven BMP.

TM Message Call: CMD

Chapter 3. Writing DL/I Calls for Transaction Management 73

GCMD Call
The Get Command (GCMD) call retrieves the response segments from IMS TM when
your application program processes IMS commands using the CMD call.

Format

�� GCMD i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GCMD X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage
When you issue a CMD call (see “CMD Call” on page 72), IMS TM returns the first
command response segment to the application program’s I/O area. If you are
processing commands that return more than one command response segment, use
the GCMD call to retrieve the second and subsequent command response segments.
IMS TM returns one command response segment to the I/O area of your application
program each time the application program issues a GCMD call. The I/O area must
be large enough to hold the longest message segment expected by your application
program. IMS allows a maximum segment size of 132 bytes (including the 4-byte
LLZZ field).

TM Message Call: GCMD

74 IMS/ESA V6 Appl Pgm: TM

The CMD and GCMD calls are typically used to perform functions that are usually
performed by someone at a terminal. These programs are called automated
operator (AO) applications.

Related Reading: For more information on the automated operator (AO) interface,
see IMS/ESA Customization Guide.

PCB status codes indicate the results of a GCMD call. The status codes are similar to
those that result from a message GN call. A QD status indicates that there are no
more segments in the response. A QE status indicates that a GCMD call was issued
after a CMD call that did not produce response segments. A blank status ('bb')
indicates that a segment was retrieved successfully.

Restrictions
The AIB must specify the I/O PCB for this call.

Any AO application that uses this call must be authorized by the security
administrator.

You cannot issue a GCMD call from a CPI-C driven application program.

This call is not supported in an IFP, or non-message driven BMP.

GN Call
If an input message contains more than one segment, a Get Unique (GU) call
retrieves the first segment of the message and Get Next (GN) calls retrieve the
remaining segments (see “GU Call” on page 76).

Format

�� GN i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GN X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

TM Message Call: GCMD

Chapter 3. Writing DL/I Calls for Transaction Management 75

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage
If you are processing messages that contain more than one segment, you use the
GN call to retrieve the second and subsequent segments of the message. IMS TM
returns one message segment to the I/O area of your application program each
time the application program issues a GN call.

You can issue a GN call from a BMP program.

Restrictions
The AIB must specify the I/O PCB for this call.

You cannot issue a GN call from a CPI-C driven application program.

GU Call
The Get Unique (GU) call retrieves the first segment of a message.

Format

�� GU i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GU X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

TM Message Call: GN

76 IMS/ESA V6 Appl Pgm: TM

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage
An MPP or message-driven BMP uses two calls to retrieve input message from the
host: GN and GU. A GU call retrieves the first segment of a message. The Get Next
(GN) call retrieves subsequent segments. (See “GN Call” on page 75.)

When you issue a successful GU or GN, IMS TM returns the message segment to the
I/O area that you specify in the call. Message segments are not all the same length.
Because the segment length varies, your I/O area must be long enough to hold the
longest segment that your program can receive. The first two bytes of the segment
contain the length of the segment.

Your application program must issue a GU call to the message queue before issuing
other DL/I calls. When IMS TM schedules an MPP, the Transaction Manager
transfers the first segment of the first message to the message processing region.
When the MPP issues the GU for the first message, IMS TM already has the
message waiting. If the application program does not issue a GU message call as
the first call of the program, IMS TM has to transfer the message again, and the
efficiency provided by message priming is lost.

If an MPP responds to more than one transaction code, the MPP has to examine
the text of the input message to determine what processing the message requires.

After a successful GU call, IMS TM places the following information in the I/O PCB
mask:

v The name of the logical terminal that sent the message.

v The status code for this call. (See “System Service Call Summary” on page 440)

v The input prefix, giving the date, time, and sequence number of the message at
the time it was first queued. IMS returns both an 8-byte local date containing a
2-digit year and a 12-byte timestamp (local or UTC time) containing a 4-digit
year.

v The MOD name (if you are using MFS).

v The user ID of the person at the terminal, or if user IDs are not used in the
system, the logical terminal name. If the message is from a BMP, IMS TM places
the PSB name of the BMP in this field.

v Group name, used by DB2 to provide security for SQL calls.

TM Message Call: GU

Chapter 3. Writing DL/I Calls for Transaction Management 77

Related Reading: For more information on the format of the I/O PCB mask, see
“Specifying the I/O PCB Mask” on page 45.

Restrictions
The AIB must specify the I/O PCB for this call.

You cannot issue a GU call from a CPI-C driven application program.

ISRT Call
The Insert (ISRT) call sends one message segment to the destination that you
specify in the call. The destination is represented by the I/O PCB, alternate PCB, or
AIB you specify in the call parameters.

For Spool API functions, the ISRT call is also used to write data to the JES Spool.

Format

�� ISRT i/o pcb
alternate pcb
aib

i/o area
mod name

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ISRT X X

Parameters
i/o pcb

alternate pcb
Specifies the PCB to use for this call. These parameters are input and output
parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB��� (if the I/O PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

TM Message Call: GU

78 IMS/ESA V6 Appl Pgm: TM

i/o area
Specifies the I/O area to be used for the call. This parameter is an input
parameter. The I/O area must be large enough to hold the largest segment
passed between the application program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is
an input parameter. The 8-byte MOD name must be left-justified and padded
with blanks as necessary. If the terminal receiving the output does not use
MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM uses
that MOD to format the screen for the output message you are sending.

Usage
To issue the ISRT call successfully, your application program must first build the
message you want to send in the application program’s I/O area. The ISRT uses the
destination name in the I/O PCB or alternate PCB, and the I/O area that you specify
in the call, to locate the message to be sent. The ISRT call then sends the output
message from your application program to another terminal. ISRT sends one
message segment per issue, so your application program must issue one ISRT call
for each segment of the message in the I/O area.

You can also specify a MOD name if you want to change the screen format. For
example, if the application program detects an error and must notify the person at
the terminal, you can specify a MOD name that formats the screen to receive the
error message. ISRT and PURG are the only DL/I calls that allow you to specify a
MOD name on the first segment of an output message.

When your application program issues one or more ISRT calls, IMS TM groups the
message segments to be sent in the message queue. IMS TM sends the message
segments to the destination when the application program does one of the
following:

v Issues a GU call to retrieve the first segment of the next message

v Reaches a commit point

v Issues a PURG call on an express alternate PCB

Your application must also use the ISRT call to issue replies to other terminals in
conversational programs and to pass a conversation between application programs.

Related Reading: For more information on ISRT in conversational programs see
“Sending Messages to Other Terminals and Programs” on page 123 and “Passing
the Conversation to another Conversational Program” on page 137.

Spool API Functions
You can use the ISRT call to write data to the JES Spool. These writes are done
using BSAM and, if possible, each BSAM “write” is done directly from the
application program’s buffer area.

Restriction: BSAM does not support the I/O area for sysout data sets above the
16-MB line. If IMS/ESA finds an I/O area above the 16-MB line, it moves the
application data to a work area below the line before it performs the BSAM write. If
the I/O area is already below the line, the write is done directly from the I/O area.
Do not take unusual steps to place the I/O area below the line unless performance
indicates a need to do so.

TM Message Call: ISRT

Chapter 3. Writing DL/I Calls for Transaction Management 79

When you issue the ISRT call for an alternate PCB set up for IAFP processing,
prefix the I/O area with a BSAM block descriptor word for variable length records.

Related Reading: For more information on BSAM block descriptor words, see
MVS/ESA Data Administration Guide for Data Facility Product.

LL or LLLL1, 2 ZZ2 ll3 zz3

Halfword length of the
I/O area or block,
including the 4-byte
length of the LLZZ
fields.

Halfword of zero Halfword length of the
logical record or
segment, including
the 4-byte length of
the llzz fields.

Halfword of zero

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. LLZZ is the equivalent of the BSAM Block Descriptor Word (BDW).

3. llzz is the equivalent of the BSAM Record Descriptor Word (RDW).

For more information on Spool API, see IMS/ESA Application Programming: Design
Guide.

Restrictions
A CPI-C driven application program can only issue the ISRT call to an alternate
PCB.

If you want to send message segments before retrieving the next message or
issuing a commit point, you must use the PURG call. For a description of the PURG
call, see “PURG Call”.

MOD name can be specified only once per message, on the first ISRT or PURG call
that begins the message.

BSAM does not support the I/O area for sysout data above the 16 MB line.

For more information on LU 6.2, see IMS/ESA Administration Guide: Transaction
Manager.

PURG Call
The Purge (PURG) call allows your application program to send one or more output
message segments (specified with the ISRT call) to the specified destination before
the application program retrieves the next input message or issues a commit point.

For Spool API functions, the PURG call can also be used to release a print data set
for immediate printing.

Parameters
i/o pcb

alternate pcb
Specifies the PCB to use for the call. These parameters are input and output
parameters.

TM Message Call: ISRT

80 IMS/ESA V6 Appl Pgm: TM

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB��� (if the I/O PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input parameter.
The I/O area must be large enough to hold the largest segment passed
between the program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is
an input parameter. The 8-byte MOD name must be left justified and padded
with blanks as necessary. PURG can specify the MOD name for the first message
segment for an output message. If the terminal receiving the output does not
use MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM
uses that MOD to format the screen for the output message you are sending.

Usage
Use the PURG call to send output messages to several different terminals. A PURG call
tells IMS TM that the message built against the specified I/O PCB, or alternate PCB
(with the ISRT call) is complete. IMS TM collects the message segments that have
been inserted to one PCB as one message and sends the message to the
destination specified by the destination name of the alternate PCB listed in the PURG
call.

If you specify an I/O area in the PURG call parameters, PURG acts as an ISRT call to
insert the first segment of the next message. When you identify the I/O area, you
can also specify a MOD name to change the screen format.

Related Reading: For more information on sending messages to several terminals
see “Sending Messages to Other Terminals and Programs” on page 123.

In the OTMA environment
An IMS application program that issues a PURG call causes IMS to call the Open
Transaction Manager Access (OTMA) Prerouting and Destination Resolution exit
routines to determine the destination. For information on these exit routines, see
IMS/ESA Customization Guide.

TM Message Call: PURG

Chapter 3. Writing DL/I Calls for Transaction Management 81

Spool API Functions
You can use the PURG call with an express alternate PCB to release a print data set
for immediate printing. When you issue the PURG call with an I/O area, IMS treats
the call as two functions: the purge request, and the insertion of data provided by
the I/O area.

If you issue the PURG call:

v Against an express alternate PCB, the data set is closed, unallocated, and
released for printing. The destination is reset.

v With an I/O area against a nonexpress alternate PCB, the purge function is
ignored and the data in the insert portion of the call is put into the print data set.
This means that the call behaves like an ISRT call.

v With no I/O area against an express alternate PCB, the data set is closed,
unallocated, and released for printing. IMS returns a status code of blanks.

v With no I/O area against a nonexpress alternate PCB, no action is taken.

Restrictions
CPI-C driven application programs can only issue the PURG call to alternate PCBs.

MOD name can be specified only once per message, in the first ISRT or PURG call
that begins the message.

This call is not supported in an IFP.

For synchronized APPC/OTMA conversations, PURG calls on the I/O PCB are
ignored. The next ISRT call is processed for the next segment of the current
message.

SETO Call
The SET Options (SETO) call allows IMS application programs to set processing
options. The SETO call can also be used to set processing options for Spool API
functions.

Format

�� SETO i/o pcb
alternate pcb
aib

(1)
i/o area options list

feedback area
��

Notes:

1 The I/O area parameter is not used for calls that specify APPC options.

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETO X X

Parameters
i/o pcb

TM Message Call: PURG

82 IMS/ESA V6 Appl Pgm: TM

alternate pcb
Specifies the I/O or alternate PCB to be used for the call. These parameters are
input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB��� (if the I/O PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an output
parameter. If you specify an options list that contains advanced print functions,
you must specify an I/O area. If you use APPC options, the I/O area parameter
is optional.

For advanced print function options the I/O area must be at least 4 KB. If the
I/O area including the LLZZ or LLLLZZ prefix is less than 4096 bytes in length,
an AJ status code is returned. Once the text units area built in the I/O area, the
area must not be copied to a new area. The I/O area passed on the SETO call
must contain a LLZZ or, if PL/I, a LLLLZZ prefix.

LLLL applies only to DL/I call interface.

options list
Specifies several option keywords. This input parameter is required. The
options in the list are separated by commas and cannot contain embedded
blanks. Processing for the options list terminates when the first blank in the list
is reached or when the specified options list length has been processed. You
can specify options for advanced print functions or for APPC. The options you
can specify are described in “Advanced Print Function Options” on page 85 and
“APPC Options” on page 85.

The format for the options list is as follows:

LL or LLLL1, 2 ZZ keyword1=variable1

Halfword length of the options
string, including the 4-byte
length of LLZZ or LLLLZZ.

Halfword of zero. SETO options separated by
commas.

TM Message Call: SETO

Chapter 3. Writing DL/I Calls for Transaction Management 83

LL or LLLL1, 2 ZZ keyword1=variable1

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the SETO
call as if the options list parameter was not specified.

feedback area
Specifies an optional parameter used to return error information about the
options list to the application program. This parameter is an output parameter.
The amount of information that the application program receives is based on
the size of the feedback area. If no feedback area is specified, the status code
returned is the only indication of an options list area. If you specify a feedback
area 1½ to 2 times the size of the specified options list (a minimum of eight
words), IMS TM returns more specific information about errors in the options
list.

The format for the feedback area passed to IMS TM in the call list is as follows:

LL or LLLL1, 2 ZZ

Halfword length of the feedback area,
including the 4-byte length of the LLZZ fields.

Halfword of zero.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the
SETO call as if the feedback area parameter was not specified.

The output format returned to the application program from IMS TM for the
feedback area is as follows:

LLZZ or LLLLZZ LL feedback data

The length field as specified
in the input format for the
feedback area.

Halfword length of the
feedback data returned by
IMS TM, including the 2-byte
LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a
4-byte EBCDIC code in
parentheses that indicates the
reason for the error. Multiple
errors are separated by
commas.

Usage
The SETO call allows you to set processing options.

You can use the SETO call to reduce the overhead necessary to perform parsing and
text construction of the OUTPUT descriptors for a data set. If your application
program can use a set of descriptors more than once during an installation, the
application can use the SETO call to provide print data set characteristics to the
Spool API. When the SETO call is processed, it parses the OUTPUT options and
constructs the dynamic OUTPUT text units in the work area provided by the
application. After the application has received the prebuilt text units, you can use

TM Message Call: SETO

84 IMS/ESA V6 Appl Pgm: TM

the CHNG call and TXTU= option to provide the print characteristics for the data set
without incurring the overhead of parsing and text unit build.

It is not necessary to use the SETO call to prebuild the text units if they can be
prebuilt with another programming technique.

Keywords that can be specified on the SETO call are described in “Advanced Print
Function Options” and “APPC Options”.

Related Reading: For more information about Spool API, see IMS/ESA Application
Programming: Design Guide.

In the OTMA environment
An IMS application program that issues a SETO call does not cause IMS to call the
Open Transaction Manager Access (OTMA) Prerouting and Destination Resolution
exit routines to determine the destination. For information on these exit routines,
see IMS/ESA Customization Guide.

Existing IMS application programs that issue SETO calls might not run as expected
because a return code is returned to the program if it is processing an
OTMA-originated transaction. Also, APPC/IMS application programs that issue SETO
calls might not need modification if they require implicit OTMA support.

A solution to this problem is to use an INQY call before issuing the SETO call. The
application program can use the output from the INQY call to determine if a
transaction is an OTMA-originated one, to bypass the SETO call.

Advanced Print Function Options
The PRTO= keyword identifies the SETO call as a Spool API request:

Keyword Description

PRTO=outdes options Describes the data set processing options as they
are specified on the TSO OUTDES statement. The
format for the PRTO keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer
options, separated by commas.

Note: For information about TSO OUTDES options, see MVS/ESA Application Development
Guide: Authorized Assembler Language Programs. Some options depend on the release
level of MVS/ESA.

If MVS detects an error in the OUTDES printer options, an AS status code is
returned to the application program.

APPC Options
The following options are available for the SETO call:

SEND_ERROR
causes the IMS LU Manager to issue SEND_ERROR on the conversation
associated with the I/O or alternate PCB when a message is sent. Messages
for express PCBs are sent during the PURG call or sync point processing,
whichever comes first. Messages for nonexpress PCBs are sent during sync
point processing.

TM Message Call: SETO

Chapter 3. Writing DL/I Calls for Transaction Management 85

This option is only used by LU 6.2 devices, and it is ignored if specified for a
non-LU 6.2 device.

The option is mutually exclusive with the DEALLOCATE_ABEND option. If both
options are coded in the options list, an AR status code is returned to the
application.

DEALLOCATE_ABEND
deallocates a conversation by issuing a SEND_ERROR followed by a
DEALLOCATE_ABEND at the time the message is sent. Once a SETO call with
the DEALLOCATE_ABEND option is issued, any subsequent ISRT calls made to
the PCB are rejected with a QH status code.

This option is applicable only to LU 6.2 devices. If specified for a non-LU 6.2
device, any subsequent ISRT calls made to the PCB are rejected with a QH
status code.

When the SETO call is issued on an I/O PCB in an IFP region, the
DEALLOCATE_ABEND option is not valid. If you attempt to use the option
under these conditions, an AD status code is returned to the application.

The option is mutually exclusive with the SEND_ERROR option. If both options
are coded in the options list, an AR status code is returned to the application.

Related Reading:For more information about APPC and LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

Options List Feedback Area
When errors are encountered in the options list, the options list feedback area is
used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many
errors as possible. If the feedback area is not large enough to contain all the error
information, only as much information is returned as space permits. The status code
is the only indication of an option list error if you do not specify the area.

The feedback area must be initialized by the application with a length field
indicating the length of the area. A feedback area approximately 1½ to 2 times the
length of the options list or a minimum of 8 words should be sufficient.

Error Codes
This section contains information on error codes that your application can receive.

Error Code Reason

(0002) Unrecognized option keyword.

Possible reasons for this error are:

v The keyword is misspelled.

v The keyword is spelled correctly but is followed by an invalid
delimiter.

v The length specified field representing the PRTO is shorter than
the actual length of the options.

v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option

TM Message Call: SETO

86 IMS/ESA V6 Appl Pgm: TM

variable. An option variable following a keyword in the options list
for the call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be
contained in the options list. The options list length field (LL)
indicates that the options list ends before the end of the specified
option variable.

(0008) The option variable contains an invalid character or does not begin
with an alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:

v One or more additional keywords are required because one or
more keywords were specified in the options list.

v The specified length of the options list is more than zero but the
list does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible
causes for this error are:

v The keyword is not allowed because of other keywords specified
in the options list.

v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing
the print data set descriptors. IMS usually uses MVS/ESA services
(SJF) to validate the print descriptors (PRTO= option variable).
When IMS calls SJF, it requests the same validation as for the TSO
OUTDES command. Therefore, IMS is insensitive to changes in
output descriptors. Valid descriptors for your system are a function
of the MVS/ESA release level. For a list of valid descriptors and
proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a
format that allows the use of SJF services. If it is not, IMS returns
the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error
message from SJF will include information of the form
(R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the
error. For more information on SJF return and reason codes, see
MVS/ESA Application Development Guide: Authorized Assembler
Language Programs.

The range of some variables is controlled by the initialization
parameters. Values for the maximum number of copies, allowable
remote destination, classes, and form names are examples of
variables influenced by the initialization parameters.

Restrictions
A CPI-C driven application program can issue SETO calls only to an alternate PCB.

TM Message Call: SETO

Chapter 3. Writing DL/I Calls for Transaction Management 87

88 IMS/ESA V6 Appl Pgm: TM

Chapter 4. Writing DL/I Calls for System Services

This chapter describes the system service calls you can use with IMS TM in each
type of IMS application program and the parameters for each call. The calls are
listed in alphabetical order.

Each call description contains:

v A syntax diagram

v A definition for each parameter that can be used in the call

v Details on how to use the call in your application program

v Restrictions on the use of the call

Each parameter is described as an input or output parameter. “Input” refers to input
to IMS from the application program. “Output” refers to output from IMS to the
application program.

System service calls must refer only to I/O PCBs. The system service calls are
described only as they pertain to IMS TM functions.

Syntax diagrams for these calls begin with the function parameter. The call, the call
interface, (xxxTDLI), and parmcount (if it is required) are not included in the
following syntax diagrams. See specific information for assembler language,
COBOL, Pascal, and PL/I in “Chapter 2. Defining Application Program Elements” on
page 31 for the complete structure.

In this Chapter:

v “APSB Call” on page 90

v “CHKP (Basic) Call” on page 91

v “CHKP (Symbolic) Call” on page 92

v “DPSB Call” on page 93

v “GMSG Call” on page 94

v “GSCD Call” on page 96

v “ICMD Call” on page 97

v “INIT Call” on page 99

v “INQY Call” on page 102

v “LOG Call” on page 109

v “RCMD Call” on page 111

v “ROLB Call” on page 112

v “ROLL Call” on page 114

v “ROLS Call” on page 114

v “SETS/SETU Call” on page 116

v “SYNC Call” on page 118

v “XRST Call” on page 118

Related Reading: The DL/I calls used for database management are described in
IMS/ESA Application Programming: Database Manager. EXEC DL/I commands
used in CICS are described in IMS/ESA Application Programming: EXEC DLI

© Copyright IBM Corp. 1974, 2000 89

Commands for CICS and IMS. DCCTL users can issue calls using GSAM database
PCBs. GSAM databases are described in IMS/ESA Application Programming:
Database Manager.

APSB Call
The Allocate PSB (APSB) call is used to allocate a PSB for a CPI Communications
driven application program. These types of application programs are used for
conversations that include LU 6.2 devices.

Format

�� APSB aib ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

APSB X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

Usage
CPI-C driven application programs must be link edited with the IMS language
interface module and must indicate the PSB to be used before the application
program can issue DL/I calls. The APSB call uses the AIB to allocate a PSB for
these types of application programs.

When you issue the APSB call, IMS TM returns a list of PCB addresses contained in
the specified PSB to the application program. The PCB list is returned in the
AIBRSA1 field in the AIB.

IMS TM allows the APSB call to complete even if the databases that the PSB points
to are not available. You can issue the INIT call to inform IMS TM of the application
program’s capabilities to accept additional status codes regarding data availability.

Related Reading: For more information on CPI Communications driven application
programs, see IMS/ESA Application Programming: Design Guide.

System Service Calls

90 IMS/ESA V6 Appl Pgm: TM

Restrictions
An application program that uses APSB can allocate only one PSB at a time. If your
application requires more than one PSB, you must first release the PSB in use by
issuing the deallocate PSB (DPSB) call.

CPI Communications driven application programs must issue the APSB call before
issuing any other DL/I calls. If your application program attempts to issue DL/I calls
before a PSB has been allocated with the APSB call, the application program
receives error return and reason codes in the AIB.

CHKP (Basic) Call
A basic Checkpoint (CHKP) call is used for recovery purposes.

Format

�� CHKP i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. It is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for the call. This parameter is an input and output
parameter. For the CHKP call, the I/O area that contains the 8-character
checkpoint ID. If the program is an MPP or a message-driven BMP, the CHKP
call implicitly returns the next input message into this I/O area. Therefore, the
area must be long enough to hold the longest message that can be returned.

System Service Call: APSB

Chapter 4. Writing DL/I Calls for System Services 91

Usage
In transaction management application programs, the basic CHKP call can be used to
retrieve the conversational SPA or the initial message segment that was queued
before the application was scheduled. The CHKP call commits all changes made by
the program and, if your application program abends, establishes the point at which
the program can be restarted.

Restrictions
CPI Communications driven application programs cannot issue a basic CHKP call.

CHKP (Symbolic) Call
A symbolic Checkpoint (CHKP) call is used for recovery purposes.

Format

�� CHKP i/o pcb
aib

i/o area length i/o area �

�

,

area length , area
��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

System Service Call: CHKP (Basic)

92 IMS/ESA V6 Appl Pgm: TM

i/o area length
is no longer used by IMS. For compatibility reasons, this parameter must still be
included in the call, and it must contain a valid address. You can get a valid
address by specifying the name of any area in your program.

i/o area
Specifies the I/O area to be used for your call. This parameter is an input and
output parameter. For the CHKP call, the I/O area contains the 8-character
checkpoint ID. If the program is a message-driven BMP, the CHKP call implicitly
returns the next input message into this I/O area. Therefore, the area must be
long enough to hold the longest message that can be returned.

area length
Specifies a 4-byte field in your program that contains the length in binary of the
first area to checkpoint. This parameter is an input parameter. Up to seven area
lengths can be specified. For each area length, you must also specify an area
parameter.

area
Specifies the area in your program that you want IMS to checkpoint. This
parameter is an input parameter. You can specify up to seven areas in your
program that you want IMS to checkpoint. Always specify the area length
parameter first, followed by the area parameter. The number of areas you
specify on a XRST call must be less than or equal to the number of areas you
specify on the CHKP calls the program issues. When you restart the program,
IMS restores only the areas you specified in the CHKP call.

Usage
In transaction management application programs, the symbolic CHKP call can be
used to retrieve the conversational SPA or the initial message segment that was
queued before the application was scheduled. The CHKP call commits all changes
made by the program and, if your application program abends, establishes the point
at which the program can be restarted. In addition, the symbolic CHKP call can:

v Work with the extended restart (XRST) call to restart your program if your
program abends.

v Enables you to save as many as seven data areas in your program, which are
restored when your program is restarted.

Restrictions
A CPI Communications driven application program cannot issue the symbolic CHKP
call. The symbolic CHKP call is only allowed from batch and BMP applications.

You must issue an XRST call before the symbolic CHKP call.

DPSB Call
The Deallocate PSB (DPSB) call frees a PSB that was allocated with the APSB call.

Format

�� DPSB aib ��

System Service Call: CHKP (Symbolic)

Chapter 4. Writing DL/I Calls for System Services 93

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DPSB X X

Parameters
aib

Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

Usage
The DPSB call must be used in a CPI Communications driven application program to
release a PSB after a commit point occurs and before another PSB can be
allocated. In a CPI Communications driven application program, the commit point is
achieved with the COMMIT verb. For more information on CPI Communications
driven application programs, see “CPI-C Driven Application Programs” on page 143.

Restrictions
You can issue the DPSB call only after a commit point occurs, and it is valid only
after a successful APSB call.

GMSG Call
A Get Message (GMSG) call is used in an automated operator (AO) application
program to retrieve a message from AO exit routine DFSAOE00.

Format

�� GMSG aib i/o area ��

Parameters
aib

Specifies the application interface block (AIB) to be used for this call. This
parameter is an input and output parameter.

You must initialize the following fields in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

System Service Call: DPSB

94 IMS/ESA V6 Appl Pgm: TM

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBSFUNC
Subfunction code. This field must contain one of the following 8-byte
subfunction codes:

8-blanks (null)
When coded with an AOI token in the AIBRSNM1 field, indicates IMS is
to return when no AOI message is available for the application.

WAITAOI
When coded with an AOI token in the AIBRSNM1 field, indicates IMS is
to wait for an AOI message when none is currently available for the
application. This subfunction value is invalid if an AOI token is not
coded in AIBRSNM1. In this case, error return and reason codes are
returned in the AIB.

The value WAITAOI must be left justified and padded with a blank
character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI
token identifies the message the AO application is to retrieve. The token is
supplied for the first segment of a message. If the message is a
multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric left-justified
field padded with blanks.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest segment
passed from IMS to the AO application. If the I/O area is not large enough to
contain all of the data, IMS returns partial data.

Usage
GMSG is used in an AO application to retrieve a message associated with an AOI
token. The AO application must pass an 8-byte AOI token to IMS to retrieve the first
segment of the message. IMS uses the AOI token to associate messages from AO
exit routine DFSAOE00 with the GMSG call from an AO application. IMS returns to
the application only those messages associated with the AOI token. By using
different AOI tokens, DFSAOE00 can direct messages to different AO applications.
Note that your installation defines the AOI token.

Related Reading: For more information on the AOI exits, see IMS/ESA
Customization Guide.

System Service Call: GMSG

Chapter 4. Writing DL/I Calls for System Services 95

To retrieve the second through the last segments of a multisegment message, issue
GMSG calls with no token specified (set the token to blanks). If you want to retrieve
all segments of a message, you must issue GMSG calls until all segments are
retrieved. IMS discards all nonretrieved segments of a multisegment message when
a new GMSG call specifying an AOI token is issued.

Your AO application can specify a wait on the GMSG call. If no messages are
currently available for the associated AOI token, your AO application waits until a
message is available. The decision to wait is specified by the AO application, unlike
a WFI transaction where the wait is specified in the transaction definition. The wait
is done on a call basis; that is, within a single AO application some GMSG calls might
specify waits while others do not.

Table 6 shows, by IMS environment, the types of application programs that can
issue GMSG. GMSG is also supported from a CPI-C driven application program.

Table 6. GMSG Support by Application Region Type

Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

Restrictions
A CPI-C driven program must issue an APSB (allocate PSB) call before issuing GMSG.

GSCD Call
This section contains programming interface information.

The Get System Contents Directory (GSCD) call retrieves the address of the IMS
system contents directory (SCD) for batch programs.

Format

�� GSCD i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters
i/o pcb

Specifies the PCB to use for this call. This parameter is an input and output
parameter.

System Service Call: GMSG

96 IMS/ESA V6 Appl Pgm: TM

aib
Specifies the address of the application interface block (AIB) that is used for the
call. This parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an output
parameter. For the GCSD call, the I/O area must be 8 bytes in length. IMS TM
places the address of the SCD in the first 4 bytes and the address of the
program specification table (PST) in the second 4 bytes.

Usage
IMS does not return a status code to a program after it issues a successful GSCD
call. The status code from the previous call that used the same PCB remains
unchanged in the PCB.

Restrictions
The GSCD call can be issued only from batch application programs.

For more information on GSCD, see IMS/ESA Application Programming: Design
Guide.

ICMD Call
An Issue Command (ICMD) call lets an automated operator (AO) application program
issue an IMS command and retrieve the first command response segment.

Format

�� ICMD aib i/o area ��

Parameters
aib

Specifies the application interface block (AIB) used for this call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

System Service Call: GSCD

Chapter 4. Writing DL/I Calls for System Services 97

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

Your program must check this field to determine whether the ICMD call
returned data to the I/O area. When the only response to the command is a
DFS058 message indicating either COMMAND IN PROGRESS or COMMAND
COMPLETE, the response is not returned.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and output
parameter. The I/O area should be large enough to hold the largest command
passed from the AO application to IMS, or command response segment passed
from IMS to the AO application. If the I/O area is not large enough to contain all
of the data, IMS returns partial data.

The general format of your I/O work area on an ICMD call is:

LLZZ/VERB KEYWORD1 P1 KEYWORD2 P2, P3.

LL Two-byte field containing the length of the command text,
including LLZZ.

ZZ Two-byte field reserved for IMS.

/ or CRC Indicates an IMS command follows. CRC (Command
Recognition Character) rather than a slash (/) is used in the
DBCTL environment.

VERB The IMS command you are issuing.

KEYWORDX Keywords that apply to the command being issued.

PX Parameters for the keywords you are specifying.

. (Period) End of the command.

The length of a command is limited by the size of the I/O area; the size is
specified in the IOASIZE parameter in the PSBGEN macro during PCB
generation. LL is the length of the command text. The size of the I/O area is the
length of the actual command text, plus 4 bytes for LLZZ. The minimum size of
the I/O work area is 132 bytes.

The fifth byte must be a ″/″ (or CRC for DBCTL), and the verb must follow
immediately. The /BROADCAST and /LOOPTEST commands must have a period
between the command segment and text segment, and must be preceded by

System Service Call: ICMD

98 IMS/ESA V6 Appl Pgm: TM

an LLZZ field that includes the size of the text. Comments can be added by
placing a period (.) after the last parameter.

Restriction: When issuing the /SSR command, do not code an
end-of-command indicator (period) as shown in the IMS/ESA Operator’s
Reference. If a period is used, it is considered part of the text.

Usage
ICMD enables an AO application to issue an IMS command and retrieve the first
command response segment.

When using ICMD, put the IMS command that is to be issued in your application’s
I/O area. After IMS has processed the command, it returns the first segment of the
response message to your AO application’s I/O area to retrieve subsequent
segments (one segment at a time), using the RCMD call.

Some IMS commands that complete successfully result in a DFS058 COMMAND
COMPLETE message. Some IMS commands that are processed asynchronously result
in a DFS058 COMMAND IN PROGRESS message. For a command entered on an ICMD
call, neither DFS058 message is returned to the AO application. The AIBOAUSE
field is set to zero to indicate no segment was returned. So, your AO application
must check the AIBOAUSE field along with the return and reason codes to
determine if a response was returned.

Related Reading: For more information on the AOI exits, see IMS/ESA
Customization Guide.

Table 7 shows, by IMS environment, the types of application programs that can
issue ICMD. ICMD is also supported from a CPI-C driven application.

Table 7. ICMD Support by Application Region Type

Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

See the IMS/ESA Operator’s Reference for a list of commands that can be issued
using the ICMD call.

Restrictions
A CPI-C driven program must issue an APSB (allocate PSB) call before issuing ICMD.

INIT Call
An Initialize (INIT) call allows the application to receive data availability status
codes by checking each DB PCB for data availability.

System Service Call: ICMD

Chapter 4. Writing DL/I Calls for System Services 99

Format

�� INIT i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the address of the application interface block (AIB) that is used for the
call. This parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an input
parameter. For the INIT call, the I/O area contains the character string
“DBQUERY”.

Usage
The INIT call is valid for all IMS TM application programs.

To specify the database query subfunction in your application program, specify the
character string “DBQUERY” in the I/O area.

Determining Database Availability: INIT DBQUERY
When the INIT call is issued with the DBQUERY character string in the I/O area,
the application program can obtain information regarding the availability of data for
each PCB. Table 8 and Table 9 on page 101 contain sample I/O areas for the INIT
call with DBQUERY.

Table 8. INIT I/O Area Examples for All xxxTDLI Interfaces Except PLITDLI

L L Z Z Character String

00 0B 00 00 DBQUERY

System Service Call: INIT

100 IMS/ESA V6 Appl Pgm: TM

Table 8. INIT I/O Area Examples for All xxxTDLI Interfaces Except PLITDLI (continued)

L L Z Z Character String

Note: The LL and ZZ fields are binary. The LL value X'0B' is a hexadecimal representation
of decimal 11.

Table 9. INIT I/O Area Examples for the PLITDLI Interface

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

Note: The LLLL and ZZ fields are binary. The L value X'0B' is a hexadecimal representation
of decimal 11.

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes
for LL. For the PLITDLI interface, use the 4-byte field LLLL. When you use
the AIBTDLI interface, PL/I programs require only a 2-byte field.

ZZ A 2-byte field of binary zeros.

One of the following status codes is returned for each database PCB:

NA At least one of the databases that can be accessed using this PCB is not
available. A call made using this PCB probably results in a BA or BB status
code if the INIT STATUS GROUPA call has been issued, or in a DFS3303I
message and 3303 pseudoabend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a
call results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been issued,
or in a DFS3303I message and 3303 pseudoabend if it has not. The
database that caused the NU status code might be required only for delete
processing. In that case, DLET calls fail, but ISRT and REPL calls succeed.

�� The data that can be accessed with this PCB can be used for all functions
the PCB allows. DEDBs and MSDBs always have the �� status code.

In addition to data availability status, the name of the database organization of the
root segment is returned in the segment name field of the PCB. In DCCTL
environments, the name of the database organization is UNKNOWN.

Automatic INIT DBQUERY
When the application program is entered initially, the status code in the database
PCBs is initialized as if the INIT DBQUERY call was issued. This enables the
application program to determine database availability without issuing the INIT call.

In DCCTL environments, the status code is NA.

Performance Considerations for the INIT Call (IMS Online Only)
For performance reasons, the INIT call should not be issued in online application
programs before the first GU call to the I/O PCB. If the INIT call is issued first, the GU
call to the I/O PCB is not processed as efficiently.

System Service Call: INIT

Chapter 4. Writing DL/I Calls for System Services 101

INQY Call
The Inquiry (INQY) call is used to request information regarding execution
environment, destination type and status, and session status. INQY is valid only
when using the AIBTDLI interface.

Format

�� INQY aib i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters
aib

Specifies the address of the application interface block (AIB) that is used for the
call. This parameter is an input and output parameter. The following fields must
be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction
codes as follows:

�������� (Null)

DBQUERY�
FIND����
ENVIRON�
PROGRAM�

Use of the PCB and I/O area with the subfunctions is summarized in
Table 13 on page 109.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
of any PCB named in the PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

i/o area
Specifies the I/O area to be used for the INQY call. This parameter is an output
parameter. An I/O area is required for INQY subfunctions ENVIRON,
PROGRAM, and null. It is not required for subfunctions DBQUERY and FIND.

System Service Call: INQY

102 IMS/ESA V6 Appl Pgm: TM

Usage
The INQY operates in both batch and online IMS TM environments. IMS TM
application programs can use the INQY call to request information regarding output
destination, session status, the current execution environment, the availability of
databases, and the PCB address, which is based on the PCB name. Before you
can issue an INQY call, you must initialize the fields of the AIB. See “Using the
AIBTDLI Interface” on page 51 for more information.

When you use the INQY call, specify an 8-byte subfunction code, which is passed in
the AIB. The INQY subfunction determines the information that the application
receives. For a summary of PCB type and I/O area use for each subfunction, see
Table 13 on page 109.

The INQY call returns information to the caller’s I/O area. The length of the data
returned from the INQY call is passed back to the application in the AIB field
AIBOAUSE.

You specify the size of the I/O area in the AIB field AIBOALEN. The INQY call
returns only as much data as the area can hold in one call. If the area is not large
enough for all the data, an AG status code is returned, and partial data is returned
in the I/O area. In this case, the AIB field AIBOALEN contains the actual length of
the data returned to the I/O area, and the AIBOAUSE field contains the output area
length that would be required to receive all the data.

Querying Information from the PCB: INQY Null
When the INQY call is issued with the null subfunction, the application program
obtains information related to the PCB, including output destination type and
location, and session status. The INQY call can use the I/O PCB or the alternate
PCB. The information you receive regarding destination location and session status
is based on the destination type. The destination types are as follows: APPC,
OTMA, TERMINAL, TRANSACT, and UNKNOWN.

Related Reading: For more information about APPC and LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

The INQY null subfunction returns character string data in the I/O area. The output
that is returned for the destination types APPC, OTMA, TERMINAL, and
TRANSACT is left justified and padded with blanks. The UNKNOWN destination
type does not return any information. Table 10 lists the output returned from the
INQY null call.

Table 10. INQY Null Data Output

Destination
Type Information Returned

Length
in Bytes Actual Value Explanation

Terminal Destination Type 8 TERMINAL The destination of the I/O PCB or alternate
PCB is a terminal.

Terminal Location 8 LOCAL The terminal is defined as local.

REMOTE The terminal is defined as remote.

Queue Status 8 STARTED The queue is started and can accept work.

STOPPED The queue is stopped and cannot accept work.

Session Status 8 � The status is not available.

ACTIVE The session is active.

INACTIVE The session is inactive.

System Service Call: INQY

Chapter 4. Writing DL/I Calls for System Services 103

Table 10. INQY Null Data Output (continued)

Destination
Type Information Returned

Length
in Bytes Actual Value Explanation

Transaction Destination Type 8 TRANSACT The destination of the alternate PCB is a
program.

Transaction Location 8 LOCAL The transaction is defined as local.

REMOTE The transaction is defined as remote.

DYNAMIC The transaction is defined as dynamic.1

� The Program Routing exit routine has defined
the destination as a transaction not on this
system.

Transaction Status 8 STARTED The transaction can be scheduled.

STOPPED The transaction cannot be scheduled.

� The Program Routing exit routine has defined
the destination as a transaction not on this
system. The transaction status is not available.

Destination PSB Name 8 This field gives the name of the destination
PSB.

� The Program Routing exit routine has defined
the destination as a transaction not on this
system or the transaction is dynamic. The
transaction destination is not available.

Destination Program or
Session Status

8 � The status is not available.

ACTIVE The session is active (remote transaction).

INACTIVE The session is inactive (remote transaction).

STARTED The program can be scheduled (local
transaction).

STOPPED The program cannot be scheduled (local
transaction).

APPC Destination Type 8 APPC The destination is an LU 6.2 device.

APPC/MVS Side
Information Entry Name2

8 This field provides the Side Name.

� The Side Name is not available.

Partner Logical Unit
Name3

8 This field provides the partner LU name for the
conversation.

� The partner LU name is not available.

Partner Mode Table Entry
Name4

8 This field provides the Mode Name for the
conversation.

� The Mode Name is not available.

User Identifier 8 This field provides the user ID.

� The user ID is not available.

Group Name 8 This field provides the Group Name.

� The Group Name is not available.

System Service Call: INQY

104 IMS/ESA V6 Appl Pgm: TM

Table 10. INQY Null Data Output (continued)

Destination
Type Information Returned

Length
in Bytes Actual Value Explanation

Synchronization Level5 1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as NONE.

Conversation Type6 1 B The conversation is defined as BASIC.

M The conversation is defined as MAPPED.

Address of TPN7 4 This is the address of the LL field of the
Transaction Program Name.8

0 The address of the Transaction Program Name
is not available.

OTMA Destination Type 8 OTMA The destination is an OTMA client.

Tpipe Name 8 This field provides the OTMA transaction pipe
name.

� The Tpipe Name is not available.

Member Name 16 This field provides the OTMA client’s XCF
member name.

� The Member Name is not available.

User Identifier 8 This field provides the User ID.

� The User ID is not available.

Group Name 8 This field provides the group name.

� The Group Name is not available.

Synchronization Level 1 S The OTMA transaction pipe is synchronized.

� The OTMA transaction pipe is not
synchronized.

Message Synchronization
Level5

1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as NONE.

Unknown Destination Type 8 UNKNOWN Unable to find destination.

Note:

1. A dynamic transaction is only possible in a shared-queues environment. A transaction is dynamic when it is not
defined to the IMS system that is sending the message, but rather to another IMS system that is sharing the
queues. The dynamic transaction is created when the Output Creation exit routine, DFSINSX0, indicates a
transaction whose destination is unknown to IMS. The output fields for the destination PSB name and destination
program are set to blanks.

2. If the call is issued against an I/O PCB, the Side Name cannot be used and � is returned. If the call is issued
against an alternate modifiable PCB, the Side Name must be supplied in a CHNG call that is issued before INQY.

3. If the call is issued against an I/O PCB, the LU name must be coded. If the call is issued against a modifiable
alternate PCB, the LU name must be supplied in a CHNG call that is issued before INQY.

4. If the call is issued against an I/O PCB, the Mode Name cannot be used and � is returned. If the call is issued
against an alternate modifiable PCB, the Mode Name must be supplied in a CHNG call that is issued before INQY.

5. When the synchronization level is not available, IMS uses the default value of CONFIRM.

6. When the conversation type is not available, IMS uses the default value of MAPPED.

7. The pointer identifies a length field (LL), which contains the length of the TPN in binary, including the 2 bytes
required for LL.

8. The TPN can be up to 64 bytes long.

System Service Call: INQY

Chapter 4. Writing DL/I Calls for System Services 105

The contents of the output fields vary depending on the type of PCB used for the
INQY call. Table 11 shows how INQY output for APPC destinations varies depending
on the PCB type. The PCB can be an I/O PCB or an alternate PCB.

Table 11. INQY Output and PCB Type

Output Field I/O PCB
Alternate PCB
(Non-modifiable) Alternate PCB (Modifiable)

Destination Type APPC APPC APPC

Side Name blanks Side Name if available or
blanks

Side Name if supplied on
previous CHNG call or blanks

LU Name Input LU Name LU Name if available or
blanks

LU Name if supplied on
previous CHNG call or blanks

Mode Name blanks Mode Name if available or
blanks

Mode Name if supplied on
previous CHNG call or blanks

User Identifier USERID if
available or blanks

USERID if available or
blanks

USERID if available or blanks

Group Name Group Name if
available or blanks

Group Name if available or
blanks

Group Name if available or
blanks

Sync Level C or N C or N C or N

Conversation Type B or M B or M B or M

TPN Address Address of the
TPN character
string

Address of the TPN
character string or zero

Address of the TPN character
string or zero

TPN character string
Note: If your TPN name is
DFSASYNC, the destination
represents an asynchronous
conversation.

Inbound name of
IMS Transaction
that is executing.

Partner TPN, if available. If
not available, address field
is zero.

TP Name if it is supplied on
the previous CHNG call. If not
supplied, the address field is
zero.

Related Reading: For more information on APPC and LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

Querying Data Availability: INQY DBQUERY
When the INQY call is issued with the DBQUERY subfunction, the application
program obtains information regarding the data for each PCB. The only valid PCB
name that can be passed in AIBRSNM1 is “IOPCB���”. The INQY DBQUERY call is
similar to the INIT DBQUERY call. It updates status codes in the database PCBs, but
it does not return information in the I/O area.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns the
following status codes in the I/O PCB:

Blanks The call is successful and all databases are available.

BJ None of the databases in the PSB are available, or no PCBs exist
in the PSB. All database PCBs (excluding GSAM) contain an NA
status code as the result of processing the INQY DBQUERY call.

BK At least one of the databases in the PSB is not available or
availability is limited. At least one database PCB contains an NA or
NU status code as the result of processing the INQY DBQUERY call.

The INQY call returns the following status codes in each DB PCB:

NA At least one of the databases that can be accessed using this PCB is not

System Service Call: INQY

106 IMS/ESA V6 Appl Pgm: TM

available. A call made using this PCB probably results in a BA or BB status
code if the INIT STATUS GROUPA call has been issued, or in a DFS3303I
message and 3303 pseudoabend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a
call results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been issued,
or in a DFS3303I message and 3303 pseudoabend if it has not. The
database that caused the NU status code might be required only for delete
processing. In that case, DLET calls fail, but ISRT and REPL calls succeed.

�� The data that can be accessed with this PCB can be used for all functions
the PCB allows. DEDBs and MSDBs always have the �� status code.

Querying the Environment: INQY ENVIRON
When the INQY call is issued with the ENVIRON subfunction, the application
program obtains information regarding the current execution environment. The only
valid PCB name that can be passed in AIBRSNM1 is “IOPCB���”. This includes the
IMS identifier, release, region, and region type. The INQY ENVIRON call returns
character string data in the I/O area. The output is left justified and padded with
blanks on the right. Table 12 lists the output returned from the INQY ENVIRON call. To
receive the following data and to account for expansion, the I/O area length should
be larger than 140 bytes:

88 bytes INQY ENVIRON data
2 bytes Length field for Recovery Token section (18 bytes)

16 bytes Recovery Token
2 bytes Length field for APARM section (maximum of 34 bytes)

32 bytes APARM data

140 bytes Total I/O area length

Table 12. INQY ENVIRON Data Output

Information Returned
Length in
Bytes

Actual
Value Explanation

IMS Identifier 8 Provides the identifier from the execute parameters.

IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'

IMS Control Region Type 8 BATCH Indicates that an IMS Batch region is active.

DB Indicates that only the IMS Database Manager is active
(DBCTL system).

TM Indicates that only the IMS Transaction Manager is active
(DCCTL system).

DB/DC Indicates that both the IMS Database and Transaction
managers are active (DB/DC system).

IMS Application Region Type 8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region
is active.

IFP Indicates that the IMS Fast Path region is active.

MPP Indicates that the Message Processing region is active.

System Service Call: INQY

Chapter 4. Writing DL/I Calls for System Services 107

Table 12. INQY ENVIRON Data Output (continued)

Information Returned
Length in
Bytes

Actual
Value Explanation

Region Identifier 4 Provides the region identifier. For example, X'00000001'

Application Program Name 8 Provides the name of the application program being run.

PSB Name (currently
allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

� Indicates that there is no transaction.

User Identifier 1 8 Provides the user ID.

� Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

� Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

4 B Indicates an INIT STATUS GROUPB call is issued.

� Indicates that a status group is not initialized.

Address of Recovery Token 2 4 Provides the address of the LL field, followed by the Recovery
Token.

Address of the Application
Parameter String 2

4 Provides the address of the LL field, followed by the
application parameter string.

0 Indicates that the APARM=parameter is not coded in the
EXEC (execute) parameters of the dependent region JCL.

Shared Queues Indicator 4 Indicates IMS is not using Shared Queues.

4 SHRQ Indicates IMS is using Shared Queues.

Note:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY ENVIRON call.
The PSTUSID field is one of the following:

v For message-driven BMP regions that have not completed successful GU calls to the IMS message queue and
for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB currently
scheduled into the BMP region.

v For message-driven BMP regions that have completed successful a GU call and for any MPP region, the
PSTUSID field is derived from the last message retrieved from the message queue, which is usually the input
terminal’s RACF ID. If the terminal has not signed onto RACF, the ID is the input terminal’s LTERM.

2. The pointer identifies a length field (LL) that contains the length of the recovery token and user parameter in
binary, including the 2 bytes required for LL.

Querying the PCB Address: INQY FIND
When the INQY call is issued with the FIND subfunction, the application program is
returned with the PCB address of the requested PCB name. The valid PCB name
that can be passed in AIBRSNM1 are “IOPCB���”, or the name of the alternate
PCB or database PCB as it is defined in the PSB.

On a FIND subfunction, the requested PCB remains unmodified, and no information
is returned in an I/O area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY call.
This process allows the application to analyze the PCB status code to determine if
an NA or NU status code is set in the PCB.

System Service Call: INQY

108 IMS/ESA V6 Appl Pgm: TM

Querying the Program Name: INQY PROGRAM
When you issue the INQY call with the PROGRAM subfunction, the application
program name is returned in the first 8 bytes of the I/O area. The only valid PCB
name that can be passed in AIBRSNM1 is “IOPCB���”.

INQY Return Codes and Reason Codes
When you issue the INQY call, return and reason codes are returned to the AIB.
Status codes can be returned to the PCB. See “Return and Reason Code Tables”
on page 475 for the return and reason codes that apply to INQY. If return and
reason codes other than those that apply to INQY are returned, your application
should examine the PCB to see what status codes are found.

Map of INQY Subfunction to PCB Type
Table 13. Subfunction, PCB, and I/O Area Combinations for the INQY Call

Subfunction I/O PCB
Alternate
PCB DB PCB

I/O Area
Required

FIND OK OK OK NO

Null OK OK NO YES

ENVIRON OK NO NO YES

DBQUERY OK NO NO NO

PROGRAM OK NO NO YES

Restrictions
A CPI Communications driven application program cannot issue an INQY call with
the null subfunction against an I/O PCB.

A batch program cannot issue an INQY call with a null subfunction.

LOG Call
The Log (LOG) call is used to send and write information to the IMS system log.

Format

�� LOG i/o pcb
aib

i/o area ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters
i/o pcb

Specifies the address of the PCB to use for this call. This parameter is an input
and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

System Service Call: INQY

Chapter 4. Writing DL/I Calls for System Services 109

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to
write to the system log. This parameter is an input parameter. This record must
be in the format shown in Figure 16.
The fields must be as follows:

LL or LLLL Specifies a 2-byte field that contains the length of the record.
When you use the AIBTDLI interface, the length of the record is
equal to LL + ZZ + C + text of the record. For the PLITDLI
interface, the length of the record is equal to LLLL + ZZ + C +
the text of the record. When you calculate the length of the log
record, you must account for all of the fields. The total length
you specify includes:

v 2 bytes for LL or LLLL. (For PL/I, include the length as 2,
even though LLLL is a 4-byte field.)

v 2 bytes for the ZZ field.

v 1 byte for the C field.

v n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must
define the length field as a binary fullword.

ZZ Specifies a 2-byte field of binary zeros.

C Specifies a 1-byte field containing a log code, which must be
equal to or greater than X'A0'.

Text Specifies any data to be logged.

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌─────┬────┬──────┬─────────────┐
CEETDLI, │ LL │ ZZ │ C │ Text │
CTDLI and ├─────┼────┼──────┼─────────────┤
PASTDLI interfaces: │ 2 │ 2 │ 1 │ Variable │

└─────┴────┴──────┴─────────────┘

┌───────────┬────┬──────┬─────────────┐
For the │ LLLL │ ZZ │ C │ Text │
PLITDLI ├───────────┼────┼──────┼─────────────┤
interface: │ 4 │ 2 │ 1 │ Variable │

└───────────┴────┴──────┴─────────────┘

Figure 16. Log Record Formats for COBOL, PL/I, C Language, Pascal, and Assembler

System Service Call: LOG

110 IMS/ESA V6 Appl Pgm: TM

Usage
An application program can write a record to the system log by issuing the LOG call.
When you issue the LOG call, you specify the I/O area that contains the record you
want written to the system log. You can write any information to the log, and you
can use log codes to distinguish among various types of information. You can issue
the LOG:

v In the IMS DB/DC environment, and the record is written to the IMS log.

v In the DCCTL environment, and the record is written to the DCCTL log.

Restrictions
The length of the I/O area (including all fields) cannot be larger than the logical
record length (LRECL) for the system log data set minus 4 bytes and the length of
logrec prefix, (which is x’4A’ bytes in length), or the I/O area specified in the
IOASIZE keyword of the PSBGEN statement of the PSB.

RCMD Call
A Retrieve Command (RCMD) call lets an automated operator (AO) application
program retrieve the second and subsequent command response segments after an
ICMD call.

Format

�� RCMD aib i/o area ��

Parameters
aib

Specifies the application interface block (AIB) used for this call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest command

System Service Call: LOG

Chapter 4. Writing DL/I Calls for System Services 111

response segment passed from IMS to the AO application. If the I/O area is not
large enough for all of the information, partial data is returned in the I/O area.

Usage
RCMD lets an AO application retrieve the second and subsequent command response
segments resulting from an ICMD call.

Related Reading: For more information on the AOI exits, see IMS/ESA
Customization Guide.

Table 14 shows, by IMS environment, the types of application programs that can
issue RCMD. RCMD is also supported from a CPI-C driven application program.

Table 14. RCMD Support by Application Region Type

Application Region Type

IMS Environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional
response segments, you must issue RCMD once for each response segment issued
by IMS.

Restrictions
An ICMD call must be issued before an RCMD call.

ROLB Call
The Rollback (ROLB) call backs out messages sent by the application program. For
more information on the ROLB call, see “Backing out to a Prior Commit Point: ROLL,
ROLB, and ROLS Calls” on page 145.

Format

�� ROLB i/o pcb
aib i/o area

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call. This parameter is an input and output
parameter.

System Service Call: RCMD

112 IMS/ESA V6 Appl Pgm: TM

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
An output parameter that specifies the area in your program to which IMS TM
returns the first message segment. For conversational transactions the SPA will
be the first item returned to the application. Your next GN call will then return the
first user segment of the message.

Usage
Issuing a ROLB in a conversational program causes IMS TM to back out the
messages that the application program has sent. If the program issues a ROLB call
and then reaches a commit point without sending the required response to the
originating terminal, IMS TM terminates the conversation and sends the message
DFS2171I NO RESPONSE CONVERSATION TERMINATED to the originating terminal.

If your application program has allocated resources that IMS TM cannot roll back,
the resources are ignored. For example, if your application program issues CPI-C
verbs to allocate resources (for modified DL/I or CPI-C driven programs), ROLB only
affects those resources allocated by IMS. Your application must notify any CPI-C
conversations that a ROLB call was issued.

For CPI-C driven application programs, all messages inserted to nonexpress
alternate PCBs are discarded. Messages inserted to express alternate PCBs are
discarded if the PURG call was not issued against the PCB before the ROLB call was
issued.

Any application program that uses Spool API functions and creates print data sets
can issue the ROLB call. This backs out any print data sets that have not been
released to JES.

Restrictions
The AIB must specify the I/O PCB for this call.

System Service Call: ROLB

Chapter 4. Writing DL/I Calls for System Services 113

ROLL Call
The Roll (ROLL) call backs out output messages sent by a conversational application
program and terminates the conversation. For more information on the ROLL call,
see “Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls” on
page 145.

Format

�� ROLL ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters
The only parameter required for the ROLL call is the call function.

Usage
IMS terminates the application with a U0778 abend.

If you issue a ROLL call during a conversation, IMS TM backs out the update and
cancels output messages. IMS TM also terminates the conversation with a U0778
abend code.

For applications that use the CPI Communications interface, the original transaction
is discarded if it is classified by IMS as a discardable transaction.

Any remote LU 6.2 conversation transactions generated by a modified DL/I or
CPI-C driven application program are deallocated with TYPE (ABEND_SVC).

Any application program that uses Spool API functions and creates print data sets
can issue the ROLL call. This backs out any print data sets that have not been
released to JES.

Related Reading: For information on discardable and non-discardable transactions
see IMS/ESA Application Programming: Design Guide. For more information on LU
6.2, see IMS/ESA Administration Guide: Transaction Manager.

Restrictions
The ROLL call cannot use the AIBTDLI interface.

ROLS Call
The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync
points established by the SETS/ SETU call. For more information on the ROLS and
SETS/SETU calls, see “Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS
Calls” on page 145, and “SETS/SETU Call” on page 116).

System Service Call: ROLL

114 IMS/ESA V6 Appl Pgm: TM

Format

�� ROLS i/o pcb
aib i/o area token

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area. It has the same format as the I/O area supplied on the
SETS/SETU call. This parameter is an output parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier.
This parameter is an input parameter.

Usage
Issuing a ROLS in a conversational program causes IMS TM to back out the
messages that the application program has sent. For conversation transactions, this
means that if the program issues a ROLS call and then reaches a commit point
without sending the required response to the originating terminal, IMS TM
terminates the conversation and sends the message DFS2171l NO RESPONSE,
CONVERSATION TERMINATED to the originating terminal.

When you issue a ROLS call with a token and the messages to be rolled back
include nonexpress messages that are processed by IMS TM, message queue
repositioning might occur. The repositioning can include the initial message
segment, and the original input transaction can be presented again to the IMS TM
application program.

System Service Call: ROLS

Chapter 4. Writing DL/I Calls for System Services 115

Input and output positioning is determined by the SETS/SETU call in standard and
modified DL/I application programs. Input and output positioning does not apply to
CPI-C driven application programs.

The application program must notify any remote transaction programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP
TYPE(ABEND), specifying the transaction program instance (TPI). This causes all
conversations associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device
and IMS TM received the message from APPC/MVS, a discardable transaction is
discarded. Nondiscardable transactions are placed on the suspend queue.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager.

Restrictions
When ROLS is issued during a conversational application program that includes
resources outside of IMS TM (for example, a CPI-C driven application program),
only the IMS TM resources are rolled back. The application program notifies the
remote transactions of the ROLS call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls
because these calls can be used by the application program outside the processing
of print data sets. When these commands are issued, the Spool API takes no action
because these commands cannot be used for the partial backout of print data sets.
No special status codes are returned to the application program to indicate that the
SETS/SETU or ROLS call was issued by an application that is using Spool API.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database.

SETS/SETU Call
The Set Backout Point (SETS) call is used to set an intermediate backout point or to
cancel all existing backout points. The Set Unconditional (SETU) call operates like
the SETS call except that the SETU call isn’t rejected if unsupported PCBs are in the
PSB or if the program uses an external subsystem.

Format

�� SETS i/o pcb
aib i/o area token

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call. This parameter is an input and output
parameter.

System Service Call: ROLS

116 IMS/ESA V6 Appl Pgm: TM

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the area in your program that contains the data that is to be kept by
IMS and returned on the corresponding ROLS call. This parameter is an input
parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier.
This parameter is an input parameter.

Usage
Except for the call names themselves, the SETS and SETU format and parameters
are the same.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call.
The ROLS call operates consistent with the SETS and SETU call backout points.

The meaning of the SC status code for SETS or SETU is as follows:

SETS The SETS call is rejected. The SC status code in the I/O PCB indicates that
either the PSB contains unsupported options or the application program
made calls to an external subsystem.

SETU The SETU call is not rejected. The SC status code indicates that
unsupported PCBs exist in the PSB or the application made calls to an
external subsystem.

Restrictions
The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database.

CPI-C driven transaction programs cannot issue the SETS/SETU call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls.
This is so, because these calls can be used by the application outside the
processing of print data sets. When these commands are issued, the Spool API
takes no action because these commands cannot be used for the partial backout of
print data sets.

System Service Call: SETS/SETU

Chapter 4. Writing DL/I Calls for System Services 117

SYNC Call
The Synchronization Point (SYNC) call is used to request commit point processing.

Format

�� SYNC i/o pcb
aib

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for the call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

Usage
Issue the SYNC call to request that IMS TM process the application program with
commit points for the application program.

Restrictions
The SYNC call is valid only in batch-oriented BMPs.

You cannot issue a SYNC call from a CPI Communications driven application
program.

For important considerations about the use of the SYNC call, see IMS/ESA
Administration Guide: Database Manager.

XRST Call
The Extended Restart (XRST) call is used to restart your program. If you use the
symbolic Checkpoint call in your program, you must use the XRST call. For a
description of the symbolic CHKP call see “CHKP (Symbolic) Call” on page 92.

System Service Call: SYNC

118 IMS/ESA V6 Appl Pgm: TM

Format

�� XRST i/o pcb
aib

i/o area length i/o area �

�

 area length area

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters
i/o pcb

Specifies the I/O PCB to use for this call. This parameter is an input and output
parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eyecatcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This parameter is not used during the XRST call. For
compatibility reasons, this parameter must still be coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this
parameter must still be included in the call, and it must contain a valid address.
You can get a valid address by specifying the name of any area in your
program.

i/o area
Specifies a 30-byte area in your program. This area must be either set to
blanks if starting your program normally or, if performing an extended restart,
have a checkpoint ID.

area length
Specifies a 4-byte field in your program containing the length (in binary) of an
area to restore. This input parameter is optional. You can specify up to seven
area lengths. For each area length, you must also specify the area parameter.

System Service Call: XRST

Chapter 4. Writing DL/I Calls for System Services 119

The number of areas you specify on a XRST call must be less than or equal to
the number of areas you specify on the CHKP calls the program issues. When
you restart the program, IMS TM restores only the areas you specified in the
CHKP call.

area
Specifies the area in your program that you want IMS TM to restore. You can
specify up to seven areas. Each area specified must be preceded by an area
length value. This parameter is an input parameter.

Usage
Programs that wish to issue Symbolic Checkpoint calls (CHKP) must also issue the
Extended Restart call (XRST). The XRST call must be issued only once and should be
issued early in the execution of the program. It does not need to be the first call in
the program. However, it must precede any CHKP call. Any Database calls issued
before the XRST call are not within the scope of a restart.

IMS determines whether to perform a normal start or a restart based on the I/O
area provided by the XRST call or CKPTID= value in the PARM field on the EXEC
statement in your program’s JCL.

Starting Your Program Normally
When you are starting your program normally, the I/O area pointed to in the XRST
call must contain blanks and the CKPTID= value in the PARM field must be nulls.
This indicates to IMS that subsequent CHKP calls are symbolic checkpoints rather
than basic checkpoints. Your program should test the I/O area after issuing the XRST
call. IMS does not change the area when you are starting the program normally.

Restarting Your Program
You can restart the program from a symbolic checkpoint taken during a previous
execution of the program. The checkpoint used to perform the restart can be
identified by entering the checkpoint ID either in the I/O area pointed to by the XRST
call (leftmost justified, with the rest of the area containing blanks) or by specifying
the ID in the CKPTID= field of the PARM= parameter on the EXEC statement in
your program’s JCL. (If you supply both, IMS uses the CKPTID= value specified in
the parm field of the EXEC statement.)

The ID specified can be:

v A 1 to 8-character extended checkpoint ID

v A 14-character ″time stamp″ ID from message DFS05401, where:

IIII is the region ID

DDD is the day of the year

HHMMSST is the time in hours, minutes, seconds, and tenth of a second

v The 4-character constant ″LAST″. (BMPs only: this indicates to IMS that the last
completed checkpoint issued by the BMP will be used for restarting the program)

The system message DFS05401 supplies the checkpoint ID and the time stamp.

The system message DFS6821 supplies the checkpoint ID of the last completed
checkpoint which can be used to restart a batch program or batch message
processing program (BMP) that was abnormally terminated.

If the program being restarted is in either a batch region or a BMP region, and the
checkpoint log records no longer reside on the Online Log Data Set (OLDS) or
System Log Data Set (SLDS), the //IMSLOGR DD defining the log data set must be

System Service Call: XRST

120 IMS/ESA V6 Appl Pgm: TM

supplied in the JCL for the BATCH or BMP region. IMS reads these data sets and
searches for the checkpoint records with the ID that was specified.

At the completion of the XRST call, the I/O area always contains the 8-character
checkpoint ID used for the restart. An exception exists when the checkpoint ID is
equal to 8 blank characters; the I/O area then contains a 14-character time stamp
(IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an
XRST call are blanks.

Restrictions
If your program is being started normally, the first 5 bytes of the I/O area must be
set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the EXEC
statement is not used, then the rightmost bytes beyond the checkpoint ID being
used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP applications.

System Service Call: XRST

Chapter 4. Writing DL/I Calls for System Services 121

System Service Call: XRST

122 IMS/ESA V6 Appl Pgm: TM

Chapter 5. More about Message Processing

This chapter explains additional message processing concepts and techniques that
extend what IMS TM application programs can do. It also provides examples of
message-driven program structure in assembler, C language, COBOL, Pascal, and
PL/I.

In this Chapter:

v “Sending Messages to Other Terminals and Programs”

v “Communicating with Other IMS TM Systems Using MSC” on page 128

v “IMS Conversations” on page 131

v “Processing Conversations with APPC” on page 141

v “Processing Conversations with OTMA” on page 145

v “Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls” on
page 145

v “Backing out to an Intermediate Backout Point: SETS/SETU and ROLS” on
page 149

v “Writing a Message-Driven Program” on page 151

v “Coding DC Calls and Data Areas” on page 152

Sending Messages to Other Terminals and Programs
When an application program processes a message from a terminal, it usually
sends the response to the terminal that sent the input message. But sometimes you
might want to send output messages to a terminal other than the originating
terminal, or to other terminals in addition to the originating terminal. You might also
want to send messages to other application programs.

To send a message to a different terminal or to an application program, issue the
ISRT call, but reference an alternate PCB instead of the I/O PCB. Alternate PCBs
can be defined for a particular terminal or program, or they can be defined as
modifiable. If the alternate PCB is not modifiable, only issue an ISRT call referencing
the alternate PCB to send a message to the terminal or program that it represents.
If the alternate PCB is modifiable, set the destination for the alternate PCB before
issuing the ISRT call. To do this, use a CHNG call.

When you use an alternate PCB:

v If you want to send output messages to one alternate destination, define the
alternate PCB for that destination.

v If you want to send output messages to more than one alternate destination, and
you want to be able to change the destination of the alternate PCB, define the
alternate PCB as modifiable during PSB generation. Then, before you issue the
ISRT call, you issue a CHNG call to set the destination of the alternate modifiable
PCB for the destination program or terminal.

The express alternate PCB is a special kind of alternate PCB that is defined
during PSB generation, by specifying EXPRESS=YES.

When you use an express alternate PCB, messages you send using that PCB
are sent to their final destinations immediately. Messages sent with other PCBs
are sent to temporary destinations until the program reaches a commit point.
Messages sent with express PCBs are sent if the program subsequently
terminates abnormally, or issues one of the rollback calls: ROLL, ROLB, or ROLS.

© Copyright IBM Corp. 1974, 2000 123

Using an express alternate PCB in this kind of situation is a way to ensure that
the program can notify the person at the terminal, even if abnormal termination
occurs. For all PCBs, when a program abnormally terminates or issues a ROLL,
ROLB, or ROLS call, messages inserted but not made available for transmission are
cancelled, while messages made available for transmission are never cancelled.

For a nonexpress PCB, the message is not made available for transmission to its
destination until the program reaches a commit point. The commit point occurs
when the program terminates, issues a CHKP call, or requests the next input
message and the transaction has been defined with MODE=SNGL.

For an express PCB, when IMS TM knows that it has the complete message, it
makes the message available for transmission to the destination. In addition to
occurring at a commit point, this also occurs when the application program issues
a PURG call using that PCB or requests the next input message.

A PSBGEN can also specify an alternate PCB as an alternate response PCB
defined during PSB generation.

v If you want to send a message to an LU 6.2 device, you can specify the LU 6.2
descriptor name that is associated with that device.

For more information on sending messages to alternate PCBs, see “Sending
Messages to Other Terminals and Programs” on page 123.

Sending Messages to Other Terminals
To reply to a different terminal, also use the ISRT call, but use an alternate PCB
instead of the I/O PCB.

Just as the I/O PCB represents the terminal that sent the message, an alternate
PCB represents the terminal to which you want to send the message.

To One Alternate Terminal
If you are going to send messages to only one alternate terminal, you can define
the alternate PCB for that terminal during PSB generation. When you define an
alternate PCB for a particular destination, you cannot change that destination during
program execution. Each time you issue an ISRT call that references that PCB, the
message goes to the logical terminal whose name was specified for the alternate
PCB. To send a message to that terminal, place one message segment at a time in
the I/O area, and issue an ISRT call referring to the alternate PCB, instead of the
I/O PCB.

To Several Alternate Terminals
To send messages to several terminals, you can define the alternate PCB as
modifiable during PSB generation. Therefore, the alternate PCB represents more
than one alternate terminal. You can change the destination while your program is
running.

Before you can set or change the destination of an alternate PCB, you must
indicate to IMS TM that the message you have been building so far with that PCB
is finished. To do this, issue a PURG call.

PURG allows you to send multiple output messages while processing one input
message. When you do not use PURG, IMS TM groups message segments into a
message and sends them when the program issues a GU for a new message,
terminates, or reaches a commit point. A PURG call tells IMS TM that the message
built against this I/O PCB or alternate PCB (by issuing one ISRT call per message
segment) is complete. IMS TM collects the message segments that you have

Sending Messages

124 IMS/ESA V6 Appl Pgm: TM

inserted to one PCB as one message and sends it to the destination represented
by the alternate PCB you have referenced.

A PURG call that does not contain the address of an I/O area indicates to IMS TM
that this message is complete. If you include an I/O area in the call, PURG acts as an
ISRT call as well. IMS TM treats the data in the I/O area as the first segment of a
new message. When you include an I/O area on a PURG call, you can also include a
MOD name to change the format of the screen for this message. Although
specifying the MOD name is optional, when you use it, you can specify it only once
per message or in only the first ISRT or PURG that begins the message.

To set the destination of a modifiable alternate PCB during program execution, you
use a CHNG call. When you issue the CHNG call you supply the name of the logical
terminal to which you want to send the message. The alternate PCB you use then
remains set with that destination until you do one of the following:

v Issue another CHNG call to reset the destination.

v Issue another GU to the message queue to start processing a new message. In
this case, the name still appears in the alternate PCB, even though it is no longer
valid.

v Terminate your program. When you do this, IMS TM resets the destination to
blanks.

The first 8 bytes of the alternate PCB contain the name of the logical terminal to
which you want to send the message.

When you issue a CHNG call, give IMS TM the address of the alternate PCB you are
using and the destination name you want set for that alternate PCB.

When you use the PURG call, you give IMS TM only the address of the alternate
PCB. IMS TM sends the message you have built using that PCB.

To indicate an error situation, you can send a message by issuing an ISRT call
followed by a PURG call against an express PCB. These calls send the message to
its final destination immediately.

Example: Suppose the program goes through these steps:

1. The program issues a GU call (and GN calls, if necessary) to retrieve an input
message.

2. While processing the message, the program encounters an abnormal situation.

3. The program issues a PURG call to indicate to IMS TM the start of a new
message.

4. The program issues a CHNG call to set the destination of an express PCB to the
name of the originating logical terminal. The program can get this name from
the first 8 bytes of the I/O PCB.

5. The program issues ISRT calls as necessary to send message segments. The
ISRT calls reference the express PCB.

6. The program issues a PURG call referencing the express PCB. IMS TM then
sends the message to its final destination.

7. The program can then terminate abnormally, or it can issue a ROLL, ROLB, or
ROLS call to back out its database updates and cancel the output messages it
has created since the last commit point.

Sending Messages

Chapter 5. More about Message Processing 125

If your output messages contained three segments, and you used the PURG call to
indicate the end of a message (and not to send the next message segment), you
could use this call sequence:
CHNG ALTPCB1, LTERMA
ISRT ALTPCB1, SEG1
ISRT ALTPCB1, SEG2
ISRT ALTPCB1, SEG3
PURG ALTPCB1
CHNG ALTPCB1, LTERMB
ISRT ALTPCB1, SEG4
ISRT ALTPCB1, SEG5
ISRT ALTPCB1, SEG6

Sending Messages to Other Application Programs
A program-to-program message switch occurs when one MPP sends a message to
another online program (another MPP or a transaction-oriented BMP). To do this,
use an alternate PCB and use some of the same options in an alternate PCB to
send messages to alternate terminals. If you send messages to only one application
program, then you can define the alternate PCB with the transaction code for that
application program during PSB generation. If you send messages to more than
one application program, you can define the alternate PCB as modifiable.

If you use an alternate modifiable PCB, IMS TM does some security checking when
you issue the CHNG call to set the destination of the alternate modifiable PCB. The
terminal that enters the transaction code that causes the message switch must be
authorized to enter the transaction code that the CHNG call places in the alternate
modifiable PCB. IMS TM does not do any security checking when you issue the
ISRT call.

The security checking that is done in RACF when you issue a CHNG call for a
program-to-program message switch is the same checking that is done in an
environment that uses the Security Maintenance utility (SMU). When an IMS TM
application program issues a CHNG call, that call invokes RACF, and a check is
made to determine whether the originating terminal is authorized for the transaction
code just issued. If, instead of using the CHNG call, the program issues an ISRT call
against a preset alternate PCB, no security check is made, regardless of the
environment.

What you consider when you do a program-to-program message switch is similar to
what you consider when you communicate with a logical terminal. You have to
remember to:

v Create an I/O area large enough to hold the largest segment that you are
sending.

v Use an alternate PCB, not the I/O PCB, to send the message.

v Issue a CHNG call before the ISRT call to place the program’s transaction code in
the first field of the alternate PCB. If the alternate PCB was set to this transaction
code in the PSBGEN, then you just issue the ISRT call.

v IMS TM must know the transaction code. Define it at system definition.

v A nonconversational program can do a program-to-program message switch to
another nonconversational program, but not to a conversational program.

v A conversational program can do a program-to-program message switch to either
another conversational program or a nonconversational program.

A message switch to another conversational program transfers the SPA and the
responsibility to respond to the originating terminal to the new application program.

Sending Messages

126 IMS/ESA V6 Appl Pgm: TM

(See “Passing the Conversation to another Conversational Program” on page 137.)
A message switch to a nonconversational program does not change the
responsibilities of the conversational program. The conversational program must still
return the SPA to IMS TM (if the SPA has been modified) and must respond to the
originating terminal. Figure 17 shows the format for an output message to an
application program.

As you can see, the format is the same as for output messages to terminals. Z1
and Z2 are fields that must contain binary zeros. These fields are reserved for IMS.
The text field contains the message segment that you want to send to the
application program.

If the program that is processing the message expects the transaction code, include
Program B’s transaction code as part of the message text of the message’s first
segment, because IMS TM does not automatically include the transaction code in
the first segment of a switched message. Including the transaction code in the first
segment’s message text keeps the first segments of all messages in the same
format, regardless of whether they are sent from terminals or other programs.

How the VTAM I/O Facility Affects Your VTAM Terminal
VTAM terminals can fail to respond to requests sent by IMS. The master terminal
operator or an automated operator interface application program can optionally
activate a “timeout” facility. This allows a message stating a specific amount of time
has passed to be sent to the master terminal operator.

IMS TM can be set up to do one of the following:

v Do nothing, which means that your terminal remains inactive. This is the default.

v Send a message to the master terminal operator stating that the specified period
of time has passed. The operator can then determine what action, if any, should
be taken.

v Send a message to the master terminal operator stating that the specified period
of time has passed.IMS TM then issues the VTAM VARY NET, INACT command
followed by a VTAM VARY NET, ACT command. If the terminal is defined to IMS
TM as non-shared and operable, and if IMS TM is not shutting down, IMS TM
issues an OPNDST for the terminal.

Restriction: This option does not apply to ISC terminals. If your installation
chooses this option and an ISC terminal times out, a message is sent to the

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌─────┬────┬────┬──────────────┐
CEETDLI, │ LL │ Z1 │ Z2 │ Text │
CTDLI and ├─────┼────┼────┼──────────────┤
PASTDLI interfaces: │ 2 │ 1 │ 1 │ variable │

└─────┴────┴────┴──────────────┘

┌──────────┬────┬────┬──────────────┐
For the │ LLLL │ Z1 │ Z2 │ Text │
PLITDLI ├──────────┼────┼────┼──────────────┤
interface: │ 4 │ 1 │ 1 │ variable │

└──────────┴────┴────┴──────────────┘

Figure 17. Message Format for Program-to-Program Message Switch

Sending Messages

Chapter 5. More about Message Processing 127

master terminal stating that the specified period of time has passed. The operator
can determine what action, if any, should be taken.

Communicating with Other IMS TM Systems Using MSC
In addition to communicating with programs and terminals in your IMS TM system,
your program can communicate with terminals and programs in other IMS TM
systems through Multiple Systems Coupling (MSC). MSC makes this possible by
establishing links between two or more separate IMS TM systems. The terminals
and transaction codes within each IMS TM system are defined as belonging to that
system. Terminals and transaction codes within your system are called “local,” and
terminals and transaction codes defined in other IMS TM systems connected by
MSC links are called “remote.”

Related Reading: For an overview of MSC, see IMS/ESA General Information. For
more detailed information, see IMS/ESA Administration Guide: Transaction
Manager.

Implications of MSC for Program Coding
For the most part, communicating with a remote terminal or program does not affect
how you code your program. MSC handles the message routing between systems.

Example: If you receive an input message from a remote terminal, and you want
to reply to that terminal, you issue an ISRT call against the I/O PCB—just as you
would reply to a terminal in your system.

In the following two situations, MSC might affect your programming:

v When your program needs to know whether an input message is from a remote
terminal or a local terminal. For example, if two terminals in separate IMS TM
systems had the same logical terminal name, your program’s processing might
be affected by knowing which system sent the message.

v When you want to send a message to an alternate destination in another IMS
TM system.

Restriction: If a transaction allocated by an LU 6.2 device is destined to a remote
system through MSC links, IMS rejects the transaction with the message
TP_NOT_Avail_No_Retry.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager.

Directed routing makes it possible for your program to find out whether an input
message is from your system or from a remote system, and to set the destination of
an output message for an alternate destination in another IMS TM system. With
directed routing, you can send a message to an alternate destination in another
IMS TM system, even if that destination is not defined in your system as remote.

Restriction: MSC directed routing does not support a program-to-program switch
between conversational transactions.

Related Reading: For more information about MSC directed routing, see IMS/ESA
Administration Guide: System.

Sending Messages

128 IMS/ESA V6 Appl Pgm: TM

Receiving Messages from Other IMS TM Systems
When an application program retrieves an input message, the program can
determine whether the input message is from a terminal or program in its IMS TM
system, or from a terminal or program in another IMS TM system. There might be
situations in which the application program’s processing is changed if the input
message is from a remote terminal, rather than from a local terminal.

Example: Suppose that your IMS TM system is system A, and that it is linked to
another IMS TM system called system B. MSC links are one-way links. The link
from system A to system B is called LINK1, and the link from system B to system A
is called LINK2. The application program named MPP1 runs in system A. The
logical terminal name of the master terminals in both systems is MASTER.
Figure 18 shows systems A and B.

If the MASTER terminal in system B sends a message indicating that the system is
shutting down to MPP1 in system A, MPP1 needs to know that the message is from
MASTER in system B and not MASTER in system A.

If you have specified ROUTING=YES on the TRANSACT macro during IMS TM
system definition, IMS TM does two things to indicate to the program that the
message is from a terminal in another IMS TM system.

First, instead of placing the logical terminal name in the first field of the I/O PCB,
IMS TM places the name of the MSC logical link in this field. In the example, this is
LINK1. This is the logical link name that was specified on the MSNAME macro at
system definition. However, if the message is subsequently sent back to the
originating system, the originating LTERM name is reinstated in the first field of the
I/O PCB.

Second, IMS TM turns on a bit in the field of the I/O PCB that is reserved for IMS.
This is the second bit in the first byte of the 2-byte field. Figure 19 on page 130
shows the location of this bit within the reserved field.

┌────────┐
┌─────────┐ │ MPP1 │ ┌──────────┐
│ MASTER │ │ │ │ MASTER │
└────┬────┘ │ │ └─────┬────┘

│ └────┬───┘ │
│ │ │
│ │ │

┌──────┴────────────────┴───────┐ LINK1 ┌───────────┴───────────┐
│ ├──────────>│ │
│ SYSTEM A │<──────────┤ SYSTEM B │
│ │ LINK2 │ │
└───────────────────────────────┘ └───────────────────────┘

Figure 18. MSC Example

Communicating with Other IMS TM Systems

Chapter 5. More about Message Processing 129

MPP1 tests this bit to determine if the message is from MASTER in system A. If it
is, MPP1 should terminate immediately. However, if the message is from MASTER
in system B, MPP1 could perform some local processing and send transactions for
system B to a message queue so that those transactions could be processed later
on, when system B is up.

Sending Messages to Alternate Destinations in Other IMS TM Systems
To send an output message to an alternate terminal in another IMS TM system,
your system must have an MSC link with the system to which you want to send the
message. To do this, issue a CHNG call against an alternate PCB and supply the
name of the MSC link (in the example this is LINK1) that connects the two IMS TM
systems.

Example: If you were sending a message to TERMINAL 1 in system B after you
received a message from some other terminal, you would first issue this CHNG call:
CHNG altpcb, LINK1

Then issue an ISRT call (or calls) to send the message just as you would send a
message to a local terminal.

Figure 20 shows the format of this type of output message.

The formats of the fields in a directed routing output message are:

v The LL and ZZ fields are 2 bytes each (For the PLITDLI interface, use the 4-byte
field LLLL). LL (or LLLL) contains the total length of the message. This is the

│
│
H

┌────────────────────────┬────────────────────────┐
│ 0 1 2 3 4 5 6 7 │ 8 9 10 11 12 13 14 15 │
├────────────────────────┼────────────────────────┤
│ 1st byte │ 2nd byte │
├────────────────────────┴────────────────────────┤
│ RESERVED FOR IMS │
│ 2 bytes │
└───┘

Figure 19. Directed Routing Bit in I/O PCB

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌────┬────┬───────────┬───┬──────────────┐
CEETDLI, │ LL │ ZZ │ DESTNAME │ b │ TEXT │
CTDLI and ├────┼────┼───────────┼───┼──────────────┤
PASTDLI interfaces: │ 2 │ 2 │ 1 ─ 8 │ 1 │ variable │

└────┴────┴───────────┴───┴──────────────┘

┌─────────┬────┬───────────┬───┬──────────────┐
For the │ LLLL │ ZZ │ DESTNAME │ b │ TEXT │
PLITDLI ├─────────┼────┼───────────┼───┼──────────────┤
interface: │ 4 │ 2 │ 1 ─ 8 │ 1 │ variable │

└─────────┴────┴───────────┴───┴──────────────┘

Figure 20. Directed Routing Output Message Format

Communicating with Other IMS TM Systems

130 IMS/ESA V6 Appl Pgm: TM

sum of all of the fields in the message, including the LL field (and in PL/I, LLLL
contains the total length minus 2). ZZ is reserved for IMS.

v The destination name, DESTNAME, is the name of the logical terminal to which
you are sending the message. This field is from 1 to 8 bytes long and it must be
followed by a blank.

If the destination in the other system is a terminal, IMS TM removes the
DESTNAME from the message. If the destination in the other system is a
program, IMS TM does not remove the DESTNAME.

v The TEXT field contains the text of the message. Its length depends on the
message you are sending.

If your message contains a security violation, MSC detects it in the receiving
system (in this case, system B), and reports it to the person at the originating
terminal (system A).

IMS Conversations
Definitions:

v A conversational program is an MPP that processes transactions made up of
several steps. It does not process the entire transaction at the same time. A
conversational program divides processing into a connected series of
terminal-to-program-to-terminal interactions. You use conversational processing
when one transaction contains several parts.

v A nonconversational program receives a message from a terminal, processes the
request, and sends a message back to the terminal. A conversational program
receives a message from a terminal, and replies to the terminal, but saves the
data from the transaction in a scratchpad area (SPA). Then, when the person at
the terminal enters more data, the program has the data it saved from the last
message in the SPA, so it can continue processing the request without the
person at the terminal having to enter the data again.

A Conversational Example
For this example, suppose that you want to find out if someone can qualify for a car
loan. This inquiry contains two parts. First, you give the name and address of the
person requesting the loan and the number of years for which the person wants the
loan. After you give this information, IMS TM asks you for the information on the
car: model, year, and cost. You enter this information, IMS TM invokes the program
that processes this information, and the program tells you whether the loan can be
granted.

If you use MFS, the process involves these steps:

1. Enter the format command (/FORMAT) and the MOD name. This tells IMS to
format the screen in the way defined by this MOD.

If the MOD name is CL, the command is:
/FORMAT CL

IMS TM then takes that MOD from the MFS library and formats your screen in
the way defined by the MOD. When the MOD for the car loan application
formats your screen, it looks like this:
CARLOAN
NAME:
ADDRESS:
YEARS:

Communicating with Other IMS TM Systems

Chapter 5. More about Message Processing 131

The word “CARLOAN” is the transaction code for this application. Each
transaction code is associated with an application program, so when IMS TM
receives the transaction code “CARLOAN,”IMS TM knows what application
program to schedule for this request.

2. Enter the customer’s name and address, and the length of the loan. When you
enter this information, your screen looks like this:
CARLOAN
NAME: JOHN EDWARDS
ADDRESS: 463 PINEWOOD
YEARS: 5

3. IMS TM reads the transaction code, CARLOAN, and invokes the program that
handles that transaction code. MFS formats the information from the screen for
the MPP’s I/O area by using the DIF and the MID.

When the MPP issues its first call, which is usually a GU for the SPA, IMS TM
clears the SPA to binary zeros and passes it to the application program.

4. Next, the MPP processes the input data from the terminal and does two things.
It moves the data that it will need to save to the SPA, and it builds the output
message for the terminal in the I/O area. The information that the MPP saves in
the SPA is the information the MPP will need when the second part of the
request comes in from the terminal. You do not save information in the SPA that
you can get from the database. In this example, you save the name of the
customer applying for the loan, because if the customer is granted the loan, the
program uses the customer name to locate the information to be updated in the
database.

The program then issues an ISRT call to return the SPA to IMS, and another
ISRT call to send the output message to the terminal.

The response that the MPP sends to the terminal gives IMS TM the name of the
MOD to format the screen for the next cycle of the conversation. In that cycle,
you need to supply the model, year, and cost of the car that John Edwards
wants to buy. Your screen looks like this:
MODEL:
YEAR:
COST:

5. IMS TM again uses the DIF and MID associated with the transaction code, and
sends the information back to the MPP. The MPP has not been running all this
time. when IMS TM receives the terminal input with the transaction code
CARLOAN, IMS TM invokes the MPP that processes that transaction again for
this cycle of the conversation.

6. IMS TM returns the updated SPA to the MPP when the MPP issues a GU, then
returns the message to the MPP when the MPP issues a GN. The MPP does the
required processing (in this case, determining whether the loan can be granted
and updating the database if necessary), and is then ready to end the
conversation. To do this, the MPP blanks out the transaction code in the SPA,
inserts it back to IMS, then sends a message to the terminal saying whether the
loan can be granted.

Conversational Structure
Structuring your conversational program depends on the interactions between your
program and the person at the terminal. To understand what conversational
processing involves, see “IMS Conversations” on page 131.

Before structuring your program, you need to know:

v What should the program do in an error situation?

IMS Conversations

132 IMS/ESA V6 Appl Pgm: TM

When a program in a conversation terminates abnormally, IMS TM backs out
only the last cycle of the conversation. A cycle in a conversation is one
terminal/program interaction. Because the conversation can terminate abnormally
during any cycle, you should be aware of some things you can do to simplify
recovery of the conversation:

– The ROLB or ROLS call can be used in conversational programs to back out
database updates that the program has made since the last commit point.
ROLL can also be used in conversational programs, but terminates the
conversation. “Using ROLB, ROLL, and ROLS in Conversations” on page 137
explains how these calls work with conversational processing.

– If possible, updating the database should be part of the last cycle of the
conversation so that you do not have different levels of database updates
resulting from the conversation.

– If your program encounters an error situation and it has to terminate, it can
use an express alternate PCB to send a message to the originating terminal,
and, if desired, to the master terminal operator.

To do this, the program issues a CHNG call against the express alternate PCB
and supplies the name of the logical terminal from the I/O PCB, then an ISRT
call that references that PCB and the I/O area that contains the message. The
program can then issue another CHNG call to set the destination of the express
alternate PCB for the master terminal, and another ISRT call that references
that PCB, and the I/O area that contains the output message.

v Does your application program process each cycle of the conversation?

A conversation can be processed by one or several application programs. If your
program processes each stage of the conversation (in other words, your program
processes each input message from the terminal), the program has to know what
stage of the conversation it is processing when it receives each input message.

When the person at the terminal enters the transaction code that starts the
conversation, IMS TM clears the SPA to binary zeros and passes the SPA to the
program when the program issues a GU call. On subsequent passes, however,
the program has to be able to tell which stage of the conversation it is on so that
it can branch to the section of the program that handles that processing.

One technique that the program can use to determine which cycle of the
conversation it is processing is to keep a counter in the SPA. The program
increments this counter at each stage of the conversation. Then, each time the
program begins a new cycle of the conversation (by issuing a GU call to retrieve
the SPA), the program can check the counter in the SPA to determine which
cycle it is processing, then branch to the appropriate section.

v How can your program pass control of the conversation to another
conversation program?

Sometimes it is more efficient to use several application programs to process a
conversation. This does not affect the person at the terminal. It depends on the
processing that is required.

In the car loan example, one MPP could process the first part of the conversation
(processing the name, address, and number of years), and another MPP could
process the second part of the conversation (processing the data about the car
and responding with the status of the loan).

A program can:

– Reply to the originating terminal using a deferred program switch.

IMS Conversations

Chapter 5. More about Message Processing 133

– Pass the SPA (and, optionally, a message) to another conversational program
without responding to the terminal using an immediate program switch. In this
case, it is the next program’s responsibility to respond to the originating
terminal.

Definitions:

- A deferred program switch responds to the terminal but causes the next
input from the terminal to go to another conversational program.

- An immediate program switch passes the conversation directly to another
conversational program.

A conversational program must:

1. Retrieve the SPA and the message using GU and GN calls.

If your MPP is starting this conversation, test the variable area of the SPA for
zeros to determine if this is the beginning of the conversation. If the SPA
does not contain zeros, it means that you started the conversation earlier and
that you are now at a later stage in the conversation. If this is true, you would
branch to the part of your program that processes this stage of the
conversation to continue the conversation.

If another MPP has passed control to your MPP to continue the conversation,
the SPA contains the data you need to process the message, so you do not
have to test it for zeros. Start processing the message immediately.

2. Process the message, including handling any necessary database access.

3. Send the output message to the terminal by using an ISRT call against the
I/O PCB. This step can follow step 4.

4. Store the data (that your program, or the program that you pass control to,
needs to continue processing) in the SPA using an ISRT call to the I/O PCB.
(This step can precede step 3.) IMS TM determines which segment is the
SPA by examining the ZZZZ field of the segment shown in Figure 21 on
page 135.

To end the conversation, move blanks to the area of the SPA that contains the
transaction code, and then insert the SPA back to IMS TM by issuing an ISRT call
and referencing the I/O PCB.

If your MPP passes the conversation to another conversational program, the
steps after the program processes the message are somewhat different. “Passing
the Conversation to another Conversational Program” on page 137 explains this.

Also, your program should be designed to handle the situation that occurs when
the first GU call to the I/O PCB does not return a message to the application
program. This can happen if the person at the terminal cancels the conversation
by entering the /EXIT command before the program issues a GU call. (This
happens if the message from this terminal was the only message in the message
queue for the program.)

What the SPA Contains
The SPA that IMS TM gives your program when you issue a GU contains the four
parts shown in Figure 21 on page 135.

IMS Conversations

134 IMS/ESA V6 Appl Pgm: TM

The SPA format fields are:

LL or LLLL
A length field that gives the total length of the SPA. This length includes 2 bytes
for the LL field. (For the PLITDLI interface, use a 4-byte field. Its contents
include 4 bytes for LLLL, minus 2.)

ZZZZ
A 4-byte field reserved for IMS TM that your program must not modify.

TRANCODE
The 8-byte transaction code for this conversation.

User Work Area
A work area that you use to save the information that you need to continue the
conversation. The length of this area depends on the length of the data you
want to save. This length is defined at system definition.

When your program retrieves the SPA with a GU to start the conversation, IMS TM
removes the transaction code from the message. In your first message segment
you receive only the data from the message that the person at the terminal entered.

The following list indicates the ways that an application program processes the
SPA. The program must:

v Not modify the first 6 bytes of the SPA (LL and ZZZZ). IMS TM uses these fields
to identify the SPA.

If the program modifies the SPA, the program must return the SPA to IMS TM (or,
for a program switch, to the other program).

v Not return the SPA to IMS TM more than once during one cycle of the
conversation.

v Not insert the SPA to an alternate PCB that represents a nonconversational
transaction code or a logical terminal. The program can use an alternate
response PCB if it represents that same physical terminal as the originating
logical terminal.

Restriction: If you are using MFS, the IMS TM does not always remove the
transaction code.

For the
AIBTDLI,
ASMTDLI,
CBLTDLI, ┌────┬──────┬───────────┬─────────────────┐
CEETDLI, │ LL │ ZZZZ │ TRANCODE │ User Work Area │
CTDLI and ├────┼──────┼───────────┼─────────────────┤
PASTDLI interfaces: │ 2 │ 4 │ 8 │ variable │

└────┴──────┴───────────┴─────────────────┘

┌─────────┬──────┬───────────┬─────────────────┐
For the │ LLLL │ ZZZZ │ TRANCODE │ User Work Area │
PLITDLI ├─────────┼──────┼───────────┼─────────────────┤
interface: │ 4 │ 4 │ 8 │ variable │

└─────────┴──────┴───────────┴─────────────────┘

Figure 21. SPA Format

IMS Conversations

Chapter 5. More about Message Processing 135

What Messages Look Like in a Conversation
Because the first segment contains the SPA, conversational input messages are
made up of at least two segments. The input message starts in the second
message segment.

The input message segment in a conversation contains only the data from the
terminal. During the first step in the conversation, IMS TM removes the transaction
code from the input message and places it in the SPA. When the program issues
the first GU, IMS TM returns the SPA. To retrieve the first message segment, the
program must issue a GN.

The format for the output messages that you send to the terminal is no different
than the format for output messages in nonconversational programs.

Saving Information in the SPA
After you have processed the message and are ready to reply to the terminal, you
can save the necessary data in the SPA. The part of the SPA in which you save
data is the work area portion. Use the ISRT call to save data to the work area. This
is a special use of the ISRT call, because you are not sending the SPA to a
terminal, but rather saving it for future use.

If your program processes each stage of the conversation, you just issue an ISRT
call to the I/O PCB and give the name of the I/O area that contains the SPA. For
example:
ISRT I/O PCB, I/O AREA

This returns the updated SPA to IMS TM so that IMS TM can pass it to your
program at the next cycle of the conversation.

If you do not modify the SPA, you do not need to return it to IMS. However, the
SPA will be passed by IMS TM to your program at the next cycle of the
conversation.

Replying to the Terminal
For a conversation to continue, the originating terminal must receive a response to
each of its input messages. The person at the terminal cannot enter any more data
to be processed (except IMS TM commands) until the response has been received
at the terminal.

To continue the conversation, the program must respond to the originating terminal
by issuing the required ISRT calls to send the output message to the terminal. To
send a message to the originating terminal, the ISRT calls must reference either the
I/O PCB or an alternate response PCB. Use an alternate response PCB in a
conversation when the terminal you are responding to has two components—for
example, a printer and a punch—and you want to send the output message to a
component that is separate from the component that sent the input message. If the
program references an alternate response PCB, the PCB must be defined for the
same physical terminal as the logical terminal that sent the input message.

The program can send only one output message to the terminal for each input
message. Output messages can contain multiple segments, but the program cannot
use the PURG call to send multiple output messages. If a conversational program
issues a PURG call, IMS TM returns an AZ status code to the application program
and does not process the call.

IMS Conversations

136 IMS/ESA V6 Appl Pgm: TM

Using ROLB, ROLL, and ROLS in Conversations
Issuing a ROLB or ROLS in a conversational program causes IMS TM to back out the
messages that the application program has sent. This means that, if the program
issues a ROLB or ROLS and then reaches a commit point without sending the required
response to the originating terminal, IMS TM terminates the conversation and sends
the message DFS2171I NO RESPONSE CONVERSATION TERMINATED. to the originating
terminal.

If you issue ROLL during a conversation, IMS TM backs out the updates and cancels
output messages, but it also terminates the conversation.

Passing the Conversation to another Conversational Program
A conversational program can pass the conversation to another conversational
program in two ways:

v A deferred switch.

The program can respond to the terminal but cause the next input from the
terminal to go to another conversational program by:

– Issuing an ISRT call against the I/O PCB to respond to the terminal

– Placing the transaction code for the new conversational program in the SPA

– Issuing an ISRT call referencing the I/O PCB and the SPA to return the SPA to
IMS TM

IMS TM then routes the next input message from the terminal to the program
associated with the transaction code that was specified in the SPA. Other
conversational programs can continue to make program switches by changing
the transaction code in the SPA.

v An immediate switch.

The program can pass the conversation directly to another conversational
program by issuing an ISRT call against the alternate PCB that has its destination
set to the other conversational program.

The first ISRT call must send the SPA to the other program, but the program
passing control can issue subsequent ISRT calls to send a message to the new
program. If the program does this, in addition to routing the SPA to the other
conversational program, IMS TM updates the SPA as if the program had returned
the SPA to IMS. If the program does an immediate switch, the program cannot
also return the SPA to IMS TM or respond to the original terminal.

Restrictions on Passing the Conversation
The following restrictions apply to passing the conversation to another
conversational program:

v When an immediate program switch occurs and the MPP receives an XE status
code, the program attempts to insert the SPA to an alternate express PCB.
Remove the EXPRESS=YES option from the PCB or define and use another
PCB that is not express. This restriction prevents the second transaction from
continuing the conversation if the first transaction abends after inserting the SPA.

The person at the terminal can issue the /SET CONV XX command, where XX is
the program that is to be scheduled in order to process the next step of the
conversation.

v The SPA size for a conversational program-to-program switch on a remote MSC
system also has restrictions when the source system (where the inputting
terminal resides) or an intermediate MSC system is IMS/ESA Version 5 or earlier:

IMS Conversations

Chapter 5. More about Message Processing 137

– When the ISRT occurs in the local IMS/ESA Version 5 system, conversational
program-to-program switches can occur to a transaction with a SPA that is
larger than, smaller than, or equal to the SPA size of the current transaction.

– If the SPA ISRT is on a remote MSC system, and is going back to the
inputting terminal on the source IMS system, the SPA must be smaller than or
equal to the SPA size of the current transaction.

– If the SPA ISRT is on a remote MSC system, and the destination is a
transaction, the SPA must be equal in size to the SPA of the current
transaction.

Defining the SPA Size
Define the SPA size with the TRANSACT macro. An option to capture truncated
data is also defined with the TRANSACT macro. The format is:
TRANSACT SPA=(size,STRUNC|RTRUNC)

The default is to support truncated data (STRUNC). When a conversation is initially
started, and on each program switch, the truncated data option is checked and set
or reset as specified. When the truncated data option is set, it remains set for the
life of the conversation, or until a program switch occurs to a transaction that
specifies that the option be reset.

Example: Assume you have three transactions defined as follows:

TRANA SPA=100

TRANB SPA=050

TRANC SPA=150

For TRANC to receive the truncated data (which is the second 50 bytes from
TRANA that TRANB does not receive) from TRANA, one of the following sets of
specifications can be used:

v TRANA - STRUNC or none, TRANB - STRUNC or none, TRANC - STRUNC or
none

v TRANA - RTRUNC, TRANB - STRUNC, TRANC - STRUNC or none

Conversational Processing and MSC
If your installation has two or more IMS TM systems, and they are linked to each
other through MSC, a program in one system can process a conversation that
originated in another system.

v If a conversational program in system A issues an ISRT call that references a
response alternate PCB in system B, system B does the necessary verification.
This is because the destination is implicit in the input system. The verification
that system B does includes determining whether the logical terminal that is
represented by the response alternate PCB is assigned to the same physical
terminal as the logical terminal that sent the input message. If it is not, system B
(the originating system) terminates the conversation abnormally without issuing a
status code to the application program.

v Suppose program A processes a conversation that originates from a terminal in
system B. Program A passes the conversation to another conversational program
by changing the transaction code in the SPA. If the transaction code that
program A supplies is invalid, system B (the originating system) terminates the
conversation abnormally without returning a status code to the application
program.

IMS Conversations

138 IMS/ESA V6 Appl Pgm: TM

v When the source system (where the inputting terminal resides) is IMS/ESA
Version 5 or earlier, the SPA size for a conversational program-to-program switch
has restrictions. For more information, see “Restrictions on Passing the
Conversation” on page 137.

Ending the Conversation
To end the conversation, a program blanks out the transaction code in the SPA and
returns it to IMS TM by issuing an ISRT call and referencing the I/O PCB and the
SPA. This terminates the conversation as soon as the terminal has received the
response.

The program can also end the conversation by placing a nonconversational
transaction code in the transaction field of the SPA and returning the SPA to IMS.
This causes the conversation to remain active until the person at the terminal has
entered the next message. The transaction code will be inserted from the SPA into
the first segment of the input message. IMS TM then routes this message from the
terminal to the MPP or BMP that processes the transaction code that was specified
in the SPA.

In addition to being ended by the program, a conversation can be ended by the
person at the originating terminal, the master terminal operator, and IMS.

v The person at the originating terminal can end the conversation by issuing one of
several commands:

/EXIT The person at the terminal can enter the /EXIT command by
itself, or the /EXIT command followed by the conversational
identification number assigned by the IMS TM system.

/HOLD The /HOLD command stops the conversation temporarily to allow
the person at the terminal to enter other transactions while IMS
TM holds the conversation. When IMS TM responds to the /HOLD
command, it supplies an identifier that the person at the terminal
can later use to reactivate the conversation. The /RELEASE
command followed by this identifier reactivates the conversation.

v /START LINE. The master terminal operator can end the conversation by
entering a /START LINE command (without specifying a PTERM) or /START NODE
command for the terminal in the conversation or a /START USER command for a
signed-off dynamic user in conversation.

v IMS TM ends a conversation if, after the program successfully issues a GU call or
an ISRT call to return the SPA, the program does not send a response to the
terminal. In this situation, IMS TM sends the message DFS2171I NO RESPONSE,
CONVERSATION TERMINATED to the terminal. IMS TM then terminates the
conversation and performs commit point processing for the application program.

Message Switching in APPC Conversations
With the system service DFSAPPC, you can transfer messages between separate
LU 6.2 devices and between an LU 6.2 device and another terminal supported by
IMS TM. Message delivery with DFSAPPC is asynchronous, so messages are held
on the IMS TM message queue until they can be delivered.

To send a message with DFSAPPC, specify the logical terminal name of an IMS
TM terminal or the Transaction Program (TP) name of an LU 6.2 device.

Related Reading: For more information on APPC and LU 6.2, see IMS/ESA
Administration Guide: Transaction Manager.

IMS Conversations

Chapter 5. More about Message Processing 139

DFSAPPC Format
The message format for DFSAPPC is as follows:
DFSAPPC (options)user_data

DFSAPPC can be coded as follows:

�� DFSAPPCb (

LTERM = value
,

LU = value
MODE = value
TYPE = B

N
SIDE = value
SYNC = N

C
TPN = valueb

) ��

A blank (�) is required between DFSAPPC and the specified options.

Blanks are valid within the specified options except within keywords or values.
Either commas or blanks can be used as delimiters between options, but because
the use of commas is valid, the TP name must be followed by at least one blank.

If an LU 6.2 conversation has not been established from other sources (for
example, during a CPI-C driven application program), DFSAPPC is used to
establish the conversation with a partner LU 6.2 device. If no options are specified
with DFSAPPC, IMS TM default options are used.

Option Keywords
LTERM=

Specifies the LTERM name of an IMS TM logical terminal. An LTERM name can
contain up to eight alphanumeric or national (@, $, #) characters. If you specify
LTERM, you cannot specify the other option keywords.

LU=
Specifies the LU name of the partner in an LU 6.2 conversation. The LU name
can contain up to eight alphanumeric or national characters, but the first
character must be a letter or a national character. If both LU and SIDE options
are specified, LU overrides the LU name contained in the side information entry
but does not change that LU name.

If the LU name is a network-qualified name, it can be up to 17 characters long
and consist of the network ID of the originating system, followed by a '.', and
the LU name (for example, netwrkid.luname). The LU name and the network ID
can be up to eight characters long.

MODE=
Specifies the MODE name of the partner in an LU 6.2 conversation. The MODE
name can contain up to eight alphanumeric or national characters, but the first
character must be a letter or a national character. If both MODE and SIDE
option keywords are specified, MODE overrides the MODE name contained in
the side information entry but does not change that MODE name.

TPN=
Specifies the transaction program (TP) name of the partner in an LU 6.2

IMS Conversations

140 IMS/ESA V6 Appl Pgm: TM

conversation. The TP name can contain up to 64 characters from the 00640
character set. Because the character set allows commas, at least one blank
must follow the TP name. If both TPN and SIDE option keywords are specified,
TPN overrides the TP name contained in the side information entry but does
not change that name.

Related Reading: The Common Programming Interface Communications
Reference describes the 00640 character set, which contains all alphanumeric
and national characters and 20 special characters.

SIDE=
Specifies the name of the side information entry for the partner in an LU 6.2
conversation. The side information entry name can contain up to eight
characters from the 01134 character set. If the SIDE option keyword is
specified, it can be overridden with LU, MODE, and TPN option keywords.

Related Reading: The Common Programming Interface Communications
Reference describes the 01134 character set, which contains the uppercase
alphabet and the digits, 0-9.

SYNC=N|C
Specifies the synchronization level of the LU 6.2 conversation. N selects none
as the synchronization level, and C selects confirm as the synchronization level.

TYPE=B|M
Specifies the conversation type for the LU 6.2 conversation. B selects a basic
conversation type, and M selects a mapped conversation type.

Processing Conversations with APPC
APPC/IMS supports three different types of application programs:

v Standard: No explicit use of CPI Communications facilities.

v Modified: Uses the I/O PCB to communicate with the original input terminal. Uses
CPI Communications calls to allocate new conversations and to send and receive
data.

v CPI Communications driven: Uses CPI Communications calls to receive the
incoming message and to send a reply on the same conversation. Uses the DL/I
APSB call to allocate a PSB to access IMS databases and alternate PCBs.

In the modified or CPI Communications driven application programs, if an APPC
conversation is allocated with SYNCLVL=SYNCPT, MVS manages the sync-point
process for the APPC conversation participants: the application program and IMS.
Transaction rollback and rescheduling is possible, because IMS issues the SRRCMIT
or SRRBACK calls on behalf of the modified IMS APPC application program. If the
CPI-C driven program is linked with the IMS stub code, DFSCPIR0, as required in
previous releases, then IMS will also issue the SRRCMIT or SRRBACK calls. If the
program is not linked with the stub code, then IMS is driven by the MVS sync point
manager when the application issues these calls. With MVS as the sync point
manager, failures can also be backed out.

You can schedule your standard and modified application programs locally and
remotely using MSC or APPC/MVS. The logic flow for local scheduling differs from
the logic flow for remote scheduling.

Scheduling programs remotely through MSC is not supported if an APPC/MVS
conversation with SYNCLVL=SYNCPT is specified. In the following sections, the
differences are described.

IMS Conversations

Chapter 5. More about Message Processing 141

Related Reading: For both general information on LU 6.2 and APPC, and LU 6.2
flow diagrams, see IMS/ESA Application Programming: Design Guide.

Standard IMS Application Programs
Standard IMS application programs use the existing IMS call interface. Application
programs that use the IMS standard API can take advantage of the LU 6.2
protocols. Standard IMS application programs use a DL/I GU call to get the incoming
transaction. These standard IMS application programs also use DL/I ISRT calls to
generate output messages to the same or different terminals, regardless of whether
LU 6.2 is used.2 The identical program can work correctly for both LU 6.2 and
non-LU 6.2 terminal types. IMS generates the appropriate calls to APPC/MVS
services.

Standard IMS Application Programs and MSC
When an APPC application program enters an IMS transaction that executes on a
remote IMS, an LU 6.2 conversation is established between the APPC application
program and the local IMS system. The local IMS is considered the partner LU of
the LU 6.2 conversation. The transaction is then queued on the remote transaction
queue of the local IMS system. From this point on, the transaction goes through
normal MSC processing. After the remote IMS system executes the transaction, the
output is returned to the local IMS system and is then delivered to the originating
LU 6.2 application program.

Modified IMS Application Programs
Modified IMS application programs use a DL/I GU call to get the incoming
transaction. These modified IMS application programs also use DL/I ISRT calls to
generate output messages to the same or different terminals, regardless of whether
LU 6.2 is used.3 Unlike standard IMS application programs, modified IMS
application programs use CPI Communications calls to allocate new conversations,
and to send and receive data. IMS has no direct control of these CPI
Communications conversations.

Modified IMS transactions are indistinguishable from standard IMS transactions until
program execution. In fact, the same application program can be a standard IMS
application on one execution, and a modified IMS application on a different
execution. The distinction is simply whether the application program uses CPI
Communications resources.

Modified IMS programs are scheduled by IMS TM, and the DL/I calls are processed
by the DL/I language interface. The conversation, however, is maintained by
APPC/MVS, and any failures that involve APPC/MVS are not backed out by IMS
TM. The general format of a modified IMS application program is shown in
Figure 22.

Related Reading: For more information on failure recovery and modified DL/I
application program design, see IMS/ESA Application Programming: Design Guide.

2. A non-message-driven BMP is considered a standard IMS application program when it does not use the explicit API.

3. A non-message-driven BMP is considered a modified standard IMS application program when it uses the explicit API.

Processing Conversations with APPC

142 IMS/ESA V6 Appl Pgm: TM

Restriction: The APPC conversation cannot span sync points. If the conversation is
not deallocated before a sync point is reached, IMS causes the conversation to be
terminated by issuing a clean TP call (ATBCMTP). A new APPC conversation can
be allocated after each sync point.

Modified IMS Application Programs and MSC
When an APPC program enters an IMS transaction that executes on a remote IMS
system, an LU 6.2 conversation is established between the APPC program and the
local IMS system. The local IMS system is considered the partner LU of the LU 6.2
conversation. The transaction is then queued on the local IMS system’s remote
transaction queue. From this point on, the transaction goes through normal MSC
processing. After the remote IMS system executes the transaction, the output is
returned to the local IMS and is then delivered to the originating LU 6.2 program.

CPI-C Driven Application Programs
CPI Communications driven application programs are defined only in the
APPC/MVS TP_Profile data set; they are not defined to IMS. Their definition is
dynamically built by IMS when a transaction is presented for scheduling by
APPC/MVS, based on the APPC/MVS TP_Profile definition after IMS restart. The
definition is keyed by TP name. APPC/MVS manages the TP_Profile information.

When a CPI Communications driven transaction program requests a PSB, the PSB
must already be defined to IMS via the APPLCTN macro for sysgen and via
PSBGEN or ACBGEN when APPLCTN PSB= is specified. When APPLCTN GPSB=
is specified, a PSBGEN or ACBGEN is not required.

CPI-C driven application programs must begin with the CPI-C verbs, ACCEPT and
RECEIVE, to initiate the LU 6.2 conversation. You can then issue the APSB call to
allocate a PSB for use by the application program. After the APSB call is issued, you
can issue additional DL/I calls using the PCBs that were allocated. You then issue
the SRRCMIT verb to commit changes or the SRRBACK verb to back out changes.
To use SRRCMIT and SRRBACK, your application program must be linked with
DFSCPIR0.

Restriction: The I/O PCB cannot be used for message processing calls by CPI-C
driven application programs. See the description of each call for specific CPI
restrictions.

To deallocate the PSB in use, issue the DPSB call. You can then issue another APSB
call, or use the CPI-C verb, DEALLOCATE, to end the conversation.

CPI-C driven application programs are considered discardable (unless they are
allocated with a SYNCLVL=SYNCPT) by IMS TM and are therefore not recovered
automatically at system failure. If they are allocated with a SYNCLVL=SYNCPT, a
two-phase commit process is used to recover from any failures. The general format
of a CPI-C driven application program is shown in Figure 23.

GU IOPCB

ALLOCATE
SEND
RECEIVE
DEALLOCATE

ISRT IOPCB

Figure 22. General Format of a Modified DL/I Application Program

Processing Conversations with APPC

Chapter 5. More about Message Processing 143

Related Reading: For more information on recovery procedures and CPI-C driven
application program design, see IMS/ESA Application Programming: Design Guide.

Restriction: The APPC conversation cannot span sync points. If the conversation is
not deallocated before a sync point is reached, IMS causes the conversation to be
terminated by issuing a clean TP call (ATBCMTP). A new APPC conversation can
be allocated after each sync point.

Ending the APPC Conversation
The two ways to end a conversation using LU 6.2 devices are:

v Issuing the CPI-C verb, DEALLOCATE

v For IMS conversational transactions, inserting a blank transaction code into the
SPA

Restriction: You cannot use the /EXIT command for LU 6.2 conversations.

Several error conditions can exist at the end of an LU 6.2 conversation:

v If your application program sends data to the LU 6.2 device just before
deallocating conversation, IMS TM issues a SENDERROR and SENDDATA of
the DFS1966 error message. This indicates that the transaction ended, but that the
last message could not be delivered. For SENDERROR to be activated, specify a
synchronization level of CONFIRM.

v If IMS TM encounters an error sending output from an IMS TM conversational
transaction to the LU 6.2 device, the output is discarded, and the conversation is
terminated for both IMS TM and LU 6.2.

v If an IMS TM conversational application program abends during an LU 6.2
conversation, a DFS555 error message is sent to the originating LU 6.2 device,
and the conversation is terminated for both IMS TM and LU 6.2.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager.

Coding a Conversational Program
Before coding a conversational program, obtain the following:

v The transaction code to use for a program to which you pass control

v The data that you should save in the SPA

v The maximum length of that data

A SPA contains four fields:

v The 2-byte length field.

v The 4-byte field that is reserved for IMS TM.

v The 8-byte transaction code.

ACCEPT
RECEIVE

APSB

GU DBPCB
REPL DBPCB

SRRCMIT
DPSB

DEALLOCATE

Figure 23. General Format of a CPI-C Driven Application Program

Processing Conversations with APPC

144 IMS/ESA V6 Appl Pgm: TM

v The work area where you store the conversation data. The length of this field is
defined at system definition.

Processing Conversations with OTMA
You can run IMS conversational transactions through OTMA. Refer to IMS/ESA
Open Transaction Manager Access Guide.

Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls
When a program determines that some of its processing is invalid, you can use the
following calls to remove the effects of its incorrect processing: Roll Back calls ROLL,
ROLS using a database PCB, ROLS with no I/O area or token, and ROLB. When you
issue one of these calls, IMS does the following:

v Backs out the database updates that the program has made since the program’s
most recent commit point.

v Cancels the non-express output messages that the program has created since
the program’s most recent commit point.

The main difference among these calls is that ROLB returns control to the application
program after backing out updates and canceling output messages, ROLS does not
return control to the application program, and ROLL terminates the program with a
user abend code of 0778. ROLB can return to the program the first message
segment since the most recent commit point, but ROLL and ROLS cannot.

The ROLL and ROLB calls, and the ROLS call without a token specified, are valid when
the PSB contains PCBs for GSAM data sets. However, segments inserted in the
GSAM data sets since the last commit point are not backed out by these calls. An
extended checkpoint-restart can be used to reposition the GSAM data sets when
restarting.

You can use a ROLS call either to back out to the prior commit point or to back out to
an intermediate backout point established by a prior SETS call. This topic refers only
to the form of ROLS that backs out to the prior commit point. For information about
the other form of ROLS, see “Backing out to an Intermediate Backout Point:
SETS/SETU and ROLS” on page 149.

Table 15 summarizes the similarities and the differences among the ROLL, ROLS and
ROLB calls.

Table 15. Comparison of ROLB, ROLL, and ROLS

Actions Taken: ROLB ROLL ROLS

Back out database updates since the last commit
point.

X X X

Cancel output messages created since the last commit
point.

X1 X1 X1

Delete the message in process from the queue.
Previous messages (if any) processed since the last
commit point are returned to the queue to be
reprocessed.

X

Return the first segment of the first input message
since the most recent commit point.

X2

3303 abnormal termination and returns the processed
input messages to the message queue.

X3

Processing Conversations with APPC

Chapter 5. More about Message Processing 145

Table 15. Comparison of ROLB, ROLL, and ROLS (continued)

Actions Taken: ROLB ROLL ROLS

778 abnormal termination, no dump. X

No abend; program continues processing. X

Notes:

1. ROLB, ROLL, or ROLS cancel output messages sent with an express PCB unless the
program issued a PURG.

Example: If the program issues the call sequence below, MSG1 would be sent to its
destination because the PURG tells IMS that MSG1 is complete and the I/O area now
contains the first segment of the next message (which in this example is MSG2). MSG2,
however, would be canceled:

ISRT EXPRESS PCB, MSG1
PURG EXPRESS PCB, MSG2
ROLB I/O PCB

Because IMS has the complete message (MSG1) and because an express PCB is being
used, the message can be sent before a commit point.

2. Returned only if you supply the address of an I/O area as one of the call parameters.

3. The transaction is suspended and requeued for subsequent processing.

Using ROLL
A ROLL call backs out the database updates and cancels any non-express output
messages the program has created since the last commit point. It also deletes the
current input message. Any other input messages processed since the last commit
point are returned to the queue to be reprocessed. IMS then terminates the
program with a user abend code 0778. This type of abnormal termination
terminates the program without a storage dump.

When you issue a ROLL call, the only parameter you supply is the call function,
ROLL.

You can use the ROLL call in a batch program. If your system log is on direct access
storage, and if dynamic backout has been specified through the use of the BKO
execution parameter, database changes since the last commit point will be backed
out. Otherwise they will not be backed out. One reason for issuing ROLL in a batch
program is for compatibility.

After backout is complete, the original transaction is discarded if it is discardable,
and it is not re-executed. IMS issues the APPC/MVS verb ATBCMTP
TYPE(ABEND) specifying the TPI to notify remote transaction programs. Issuing the
APPC/MVS verb causes all active conversations (including any spawned by the
application program) to be DEALLOCATED TYP(ABEND_SVC).

Using ROLB
The advantage of using ROLB is that IMS returns control to the program after
executing ROLB, so the program can continue processing. The parameters for ROL
are:

v The call function ROLB

v The name of the I/O PCB or AIB

The total effect of the ROLB call depends on the type of IMS application that issued
it.

Backing out: ROLL, ROLS, and ROLB Calls

146 IMS/ESA V6 Appl Pgm: TM

v For current IMS application programs:

After IMS backout is complete, the original transaction is represented to the IMS
application program. Any resources that cannot be rolled back by IMS are
ignored. For example, output sent to an express alternate PCB and a PURG call is
issued before the ROLB.

v For modified IMS application programs:

The same consideration for the current IMS application programs applies. It is
the responsibility of the application program to notify any spawned conversations
that a ROLB was issued.

v For CPI-C driven IMS application programs:

Only IMS resources are affected. All database changes are backed out. Any
messages inserted to non-express alternate PCBs are discarded. Also, any
messages inserted to express PCBs that have not had a PURGE call are
discarded. It is the responsibility of the application program to notify the
originating remote program and any spawned conversations that a ROLB call was
issued.

In MPPs and Transaction-Oriented BMPs
If the program supplies the address of an I/O area as one of the ROLB parameters,
the ROLB call acts as a message retrieval call and returns the first segment of the
first input message since the most recent commit point. This is true only if the
program has issued a GU call to the message queue since the last commit point; it if
has not, it was not processing a message when it issued the ROLB call.

If the program issues a GN to the message queue after issuing the ROLB, IMS returns
the next segment of the message that was being processed when ROLB was issued.
If there are no more segments for that message, IMS returns a QD status code.

If the program issues a GU to the message queue after the ROLB call, IMS returns
the first segment of the next message to the application program. If there are no
more messages on the message queue for the program to process, IMS returns a
QC status code to the program.

If you include the I/O area parameter, but you have not issued a successful GU call
to the message queue since the last commit point, IMS returns a QE status code to
your program.

If you do not include the address of an I/O area in the ROLB call, IMS does the same
things for you. If the program has issued a successful GU in the commit travel, and
then issues a GN, IMS returns a QD status code. If the program issues a GU after the
ROLB, IMS returns the first segment of the next message, or a QC status code if
there are no more messages for the program.

If you have not issued a successful GU since the last commit point, and you do not
include an I/O area parameter on the ROLB call, IMS backs out the database
updates and cancels the output messages created since the last commit point.

In Batch Programs
If your system log is on direct access storage, and if dynamic backout has been
specified through the use of the BKO execution parameter, you can use the ROLB
call in a batch program. The ROLB call does not process messages as it does for
MPPs; it backs out the database updates since the last commit point and returns
control to your program. You cannot specify the address of an I/O area as one of
the parameters on the call; if you do, an AD status code is returned to your

Backing out: ROLL, ROLS, and ROLB Calls

Chapter 5. More about Message Processing 147

program. You must, however, have an I/O PCB for your program. Specify
CMPAT=YES on the CMPAT keyword in the PSBGEN statement for your program’s
PSB.

Related Reading: For more information on using the CMPAT keyword, see
IMS/ESA Utilities Reference: System. For information on coding the ROLB call, see
“ROLB Call” on page 112.

Using ROLS
The two ways that you can use the ROLS call to back out to the prior commit point
and return the processed input messages to IMS for later reprocessing are:

v Have your program issue the ROLS call using the I/O PCB but without an I/O area
or token in the call. The parameters for this form of the ROLS call are:

– The call function ROLS

– The name of the I/O PCB or AIB

v Have your program issue the ROLS call using a database PCB that has received
one of the data-unavailable status codes. This has the same result as if
unavailable data were encountered, and the INIT call was not issued. ROLS must
be the next call for that PCB. Intervening calls using other PCBs are permitted.

On a ROLS with a token, message queue repositioning can occur for all non-express
messages including all messages processed by IMS. This processing using
APPC/MVS calls and includes the initial message segments. The original input
transaction can be represented to the IMS application program. Input and output
positioning is determined by the SETS call. This positioning applies to current and
modified IMS application programs but does not apply to CPI-C driven IMS
programs. The IMS application program must notify all remote transaction programs
of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP
TYPE(ABEND), specifying the TPI. Issuing this verb causes all conversations
associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device
and IMS received the message from APPC/MVS, a discardable transaction is
discarded rather than being placed on the suspend queue like a non-discardable
transaction.

Related Reading: For more information on LU 6.2, see IMS/ESA Administration
Guide: Transaction Manager.

The parameters for this form of the ROLS call are:

v The call function, ROLS

v The name of the DB PCB that received the BA or BB status code

In both of the above uses, the ROLS call causes a 3303 abnormal termination and
does not return control to the application program. IMS keeps the input message for
future processing.

Backing out: ROLL, ROLS, and ROLB Calls

148 IMS/ESA V6 Appl Pgm: TM

Backing out to an Intermediate Backout Point: SETS/SETU and ROLS
You can use a ROLS call either to back out to an intermediate backout point
established by a prior SETS or SETU call or to back out to the prior commit point. This
topic refers only to the form of ROLS that backs out to the intermediate backout
point. For information about the other form of ROLS, see “Backing out to a Prior
Commit Point: ROLL, ROLB, and ROLS Calls” on page 145.

The ROLS call that backs out to an intermediate point backs out only DL/I changes.
This version of the ROLS call does not affect CICS changes using CICS file control
or CICS transient data.

The SETS and ROLS calls set intermediate backout points within the call processing
of the application program and then backout database changes to any of these
points. Up to nine intermediate backout points can be set. The SETS call specifies a
token for each point. IMS then associates this token with the current processing
point. A subsequent ROLS call, using the same token, backs out all database
changes and discards all non-express messages that were performed following the
SETS call with the same token. Figure 24 shows how the SETS and ROLS calls work
together.

In addition, to assist the application program in reestablishing other variables
following a ROLS call, user data can be included in the I/O area of the SETS call. This
data is then returned when the ROLS call with the same token is issued.

Using SETS/SETU
The SETS call sets up to nine intermediate backout points or cancels all existing
backout points. By using the SETS call, you can back out pieces of work. If the
necessary data to complete one piece of work is unavailable, you can complete a
different piece of work and then return to the former piece.

To set an intermediate backout point, issue the call using the I/O PCB and include
an I/O area and a token. The I/O area has the format LLZZuser-data, where LL is
the length of the data in the I/O area including the length of the LLZZ portion. The
ZZ field must contain binary zeros. The data in the I/O area is returned to the

───┬─── Program Starts
│
│
│ SETS Token=n
│
│ GHU
│ REPL
│ ISRT MSG1─Segment 1 to I/O PCB
│

┌───────┼──� SETS Token=B
│ │

Backs out │ │ GHU
program to │ │ DLET
SETS Token=B │ │ ISRT MSG1─Segment 2 to I/O PCB

│ │
└───────┼─── ROLS Token=B

│
│
│
H

Figure 24. SETS and ROLS Calls Working Together

Backing out to an Intermediate Backout Point: SETS/SETU and ROLS

Chapter 5. More about Message Processing 149

application program on the related ROLS call. If you do not want to save some data
to be returned on the ROLS call, you must set the LL that defines the length of the
I/O area to 4.

For PLITDLI, you must define the LL field as a fullword rather than a halfword as it
is for the other languages. The content of the LL field for PLITDLI is consistent with
the I/O area for other calls using the LLZZ format; that is, the content is the total
length of the area including the length of the 4-byte LL field minus 2.

A 4-byte token associated with the current processing point is also required. This
token can be a new token for this program execution or match a token issued by a
preceding SETS call. If the token is new, no preceding SETS calls are canceled. If the
token matches the token of a preceding SETS call, the current SETS call assumes
that position. In this case, all SETS calls that were issued subsequent to the SETS call
with the matching token are canceled.

The parameters for this form of the SETS call are:

v The call function SETS

v The name of the I/O PCB or AIB

v The name of the I/O area containing the user data

v The name of an area containing the token

For the SETS call format, see “SETS/SETU Call” on page 116.

To cancel all previous backout points, the call is issued using the I/O PCB but does
not include an I/O area or a token. When no I/O area is included in the call, all
intermediate backout points set by prior SETS calls are canceled.

The parameters for this form of the SETS call are:

v The call function SETS

v The name of the I/O PCB or AIB

Because it is not possible to back out committed data, commit point processing
causes all outstanding SETS to be canceled.

If PCBs for DEDB, MSDB, and GSAM organizations are in the PSB, or if the
program accesses an attached subsystem, a partial backout is not possible. In that
case, the SETS call is rejected with an SC status code. If the SETU call is used
instead, it is not rejected because of unsupported PCBs, but returns an SC status
code as a warning that the PSB contains unsupported PCBs and the function is not
applicable to these unsupported PCBs.

For the status codes that are returned after the SETS call, see “Chapter 15. DL/I
Status Codes” on page 443. For the explanations of those status codes and the
response required, see “Status Code Explanations” on page 452.

Using ROLS
The ROLS call backs out database changes to a processing point set by a previous
SETS or SETU call, or to the prior commit point and returns the processed input
messages to the message queue.

To back out database changes and message activity that have occurred since a
prior SETS call, you issue the ROLS call using the I/O PCB and specifying an I/O area
and token in the call. If the token does not match a token set by a preceding SETS

Backing out to an Intermediate Backout Point: SETS/SETU and ROLS

150 IMS/ESA V6 Appl Pgm: TM

call, an error status is returned. If the token does match the token of a preceding
SETS call, the database updates made since this corresponding SETS call are backed
out, and all non-express messages inserted since the corresponding SETS are
discarded. The ROLS call returns blanks if the call is processed, and returns a status
code if an error or warning occurs. If you are using SETU with ROLS and have an
external subsystem, the ROLS call will not be rejected, but an RC status code will be
returned as a warning. All SETS points that were issued as part of the processing
that was backed out are then canceled, and the existing database position for all
supported PCBs is reset. For the ROLS call format, see “ROLS Call” on page 114.

The parameters for this form of the ROLS call are:

v The call function ROLS

v The name of the I/O PCB or AIB

v The name of the I/O area to receive the user data

v The name of an area containing the 4-byte token

Related Reading: For the status codes that are returned after the ROLS call, see
“Chapter 15. DL/I Status Codes” on page 443. For the explanations of those status
codes and the response required, see “Status Code Explanations” on page 452.

Writing a Message-Driven Program
A message-driven program is similar to an MPP: it retrieves messages and
processes them, and it can read and update MSDBs, DEDBs, and full-function
databases.

Message-driven programs can send messages to the following destinations:

v The logical terminal that sent the input message, by issuing an ISRT call
referencing the I/O PCB

v A different component of the physical terminal that sent the input message, by
issuing an ISRT call referencing an alternate response PCB

v A different physical terminal from the one that sent the input message, by issuing
an ISRT call referencing an alternate PCB

The message processing functions available to a message-driven program have
some restrictions. These restrictions apply only to messages received or sent by the
I/O PCB. The input message for a message-driven program must be a single
segment message. Therefore, GU is the only call you can use to obtain the input
message. The response message sent by the I/O PCB also must be a single
segment message.

The transactions are in the response mode. This means that you must respond
before the next message can be sent. You cannot use SPAs because a
message-driven program cannot be a conversational program.

Not all of the system service calls are available. The following system service calls
are valid in a message-driven region. However, other conditions might restrict their
function in this environment:

CHKP (basic)

DEQ

INIT

LOG

SETS

Backing out to an Intermediate Backout Point: SETS/SETU and ROLS

Chapter 5. More about Message Processing 151

ROLB

ROLS

The options or calls issued using alternate terminal PCBs have no constraints.

Coding DC Calls and Data Areas
The way you code DC calls and data areas depends on the application
programming language you use.

Your Input
In addition to the information you need about the database processing that your
program does, you need to know about message processing. Before you start to
code, be sure you are not missing any of this information. Also, be aware of the
standards at your installation that affect your program.

Information you need about your program’s design:

v The names of the logical terminals that your program will communicate with

v The transaction codes, if any, for the application program’s MPP skeleton to
which your program will send messages

v The DC call structure for your program

v The destination for each output message that you send

v The names of any alternate destinations to which your program sends messages

Information you need about input messages:

v The size and layout of the input messages your program will receive (if possible)

v The format in which your program will receive the input messages

v The editing routine your program uses

v The range of valid data in input messages

v The type of data that input messages will contain

v The maximum and minimum length of input message segments

v The number of segments in a message

Information you need about output messages:

v The format in which IMS expects to receive output from your application program
MPP skeleton

v The destination for the output messages

v The maximum and minimum length of output message segments

Skeleton MPP
For examples of skeleton MPPs, refer to:

Language See

C Figure 25 on page 154

COBOL Figure 26 on page 156

Pascal Figure 27 on page 158

PL/I Figure 28 on page 160

Writing a Message-Driven Program

152 IMS/ESA V6 Appl Pgm: TM

These programs do not have all the processing logic that a typical MPP has. The
purpose of providing these programs is to show you the basic MPP structure in
COBOL, C language, Pascal, and PL/I. All the programs follow these steps:

1. The program retrieves an input message segment from a terminal by issuing a
GU call to the I/O PCB. This retrieves the first segment of the message. Unless
this message contains only one segment, your program issues GN calls to the
I/O PCB to retrieve the remaining segments of the message. IMS places the
input message segment in the I/O area that you specify in the call. In each of
skeleton MPP examples, this is the MSG-SEG-IO-AREA.

2. The program retrieves a segment from the database by issuing a GU call to the
DB PCB. This call specifies an SSA, SSA-NAME, to qualify the request. IMS
places the database segment in the I/O area specified in the call. In this case,
the I/O area is called DB-SEG-IO-AREA.

3. The program sends an output message to an alternate destination by issuing an
ISRT call to the alternate PCB. Before issuing the ISRT call, the program must
build the output message segment in an I/O area, and then the program
specifies the I/O area in the ISRT call. The I/O area for this call is
ALT-MSG-SEG-OUT.

The sample program is simplified for demonstration purposes; for example, the call
to initiate sync point is not shown in the sample program. Include other IMS calls in
a complete application program.

Coding Your Program in Assembler Language
The coding conventions of an assembler language MPP are the same as those for
a DL/I assembler program. An assembler language MPP receives a PCB parameter
list address in register 1 when it executes its entry statement. The first address in
this list is a pointer to the I/O PCB; the addresses of any alternate PCBs that the
program uses come after the I/O PCB address, and the addresses of the database
PCBs that the program uses follow. Bit 0 of the last address parameter is set to 1.

Coding Your Program in C Language
The program shown in Figure 25 is a skeleton MPP written in C language. The
numbers to the left of the program refer to the notes that follow the figure.

All storage areas that are referenced in the parameter list of your C language
application program call to IMS can reside in the extended virtual storage area.

Coding DC Calls and Data Areas

Chapter 5. More about Message Processing 153

Notes to Figure 25:

1. The env(IMS) establishes the correct operating environment and the plist(IMS)
establishes the correct parameter list, when invoked under IMS. The ims.h
header file contains declarations for PCB layouts, __pcblist, and the ctdli
routine. The PCB layouts define masks for the DB PCBs that the program
uses as structures. These definitions make it possible for the program to check
fields in the DB PCBs.

The stdio.h header file contains declarations for sprintf, which is useful for
building SSAs.

2. After IMS has loaded the application program’s PSB, IMS passes control to the
application program through this entry point.

3. These are convenient definitions for the function codes and could be in one of
your include files.

4. These could be structures, with no loss of efficiency.

5. The return code (status value) from DL/I calls can be returned and used
separately.

6. The C language run-time sets up the __pcblist values. The order in which you
refer to the PCBs must be the same order in which they have been defined in
the PSB: first the I/O PCB, then any alternate PCBs that your program uses,
and finally the database PCBs that your program uses.

┌─────┬──┐
│ │ #pragma runopts(env(IMS),plist(IMS)) │
│ 1 │ #include <ims.h> │
│ │ #include <stdio.h> │
│ │ │
│ │ /* ── */ │
│ │ /* ENTRY POINT */ │
│ │ /* ── */ │
│ │ │
│ 2 │ main() { │
│ │ │
│ 3 │ static const char func_GU[4] = "GU "; │
│ │ static const char func_ISRT[4] = "ISRT"; │
│ │ . │
│ │ char ssa_NAME[]...; │
│ │ . │
│ 4 │ char msg_seg_io_area[n]; │
│ │ char db_seg_io_area[n]; │
│ │ char alt_msg_seg_out[n]; │
│ │ │
│ 5 │ int rc; │
│ │ . │
│ 6 │ #define io_pcb ((IO_PCB_TYPE *)(_pcblist[0]) │
│ │ #define alt_pcb (_pcblist[1]) │
│ │ #define db_pcb (_pcblist[2]) │
│ │ . │
│ 7 │ rc = ctdli(func_GU, io_pcb, msg_seg_io_area); │
│ │ . │
│ 8 │ rc = ctdli(func_GU, db_pcb, db_seg_io_area, ssa_name); │
│ │ . │
│ 9 │ rc = ctdli(func_ISRT, alt_pcb, alt_msg_seg_out); │
│ │ . │
│ 10 │ } │
├─────┼──┤
│ 11 │ C language interface │
└─────┴──┘

Figure 25. C MPP Skeleton

Coding DC Calls and Data Areas

154 IMS/ESA V6 Appl Pgm: TM

7. The program issues a GU call to the I/O PCB to retrieve the first message
segment. You can leave out the rc =, and check the status in some other way.

8. The program issues a GU call to the DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS identifies
them is by the PCB to which each call refers.

9. The program then sends an output message to an alternate destination by
issuing an ISRT call to an alternate PCB.

10. When there are no more messages for the program to process, the program
returns control to IMS by returning from main or by calling exit().

11. IMS provides a language interface module (DFSLI000) that gives a common
interface to IMS. This module must be made available to the application
program at link-edit time.

Coding Your Program in COBOL
The program in Figure 26 on page 156 is a skeleton MPP in COBOL that shows the
main elements of an MPP. The numbers to the left of each part of the program refer
to the notes that follow the program.

If you plan to preload your IBM COBOL for MVS & VM program, you must use the
compiler option RENT. Alternatively, if you plan to preload your VS COBOL II
program, you must use the compiler options RES and RENT.

If you want to use the IBM COBOL for MVS & VM compiler to compile a program
that is to execute in AMODE(31) on MVS/ESA, you must use the compiler option
RENT. Alternatively, if you want to use the VS COBOL II compiler to compile a
program that is to execute in AMODE(31) on MVS/ESA, you must use the compiler
options RES and RENT. All storage areas that are referenced in the parameter lists
of your calls to IMS can optionally reside in the extended virtual storage area.

IBM COBOL for MVS & VM and VS COBOL II programs can coexist in the same
application.

To compile the sample COBOL programs in this book, you must use the APOST
option.

Coding DC Calls and Data Areas

Chapter 5. More about Message Processing 155

Notes to Figure 26:

1. To define each of the call functions that your program uses, use a 77 or 01 level
working-storage statement. Assign the value to the call function in a picture
clause defined as four alphanumeric characters.

2. Use a 01 level working-storage statement for each I/O area that you will use for
message segments.

3. In the linkage section of the program, use a 01 level entry for each PCB that
your program uses. You can list the PCBs in the order that you list them in the
entry statement below, but this is not a requirement.

4. On the procedure statement, list the PCBs that your program uses in the order
they are defined in the program’s PSB: first the I/O PCB, then any alternate
PCBs, and finally the database PCBs that your program uses.

5. The program issues a GU call to the I/O PCB to retrieve the first segment of an
input message.

┌─────┬───┐
│ │ ENVIRONMENT DIVISION. │
│ │ . │
│ │ . │
│ │ . │
│ │ DATA DIVISION. │
│ │ WORKING─STORAGE SECTION. │
│ 1 │ 77 GU─CALL PICTURE XXXX VALUE 'GU '. │
│ │ 77 ISRT─CALL PICTURE XXXX VALUE 'ISRT'. │
│ │ 77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4. │
│ │ 01 SSA─NAME. │
│ │ . │
│ 2 │ 01 MSG─SEG─IO─AREA. │
│ │ . │
│ │ 01 DB─SEG─IO─AREA. │
│ │ . │
│ │ 01 ALT─MSG─SEG─OUT. │
│ │ . │
│ │ LINKAGE SECTION. │
│ 3 │ 01 IO─PCB. │
│ │ . │
│ │ 01 ALT─PCB. │
│ │ . │
│ │ 01 DB─PCB. │
│ │ . │
├─────┼───┤
│ 4 │ PROCEDURE DIVISION USING IO─PCB, ALT─PCB, DB─PCB │
│ │ │
│ │ ENTRY 'DLITCBL' │
│ │ . │
│ 5 │ CALL 'CBLTDLI' USING GU─CALL, IO─PCB, │
│ │ MSG─SEG─IO─AREA. │
│ │ . │
│ 6 │ CALL 'CBLTDLI' USING GU─CALL, DB─PCB, │
│ │ DB─SEG─IO─AREA, SSA─NAME. │
│ │ . │
│ 7 │ CALL 'CBLTDLI' USING ISRT─CALL, ALT─PCB, │
│ │ ALT─MSG─SEG─OUT. │
│ │ . │
│ 8 │ GOBACK. │
├─────┼───┤
│ 9 │ COBOL LANGUAGE INTERFACE │
└─────┴───┘

Figure 26. COBOL MPP Skeleton

Coding DC Calls and Data Areas

156 IMS/ESA V6 Appl Pgm: TM

6. The program issues a GU call to the DB PCB to retrieve the segment that would
be described in the SSA-NAME area.

7. The program sends an output message segment to an alternate destination by
using an alternate PCB.

8. When there are no more messages for your MPP to process, you return control
to IMS by issuing the GOBACK statement.

If you compile all of your COBOL programs in the task with VS COBOL II, you
can use STOP RUN, EXIT PROGRAM, and GOBACK, with their normal
COBOL-defined semantics.

9. If the COBOL compiler option NODYNAM is specified, you must link edit the
language interface module, DFSLI000, with your compiled COBOL application
program. If the COBOL compiler option DYNAM is specified, do not link edit
DFSLI000 with your compiled COBOL program.

Coding Your Program in Pascal
The program shown in Figure 27 on page 158 is a skeleton MPP written in Pascal.
The numbers to the left of the program refer to the notes that follow the figure.

All storage areas that are referenced in the parameter list of your Pascal application
program’s call to IMS can reside in the extended virtual storage area.

Coding DC Calls and Data Areas

Chapter 5. More about Message Processing 157

┌─────┬──┐
│ 1 │ segment PASCIMS; │
│ │ type │
│ 2 │ CHAR4 = packed array [1..4] of CHAR; │
│ │ CHARn = packed array [1..n] of CHAR; │
│ │ │
│ 3 │ IOPCBTYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ │ ALTPCBTYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ │ DBPCBTYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ 4 │ procedure PASCIMS (var SAVE: INTEGER; │
│ │ var IOPCB: IOPCBTYPE; │
│ │ var ALTPCB: ALTPCBTYPE; │
│ │ var DBPCB: DBPCBTYPE); REENTRANT; │
│ │ │
│ │ procedure PASCIMS; │
│ │ │
│ 5 │ type │
│ │ SSATYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ │ MSG_SEG_IO_AREA_TYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ │ DB_SEG_IO_AREA_TYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ │ ALT_MSG_SEG_OUT_TYPE = record │
│ │ (* Field declarations *) │
│ │ end; │
│ │ │
│ 6 │ var │
│ │ MSG_SEG_IO_AREA : MSG_SEG_IO_AREA_TYPE; │
│ │ DB_SEG_IO_AREA : DB_SEG_IO_AREA_TYPE; │
│ │ ALT_MSG_SEG_OUT : ALT_MSG_SEG_OUT_TYPE; │
│ │ │
│ 7 │ const │
│ │ GU = 'GU '; │
│ │ ISRT = 'ISRT'; │
│ │ SSANAME = SSATYPE(...); │
└─────┴──┘

Figure 27. Pascal MPP Skeleton (Part 1 of 2)

Coding DC Calls and Data Areas

158 IMS/ESA V6 Appl Pgm: TM

Notes to Figure 27:

1. Define the name of the Pascal compile unit.

2. Define the data types needed for the PCBs used in your program.

3. Define the PCB data types used in your program.

4. Declare the procedure heading for the REENTRANT procedure called by IMS.
The first word in the parameter list should be an INTEGER, which is reserved
for VS Pascal’s use, and the rest of the parameters will be the addresses of
the PCBs received from IMS.

5. Define the data types needed for the SSAs and I/O areas.

6. Declare the variables used for the SSAs and I/O areas.

7. Define the constants (function codes, SSAs, and so forth) used in the
PASTDLI DL/I calls.

8. Declare the IMS interface routine with the GENERIC Directive. GENERIC
identifies external routines that allow multiple parameter list formats. A
GENERIC routine’s parameters are “declared” only when the routine is called.

9. The program issues a GU call to the I/O PCB to retrieve the first segment of an
input message. The declaration of the parameters in your program might differ
from this example.

10. The program issues a GU call to the DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS identifies
them is by the PCB that each call refers to. The declaration of the parameters
in your program might differ from this example.

11. The program sends an output message segment to an alternate destination by
issuing an ISRT call to an alternate PCB. The declaration of the parameters in
your program might differ from this example.

12. When there are no more messages for your MPP to process, you return
control to IMS by exiting the PASCIMS procedure. You can also code a
RETURN statement to leave at another point.

┌─────┬──┐
│ │ │
│ 8 │ procedure PASTDLI; GENERIC; │
│ │ │
│ │ begin │
│ │ │
│ 9 │ PASTDLI(const GU, │
│ │ var IOPCB, │
│ │ var MSG_SEG_IO_AREA); │
│ │ │
│ 10 │ PASTDLI(const GU, │
│ │ var DBPCB, │
│ │ var DB_SEG_IO_AREA, │
│ │ const SSANAME); │
│ │ │
│ 11 │ PASTDLI(const ISRT, │
│ │ var ALTPCB, │
│ │ var ALT_MSG_SEG_OUT); │
│ 12 │ end; │
│ │ │
├─────┼──┤
│ │ │
│ 13 │ Pascal language interface │
└─────┴──┘

Figure 27. Pascal MPP Skeleton (Part 2 of 2)

Coding DC Calls and Data Areas

Chapter 5. More about Message Processing 159

13. You must link-edit your program to the IMS language interface module,
DFSLI000, after you have compiled your program.

Coding Your Program in PL/I
The program shown in Figure 28 is a skeleton MPP written in PL/I. The numbers to
the left of the program refer to the notes following the figure.

All storage areas that are referenced in the parameter list of your PL/I application
program call to IMS can optionally reside in the extended virtual storage area.

If you plan to execute PL/I programs in 31-bit addressing mode, see OS PL/I
Version 2 Programming Guide.

Notes to Figure 28:

1. This is the standard entry point to a PL/I Optimizing Compiler MPP. This
statement includes a pointer for each PCB that the MPP uses. You must refer
to the PCBs in the same order as they are listed in the PSB: first the I/O PCB,
then any alternate PCBs that your program uses, and finally the database
PCBs that your program uses.

2. The program defines each call function that it uses in its data area. In PL/I you
define the function codes as character strings and assign the appropriate
values to them.

┌─────┬──┐
│ │ /* ── */ │
│ │ /* ENTRY POINT */ │
│ │ /* ── */ │
│ 1 │ UPDMAST: PROCEDURE (IO_PTR, ALT_PTR, DB_PTR) │
│ │ OPTIONS (MAIN); │
│ │ │
│ 2 │ DCL FUNC_GU CHAR(4) INIT('GU '); │
│ │ DCL FUNC_ISRT CHAR(4) INIT('ISRT'); │
│ │ . │
│ │ DCL SSA_NAME...; │
│ │ . │
│ 3 │ DCL MSG_SEG_IO_AREA CHAR(n); │
│ │ DCL DB_SEG_IO_AREA CHAR(n); │
│ │ DCL ALT_MSG_SEG_OUT CHAR(n); │
│ │ . │
│ 4 │ DCL 1 IO_PCB BASED (IO_PTR),...; │
│ │ DCL 1 ALT_PCB BASED (ALT_PTR),...; │
│ │ DCL 1 DB_PCB BASED (DB_PTR),...; │
│ │ . │
│ 5 │ DCL THREE FIXED BINARY(31) INIT(3); │
│ │ DCL FOUR FIXED BINARY(31) INIT(4); │
│ │ DCL PLITDLI ENTRY EXTERNAL; │
│ │ . │
│ 6 │ CALL PLITDLI (THREE, FUNC_GU, IO_PTR, MSG_SEG_IO_AREA); │
│ │ . │
│ 7 │ CALL PLITDLI (FOUR, FUNC_GU, DB_PTR, DB_SEG_IO_AREA, │
│ │ SSA_NAME); │
│ │ . │
│ 8 │ CALL PLITDLI (THREE, FUNC_ISRT, ALT_PTR, ALT_MSG_SEG_OUT); │
│ │ . │
│ 9 │ END UPDMAST; │
├─────┼──┤
│ 10 │ PL/I LANGUAGE INTERFACE │
└─────┴──┘

Figure 28. PL/I MPP Skeleton

Coding DC Calls and Data Areas

160 IMS/ESA V6 Appl Pgm: TM

3. The most efficient way to define your I/O areas in PL/I is to define them as
fixed-length character strings or through pointer variables.

4. To define your PCBs, use major structure declarations.

5. PL/I calls have a parameter that is not required in COBOL programs or
assembler language programs. This is the parmcount, and it is always the first
parameter. You define the values that your program will need for the
parmcount in each of its calls. The parmcount gives the number of parameters
that follow parmcount itself.

6. The program issues a GU call to the I/O PCB to retrieve the first message
segment.

7. The program issues a GU call to the DB PCB to retrieve a database segment.
The function codes for these two calls are identical; the way that IMS identifies
them is by the PCB that each call refers to.

8. The program then sends an output message to an alternate destination by
issuing an ISRT call to an alternate PCB.

9. When there are no more messages for the program to process, the program
returns control to IMS by issuing the END statement or the RETURN
statement.

10. You must link-edit your program to the IMS language interface module,
DFSLI000, after you have compiled your program.

Coding DC Calls and Data Areas

Chapter 5. More about Message Processing 161

Coding DC Calls and Data Areas

162 IMS/ESA V6 Appl Pgm: TM

Part 2. Message Format Service

Chapter 6. Introduction to MFS 169
Advantages of Using MFS . 169

Simplify Development and Maintenance 169
Improve Online Performance of a Terminal 170

MFS Control Blocks . 171
MFS Examples . 171

Looking at Payroll Records 172
Listing a Subset of Employees. 174

Relationship Between MFS Control Blocks and Screen Format. 175
Overview of MFS Components and Operation 177

MFS Language Utility . 178
MFS Service Utility . 179
MFS Device Characteristics Table Utility 179
MFS Message Editor . 179
MFS Pool Manager . 179
MFSTEST Pool Manager. 180

Devices and Logical Units That Operate with MFS 180
Using Distributed Presentation Management (DPM) 182

Chapter 7. Message Formatting Functions 183
Input Message Formatting . 183

How MFS Is Selected . 183
274X, 3770, SLU 1, NTO, and SLU 4 183
3270 and SLU 2 . 184
Finance and SLU P Workstations 184
Intersystem Communication (ISC) Subsystems. 185
Formatting Messages from Terminals in Preset Destination Mode 185
Formatting of Messages Using Fast Path. 185

How MFS Formats Input Messages 186
Input Message Formatting Options 186
Examples . 187
Cursor Position Input and FILL=NULL 191
Input Logical Page Selection 191
Input Message Field and Segment Edit Routines 192
Input Message Literal Fields 192
Input Message Field Attribute Data 193
IMS TM Password . 193
Fill Characters for Input Message Fields 194
Input Modes (Devices Other Than 3270, SLU 2, or ISC Subsystems) 194
Input Field Tabs (Devices Other Than 3270 or SLU 2) 194
Optional Deletion of Null Characters for DPM-An 196
Examples of Optional Null Character Deletion for DPM-An 197
Multiple Physical Page Input Messages (3270 and SLU 2 Display

Devices) . 200
General Rules for Multiple DPAGE Input 200
3270 and SLU 2 Input Substitution Character 201
Input Format Control for ISC (DPM-Bn) Subsystems 201

Input Message Formatting 201
Input DPAGE Selection 201
Single Transmission Chain 201
Multiple Transmission Chains 202

Input Modes . 202
Record Mode . 202

© Copyright IBM Corp. 1974, 2000 163

Stream Mode . 203
Paging Requests. 203

Output Message Formatting. 203
How MFS Is Selected . 203
How MFS Formats Output Messages 204

Output Message Formatting Options 204
Logical Paging of Output Messages. 205
Operator Logical Paging of Output Messages 207
Physical Paging of Output Messages 207
Fill Characters for Output Device Fields 208
System Control Area (SCA) and Default SCA (DSCA) 209
Output Message Literal Fields 210
Output Device Field Attributes 210
Extended Field Attributes for Output Devices 211
Extended Graphic Character Set (EGCS). 212
Mixed DBCS/EBCDIC Fields 214
Cursor Positioning . 220
Prompt Facility . 221
System Message Field (3270 or SLU 2 Display Devices) 221
Printed Page Format Control 221
Format Control for 3770, SLU 1, and SLU 4 Printers 222
Output Format Control for 3270P Printers 223
Output Format Control for SLU P DPM-An 224

Output Format Control for ISC (DPM-Bn) Subsystems 228
Format Control . 228
Function Management (FM) Headers 228
Paged Output Messages . 228

Demand Paging . 228
Autopaged Output . 228

Output Modes . 229
Variable-Length Output Data Stream 230

Output Field Tab Separator Character 230
FILL=NULL Specification . 231
Trailing Blank Compression 232

Specifying COMPR . 232
Saving Line Transmission Time 232
Blank Compression on Variable-Length Output. 232

Data Structure Name . 235
Version Identification . 235

Your Control of MFS . 235
Operator Logical Paging . 236

Functions Provided . 236
Format Design Considerations. 236
Transaction Codes and Logical Page Requests 236

Operator Control Tables . 237
3270 or SLU 2-Only Feature Definitions 237
Paging Action at the Device. 238
Unprotected Screen Option 242
The 3290 in Partitioned Format Mode 243

Partition Initialization Options and Paging. 244
Clearing the Display . 245
The JUMP PARTITION Key. 245
Scrolling Operations . 245

The 3180 in Partitioned Format Mode 245
Partition Option and Paging. 246

MFS Format Sets Supplied by IMS 246

164 IMS/ESA V6 Appl Pgm: TM

System Message Format. 246
Multisegment System Message Format 246
Output Message Default Format 247
Block Error Message Format 247
/DISPLAY Command Format 247
Multisegment Format . 247
MFS 3270 or SLU 2 Master Terminal Format 247
MFS Sign-On Device Formats 247

MFS Formatting for the 3270 or SLU 2 Master Terminal 247
MFS Device Characteristics Table 249
Version Identification Function for DPM Formats 250

Chapter 8. MFS Application Program Design 251
Relationships Between MFS Control Blocks 251

Device Considerations Relative to Control Block Linkages 256
3270 or SLU 2 Display Devices 256
3290 Information Panel in Partitioned Format Mode 257
274X, Finance, 3770, SLU 1, NTO, SLU 4, or SLU P 257
Finance or SLU P Workstations 258
ISC Subsystem (DPM-Bn) 258

Format Library Member Selection 258
3270 or SLU 2 Screen Formatting 261

3290 Screen Formatting . 263
Screen Division . 263
Terminal States and Modes 264
Partition Set Initialization, Paging, and Activation 264

3180 Screen Formatting . 265
Performance Factors . 265

All MFS-Supported Devices. 265
3270 or SLU 2 Display Devices 266
3270 or SLU 2 Devices with Large Screens 267
SLU P and ISC Subsystems with DPM 267
Loading Programmed Symbol Buffers 268

Using an Application Program to Determine Whether Programmed
Symbol Buffers Are Loaded 268

How to Load the Programmed Symbol Buffers 269
Solving Programmed Symbol Load Problems 269

Chapter 9. Application Programming Using MFS 273
Input Message Formats . 273

Logical Pages . 273
Device-Dependent Input Information (3270 or SLU 2) 273

Cursor Location . 273
Selector Pen . 274
Magnetic Stripe Reading Devices 275
Program Function Keys 275
Program Access Keys . 275

Output Message Formats . 275
Logical Pages . 275
Segment Format . 276

Example . 277
Field Format (Options 1 and 2) 277
Field Format (Option 3) . 278
Device-Dependent Output Information 278

System Control Area (SCA) 278
Cursor Location . 280

Part 2. Message Format Service 165

Dynamic Attribute Modification 281
Dynamic Modification of Extended Field Attributes 283

Types . 283
Values . 283

Dynamic Modification of EGCS Data 289
Dynamic Modification of DBCS/EBCDIC Mixed Data 290
Specification of Message Output Descriptor Name 291
MFS Bypass for the 3270 or SLU 2 292

Specifying Input Forms for MFS Bypass 292
MFS Bypass for the SLU 2 (3290) with Partitioning 294
DIV Statement . 294
DPAGE Statement . 304

Chapter 10. MFS Language Utility 311
Utility Control Statements . 311

Control Statement Syntax 311
Five Special Rules . 312
Syntax Errors . 313
Invalid Sequence of Statements 313

Summary of Control Statements 314
EXEC Statement Parameters 316
Message Definition Statements 317

MSG Statement . 317
LPAGE Statement . 319
PASSWORD Statement 320
SEG Statement . 321
DO Statement . 322
Printing Generated MFLD Statements 323
MFLD Statement. 323
ENDDO Statement . 329
MSGEND Statement . 330

Format Definition Statements 330
FMT Statement . 330
DEV Statement . 330
DIV Statement . 351
DPAGE Statement . 360
PPAGE Statement . 366
DO Statement . 367
RCD Statement . 369
DFLD Statement . 370
ENDDO Statement . 385
FMTEND Statement . 385

Partition Set Definition Statements 386
PDB Statement . 386
PD Statement . 387
PDBEND Statement . 389

Table Definition Statements 389
TABLE Statement . 389
IF Statement . 389
TABLEEND Statement. 391

Compilation Statements . 391
ALPHA Statement . 391
COPY Statement . 391
EQU Statement . 392
Concatenated EQU Statements 393
RESCAN Statement . 393

166 IMS/ESA V6 Appl Pgm: TM

STACK Statement . 394
UNSTACK Statement . 394
TITLE Statement. 395
PRINT Statement . 395
SPACE Statement . 395
EJECT Statement . 396
END Statement . 396

Part 2. Message Format Service 167

168 IMS/ESA V6 Appl Pgm: TM

Chapter 6. Introduction to MFS

The IMS message format service (MFS) is a facility of the IMS Transaction
Manager environment that formats messages to and from terminal devices, so that
IMS application programs do not deal with device-specific characteristics in input or
output messages. In addition, MFS formats messages to and from user-written
programs in remote controllers and subsystems, so that application programs do
not deal with transmission-specific characteristics of the remote controller.

MFS uses control blocks you specify to indicate to IMS how input and output
messages are arranged.

For input messages, MFS control blocks define how the message sent by the
device to the application program is arranged in the program’s I/O area.

For output messages, MFS control blocks define how the message sent by the
application program to the device is arranged on the screen or at the printer.
Data that appears on the screen but not in the program’s I/O area, such as a
literal, can also be defined.

In IMS Transaction Manager systems, data passing between the application
program and terminals or remote programs can be edited by MFS or basic edit.
Whether an application program uses MFS depends on the type of terminals or
secondary logical units (SLUs) your network uses.

Restriction: MFS does not support message formatting for LU 6.2 devices.

In this Chapter:

v “Advantages of Using MFS”

v “MFS Control Blocks” on page 171

v “Overview of MFS Components and Operation” on page 177

v “Devices and Logical Units That Operate with MFS” on page 180

Advantages of Using MFS
The advantages of using MFS are as follows:

v MFS simplifies developing and maintaining terminal-oriented applications by
performing common application functions and providing independence from
specific devices or remote programs.

v MFS improves online performance by using control blocks for online processing.

Simplify Development and Maintenance
To simplify IMS application development and maintenance, MFS performs many
common application program functions and gives application programs a high
degree of independence from specific devices or remote programs.

With the device independence offered by MFS, one application program can
process data to and from multiple device types while still using their different
capabilities. Thus, MFS can minimize the number of required changes in application
programs when new terminal types are added.

MFS makes it possible for an application program to communicate with different
types of terminals without having to change the way it reads and builds messages.
When the application receives a message from a terminal, how the message

© Copyright IBM Corp. 1974, 2000 169

appears in the program’s I/O area is independent of what kind of terminal sent it; it
depends on the MFS options specified for the program. If the next message the
application receives is from a different type of terminal, you do not need to do
anything to the application. MFS shields the application from the physical device
that is sending the message in the same way that a DB program control block
(PCB) shields a program from what the data in the database actually looks like and
how it is stored.

Other common functions performed by MFS include left or right justification of data,
padding, exits for validity checking, time and date stamping, page and message
numbering, and data sequencing and segmenting. When MFS assumes these
functions, the application program handles only the actual processing of the
message data.

Figure 29 shows how MFS can make an application program device-independent by
formatting input data from the device or remote program for presentation to IMS,
and formatting the application program data for presentation to the output device or
remote program.

Improve Online Performance of a Terminal
MFS also improves online performance of a terminal-oriented IMS by using control
blocks designed for online processing. The MFS control blocks are compiled offline,
when the IMS Transaction Manager system is not being executed, from source
language definitions. MFS can check their validity and make many decisions offline
to reduce online processing. In addition, during online processing, MFS uses
look-aside buffering of the MFS control blocks to reduce CPU and channel costs of
input/output activity.

Because MFS control blocks are reentrant and can be used for multiple
applications, online storage requirements are reduced. Optional real storage
indexing and anticipatory fetching of the control blocks can also reduce response
time. Further performance improvements can be gained when IMS is generated for
MVS/ESA, since multiple I/O operations can execute concurrently to load the format
blocks from the MFS format library.

In addition, MFS uses MVS paging services; this helps to reduce page faults by the
IMS control region task.

MFS can reduce use of communication lines by compressing data and transmitting
only required data. This reduces line load and improves both response time and
device performance.

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐
│ MFS │ │ │ │ IMS │ │ │ │ MFS │
│ Supported ├──�│ MFS ├──�│Application├──�│ MFS ├──�│ Supported │
│ Device │ │ │ │ Program │ │ │ │ Device │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

Device Input Output Device
Input Message Message Output

Figure 29. Message Formatting Using MFS

Advantages of Using MFS

170 IMS/ESA V6 Appl Pgm: TM

MFS Control Blocks
There are four types of MFS control blocks that you specify to format input and
output for the application program and the terminal or remote program:

v Message Output Descriptors (MODs) define the layout of messages MFS
receives from the application program.

v Device Output Formats (DOFs) describe how MFS formats messages for each of
the devices the program communicates with.

v Device Input Formats (DIFs) describe the formats of messages MFS receives
from each of the devices the program communicates with.

v Message Input Descriptors (MIDs) describe how MFS further formats messages
so that the application program can process them.

Throughout this book, the term “message descriptors” refers to both MIDs and
MODs. The term “device formats” refers to both DIFs and DOFs.

Each MOD, DOF, DIF and MID deals with a specific message. There must be a
MOD and DOF for each unique message a program sends, and a DIF and MID for
each unique message a program receives.

MFS Examples
One way to understand the relationship between the MFS control blocks is to look
at a message from the time a user enters it at the terminal to the time the
application program processes the message and sends a reply back to the terminal.
Though MFS can be used with both display terminals and printer devices, for clarity
in this example, a display terminal is being used.

Figure 30 shows the relationships between the MFS control blocks.

Figure 30. MFS Control Block Relationships

MFS Control Blocks

Chapter 6. Introduction to MFS 171

Looking at Payroll Records
Suppose your installation has a message processing program used to view
employee payroll records. From a display terminal, issue the IMS format command
(/FORMAT), and the MOD name. This formats the screen in the way defined by the
MOD written by the MFS programmer. When you enter the MOD name, the screen
contains only literals and no output data from the application program. At this stage,
no application program is involved. (For more information about /FORMAT, see
IMS/ESA Operator’s Reference.)

In this example, suppose the name of the MOD that formats the screen for this
application is PAYDAY. Enter this command:
/FORMAT PAYDAY

IMS locates the MFS MOD control block with the name PAYDAY and arranges the
screen in the format defined by the DOF. Figure 34 on page 177 shows an example
of the MFS control statements that define a MID, MOD, DIF, and DOF.

Figure 31 shows how this screen looks.

The DOF defines a terminal format that asks you to give the employee’s name and
employee number. PAYUP is the transaction code associated with the application
that processes this information. When you enter the MOD name, the transaction
code is included in the first screen format displayed. This means that you do not
need to know the name of the program that processes the data; you only need the
name of the MOD that formats the screen.

After the screen format is displayed, you can enter the information. There are four
stages to sending a message to the program and receiving the reply:

1. Enter the information at the terminal. For this example, enter the prompted
information.

Figure 32 shows how this screen looks after information is entered.

EMPLOYEE PAYROLL

FIRST NAME: LAST NAME:
EMPLOYEE NO:

INPUT:

Figure 31. PAYDAY Screen, Formatted by DOF

MFS Control Blocks

172 IMS/ESA V6 Appl Pgm: TM

2. When IMS receives this data, MFS uses the DIF and the MID control blocks to
translate the data from the way it was entered on the terminal screen to the way
that the application program is expecting to receive it. The DIF control block
tells MFS the format of the data to come in from the terminal. The MID control
block tells MFS how the application program expects to receive the data. When
the application program issues a message call, IMS places the “translated”
message in the program’s I/O area.

When the application receives the message in its I/O area, the message looks
like this:
PAYUP JOE BLUTZEN 60249

“PAYUP” is the transaction code. The name of the logical terminal does not
appear in the message itself; IMS places it in the first field of the I/O PCB.

3. The application program processes the message, including any required
database access, and builds the output message in the application program’s
I/O area. After retrieving the information from the database, the program builds
the output message segment for the employee, with social security and rate of
pay information. The application program’s I/O area contains:
LLZZJOE BLUTZEN 60249532596381150.00

The LL is a 2-byte field in MFS messages that indicates the length of the field.
How the LL field is defined depends on what programming language used to
write the application program. For the AIBTDLI, ASMTDLI, CEETDLI, or
PASTDLI interfaces, the LL field must be defined as a binary half word. For the
PLITDLI interface, the LL field must be defined as a binary fullword. The value
provided in the PLITDLI interface must represent the actual segment length
minus 2 bytes.

The ZZ is a 2-byte length field in MFS messages that contains the MFS
formatting option that is being used to format the messages to and from the
application program. MFS options are discussed in further detail in “Input
Message Formatting Options” on page 186.

4. When the application program sends the message back to the terminal, MFS
translates the message again, this time from the application program format to
the format in which the terminal expects the data.

The MOD tells MFS the format that the message will be in when it comes from
the application program’s I/O area. The DOF tells MFS how the message is
supposed to look on the terminal screen. MFS translates the message and IMS
displays the translated message on the terminal screen.

EMPLOYEE PAYROLL

FIRST NAME: Joe LAST NAME: Blutzen
EMPLOYEE NO: 60249

INPUT:

Figure 32. PAYDAY Screen, with Filled Input Fields

MFS Control Blocks

Chapter 6. Introduction to MFS 173

Figure 33 shows how the screen looks.

Listing a Subset of Employees
Suppose you have an MPP that answers this request:

List the employees who have the skill “ENGINEER” with a skill level of “3.” List
only those employees who have been with the firm for at least 4 years.

To enter the request from a display terminal, issue the format command (/FORMAT)
and the MOD name. This formats the screen in the way defined by the MOD you
supply. When you enter the MOD name, the screen contains only literals and no
output data from an application program. At this stage, an MPP is not involved.
Suppose the name of the MOD that formats the screen for this request is LE, for
“locate employee.” Enter this:
/FORMAT LE

IMS locates the MFS MOD control block with the name LE and arranges your
screen in the format defined by the DOF. Your screen then looks like this:
SKILL
LEVEL
YEARS

LOCEMP

The DOF defines a terminal format that asks you to qualify your request for an
employee by giving the skill, level, and number of years of service of the employee
you want. LOCEMP is the transaction code that is associated with the MPP that can
process this request. When you enter the MOD name, the transaction code is
included in the first screen format that is displayed for you. This means that you do
not need the name of the program that processes your request; you only need the
name of the MOD that formats the screen.

After the screen format is displayed, you can enter your request. There are four
stages in sending a message to the program and receiving the reply.

1. Enter the information at the terminal. In this example, enter the values of the
qualifications that IMS has given you on the screen: the skill is “eng” (engineer),
the skill level is “3,” and the number of years with the firm is “4”.

After you enter your request, your screen contains this data:
SKILL ENG
LEVEL 3
YEARS 4

LOCEMP

EMPLOYEE PAYROLL

FIRST NAME: Joe LAST NAME: Blutzen
EMPLOYEE NO: 60249
SOC SEC NO: 532-59-6381
RATE OF PAY: $150.00

INPUT:

Figure 33. PAYDAY Screen, Output Formatted by DOF and Displayed

MFS Control Blocks

174 IMS/ESA V6 Appl Pgm: TM

2. When IMS receives this data, MFS uses the DIF and the MID control blocks to
translate the data from the way you entered it on the terminal screen to the way
that the application program is expecting to receive it. The DIF control block
tells MFS how the data is going to come in from the terminal. The MID control
block tells MFS how the application program is expecting to receive the data.
When the application program issues a GU call to the I/O PCB, IMS places the
“translated” message in the program’s I/O area.

When the MPP receives the message in its I/O area, the message looks like
this:

LOCEMP ENG0304

“LOCEMP” is the transaction code. The name of the logical terminal does not
appear in the message itself; IMS places it in the first field of the I/O PCB.

3. The MPP processes the message, including any required database access, and
builds the output message in the MPP’s I/O area.

Suppose more than one employee meets these qualifications. The MPP can use
one message segment for each employee. After retrieving the information from
the database, the program builds the output message segment for the first
employee. The program’s I/O area contains:
LLZZJONES,CE 3294

When the program sends the second segment, the I/O area contains:
LLZZBAKER,KT 4105

4. When the application program sends the message back to the terminal, MFS
translates the message again, this time from the application program format to
the format in which the terminal expects the data.

The MOD tells MFS the format that the message will be in when it comes from
the application program’s I/O area. The DOF tells MFS how the message is
supposed to look on the terminal screen. MFS translates the message and IMS
displays the translated message on the terminal screen. The screen then
contains the following data:
SKILL ENG
NAME NO
JONES,CE 3294
BAKER,KT 4105

Relationship Between MFS Control Blocks and Screen Format
This section discusses the relationship between MFS source language definitions
and formats you see at the device. The sample code is designed for a 3270 display.

The standard way for an end-user or operator to receive an initial format is to
request it with a /FORMAT command, specifying the name of a MOD. In Figure 34 on
page 177, the label on the MOD is PAYDAY. This MOD contains the parameter
SOR=PAYF, which points to a device output format, or DOF, with the same label.

The initial DOF also becomes the format for device input. Therefore, if you specify
DIV TYPE=INOUT in the DOF, a device input format (DIF) is also generated. In the
sample code, PAYF is both a DOF and a DIF, since it also describes the format of
the next input. The final output message can be displayed with a format that is
specified for output only and no DIF is generated.

Both the MOD and the MID point to the same DOF, thus establishing the
relationship between device-related and message-related control blocks.

MFS Control Blocks

Chapter 6. Introduction to MFS 175

For output, MFS moves fields defined in a MOD to fields on the screen defined by a
DOF. When a field definition is coded (MFLD) in a MOD, it is given a label. The
same label is used in the coding of the device field (DFLD) in the DOF, defining
where the field appears on the screen.

MFS moves data fields from output messages to screen fields; this is referred to as
mapping. For input, MFS moves modified screen fields to data fields in the input
message for the program by mapping identically labeled fields in the DIF and MID.
For more detailed information on specifying these control blocks, see “Chapter 10.
MFS Language Utility” on page 311.

The MFS control blocks are generated from the source statements like those in
Figure 34 during execution of the MFS language utility program. The control blocks
are stored in the various MFS libraries.

MFS Control Blocks

176 IMS/ESA V6 Appl Pgm: TM

Overview of MFS Components and Operation
MFS has the following components:

v The MFS language utility, which generates control blocks from user-written
control statements and places them in a library called IMS.FORMAT.

v The MFS service utility, which is used for maintaining the control blocks in
IMS.FORMAT.

v The MFS device characteristics table utility, which is used to add new screen
sizes in the device characteristics table (DCT) and generate new MFS default
formats for the screen size without system generation.

v The MFS message editor, which formats messages according to the control
block specifications generated by the language utility.

DOF/DIF
PAYF FMT

DEV TYPE=(3270,2),FEAT=IGNORE,DSCA=X'00A0'
DIV TYPE=INOUT
DPAGE CURSOR=((5,15))
DFLD '**********************',POS=(1,21)
DFLD '* EMPLOYEE PAYROLL *',POS=(2,21)
DFLD '**********************',POS=(3,21)
DFLD 'FIRST NAME:',POS=(5,2)

FNAME DFLD POS=(5,15),LTH=16
DFLD 'LAST NAME:',POS=(5,36)

LNAME DFLD POS=(5,48),LTH=16
DFLD 'EMPLOYEE NO:',POS=(7,2)

EMPNO DFLD POS=(7,16),LTH=6
DFLD 'SOC SEC NO:',POS=(9,2)

SSN DFLD POS=(9,15),LTH=11
DFLD 'RATE OF PAY: $',POS=(11,2)

RATE DFLD POS=(11,17),LTH=9
DFLD 'INPUT:',POS=(16,2)

INPUT DFLD POS=(16,10),LTH=30
FMTEND

MID
PAYIN MSG TYPE:INPUT,SOR=(PAYF,IGNORE)

SEG
MFLD 'PAYUP ' SUPPLIES TRANCODE
MFLD LNAME,LTH=16
MFLD FNAME,LTH=16
MFLD EMPNO,LTH=6
MFLD SSN,LTH=11
MFLD RATE,LTH=9
MFLD INPUT,LTH=30,JUST=R,FILL=C'0'
MSGEND

MOD
PAYDAY MSG TYPE:OUTPUT,SOR=(PAYF,IGNORE)

SEG
MFLD LNAME,LTH=16
MFLD FNAME,LTH=16
MFLD EMPNO,LTH=6
MFLD SSN,LTH=11
MFLD RATE,LTH=9
MFLD INPUT,LTH=30,JUST=R,FILL=C'0'
MSGEND

Figure 34. Sample MFS Control Block Coding

MFS Components and Operation

Chapter 6. Introduction to MFS 177

v The MFS pool manager, which keeps the MFS control blocks required by the
message editor in the real storage MFS buffer pool.

v The MFSTEST pool manager, which replaces the MFS pool manager when the
language utility is being used in test mode.

The IMS online change utility also plays an important part in updating the MFS
libraries, even though it is not an MFS utility. The online change utility allows the
control block libraries to be modified while the IMS control region is executing.

Related Reading: For a more complete description of online change, see IMS/ESA
Utilities Reference: System.

MFS Language Utility
The MFS language utility processes user-written control statements. The primary
function of this utility is to create MFS control blocks used in online execution.
Definition control statements define the MFS control blocks.

Additional functions of the MFS language utility include:

v SYSPRINT listing control

v SYSIN/SYSLIB record stacking and unstacking

v Repetitive generation of message and device fields

v Equate processing

v Alphabetic character generation

v Copying SYSLIB members into the utility input stream

v Printing statistics of counters maintained by the utility

A number of parameters on the JCL EXEC statement used during compilation can
be varied to control printed output, compress the partitioned data set libraries
IMS.FORMAT and IMS.REFERAL, and prevent definitions with a specified level of
error from being written in IMS.REFERAL.

The language utility can operate in three modes: standard, test, and batch. All
produce the same control blocks. They differ in their ability to operate concurrently
with the IMS online control region and in their use of the MFS libraries.

In standard mode, the MFSUTL job control procedure can execute concurrently with
the IMS control region. It stores control blocks in the IMS.FORMAT library.

In test mode, the MFSTEST procedure can execute concurrently with the IMS
online control region. It stores control blocks in the IMS.TFORMAT library.

In batch mode, the MFSBTCH1 procedure places the control blocks in a temporary
library, IMS.MFSBATCH. The MFSBTCH2 procedure transfers the control blocks to
IMS.FORMAT. The MFSBTCH1 procedure can be executed many times, and
control blocks can be accumulated in IMS.MFSBATCH before they are transferred
to the staging library.

The language utility checks the syntax of the source language definitions and
converts them to a form intermediate between the source language and the final
online control block, called an intermediate text block (ITB). In standard mode, it
writes these ITBs in the historical reference library, IMS.REFERAL. Although most
ITBs are immediately converted to online control blocks and written in the staging
library, IMS.FORMAT, the ITBs and the relationships between them are still retained

MFS Components and Operation

178 IMS/ESA V6 Appl Pgm: TM

in IMS.REFERAL. When the language utility begins processing, a table of all ITBs
currently in IMS.REFERAL and their interrelationships is created. Each new
definition is then checked against the table. Newly entered definitions that have
valid syntax, that belong to a complete format set (complete with DIF or DOF and
associated MID or MOD), and have consistent references to other ITBs in the set,
are converted to online control blocks and are immediately written in the
IMS.FORMAT library (in standard mode) or the IMS.TFORMAT library (in test
mode).

Two IMS commands are available to request format sets while using the language
utility. To request use of a format set, a terminal operator enters the /FORMAT
command. To test the format sets in IMS.TFORMAT, the terminal operator enters
the /TEST MFS command. Then the /FORMAT command can be used to call test
format sets from IMS.TFORMAT (and format sets from IMS.FORMAT, if necessary)
into the communication line buffer pool for test MFS operation. After successful
testing, the format sets can be written in the staging library, IMS.FORMAT.

The use of the MFS commands /FORMAT and /TEST is explained in the discussion of
those commands in the IMS/ESA Operator’s Reference.

MFS Service Utility
The MFS service utility performs optional indexing, reporting, and maintenance
functions. The INDEX function puts index entries for specified IMS.FORMAT control
blocks in a special real storage directory, to allow faster access to the control
blocks. Other functions are used to delete or obtain reports on the contents of the
libraries and directories.

MFS Device Characteristics Table Utility
The MFS device characteristics table (MFS DCT) utility is used to add new screen
sizes to the DCT and generate new MFS default formats for those screen sizes
without performing an IMS system generation. The definition of the new screen
sizes to the utility is made on the new ETO device descriptor. New screen size
definitions are added to screen sizes that were previously defined.

Related Reading: For an example of an MFS device descriptor used by the DCT,
or for more information on ETO, see IMS/ESA Administration Guide: Transaction
Manager. For more information on the MFS DCT utility, see IMS/ESA Utilities
Reference: Transaction Manager.

MFS Message Editor
The MFS message editor formats messages according to the control block
specifications generated by the language utility from control statement definitions
you enter. The editor can also give control to optional user-written or IMS-provided
field and segment editing routines (such as validity checks). The IMS-provided
editing routines are shown in IMS/ESA Customization Guide.

MFS Pool Manager
MFS tries to minimize I/O to the format library by keeping referenced blocks in
storage. This storage is managed by the MFS pool manager. The INDEX function of
the MFS service utility allows you to customize this function, by constructing a list of
the directory addresses for specified format blocks, eliminating the need for IMS to
read the data set directory before fetching a block.

MFS Components and Operation

Chapter 6. Introduction to MFS 179

For more information, refer to the IMS/ESA Administration Guide: Transaction
Manager.

MFSTEST Pool Manager
If the optional MFSTEST facility is used, MFS control blocks are managed by the
MFSTEST pool manager. The communication line buffer pool space allowed for
MFS testing is specified at system definition, but the space can be changed when
the IMS control region is initialized. This space value is the maximum amount used
for MFSTEST blocks at any one time—it is not a reserved portion of the pool.

Devices and Logical Units That Operate with MFS
In addition to 3270 devices, MFS operates with the 3600 and 4700 Finance
Communication System (FIN), the 3770 Data Communication System, the 3790
Communication System, and with Secondary Logical Unit (SLU) types 1, 2, 4, 6,
and P. Network Terminal Operations (NTO) devices are supported as secondary
logical unit type 1 consoles.

Table 16 shows which devices or logical units can be defined for MFS operation in
the IMS system by their number (3270, for example), and which can be defined by
the type of logical unit to which they are assigned (SLU 1, for example). For a list of
other compatible devices, see IMS/ESA General Information. Though the 3600
devices are included in the FIN series, you can specify them with their 36xx
designations; MFS messages use the FIxx designations regardless of which form of
designation you specify. In general, however, application designers and
programmers using this book only need to know how the devices they are defining
control blocks for have been defined to the IMS system in their installation.

Table 16. Terminal Devices That Operate with MFS

Device

Devices
Defined by
Number 1

NTO
Devices 2

SNA Devices or Logical Units 3

SLU 1 SLU 2 SLU 4 SLU P LU 6.1

3180 X 4 X 4

3270 X 4 X 4

3290 X 4 X 4

5550 X 4 TYPE:
3270-An

3270-Ann

3270 printers; 5553,
5557

X 4 COMPTn=
MFS-SCS1

3730 X X

3767 COMPTn=
MFS-SCS1

3770 console, printers,
print data set

COMPTn=
MFS-SCS1

X

3770 readers, punches,
transmit data set

COMPTn=
MFS-SCS2

X

3790 print data set
(bulk)

COMPTn=
MFS-SCS1

COMPTn=
MFS-SCS1

DPM-An

3790 transmit data set COMPTn=
MFS-SCS2

MFS Components and Operation

180 IMS/ESA V6 Appl Pgm: TM

Table 16. Terminal Devices That Operate with MFS (continued)

Device

Devices
Defined by
Number 1

NTO
Devices 2

SNA Devices or Logical Units 3

SLU 1 SLU 2 SLU 4 SLU P LU 6.1

3790 attached 3270 X 4

6670 X

8100 X

8100 attached 3270 X X 4

8100 attached Series/1 X

8100 attached S/32 X

8100 attached S/34 X

8100 attached S/38 X

Finance X COMPTn=
MFS-SCS1

DPM-An

TTY X

3101 X

Other systems (IMS to
IMS or IMS to other)

COMPTn=
DPM=Bn

Notes:

1. With options= (...,MFS,...) in the TERMINAL or TYPE macro.

2. Defined with UNITYPE= on the TYPE macro and PU= on the TERMINAL macro.

3. Defined by logical unit type or logical unit type with COMPTn= or TYPE= in the TERMINAL macro or ETO logon
descriptor. The LU 6.1 definition refers to ISC subsystems.

4. Defaults to operate with MFS.

Definitions for SLU 1 and SLU 4 can specify MFS operation with SNA character
strings (SCS) 1 or 2. SCS1 designates that messages are sent to a printer or the
print data set or received from a keyboard in the 3770 Programmable or 3790
controller disk storage; SCS2 designates that messages are sent to or received
from card I/O or a transmit data set.

Terminals defined as SLU 2 have characteristics like the 3270, and like the 3270,
can be defined to operate with MFS. In general, a 3290 terminal operates like a
3270 terminal, and references to 3270 terminals in this book are applicable to 3290
devices. However, 3290 partitioning and scrolling support is only provided for 3290
devices defined to IMS as SLU 2.

Generally, the 3180 and 5550 terminals operate like a 3270 terminal, and
references to 3270 terminals also apply to these devices. Likewise, the 5553 and
5557 printer devices operate like a 3270P.

Restriction: 5550 Kanji support is only provided for the 5550 terminal defined as
an SLU 2 and for the 5553 and 5557 defined as SCS1 printers.

If IMS is to communicate with the user-written remote program in a 3790 or an FIN
controller, the device must be defined as an SLU P. Definitions for SLU P must
specify MFS operation as either MFS-SCS1 or DPM-An, where DPM means
distributed presentation management and An is a user-assigned number (A1
through A15).

MFS Devices and Logical Units

Chapter 6. Introduction to MFS 181

Most of the MFS formatting functions currently available to other devices, except
specific device formatting, are available to the user-written program. Under user
control, these formatting functions (such as paging) can be divided between MFS
and the remote program.

Using Distributed Presentation Management (DPM)
With distributed presentation management (DPM), formatting functions usually
performed by MFS are distributed between MFS and a user-written program for
SLU P devices or ISC nodes. If the 3790 or FIN controller has previously been
defined to IMS by unit number, some changes must be made to convert to DPM.

With DPM, the physical terminal characteristics of the secondary logical unit do not
have to be defined to MFS. MFS has to format only the messages for transmission
to the user program in the remote controller or ISC node, which must assume
responsibility for completing the device formatting, if necessary, and present the
data to the physical device it selects.

For remote programs using DPM, the data stream passing between MFS and the
remote programs can be device independent. The messages from the IMS
application program can include some device control characters. If so, the IMS
application program and the data stream to the remote program might lose their
device independence.

If IMS is to communicate with other subsystems (such as IMS, CICS or
user-written), the other subsystem must be defined as an ISC subsystem.
Definitions for ISC must:

v Specify MFS operation as DPM-Bn, where DPM is as described above and Bn is
a user-assigned number (B1 through B15).

v Define TYPE:LUTYPE6 on the TERMINAL macro during system definition.

DPM with ISC provides:

v Output paging on demand that allows paging to be distributed between IMS and
another system

v Automatically paged output that allows MFS pages to be transmitted to another
system without intervening paging requests

v Transaction routing that allows application programs to view the routing
information when it is provided in the input message

MFS Devices and Logical Units

182 IMS/ESA V6 Appl Pgm: TM

Chapter 7. Message Formatting Functions

This chapter describes the message formatting functions of MFS. It elaborates on
the control blocks introduced in Chapter 1. How Application Programs Work with the
IMS Transaction Manager. It also explains how the control blocks format messages
for different device types.

In this Chapter:

v “Input Message Formatting”

v “General Rules for Multiple DPAGE Input” on page 200

v “3270 and SLU 2 Input Substitution Character” on page 201

v “Input Format Control for ISC (DPM-Bn) Subsystems” on page 201

v “Output Message Formatting” on page 203

v “Output Format Control for ISC (DPM-Bn) Subsystems” on page 228

v “Your Control of MFS” on page 235

v “MFS Format Sets Supplied by IMS” on page 246

v “MFS Formatting for the 3270 or SLU 2 Master Terminal” on page 247

v “MFS Device Characteristics Table” on page 249

v “Version Identification Function for DPM Formats” on page 250

Input Message Formatting
This section describes how MFS is selected, and how MFS formats input
messages, with examples of input messages before and after formatting.

How MFS Is Selected
Only input data from devices that are defined to IMS TM as operating with MFS can
be processed by MFS. However, the use of MFS for specific input messages
depends on the message content and, in some cases, on the previous output
message.

274X, 3770, SLU 1, NTO, and SLU 4
For MFS to process data from a 274X, 3770, SLU 1, NTO, or SLU 4, these devices
must be defined to operate with MFS at IMS TM system definition or with user
descriptors if the extended terminal option (ETO) is available.

Related Reading: For more information on ETO, see IMS/ESA Administration
Guide: Transaction Manager.

After the device is defined to operate with MFS, the terminal still operates in
unformatted mode (using basic edit, not MFS) until one of the following occurs:

v //midname is entered and sent to IMS.

v An output message to the terminal is processed using a message output
descriptor (MOD) that names a message input descriptor (MID) to be used to
process subsequent input data.

When //midname is received, MFS gets control to edit the data using the named
MID. If any data follows //midname (//midname must be followed by a blank when
data is also entered), MFS discards the //midname and the blank and formats the
data according to the named MID. If no data follows //midname, MFS considers the
next line received from the terminal to be the first line of the message.

© Copyright IBM Corp. 1974, 2000 183

When an output message is processed by a MOD that names a MID, the MID is
used to format the next input from that terminal. This output message can be
created by an application program, the IMS TM /FORMAT command, a message
switch, or some other IMS TM function.

Related Reading: For more information about the /FORMAT command, see the
IMS/ESA Operator’s Reference.

Once in “formatted mode” (using MFS, not IMS TM basic edit), the device continues
to operate in formatted mode until one of the following occurs:

v // or //� (// followed by a blank) is received. The terminal returns to unformatted
mode and the // (and blank) are discarded. The two slashes are escape
characters.

v //� and data are received. The terminal is returned to unformatted mode, the //
blank is discarded, and the data is formatted by IMS TM basic edit.

v An output message whose MOD does not name a MID is sent to the terminal.

3270 and SLU 2
All 3270 and SLU 2 devices are automatically defined to operate with MFS.

Exception: Situations in which 3270 and SLU 2 devices do not operate in
formatted mode are:

v When first powered on

v After the CLEAR key is pressed

v When the MOD used to process an output message does not name a MID to
use for the next input data received

v When MFS is bypassed by the application program using the DFS.EDT or
DFS.EDTN modname

While in unformatted mode, input is limited to IMS TM commands, terminal test
requests for BTAM (3270 only) or VTAM, paging requests, and transaction code or
message switch data that does not require MFS.

Finance and SLU P Workstations
For MFS to process data from a Finance or SLU P workstation, the terminal must
be defined to operate with MFS at IMS TM system definition or with user
descriptors if ETO is available. For more information on ETO, see IMS/ESA
Administration Guide: Transaction Manager. Even when so defined, the workstation
operates in unformatted mode (using IMS TM basic edit, not MFS) until one of the
following occurs:

v The Finance or SLU P workstation remote application program requests MFS
formatting by specifying the name of a MID in the input message header.

v //midname is entered by a workstation operator and is sent to IMS TM by the
remote application program as the first or only part of the input message itself.

For proper SLU P formatting, include in the input message header a version
identification (version ID). The version ID ensures that the correct level of MFS
descriptor (Device Input Format, or DIF) is provided in mapping the input
message. If this verification is not desired, the version ID can be sent with
hexadecimal zeros (X'0000') or it can be omitted from the message header. For
the specification of the version ID and additional details, see “Version
Identification” on page 235.

Processing occurs as described for the 274X.

Input Message Formatting

184 IMS/ESA V6 Appl Pgm: TM

When an output message sent to an SLU P or Finance workstation is formatted
using a MOD that names a MID, IMS TM sends the name of the MID to the
workstation as part of the output message header. Because IMS TM does not have
direct control of the terminal devices in these systems, IMS TM cannot guarantee
the proper MID is used to process the next input. It is the responsibility of the
remote program to save the MID name and to include it in the next input message it
sends to IMS TM as the DPN.

Finance and SLU P workstations continue in formatted mode only when the current
message has an associated MID or MOD.

Intersystem Communication (ISC) Subsystems
For data from an ISC subsystem to be processed by MFS, the ISC subsystem must
be defined as UNITYPE=LUTYPE6 on the TYPE macro at IMS TM system
definition or with ETO user descriptors. For more information on ETO, see IMS/ESA
Administration Guide: Transaction Manager. Even when so defined, the ISC
subsystem operates in unformatted mode (using IMS TM basic edit or ISC edit, not
MFS) until the ISC application program requests MFS formatting by specifying the
name of a MID in the DPN field of the input message header.

When an output message sent to an ISC subsystem is formatted using a MOD that
names a MID, IMS TM sends the name of the MID to the ISC subsystem in the
RDPN field of the output message header. Because IMS TM does not have direct
control of the ISC subsystem, IMS TM cannot guarantee the proper MID is used to
process the next input. It is the responsibility of the ISC application program to save
the MID name and to include it in the next input message it sends to IMS.

ISC subsystems continue in formatted mode only when the current message has an
associated MID or MOD.

Related Reading: For an overview of ISC, see IMS/ESA General Information. For
more detailed information, see IMS/ESA Administration Guide: Transaction
Manager.

Formatting Messages from Terminals in Preset Destination Mode
Preset destination mode is used to fix a destination for all messages entered from a
terminal. Use the /SET command to enter preset destination mode (/SET is
described in IMS/ESA Operator’s Reference). When a terminal is in preset mode,
all input messages (processed by either MFS or basic edit) are routed to the
destination established by the /SET command. You do not have to include the
message destination in the input message.

When IMS TM basic edit processes input from a preset terminal, the preset
destination name is added to the beginning of the first segment. When MFS
processes input from a preset terminal, the preset destination name is not added to
the beginning of the first segment; input message format is a result of your
message definition and input. MFS provides many methods for reserving space in
an input segment or for inserting a transaction code, without requiring you to specify
a message destination.

Formatting of Messages Using Fast Path
If you plan to implement Fast Path, MFS functions like other IMS TM applications,
with the restriction that all messages must be single-segment messages.

Input Message Formatting

Chapter 7. Message Formatting Functions 185

How MFS Formats Input Messages
Input data from MFS-supported devices in formatted mode is formatted based on
the contents of two MFS control blocks—the message input descriptor (MID) and
the device input format (DIF). The MID defines how the data should be formatted
for presentation to the IMS TM application program and points to the DIF
associated with the input device. The DIF describes the data as the data is received
from the device.

If the message built by the MID is a command, the command must conform to the
command format and syntax rules as documented in IMS/ESA Operator’s
Reference.

Input Message Formatting Options
MFS supports three message formatting options. The option selected determines
how MFS interprets the MID definition and thereby formats the data into message
fields for presentation to the application program. The MID’s MFLD statement or
statements describes message fields in terms of:

v Length

v The device field from which input data is to be obtained

v Literal data for message fields which will not or do not receive device data

v Fill characters to use when the input data does not fill the message field

v Field justification (left or right) or truncation (left or right) specifications

v Whether the first 2 bytes of the field should be reserved for attribute data

The formatting option is specified in the MID’s MSG statement (OPT=). The
selection of the proper option for an application is a design decision that should be
based on the complexity and variability of the device data stream, the programming
language used, and the complexity of the program required to process the
application under a given option. In the following discussion, a NULL character is
X'3F'.

Option 1: The effect of option 1 depends on whether a fill character of NULL has
been defined. When no field in an option 1 message is defined to the MFS
Language utility as having a fill character of NULL:

v Messages always contain the defined number of segments.

v Each segment is always of the defined length and contains all defined fields.

v All fields are filled with data, data and fill characters, or fill characters.

When fields in an option 1 message are defined as having a fill character of NULL:

v Each field with null fill and no input data from the device is eliminated from the
message segment. If all fields in a segment are eliminated in this manner and no
literals (explicit or default) are defined, the segment is eliminated; otherwise, the
length of the segment is reduced and the relative position of succeeding fields in
the segment is altered.

v Fields with null fill that receive device data that does not fill the field are not
padded—the number of characters received for the device field becomes the
number of characters of the input data. This alters the length of the segment and
the relative position of all succeeding fields in the segment.

Option 2: Option 2 formatting is identical to option 1 unless a segment contains
no input data from the device after editing. If this occurs and there are no more
segments containing input data from the device, the message is terminated, and the
last segment in the message is the last segment that contained input data from the

Input Message Formatting

186 IMS/ESA V6 Appl Pgm: TM

device. If a segment is created that has no input data from the device, but there are
subsequent segments that do contain data from the device, a segment is created
with a single byte of data (X'3F') signifying that this is a pad or null segment. If this
occurs on a first segment that is defined to contain a literal, an invalid transaction
code could result because MFS does not insert explicit or default literals into
segments for which no device input data is received.

Option 3: Option 3 formatting supplies the program with only the fields received
from the input device. A segment is presented only if it contains fields that were
received from the device. Segments are identified by a relative segment number
and fields within a segment are identified by a segment offset. Segments and fields
are both of variable length if they are described as having a fill character of NULL.
Empty fields (fields without data) are not padded with fill characters. Segments that
are presented to the application program appear in relative segment number
sequence. Fields within the segment are in segment offset sequence.

Option 3 messages do not contain literals (explicit or default) specified in the MID.

If option 3 is used with conversational transactions, the transaction code is not
removed from the message, since fields and offsets of fields are maintained within
the text. The transaction code is still found in the SPA also.

Restriction: You cannot use option 3 input message formats to enter IMS TM
commands. However, IMS TM commands can be entered by using IMS-supplied
default formats, from the cleared screen, or from your defined option 1 and option 2
input message formats.

Examples
The following examples illustrate the message segment definitions, then for options
1, 2, and 3, the contents, length in bytes, and a code for the type for each field.

The field types are labeled as shown in Table 17.

Table 17. Input Message Field Types

Type Code Description

A Total segment length, including fields A, B, C. 2 bytes, binary

B Z1 field—reserved for IMS TM usage

C Z2 field—indicates formatting option 1 byte, binary

D Relative segment number 2 bytes, binary

E Field length, including length of fields E, F 2 bytes, binary

F Relative field offset in the defined segment 2 bytes, binary

G Field

Notes:

1. No boundary alignment is performed for fields A, D, E, or F.

2. Fields A, B, and D must be on halfword boundaries. To do this, ensure the I/O area is on
a boundary when the GU or GN call to IMS TM is made.

3. For the PLITDLI interface, the length (LL) field must be declared as a binary fullword. The
value in the LL field is the segment length minus 2 bytes. For example, if the input
message segment is 16 bytes, LL is 14 bytes, which is the sum of the lengths of LL (4
bytes minus 2 bytes), ZZ (2 bytes), and TEXT (10 bytes).

Example 1, Input Message Format: Message definition.

Input Message Formatting

Chapter 7. Message Formatting Functions 187

All fields defined as left justified, with a fill character of blank.

You enter:

Field Name Input

NAME ABJONES

PART NO. 23696

DESCRIPTION WIDGET

Transaction code is provided from the message input description as a literal. The
input message would appear to the application program as one of the following:

If you specified option 1:

If you specified option 2:

Segment 1 |72| |TRANCD(8)| MAN NO. (10) | NAME (50) |
--

Segment 2 |59| | DEPT (5) | LOCATION (50) |

Segment 3 |64| | PART NO. (10) | DESCRIPTION (50) |

Segment 4 |19| | QUANTITY (10) | ORDER PRIORITY (5) |
--

CONTENTS |0072|XX|01|TRANCD | blanks |ABJONES |
--

LENGTH 2 1 1 8 10 50
TYPE A B C

CONTENTS |0059|XX|01| blanks | blanks |
--

LENGTH 2 1 1 5 50
TYPE A B C

CONTENTS |0064|XX|01|23696 |WIDGET |
--

LENGTH 2 1 1 10 50
TYPE A B C

CONTENTS |0019|XX|01| blanks | blanks |

LENGTH 2 1 1 10 5
TYPE A B C

Input Message Formatting

188 IMS/ESA V6 Appl Pgm: TM

If you specified option 3:

The option 3 example shows no transaction code in the first segment because
literals are not inserted into option 3 segments. This message would be rejected
unless it is received from a terminal in conversational or preset destination mode,
because transaction code validation is performed after the messages are formatted.

Example 2, Input Message Format: Segments are similar to example 1. Fields
are defined as in example 1 except for the following:

Field Name Contents

NAME null pad

DEPT null pad

LOCATION null pad

PART NO. right justify, pad of EBCDIC zero

QUANTITY null pad

You enter:

Field Name Input

NAME ABJONES

PART NO. 23696

DESCRIPTION WIDGET

PRIORITY HI

Transaction code is provided as a 3270 program function key literal or a special
data field from a 274X or Finance workstation. The input message appears to the
application program as one of the following:

CONTENTS |0072|XX|02|TRANCD | blanks |ABJONES |
--

LENGTH 2 1 1 8 10 50
TYPE A B C

CONTENTS |0005|XX|02|3F|

LENGTH 2 1 1 1
TYPE A B C

CONTENTS |0064|XX|02|23696 |WIDGET |
--

LENGTH 2 1 1 10 50
TYPE A B C

CONTENTS |0060|XX|03|0001|0054|0022|ABJONES |
--

LENGTH 2 1 1 2 2 2 50
TYPE A B C D E F G

CONTENTS |0074|XX|03|0003|0014|0004|23696 |0054|0014|WIDGET |
--

LENGTH 2 1 1 2 2 2 10 2 2 50
TYPE A B C D E F G E F G

Input Message Formatting

Chapter 7. Message Formatting Functions 189

If you specified option 1:

If you specified option 2:

If you specified option 3:

CONTENTS |0029|XX|01|TRANCD | blanks |ABJONES|
--

LENGTH 2 1 1 8 10 7
TYPE A B C

No second segment is presented because all of its fields were null padded and no
input data was received from the device for these fields.
CONTENTS |0064|XX|01|0000023696|WIDGET |

--
LENGTH 2 1 1 10 50
TYPE A B C

CONTENTS |0009|XX|01|HI |

LENGTH 2 1 1 5
TYPE A B C

CONTENTS |0029|XX|02|TRANCD |blanks |ABJONES|

LENGTH 2 1 1 8 10 7
TYPE A B C

CONTENTS |0005|XX|02|3F|

LENGTH 2 1 1 1
TYPE A B C

CONTENTS | 0064|XX|02|0000023696|WIDGET |
--

LENGTH 2 1 1 10 50
TYPE A B C

CONTENTS |0009|XX|02|HI |

LENGTH 2 1 1 5
TYPE A B C

Input Message Formatting

190 IMS/ESA V6 Appl Pgm: TM

Cursor Position Input and FILL=NULL
With MFS, a problem might arise when the application program is told the cursor
position on input. This problem occurs when:

v The input message uses formatting option 1 or 2.

v The MFLD used for cursor position data is defined in a segment where at least
one MFLD is defined to use null fill (FILL=NULL).

When these conditions occur, cursor position 63 (X'3F') results in a 3-byte field
containing compressed cursor data, rather than a normal 4-byte field. The MFLD
with this potential problem is flagged with the message “DFS1150”.

To avoid this problem, change the MFLD statement for the cursor data field to
specify EXIT=(0,2). This will cause the IMS TM-provided field edit routine to convert
the field contents from binary to EBCDIC. The application program must also be
changed to handle the EBCDIC format.

Input Logical Page Selection
An input logical page (LPAGE) determines the content of the input message that is
presented to the application program. It consists of a user-defined group of related
message segment and field definitions. An input LPAGE is identified by an LPAGE
statement. When no LPAGE statement is present, all message field definitions in
the MSG are treated as a single LPAGE. An input LPAGE identified by an LPAGE
statement can refer to one or more input device pages (DPAGE).

An input DPAGE defines a device format that can be used for an input LPAGE. It
consists of a user-defined group of device field definitions. An input DPAGE is
identified by a DPAGE statement. When no DPAGE statement is present, all device
field definitions following the DIV statement are treated as a single DPAGE. If
multiple DPAGEs are defined, each DPAGE statement must be labeled. A DPAGE
identified by a labeled DPAGE statement must be referred to by an LPAGE
statement.

3270 and SLU 2 device input data is always processed by the currently displayed
DPAGE. For other devices, if multiple DPAGEs are defined in their formats, a
conditional test is performed on the first input record received from the device. The
results of this test determine which DPAGE is selected for input data processing.
The LPAGE that refers to the selected DPAGE is used for input message
formatting.

CONTENTS |0029|XX|03|0001|0012|0004|TRANCD |0011|0022|ABJONES|
--

LENGTH 2 1 1 2 2 2 8 2 2 7
TYPE A B C D E F G E F G

CONTENTS |0074|XX|03|0003|0014|0004|0000023696|0054|0014|WIDGET |

LENGTH 2 1 1 2 2 2 10 2 2 50
TYPE A B C D E F G E F G

CONTENTS |0015|XX|03|0004|0009|0014|HI |

LENGTH 2 1 1 2 2 2 5
TYPE A B C D E F G

Input Message Formatting

Chapter 7. Message Formatting Functions 191

If input LPAGEs are not defined, message fields can refer to device fields in any
DPAGE, but input data from the device for any given input message is limited to
fields defined in a single DPAGE.

Input Message Field and Segment Edit Routines
To simplify programming, MFS application designers should consider using (for all
but SLU P devices) input message field and segment edit routines to perform
common editing functions such as numeric validation or conversion of blanks to
numeric zeros. While use by existing applications is unlikely, field and segment edit
routines can simplify programming of new applications by using standard field edits
to perform functions that would otherwise need to be coded in each application
program. IMS/ESA Customization Guide lists the field and segment edit routines
provided by IMS. The input message field or segment exit routines can be disabled
for SLU P (DPM-An and ISC) devices, because editing is probably done by the
remote program.

Using field and segment edit routines causes extra processing in the IMS TM
control region and, if used extensively, creates a measurable performance cost.
However, these edit routines can improve performance by reducing processing time
in the message processing region, reducing logging and queuing time, and by
allowing field verification and correction without scheduling an application program.
Efficiency of these user-written routines should be a prime concern.

Because these routines execute in the IMS TM control region, an abend in the edit
routine causes an abend of the IMS TM control region.

IMS-Supplied Field and Segment Edit Routines: IMS TM provides both a field
and a segment edit routine that the MFS application designer might want to use.
IMS/ESA Customization Guide lists the IMS-supplied routines.

Under MVS/ESA, any code written to replace these IMS-supplied routines must be
able to execute in RMODE 24, AMODE 31 and be capable of 31-bit addressing
even if they do not reference any 31-bit addressable resources. AMODE refers to
addressing mode; when running modules in AMODE 31, Extended Architecture
processors interpret both instruction and data addresses to be 31 bits wide.

Related Reading: For more information on running modules under MVS/ESA, refer
to MVS/ESA JES3 Conversion Notebook .

Field Edit Routine (DFSME000): The functions of the field edit routine are based
on the entry vector. It can use all three formatting options. For options 1 and 2,
entry vector 1 can produce undesirable results if FILL=NULL was specified in the
MFLD statement.

Input Message Literal Fields
Input message fields can be defined to contain literal data that you specify during
definition of the MID:

v You can define a default literal that MFS always inserts as part of the input
message.

v You can define a literal that MFS inserts as part of the input message when no
data for the field is received from the device.

Using a default literal can simplify application programming. When used, application
programs no longer need to test for “no data” conditions or to provide exception
handling. Default literals make it possible for an application program to distinguish
between zero-value data you enter and a condition of “no data entered”.

Input Message Formatting

192 IMS/ESA V6 Appl Pgm: TM

Example: Consider the following MFLD definition:
MFLD (DFLD1,'NO DATA'),LTH=7,JUST=R,FILL=C'0'

For example, an application program would view your entries as follows:

Your Entry Program Data Viewed

296 0000296

0 0000000

no data entered NO DATA

Without a default literal, the results of entering a value of 0 and of entering no data
are the same—0000000.

Defaults can be altered without changing application programs, and multiple
defaults can be provided by using different message descriptors or different input
logical pages.

Default literals can also expand device independence by providing a
device-independent method of inserting data in an input message field if no data is
entered from the device for that field. This function of the default literal is used often
for 3270 or SLU 2 devices, which have the same device format for input as for
output. For these devices, the default (transaction code, data, or both) can be
provided if you specify a default literal on input (MID).

Input Message Field Attribute Data
Nonliteral input message fields can be defined to allow for attribute data, extended
attribute data, or both. When defined to do so, MFS initializes to blanks and
reserves the first bytes of the message field for attribute or extended attribute data.
These first bytes are filled in by a field edit routine or in its preparation of an output
message. When attribute or extended attribute space is specified, the specified field
length must include space for the attribute or extended attribute bytes.

Sometimes input messages are updated by an application program and returned to
the device. The application program can simplify message definitions if the
message uses attribute data as the output message, and the attribute data bytes
are defined in the input message, also.

When a field edit routine is used, it can be designed (as the IMS-supplied field edit
routine is) to set attribute bytes on fields in error. In this way, erroneous fields can
be highlighted before the segment edit routine returns the message to the device. In
this case, the application program is not concerned with attribute bytes.

IMS TM Password
The IMS TM password portion of an input message is defined in the input message
definition. One or more input message fields can be defined to create the IMS TM
password. Using this method of password definition allows passwords to be created
from field data you enter, from data read by a 3270, SLU 2, 3770 operator
identification card reader, or data from a 3270 magnetic stripe reader.

Recommendation: If you use an SLU 2 or a 3270, you can also define a specific
device field as the location of the IMS TM password, but the method above is
recommended and takes precedence if both an input message field and a device
field are defined.

Input Message Formatting

Chapter 7. Message Formatting Functions 193

Fill Characters for Input Message Fields
MFS uses fill characters to pad message fields when the length of the data
received from the device is less than the specified field length, no data for the field
is received and no default literal is defined, or the data received from SLU P
contains nulls and NULL=DELETE is specified. The fill characters that can be
selected are a blank (X'40'), any EBCDIC hexadecimal character (X'hh'), or an
EBCDIC graphic character (C'c'). Null compression, which causes compression of
the message to the left by the amount of missing data, can also be selected. How
MFS actually pads the message fields is a function of the selected fill character and
the message formatting option being used (refer to “Input Message Formatting
Options” on page 186).

Input Modes (Devices Other Than 3270, SLU 2, or ISC
Subsystems)
MFS expects input message fields to be entered in the sequence in which they
were defined to the MFS Language utility program. For devices other than SLU 2
and 3270, MFS application designers have a choice of how fields are defined and
how MFS should scan those fields. You can select record mode or stream mode.
Record mode is the default.

In record mode:

v Input fields are defined as occurring within a specific record (a line or card from
the 274X, 3770, or SLU 1 or SLU 4; a transmission from the Finance or SLU P
workstation) that is sent from the input device.

v Fields must not be split across record boundaries.

v Fields defined within a record must appear on that record to be considered by
MFS.

v When MFS locates the end of a record, the current field is terminated and any
other fields defined for that record are processed with no device data (message
fill).

v If the record received by IMS TM contains more data fields than the number of
fields defined for the record, the remaining data fields are not considered by
MFS.

For input data from a Finance or SLU P workstation remote program, the input
message header or //midname can be transmitted separately if the data fields for
the first record do not fit in the same record. If no data follows the input message
header or the //midname, MFS considers the next transmission received to be the
first record of the input message.

In stream mode:

v Fields are defined as a contiguous stream of data unaffected by record
boundaries.

v Fields can be split across input records and fields can be entered from any input
record as long as they are entered in the defined sequence.

Input Field Tabs (Devices Other Than 3270 or SLU 2)
An input field tab (FTAB) is a character defined in the DEV statement for separating
input fields if the length of the data entered is less than the defined field length, or
for when no data is specified for a field. An FTAB causes the MFS input scan to
move to the first position of the next defined field. FTABs can be defined only for
input from devices other than the 3270 or SLU 2. When no FTABs are defined,
each device input field is assumed to be of its defined length.

Input Message Formatting

194 IMS/ESA V6 Appl Pgm: TM

Select a character for input field separation that is never used for other user data in
the data stream. If FTAB is not unique, the data might be misinterpreted by MFS.

Example:Figure 35 shows some DFLD field definitions and the device format that
results from these definitions.

When an FTAB is defined, its use is qualified by specifying FORCE, MIX, or ALL.
See Figure 36 on page 196 for how the descriptions in Figure 35 are read.
Figure 35 shows how the FTAB qualification affects the results of an MFS input
scan following variable operator input of a three-field message.

The shaded boxes in Figure 36 on page 196 indicate undesirable results. The
double-headed arrows indicate that the FTAB qualification does not affect input
scan. Input examples 2, 3, and 6 produce correct results using any of the FTAB
qualifications but example 8 does not produce correct results regardless of FTAB
qualifications.

FORCE: FORCE is the default value. Each device input field is assumed to be of
its defined length until an FTAB is encountered. When the first FTAB is
encountered, it signifies the end of data for the current field. The byte of data
following the FTAB is considered the first byte of the next field. In record mode, all
subsequent fields in the current record require an FTAB. In stream mode, all
subsequent fields require an FTAB. FTABs used on subsequent fields indicate that
the character following the FTAB is the first for the next defined field. (This is as if
ALL were specified).

In Figure 36 on page 196, examples 1, 2, 3, 5, 6, and 7 produce the desired result.
Example 4 fails because no FTAB is supplied following field B (compare with
example 5). Example 8 fails because no FTABs are entered, the 0 is occupying the
blank (undefined) position, and subsequent fields are thus incorrect (compare with
example 1).

MIX: Each device input field is assumed to be of its defined length until an FTAB
is encountered. When the first FTAB is encountered, it signifies the end of data for
the current field. The byte of data following the FTAB is considered the first byte of
the next field. Subsequent fields of the defined length do not require an FTAB; if
one is entered and the next field is contiguous (like fields B and C in the example),
undesirable results occur (see example 5). Mixed FTABs operate just like a
typewriter with tab stops set at the first position of each defined field (columns 1, 6,
and 9 in the example).

In Figure 36 on page 196, examples 1, 2, 3, 4, 6, and 7 produce the desired result.
Example 5 fails because field B is of its defined length and does not require an

Field Definition MODE=STREAM MODE=RECORD

A DFLD POS=1,LTH=4 POS=(1,1),LTH=4
B DFLD POS=6,LTH=3 POS=(1,6),LTH=3
C DFLD POS=9,LTH=5 POS=(1,9),LTH=5

'Device Format'

│ A │ │ B │ C │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
└───┴───┴───┴──┴───┴────┴───┴───┴───┴───┴───┴───┴───┴───┘
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 35. FTAB Qualification Descriptions

Input Message Formatting

Chapter 7. Message Formatting Functions 195

FTAB; the FTAB is interpreted to indicate no data for field C (compare with example
4). Example 8 fails because no FTABs are entered, the 0 is occupying the blank
(undefined) position, and subsequent fields are thus incorrect (compare with
example 1).

ALL: When ALL is specified, each device input field must be terminated by an
FTAB regardless of whether it is greater than, less than, or equal to the defined
length. When an FTAB is encountered, it signifies the end of data for the current
field. The byte of data following the FTAB is considered the first byte of the next
field.

In Figure 36, examples 2, 3, 5, and 6 produce the desired result. Examples 1, 4, 7,
and 8 fail because the required FTABs are not entered.

Optional Deletion of Null Characters for DPM-An
MFS provides for optional deletion of trailing null characters in transmission records
and input data fields from SLU P (DPM-An) remote programs. (A null character is a
hexadecimal zero, X'00'.) In the DIV statement, the device input format can specify
NULL=KEEP or NULL=DELETE. NULL=DELETE means that MFS scans data fields
and transmission records for trailing nulls and deletes them. KEEP is the default
and means that MFS leaves trailing nulls in the data and treats them as valid data
characters.

Figure 36. MFS Input Scan When FTABs Are Defined with FORCE, MIX, and ALL

Input Message Formatting

196 IMS/ESA V6 Appl Pgm: TM

If trailing null characters have been replaced by fill characters by the remote
program, MFS treats the fill characters as valid data characters.

When NULL=DELETE is specified, nulls at the end of a record are deleted before
the data fields are scanned. In record mode, the end of the record is determined
either by the FTAB or by the first other non-null character found (searching
backward from the end of the record). In stream mode, trailing nulls at the end of
the record are deleted only if an FTAB indicates the end of the record; otherwise,
the record is handled as received from the remote program.

During the data field scan, the first trailing null character encountered in the field
signifies the end of the data for the current field. The data is edited into the
message field using the message fill character to pad the field if required. If the
entire field contains nulls (such as nulls at the end of the record), the entire
message field is padded with the specified fill character.

The scan for trailing null characters within fields is performed for each record
transmitted. If an FTAB character is encountered in the current record being
processed, the scan for trailing nulls characters within fields is discontinued for that
record and resumes with the next record.

Transmitting null characters to IMS TM, and the delete operation, are both costly in
execution time. Weigh the relative costs when you decide whether to use the
NULL=DELETE option or to delete the nulls via the remote program. You must also
consider the effects of the FTAB options FORCE, MIX, and ALL. These costs are
affected by the following:

v When FTAB=ALL is specified with NULL=DELETE, only trailing null characters at
the end of the record can be removed by MFS.

v In stream mode, with NULL=DELETE, an FTAB should be used to show an
omitted field at the end of a record. Otherwise, nulls (equal to the number of
characters defined for the field or fields) must be transmitted.

v If FTABs are specified and NULL=DELETE, nulls and FTABs can be mixed.
FTABs can be used for one record, nulls for the next. The nulls are removed
from the record with no FTABs. With FTABs in the record, null characters are
treated as data.

v With NULL=DELETE, binary data that might contain valid trailing hexadecimal
zeros (not intended as null characters) must be preceded by an FTAB character
for a previous field to prevent deletion of the trailing X'00'.

Examples of Optional Null Character Deletion for DPM-An
In the three examples that follow, the comma is the specified FTAB, X'5F' is input
hexadecimal data, and characters are defined as follows:

X'6B'=C","

X'C1'=C"A"

X'C2'=C"B"

X'C3'=C"C"

C"b"=blank

X'40'=C"b"

Input Message Formatting

Chapter 7. Message Formatting Functions 197

Example 1, Input Binary Data and Nulls:

Input Message Record Field DFLD Data MFLD Data

(1) X'C1C2C3005F' 1 A C"ABC" C"ABC"

B X'005F' X'005F'

(2) X'C1C26B005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(3) X'C1C200005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(4) X'C1C2C35F00' 1 A C"ABC" C"ABC"

B X'5F' X'5F40'

(5) X'C1C26B5F00' 1 A C"AB" C"ABb"

B X'5F' X'5F40'

Note: The X'00' (null) at the end of the record in input messages (4) and (5) is deleted
before the data fields (A and B) are scanned. Therefore, the results are the same for field B,
even though an FTAB (comma in this example) follows field A. If X'00' is to be considered as
data for field B, an FTAB (comma in this example) should be entered following the X'5F00'.

Example 2, Record Mode Input:

Input Message Record Field
DFLD
Data Segment

MFLD
Data

(1)
X'C10000C20000C3C3C3000000'

1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C66B000000000000'2 E C'EE' 2 C'EE***'

Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX) SEG
DIV TYPE=INPUT, NULL=DELETE
PPAGE

A DFLD LTH=3 MFLD A, LTH=3
B DFLD LTH=2 MFLD B, LTH=2

FMTEND MSGEND

Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG
MODE=RECORD

DIV TYPE=INPUT, RCDCTL=12, MFLD A,LTH=3,FILL=C'*'
NULL=DELETE

PPAGE MFLD B,LTH=3,FILL=C'*'
A DFLD LTH=3 MFLD C,LTH=3,FILL=C'*'
B DFLD LTH=3 MFLD D,LTH=3,FILL=C'*'
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C'*'
E DFLD LTH=5 MFLD F,LTH=7,FILL=C'*'
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C'*'

FMTEND MSGEND

Input Message Formatting

198 IMS/ESA V6 Appl Pgm: TM

Input Message Record Field
DFLD
Data Segment

MFLD
Data

F C'FF' C'FF*****'

X'0000000000' 3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C6' 2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1
contains nulls in place of omitted fields. Input message 2 does not contain nulls for omitted
fields, but the results are the same for both input messages.

Example 3, Stream Mode Input::

Input Message Record Field
DFLD
Data Segment MFLD Data

(1) X'C10000C20000C3C3C3000000' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C66B000000000000' 2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

X'00000000000000' 3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

2 D C'EE' C'EE*'

X'C5C56BC6C6' E C'FF' 2 C'FF***'

F no data C'*******'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1 contains nulls in
place of omitted fields. Input message 2 does not contain nulls for omitted fields and produces
undesirable results for fields D, E, and F.

Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG
MODE=STREAM

DIV TYPE=INPUT, NULL=DELETE MFLD A,LTH=3,FILL=C'*'
PPAGE MFLD B,LTH=3,FILL=C'*'

A DFLD LTH=3 MFLD C,LTH=3,FILL=C'*'
B DFLD LTH=3 MFLD D,LTH=3,FILL=C'*'
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C'*'
E DFLD LTH=5 MFLD F,LTH=7,FILL=C'*'
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C'*'

FMTEND MSGEND

Input Message Formatting

Chapter 7. Message Formatting Functions 199

Multiple Physical Page Input Messages (3270 and SLU 2 Display
Devices)
Specifying multiple physical page input for 3270 and SLU 2 display devices allows
creation of identical input messages for a transaction regardless of the physical
capacity of the device being used. When this facility is used, an input message
consisting of multiple physical pages can be entered using multiple physical pages
of a single output logical page. If multiple physical pages are defined for output (see
“Physical Paging of Output Messages” on page 207), the only action required to
obtain multiple physical page input is to specify MULT=YES in the DPAGE
statement.

For the 3290 Information Display Panel in partitioned mode, multiple physical page
input from a single partition is supported only if the DPAGE statement for the
current partition specifies MULT=YES. The multiple physical pages for a single input
message must come from a single partition.

If MULT=YES is not specified on the DPAGE statement for the current partition, one
physical page of a single partition constructs a single input message and the input
message is restricted to a single logical page.

Input messages can be created from multiple DPAGEs. This function is available for
devices other than 3270 and SLU 2.

General Rules for Multiple DPAGE Input
The following general rules apply to multiple DPAGE input:

1. If any mapped input LPAGE contains no data segments (as a result of segment
routines canceling all segments, for example), the input message is rejected
and an error message is sent to the other subsystem.

2. MFS echo to the input terminal is ignored.

3. MFS password creation occurs from any DPAGE, but once created, any other
password is ignored. If the password is included in the attach FM header, this
password is used for DPM-Bn.

4. Input message options 1, 2, and 3 apply to LPAGEs. If option 2 is requested,
null segments at end of an LPAGE are eliminated. This alters the relative
positions of the segments in the next LPAGE (if any) in the input message. If
option 1 or 2 is requested, the first segment of the second and all subsequent
LPAGEs have the page bit (X'40') in the Z2 field turned on regardless of any
null segments resulting at the end of the previous LPAGE. If option 3 is
requested, the segment ID is equal to 1 for every first segment in the new
LPAGE.

5. Multiple DPAGE input requested in MFS definitions does not restrict message
creation from the single DPAGE.

6. If your control request is entered with the first input DPAGE, the request is
processed and the input message is rejected. If your control request is entered
with an input DPAGE other than the first, the request is ignored and the input
message is accepted.

7. If your logical page request is entered with the first input DPAGE (that is, an
equals sign (=) in the first position of the input segment), the request is
processed and the input message is rejected.

If multiple DPAGE input is not requested of MFS definitions, message creation from
more than one DPAGE is not permitted and the following rules apply:

Input Message Formatting

200 IMS/ESA V6 Appl Pgm: TM

1. If a single transmission contains more data than defined for the DPAGE
selected, the input message is rejected and an error message is sent to the
other subsystem.

2. If the message has multiple transmissions, the input message is rejected and an
error message is sent to the other subsystem.

3270 and SLU 2 Input Substitution Character
A X'3F' can be received on input by IMS TM from some terminals (such as by using
the ERROR key). The substitution character (X'3F') provides a means of informing
the host application that an error exists in the field. MFS also uses X'3F' for IMS TM
functions on input data streams. To eliminate the confusion resulting from the two
uses of the X'3F' characters, a parameter (SUB=) is provided on the DEV statement
for use with 3270 and SLU 2 display devices.

With this parameter, a user-specified character can be defined to replace any X'3F'
characters received by MFS in the 3270 and SLU 2 data stream. No translation
occurs if any of the following is true:

The SUB= parameter is not specified.

The SUB= parameter is specified as X'3F'.

The input received bypasses MFS.

The specified SUB character should not appear elsewhere in the data stream, so, it
should be nongraphic.

Input Format Control for ISC (DPM-Bn) Subsystems
This section describes the major input message formatting functions of MFS with
ISC nodes.

Input Message Formatting
This section describes the DPAGE selection options and the creation of a message
from multiple DPAGEs.

Input DPAGE Selection
The OPTIONS=(DNM) parameter on the DIV statement allows for DPAGE selection
using data structure name (DSN).

If more than one DPAGE is defined, a DPAGE label must be specified in every
DPAGE. If no DPAGE is selected, the message is rejected and an error message is
sent to the other subsystem.

If OPTIONS=NODNM and multiple DPAGEs are defined, a conditional test is
performed on the first input record. The results of the test (matching the COND=
specification with the data) determines which DPAGE is selected for input data
formatting. If the condition is not satisfied and all defined DPAGEs are conditional,
the input message is rejected and an error message is sent to the other subsystem.

Single Transmission Chain
For single transmission chains, DPAGEs can be selected using conditional data.

DPAGE Selection Using Conditional Data: For multiple DPAGE input with single
transmission chain, use the OPTIONS=NODNM parameter. The data in the first
input record is used to select the first (or only) DPAGE for formatting. If the data
supplied does not match any COND= defined, the last defined DPAGE is selected if

Rules for Multiple DPAGE Input

Chapter 7. Message Formatting Functions 201

the COND= is not specified for this DPAGE. If the condition is not satisfied and all
defined DPAGEs are conditional, the input message is rejected and an error
message is sent to the other subsystem. If the DSN is supplied in the DD header, it
is ignored. For any additional DPAGE (more data supplied than defined for the
DPAGE selected), the data in the subsequent record is used to select the next
DPAGE for formatting.

Multiple Transmission Chains
For multiple transmission chains, DPAGEs can be selected using DSN or by using
a conditional test.

DPAGE Selection Using DSN: For multiple DPAGE input with multiple
transmission chains, use the OPTIONS=DNM parameter. The DSN supplied in the
DD header with each chain of the message is used to select the DPAGE for
formatting. If no match is found, the message is rejected and an error message
(DFS2113) is sent to the other subsystem.

DPAGE Selection Using Conditional Test on the Data: If DSN is supplied in the
DD header with each chain (or any chain) of the message and OPTIONS=NODNM
is specified on the DIV statement, the DSN is ignored. The data in the first record of
each chain is used to select the DPAGE for formatting. If no condition is satisfied
and the last defined DPAGE is unconditional (that is, COND= parameter is not
specified), this DPAGE is selected for formatting. If the condition is not satisfied and
all defined DPAGEs are conditional, the input message is rejected and an error
message is sent to the other subsystem.

How conditional and unconditional DPAGEs are specified depends on whether
OPTIONS=DNM or OPTIONS=NODNM is specified.

v For OPTIONS=DNM, conditional is specified with a label in the DPAGE
statement.

v For OPTIONS=NODNM:

– To specify conditional, specify the COND= keyword on the DPAGE statement.

– To specify unconditional, omit the COND= keyword.

Input Modes
MFS supports two input modes: record and stream.

Record Mode
In record mode, one record presented to MFS by the ATTACH manager
corresponds to one record defined to MFS. Records and fields defined for each
record are processed sequentially. Fields must not be split across record
boundaries. The data for fields defined in a record must be present in this record to
be considered by MFS. If no data exists for fields defined at the end of the record,
a short record can be presented to MFS. If the data for a field not at the end of the
record is less than the length defined for the corresponding DFLD, or if no data
exists for the field, then a field tab separator character must be inserted to show
omission or truncation. If no data exists for the entire record, a null or a 1-byte
record (containing a single FTAB character) must be present if additional data
records follow it. The record can be omitted:

v At the end of the DPAGE for single DPAGE input.

v At end of the DPAGE for multiple DPAGE input with multiple transmission chains.

v At the end of the last DPAGE for multiple DPAGE input with a single transmission
chain. The record cannot be eliminated from the DPAGE if data for another
DPAGE follows.

Input Format Control for ISC

202 IMS/ESA V6 Appl Pgm: TM

Stream Mode
In stream mode, record boundaries are ignored and fields can span record
boundaries. Data omitted for fields anywhere in the DPAGE must be indicated by
an FTAB.

FTABs are not required for the data omitted to the end of the DPAGE:

v At the end of the DPAGE for single DPAGE input.

v At the end of the DPAGE for multiple DPAGE input with multiple transmission
chains.

v At the end of the last DPAGE for multiple DPAGE input with single transmission
chain. The FTABs cannot be eliminated from the DPAGE if data for another
DPAGE follows.

On input to IMS, the ATTACH manager provides for four deblocking algorithms,
UNDEFINED, RU, VLVB, and CHAINED ASSEMBLY, which specify the following:

v UNDEFINED or RU specify that one RU is equal to one MFS record processed.
IMS TM defaults to the RU algorithm when UNDEFINED is specified in the
ATTACH FM header.

v VLVB specifies that one VLVB record is equal to one MFS record processed.

v CHAINED ASSEMBLY specifies that one input chain is equal to a single MFS
record processed for the entire DPAGE.

For MFS RECORD mode, use the VLVB deblocking algorithm. For MFS RECORD
mode, do not use the following:

v CHAINED ASSEMBLY, because the entire input chain would be processed as a
single MFS record.

v UNDEFINED or RU, because MFS record definitions would be dependent on the
size of the RUs.

For the MFS STREAM mode, all deblocking options can be used. In most cases the
UNDEFINED and RU algorithms use less buffer space.

Paging Requests
Use the FM headers for entering paging requests when using ISC.

Output Message Formatting
This section discusses MFS output message formatting, physical and logical
paging, and requirements for output devices.

How MFS Is Selected
Whether an output message is processed by IMS TM basic edit or MFS depends
on the device type, the device definition, and the message being processed.

Output messages to SLU 2 and 3270 devices are processed by MFS, unless
bypassed by the application program.

Output messages to a 274X, 3770, Finance workstation, SLU 1, NTO, SLU 4, SLU
P, or ISC subsystem are processed by MFS, if these devices are defined during
IMS TM system definition to operate with MFS.

Even when a device is defined to operate with MFS, MFS does not process an
output message unless a MOD name was specified by the application program, the

Input Format Control for ISC

Chapter 7. Message Formatting Functions 203

MID associated with the previous input message, or the /FORMAT command. Also,
message switches from other MFS devices are processed by MFS if the message
has an associated MOD.

If you attempt to access a transaction that is to be changed or deleted when the
online change utility is run, and you do this after the online change command
/MODIFY PREPARE has been issued but before /MODIFY COMMIT has been issued, you
receive an error message. This is described in IMS/ESA Operator’s Reference.

How MFS Formats Output Messages
Output messages processed by MFS are formatted based on the contents of two
MFS control blocks: the message output descriptor (MOD) and the device output
format (DOF). The MOD defines output message content and, optionally, literal data
to be considered part of the output message. Message fields (MFLDs) refer to
device field locations via device field (DFLD) definitions in the DOF. The device
output format (DOF) specifies the use of hardware features, device field locations
and attributes, and constant data considered part of the format.

Output Message Formatting Options
MFS provides three message formatting options for output data. The option
selected determines how the data is formatted and governs the way in which the
application program builds the output message. Option 1, 2, or 3 is specified in the
OPT= operand of the MOD MSG statement. For examples of input messages
formatted with the three options, see “Input Message Formatting” on page 183.
Examples of output message formats are shown in “Option 1 or 2—Output Segment
Example” on page 205 and “Option 3—Output Segment Example” on page 205.

Segments inserted by the application program must be in the sequence defined to
the MFS Language utility program. Not all segments in a logical page must be
present, but be careful when you omit segments (see “Logical Paging of Output
Messages” on page 205). An option 1 or 2 segment can be omitted if all subsequent
segments to the end of the logical page are omitted; otherwise, a null segment
(X'3F') must be inserted to indicate segment position. Option 3 output message
segments must include a 2-byte relative segment number.

Message fields in option 1 and 2 output segments are defined as fixed-length and
fixed position. Fields can be truncated or omitted by two methods:

v One method is by inserting a short segment.

v The other method is by placing a NULL character (X'3F') in the field. Fields are
scanned left to right for a null character; the first null encountered terminates the
field. If the first character of a field is a null character, the field is effectively
omitted, depending on the fill character used. Positioning of all fields in the
segment remains the same regardless of null characters. Fields truncated or
omitted are padded as defined to the MFS Language utility.

Message fields in option 3 segments can be placed in any order and with any
length that conforms to the segment size restriction. Short fields or omitted fields
are padded as defined to the MFS Language utility. Each field must be preceded by
a 4-byte field prefix of the same format provided by MFS for option 3 input fields.

While option 3 fields do not have to be in sequence in the output segment, all fields
must be contiguous in the segment; that is, the field prefix of the second field must
begin in the byte beyond the first field’s data. Null characters in option 3 fields have
no effect on the data transmitted to the device. Like other nongraphic characters,
they are replaced with a blank.

Output Message Formatting

204 IMS/ESA V6 Appl Pgm: TM

Restriction: Device control characters are invalid in output message fields under
MFS. For 3270 display and SLU 2 terminals, the control characters HT, CR, LF, NL,
and BS are changed to null characters (X'00'). For other devices, these characters
are changed to blanks (X'40'.) All other nongraphic characters (X'00' through X'3F'
and X'FF') are changed to blanks before transmission, with the exception of the
shift out/shift in (SO/SI) characters (X'0E' and X'0F') for EGCS capable devices.
(The SO/SI characters are translated to blanks only for straight DBCS fields.) An
exception is allowed for SLU P (DPM-An) remote programs and ISC (DPM-Bn)
subsystems, for which GRAPHIC=NO can be specified on output. If nongraphic
data is allowed through this specification, the null (X'3F') cannot be used to truncate
segments in options 1 and 2.

Option 1 or 2—Output Segment Example:
Definition Output data length
Segment
Field, length=10 4
Field, length=20 field omitted
Field, length=5 5
Field, length=15 15

The segment shown produces the following results:
CONTENTS |54|0|0| DATA 1|*| |* | DATA 3 | DATA 4|
--
LENGTH 2 1 1 4 1 5 20 5 15

Option 3—Output Segment Example: An option 3 segment that produces the
same result appears as follows (the * represents a null (X'3F') character):
CONTENTS |42|0|0|04|08|04| DATA 1|09|34| DATA 3 |19|39| DATA 4|

LENGTH 2 1 1 2 2 2 4 2 2 5 2 2 15

The examples under “Input Message Formatting Options” on page 186 explain the
sequence of fields within the segment for different formatting options.

Logical Paging of Output Messages
Logical paging is the means by which output message segments are grouped for
formatting. When logical paging is used, an output message is defined with one or
more logical pages (LPAGEs). Each LPAGE relates one segment, or a series of
segments, produced by an application program to a corresponding device format.

Using logical paging, the simplest message definition consists of one LPAGE and
one segment. As shown in Table 18, each segment produced by the application
program is formatted in the same manner using the corresponding device page.

Table 18. Output Message Definition with One LPAGE Consisting of One Segment

MSG Definition Device Page Application Program Output

LPAGE1 DPAGE1 Segment 1

SEG1

or

Segment 1

Segment 1

Segment 1

Output Message Formatting

Chapter 7. Message Formatting Functions 205

The next level of complexity, shown in Table 19, is a message defined with one
LPAGE consisting of a series of segments. When these messages are built by the
application program, the segments must be inserted in the sequence in which they
were defined. Not all segments in an LPAGE have to be present, but be careful
when you omit segments. An option 1 or 2 segment can be omitted if all segments
to the end of the LPAGE are omitted; otherwise, a null segment must be inserted to
indicate segment position. Option 3 output message segments must include the
segment number identifier.

Table 19. Output Message Definition with One LPAGE Consisting of a Series of Segments

MSG Definition Device Page Application Program Output

LPAGE1 DPAGE1 Segment 1 1

SEG1 Segment 2

SEG2
...

... Segment n

SEGn

Segment 1 1

Segment 2

Segment 1 2

Segment 2
...

Segment n

Notes:

1. Page bit optional.

2. Page bit required.

Multiple series of segments can be presented to IMS as an output message. If the
LPAGE is defined as having n segments, segment n +1 is edited as if it were
segment 1, unless a segment with the page bit (X'40') in the Z2 field is encountered
prior to segment n +1. When multiple series of output segments are presented and
segments are omitted, the segment which begins a series must have bit 1 (X'40') of
the Z2 field turned on.

A message definition with multiple LPAGEs is the most complex. Table 20 shows an
example of such a definition, with application output.

Table 20. Output Message Definition with Multiple LPAGEs

MSG Definition Device Page Application Program Output

LPAGE1 DPAGE1 Segment 1 1 (LPAGE1 condition specified)

SEG1 Segment 2

SEG2
...

Output Message Formatting

206 IMS/ESA V6 Appl Pgm: TM

Table 20. Output Message Definition with Multiple LPAGEs (continued)

MSG Definition Device Page Application Program Output
... Segment n

SEGn

Segment 1 1 (LPAGE2 condition specified)

LPAGE2 DPAGE2 Segment 2

SEG1

SEG2 Segment 1 1 (LPAGE2 condition specified)

Segment 2

Segment 1 1 (LPAGE2 condition specified)

Segment 1 2 (LPAGE1 condition specified)

Segment 2
...

Segment n

Notes:

1. Page bit optional.

2. Page bit required.

When multiple LPAGEs are defined, the LPAGE to be used for formatting is based
on a user-defined condition present (provided by the application program) in the
data of the first segment in the series. If the LPAGE to be used cannot be
determined from that segment, the last defined LPAGE is used. The rules for
segment omission described in “Logical Paging of Output Messages” on page 205
apply here as well.

LPAGE definitions enable specification of a MID name to use to format the input
expected in response to the output logical page. If specified, this MID name
overrides the name specified in the MOD’s MSG statement.

Operator Logical Paging of Output Messages
Output messages can be defined to permit operator logical paging (PAGE= operand
in the MOD’s MSG statement). Use operator logical paging to request a specific
logical page of an output message. For a complete description of operator logical
paging and other MFS control functions see “Your Control of MFS” on page 235.

Operator logical paging is also available to your written remote program for SLU P
(DPM-An) or ISC subsystem (DPM-Bn). The remote program can request IMS to
provide a specific logical page of the output message.

Physical Paging of Output Messages
A logical page can be defined to consist of one or more physical pages. Physical
paging allows data from a logical page to be displayed in several physical pages on
the device. Physical page assignments are made in the format definition. For
display devices, the size of a physical page is defined by the screen capacity (the

Output Message Formatting

Chapter 7. Message Formatting Functions 207

number of lines and columns that can be referred to). For most printer devices, a
physical page is defined by the user-specified page length (number of lines) and the
printer’s line length.

For SLU P (DPM-An) or ISC subsystems (DPM-Bn), a physical page is defined by
the user-specified paging option and the DPAGE or PPAGE statement specifying
device pages or presentation pages. Physical paging allows data from a message
to be transmitted to the remote program or subsystem in several presentation
pages or logical pages.

Typically, a logical page has just one physical page. Multiple physical pages per
logical page are generally only used when the logical page is designed for a large
screen but is also to be displayed on a small screen device. The physical pages
can have a totally different format from the pages defined for the large screen
device. Figure 37 illustrates the use of physical paging with a message that creates
one physical page on a 3277 model 2 or on a 3276/3278 with 24×80 screen size.

Fill Characters for Output Device Fields
MFS uses fill characters to pad output device fields when the length of the data
received from the application program is less than the specified length or no data
for the field is received. A fill character is defined in the message definition (MSG
statement), the format definition (DPAGE statement), or both. If a fill character is
specified in both, the fill character specified in the DPAGE is used. If FILL=NONE is
specified in the DPAGE statement, the fill character from the MSG statement is
used. The fill character specified in the MSG statement is used for all nonliteral
fields defined in the DOF, not just those defined by MFLDs in the MOD. Using a fill
character tailored to the device type generally improves message presentation and
device performance. You can select the following fill characters on a DPAGE
statement:

v Blank (X'40')

MESSAGE OUTPUT DESCRIPTION DEVICE OUTPUT FORMAT
(PROGRAM OUTPUT) (DISPLAY FORMAT)

│ │
│ A B C D E F G │ 3270─1 3270─2
└─────────────────────┘ ────── ──────

│ │ ┌─────────┐ ┌──────────┐
│ H I J K L M N │ │ A B C │ │ A B C │
└─────────────────────┘ │ │ │ │

│ M N │ │ H I │
└─────────┘ │ │

│ D E F G │
┌─────────┐ │ │
│ D E F │ │ J K L M │
│ │ │ │
│ H I │ │ N │
└─────────┘ └──────────┘

┌─────────┐
│ J K │
│ │
│ │
│ L G │
└─────────┘

Figure 37. Physical Paging for 3270 or SLU 2

Output Message Formatting

208 IMS/ESA V6 Appl Pgm: TM

v Blank (C' ')

v Any hexadecimal EBCDIC graphic character (X'hh')

v An EBCDIC graphic character (C'c')

You can select the following characters on a MSG statement:

v Blank (C' ')

v EBCDIC graphic character (C'c')

For the 3270 or SLU 2 display, the EBCDIC graphic fill character fills in any fields or
partial fields on the formatted display that do not receive any data or only partial
data. This erases information remaining on the display from the previous message,
however, using the fill character increases transmission time.

Null fill can be specified, in which case fields are not filled on the 3270 or SLU 2
formatted screen (and data from the previous message that is not updated by the
current message is still displayed). For devices other than 3270 or SLU 2 display,
compacted lines are produced when message data does not fill device fields. Using
null fill for 3270 or SLU 2 display devices reduces transmission time, but might
result in confusion if a partial field does not cover all the data remaining from a
previous display. Using null fill for other devices causes additional processing in the
IMS control region but reduces transmission and printing time.

For 3270 or SLU 2 formatted screen, a program tab function can be requested that
erases any data remaining in a device field after new data for this field has been
displayed, but does not produce any fill characters. With program tab fill, display
fields on a formatted screen are not cleared unless new data is transmitted to them.

When the program sends only a few of the output data fields, the unwanted display
of leftover data in unprotected fields can be prevented by specifying the “erase all
unprotected” function in the system control area “System Control Area (SCA) and
Default SCA (DSCA)”.

For 3270 output when EGCS fields are present, specify only FILL=PT or
FILL=NULL on the DPAGE or MSG statement. Any other specification can result in
the device rejecting the message.

System Control Area (SCA) and Default SCA (DSCA)
The system control area (SCA) is the means by which specific device operations
are requested when an output message is sent to the device. These device
requests can be defined in the message field (via the SCA) or in the device format
definition (via the default SCA, or DSCA). An SCA is defined as a message field.
The IMS application program can use the SCA to specify device operations to be
performed when output is sent to a terminal device.

The 3270 and SLU 2 functions that can be requested are:

v Force format write.

v Erase unprotected fields before write.

v Erase all partitions before sending message.

v Sound device alarm.

v Unprotect screen for this message.

v Copy output to candidate printer.

For 3270 and SLU 2 devices, MFS interprets the IMS application program
information and performs the specified operations.

Output Message Formatting

Chapter 7. Message Formatting Functions 209

A “sound device alarm” can be requested for output to an FIN workstation in the
SCA; in this case, MFS in turn specifies “device alarm” in the header of the output
message sent to the FIN workstation.

For an SLU P (DPM-An) or ISC subsystem (DPM-Bn), all the functions allowed for
the 3270 and FIN can be specified by the IMS application program in a message
field defined as an SCA. Define a device field (DFLD statement) as an SCA in the
DOF. For the SLU P remote programs or ISC subsystems, MFS does not interpret
the specifications from IMS. MFS only relays the specifications in the user-defined
device field SCA that it sends to the remote program or ISC subsystem.

For devices other than 3270, SLU 2, FIN, SLU P, and ISC, the SCA is ignored.

For all devices that can have SCAs, a default system control area (DSCA) can also
be defined in the DOF (in the DEV statement) in which the same kinds of functions
can be specified. Whenever the DOF DSCA is used, the functions are performed if
appropriate for the destination device. DSCA-specified functions are performed
regardless of whether an SCA field is provided. If DSCA and SCA requests conflict,
only the DSCA function is performed. Any invalid flag settings in the DSCA
specifications are reset, and only the valid settings are used.

For SLU P remote programs, DSCA information can similarly override SCA
specifications. The SCA or DSCA information is not interpreted by MFS but is
transmitted to the remote program in the device field defined as an SCA.

IMS application programs that control output through specifications in the SCA can
be device-dependent.

Related Reading: For additional information, see “System Control Area (SCA)” on
page 278 and “DEV Statement” on page 330.

Output Message Literal Fields
Output message fields can be defined to contain literal data you specified during
definition of the MOD. MFS includes the specified literal in the output message
before sending the message to the device.

You can define your own literal field, select a literal from a number of literals
provided by MFS, or both. The MFS-provided literals are called system literals, and
include the following:

v Various date formats

v The time stamp

v The output message sequence number

v The logical terminal name

v The number of the logical page

v The queue number of the message waiting

Related Reading: For a description of EGCS literals, see the “DFLD Statement” on
page 370. For a description of the system literals, see “MFLD Statement” on
page 323.

Output Device Field Attributes
Device field attributes are defined in the DOF’s DFLD statement. For 3270 display
devices, specific attributes can be defined in the ATTR= keyword or EATTR=
keyword of the DFLD statement, or default attributes are assumed.

Output Message Formatting

210 IMS/ESA V6 Appl Pgm: TM

For 3270 printers, 274X and 3770 terminals, and 3601 workstations, attribute
simulation can be defined by specifying ATTR=YES or ATTR=nn in the DFLD
statement. The message field definition corresponding to the device field can
specify that the application program can dynamically modify, replace, or simulate
device field attributes.

Extended Field Attributes for Output Devices
Extended field attributes apply to 3270 display devices and to printers defined as
3270P or SCS1, that support the 3270 Structured Field and Attribute Processing
option. These attributes also apply to 3270P or SCS1 printers that support the
Extended Graphics Character Set (EGCS) if field outlining or DBCS operation is
desired. These extended field attributes provide additional field attribute definition
beyond that provided in the existing 3270 field attribute. They are associated with a
field of characters just as the existing 3270 field attributes are, but they do not take
up display positions in the characters buffer. They can define such field
characteristics as:

v Color (seven-color models only)

v Highlighting

v Programmed Symbols (PS)

v Validation

v Field outlining

v Input control of mixed DBCS/EBCDIC data

Extended field attributes are defined in the EATTR= keyword of the DFLD
statement. They can be dynamically modified by specifying ATTR=nn on the
ATTR=YES or ATTR=nn. corresponding MFLD statement.

Any combination of existing and extended field attributes (except protect and
validate) can be transmitted in one display output stream.

When dynamic attribute modification (ATTR=YES) is specified for a device field with
predefined attributes, an attribute is sent to the device for that field in every output
operation, even if the data for this device field is not included in the output
message.

These attributes are used in the following ways:

v If the output message field has an attribute and the attribute is valid, then the
dynamic attribute modification is performed.

v If the message field is not included in the LPAGE being used or the attribute is
not valid, the predefined attribute for the device field is used.

The default attributes for nonliteral 3270 display device fields are:

v Alphabetic

v Not protected

v Normal display intensity

v Not modified

The default attributes for literal display device fields are:

v Numeric

v Normal display intensity

The forced attributes for literal display device fields are:

Output Message Formatting

Chapter 7. Message Formatting Functions 211

v Protected

v Not modified

Attribute simulation can be defined for non-3270 display devices but these attributes
are applied only when requested by an application program. The device field
definition reserves the first byte of the field for attribute data. If the application
program then specifies an attribute request, that request is represented in the first
byte of the device field.

Field attributes that can be simulated are:

Table 21. Simulated field attributes for literal display devices

Attribute Action Taken

High-intensity display An asterisk (*) is placed in the first byte

Modified field An underscore character (_) is placed in the
first byte

High-intensity and modified field An underscore character (_) is placed in the
first byte

No display No data is sent regardless of other
attributes, except for DPM

Cursor position for the 3604 can also be specified as a simulated attribute.

If a field is defined to receive simulated attribute data but none is provided by the
application program, the first byte is a blank.

For an application program to modify, replace, or simulate attribute data, the
message field definition must specify ATTR=YES or ATTR=nn. When attributes are
defined this way, the first bytes of the output message field are reserved for
attribute data. Any error in the specification causes the DFLD ATTR= or EATTR=
specification for that attribute byte to be used, although other attribute or extended
attribute specifications are processed.

For DPM devices, fields can be defined to receive attribute data, extended attribute
data, or both, from the IMS application program by specifying ATTR=YES or
ATTR=nn on the DFLD statement corresponding to the MFLD definition with
ATTR=YES or ATTR=nn. The 3270 attributes from the IMS application program can
either be converted to simulated attributes and placed in the first byte of the device
field or placed unchanged (2 binary bytes as received from the IMS application
program) in the first 2 bytes of the device field. The decision to send attributes,
extended attributes or simulated attributes is made when the device format is
defined. If a field is defined to receive attribute data but none is provided by the
IMS application program, the first byte contains a blank if attribute simulation was
requested, or the first 2 bytes contain binary zeros if binary attributes were
requested.

Extended Graphic Character Set (EGCS)
Extended Graphic Character Sets (EGCS) extend the number of graphic characters
beyond the limit available using EBCDIC. This is an extension of the programmed
symbol feature. The programmed symbol is an optional feature on the IBM 3270
Information Display Station and SCS1 printers that store and use the additional
character sets.

Output Message Formatting

212 IMS/ESA V6 Appl Pgm: TM

Where DBCS or DBCS/EBCDIC mixed fields are discussed in context with 3270
displays or SCS1 printer devices, it is assumed that these devices are capable of
handling DBCS data. Such devices include, for example, the 5550, supported as a
3270 display, and the 5553 and 5557, supported as SCS1 printers.

Definition: The Double Byte Character Set (DBCS) is a subset of EGCS. In it, each
graphic character is represented by 2 bytes. The valid code range is X'4040' or
X'41' through X'FE' for byte 1, and X'41' through X'FE' for byte 2.

EGCS Fields: An EGCS field is defined by the EATTR= parameter on the DFLD
statement for 3270 displays or SCS1 device types.

All EGCS literals are in the form G'SO XX XX SI', where SO (shift out)=X'0E'
and SI (shift in)=X'0F'.

For SCS1 device types, EGCS is specified as a pair of control characters framing
the data in the form of: G'SO XX XX XX SI'. The framing characters SO (shift out)
and SI (shift in) are not actual characters, but are 1-byte codes: X'0E' or X'0F'.

EGCS literals must be specified as an even number of characters; otherwise, a
warning message is issued. All characters (X'00' through X'FF') are valid in an
EGCS literal; however, a warning message is issued for all characters not within the
range of defined graphics, X'40' through X'FE'.

Restriction: An EGCS literal cannot be equated using the EQU statement if a
hexadecimal value within the literal is an X'7D', which is equivalent to a quote
character.

For the MFS Language utility to recognize an EGCS literal, observe the following
restrictions when defining the EGCS literal:

v SO and SI characters cannot be defined as alphabetic characters using the
ALPHA statement.

v The three characters G'SO (SO is a single character) must not span continuation
lines as input to the MFS Language utility, but must appear on the same line.
The same is true for the two characters SI'.

An EGCS literal can be continued on the next line. An SI character can be coded in
column 70, 71, or 72 to terminate EGCS data and is not included in the literal. If an
SI is in column 70, the data in column 71 is ignored, except when it is a single
quotation mark. On continuation lines for literals, an SO character is not required
but can be used, if it is placed in column 15. (This indicates the beginning of EGCS
data and is not included in the literal).

Restriction: IMS does not support a 2-byte fill function, inbound or outbound. For
outbound data, the MFS fill function is at the message level. To avoid MFS insertion
of RA (Repeat to Address) orders for EGCS fields that contain no data or are
omitted in the output message, FILL=PT (the default) or FILL=NULL must be
specified.

The MFS Language utility uses SO and SI characters in its output listing only for
the initial input statement and for error messages that display EGCS literals from
the input record. EGCS literals that are a part of the device image map are
displayed as a series of Gs. Additional utility output that is created by using the
EXEC PARM= operands DIAGNOSTIC, COMPOSITE, and SUBSTITUTE, and that
contains EGCS literals, does not have the G, SO, and SI characters inserted. Only
the data between the SO and SI characters is included.

Output Message Formatting

Chapter 7. Message Formatting Functions 213

You must define the screen location (row and column) where the field is to be
displayed. This includes any screen placement constraints imposed by a particular
product implementation. Warning messages are issued when:

v The DFLD attribute is EGCS and the field position parameter does not specify an
odd column number (3270 only)

v An EGCS literal is not specified as an even number of characters

v The DFLD length is not specified as an even number

When defining an EGCS field for a 3283 Model 52, you must ensure that the length
specified is an even number and, if an EGCS field spans device lines, specify
WIDTH= and POS= so that an even number of print positions are reserved on each
of the device lines.

Mixed DBCS/EBCDIC Fields
The Double Byte Character Set (DBCS) is a graphic character set in which each
character is represented by 2 bytes. It is a subset of the Extended Graphic
Character Set (EGCS). DBCS is used in several Asian countries, such as Japan,
Taiwan, and Korea, because the number of characters in those countries’ written
languages is more than the 256 characters that can be represented by one byte. As
with EGCS, this representation is accomplished by an extension of the programmed
symbol feature.

Because DBCS is a subset of EGCS, DBCS fields are specified using EGCS
keywords and parameters and are treated by MFS in much the same way as EGCS
data. However, DBCS data can be used in two field types, a DBCS field and a
DBCS/EBCDIC mixed field. The DBCS field accepts only DBCS data and no
special control characters are needed with this type of field. (The valid code range
of DBCS data is X'4040', or X'41' through X'FE' for both bytes.) But, in a mixed
field, where DBCS data is mixed with EBCDIC data, the DBCS data must be
enclosed by SO (shift out) and SI (shift in) control characters.

Using DBCS requires display and printer devices capable of handling DBCS data.
One such group of devices is the 5550 Family (as 3270); however, other 3270
DBCS devices are available.

Mixed DBCS and EBCDIC Fields: When DBCS data is enclosed by SO/SI
characters, a mixed field on a 3270 DBCS device accepts both EBCDIC and DBCS
data. Such a mixed field can contain multiple DBCS data entries enclosed by SO/SI
control characters, as shown in Figure 38.

The DBCS data should always be enclosed by SO/SI control characters for both
inbound and outbound data to a 3270 display. However, if the data is inbound, the
control characters are automatically created by the terminal. To explicitly specify
DBCS/EBCDIC mixed fields, use the keywords MIX and MIXS on the EATTR=
parameter of the DFLD statement.

Example: Figure 38 shows the case of a DBCS/EBCDIC mixed field.

Output Message Formatting

214 IMS/ESA V6 Appl Pgm: TM

The DBCS/EBCDIC mixed data shown in Figure 38 consists of the following 16
characters:

v EBCDIC data 'ABCD' and 'EF' (6 bytes)

v DBCS data 'GGGG' and 'GG' (6 bytes)

v Two sets of SO/SI control characters (4 bytes)

The SO control character is represented by X'0E' and the SI control character is
represented by X'0F'.

When DBCS is used, MFS sends the data directly to the 3270 display but performs
SO/SI blank print processing before sending it to the SCS1 printer. The SO/SI
control characters for 3270 displays and SCS1 printers are treated as follows:

v On 3270 displays, an SO or SI control character takes up one position on the
display and appears as a blank.

v On SCS1 printers:

– If EATTR=MIXS is specified, an SO or SI control character does not take up a
position on the listing. To prevent insertion of blanks, specify EATTR=MIXS
(SO/SI blank print suppress option).

– If EATTR=MIX is specified, the SO/SI blank print option inserts a blank before
an SI control character and after an SI control character in a mixed data field.
Specifying MIX results in identical 3270 display output and SCS1 printer
output.

The length of the mixed data containing SO/SI in the application program is
different from the length of the same data on the printed output.

The length of the DBCS/EBCDIC mixed data shown in Figure 38 is 16 bytes in the
application program. If the string is sent to a field specified with DFLD EATTR=MIX,
the data is printed as a 16-byte string. However, if sent to a field specified as DFLD
EATTR=MIXS, the data is printed as a 12-byte string (4 bytes of SO/SI control
characters are suppressed). The length attributes of the DFLDs are LTH=16 and
LTH=12, respectively.

SO/SI Control Character Processing: For 3270 displays, DBCS data enclosed
by SO/SI control characters can be included as part of an existing EBCDIC field.
When DBCS data is mixed in an existing EBCDIC field, the IMS application
program must check that correct DBCS data is placed in the 3270 display field.
DBCS data within an EBCDIC field is correct when the following conditions are met:

v The length of DBCS characters is an even number of bytes.

v There are no unpaired SO or SI control characters.

Number of Bytes 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1
0 1 2 3 4 5 6

Data Stream A B C D SO G G G G SI E F SO G G SI
│ │ │ │ │ │ │ │
└──┬──┘ └──┬──┘ └┬┘ └┬┘

│ │ │ │
EBCDIC DBCS EBCDIC DBCS
data data data data

Figure 38. DBCS/EBCDIC Mixed Data

Output Message Formatting

Chapter 7. Message Formatting Functions 215

When MIX or MIXS is specified on the DFLD statement, MFS checks the above
conditions, aligns the DBCS data enclosed by SO/SI control characters, and
corrects invalid SO/SI control characters.

DBCS/EBCDIC Mixed Literals: DBCS/EBCDIC mixed literals can be specified as
DFLD/MFLD literals, as shown in Figure 39.

The DBCS data in a DBCS/EBCDIC mixed literal is expressed as a series of Gs in
the device image map in the MFS listing.

When the MFS Language utility specifies a DFLD/MFLD literal containing
DBCS/EBCDIC mixed data within an EBCDIC field without specifying EATTR=, a
check for mixed field is performed for both 3270 display and SCS1 printer output. A
DBCS/EBCDIC mixed field attribute with EATTR=MIX is assigned for SCS1 only.
The LTH parameter is ignored even if specified. As a result, the field length is the
same as the length of the literal.

Table 22 shows the processing performed by the IMS MFS Language utility for
SO/SI control characters within a DBCS/EBCDIC mixed field.

Table 22. SO/SI Processing Performed by IMS MFS Language Utility

Device, Field DFLD/MFLD Output Literal MFLD Input Literal

3270 display,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Adjust boundary alignment (with
warning message).

SO/SI checking not done

SCS1 printer,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Perform SO/SI correction and
boundary adjustment according to
SO/SI blank print option.

Not applicable

Table 23 shows the processing performed by the MFS message editor on SO/SI
control characters within a DBCS/EBCDIC field.

Table 23. SO/SI Processing Performed by MFS Message Editor

Device, Field Outbound Data Fields Inbound Data Fields

3270 display,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Adjust boundary alignment.

SO/SI checking not done

literal format:'SO____SI..SO__SI'

DFLD
'literal'

MFLD
,'literal'
,(dlfdname,'literal')

Figure 39. DBCS/EBCDIC Mixed Literal

Output Message Formatting

216 IMS/ESA V6 Appl Pgm: TM

Table 23. SO/SI Processing Performed by MFS Message Editor (continued)

Device, Field Outbound Data Fields Inbound Data Fields

SCS1 printer,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Perform SO/SI correction and
boundary alignment according to
SO/SI blank print option.

Not applicable

Continuation Rules for DBCS/EBCDIC Mixed Literals: The continuation rules
for mixed literals are the same as the continuation rules for EGCS literals. The
continuation rules are as follows:

v An EGCS literal can be continued on the next line.

v An SI character can be coded in column 70, 71, or 72 to terminate EGCS data
and is not included in the literal. If an SI is in column 70, the data in column 71 is
ignored, except when the character is a single quotation mark.

v On continuation lines for literals, an SO character is not required, but can be
used in column 15. (This indicates the beginning of EGCS data and is not
included in the literal.)

Because mixed literals have the DBCS character string, there are some
considerations for their continuation:

v When data is mixed EBCDIC and DBCS, the DBCS data must be enclosed by
SO and SI control characters. The SI characters can be located from column 70
to 72 in an EGCS literal; in a mixed literal, SO and SI are part of the user data.
Therefore, you must fill the data up to column 71, put a non-blank character in
column 72, and start the next line from column 15 (if SO) or from column 16.
Examples of continuations in mixed literals are shown in Figure 40.

v When the first byte of the DBCS character is in column 71, you can put a
non-blank character in column 72 and put the second byte of the DBCS
character in column 16 of the next line to continue the literal. Another solution is
to start the first line from column 17.

SO/SI Pair Verification and SO/SI Correction: MFS corrects unpaired SO and SI
control characters found during SO/SI pair verification as follows:

Mixed Literal
'abc{K1K2K3}'def where

abc & def = EBCDIC characters
K1K2K3 = DBCS characters
{ = shift out X'0E'
} = shift in X'0F'

Examples of Continuations in Mixed Literals
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

'zzabc{K1}
{K2K3}def'

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
'zzabc{K1K2K3}

{}def'

Figure 40. Continuation in a Mixed Literal

Output Message Formatting

Chapter 7. Message Formatting Functions 217

v Within a 3270 display field or SCS1 printer field with EATRR=MIX specified, all
SO control characters (except the last unpaired SO control character in the field)
and all duplicate SI control characters are replaced with blanks.

For the last unpaired SO control character in the field, an SI control character is
placed in either the last, or second from the last, byte so that the length of the
DBCS field is even. If an SI control character is placed in the second from the
last byte, the last byte is replaced by a fill character. If an SO control character is
in the last byte of a field, it is replaced with a blank.

v Within an SCS1 printer field with EATRR=MIXS specified, all SO control
characters (except the last unpaired SO control character in the field) and all
duplicate SI control characters are removed.

For the last unpaired SO control character in the field, an SI control character is
placed in the last, or second from the last, byte so that the length of the DBCS
field is even. If the SI control character is placed in the second from the last byte,
the last byte is replaced by a fill character. If an SO control character is in the
last byte of a field, it is replaced with a fill character.

For SCS1 printers, all paired and unpaired SO/SI control characters exceeding the
number of SO/SI pairs defined for the field are:

v Replaced with blanks, if EATTR=MIX is specified

v Removed, if EATTR=MIXS is specified

If the length of DBCS data within a DBCS/EBCDIC field is odd, the odd SI position
is moved one byte to the left and the rest of the field is padded with blanks.

Input Control and DBCS/EBCDIC Mixed Field (3270 Display): When sending
DBCS/EBCDIC data to a DBCS/EBCDIC field, MFS checks for SO/SI pairs and
even length and performs SO/SI correction and boundary adjustment if necessary.
In this way, the DBCS/EBCDIC field appears correctly on the 3270 display screen
or SCS1 printer output.

When receiving DBCS/EBCDIC data from a mixed field, MFS passes the data as is.
This is because SO/SI pairing and even length are always ensured when using the
3270 display.

However, when sending DBCS/EBCDIC data to a DBCS/EBCDIC field and
receiving user-entered DBCS/EBCDIC data from the same field, the application
program must account for changes in the data. When receiving user-entered DBCS
data, the 3270 display builds the data and SO/SI control characters and then
truncates or realigns the data to assure SO/SI paring and even length. The IMS
application program must take this into account when using a part of the send data
as receive data.

DBCS/EBCDIC Mixed Field and Horizontal Tab (SCS1 Printer): When using an
online horizontal tab setting, tabs are not set within a DBCS/EBCDIC field. This is
because it is not possible to determine beforehand whether the actual position of
the DBCS data within a mixed field is on an odd or even boundary.

Field Outlining: This function is used for user-defined 3270 display and SCS1
printer fields.

Output Message Formatting

218 IMS/ESA V6 Appl Pgm: TM

Field outlines are referred to as OVER, UNDER, LEFT, and RIGHT lines and they
can be specified independently or in any combination.

The shaded area at the left and right ends of the field shown in Figure 41 are:

v For 3270 displays, 3270 basic attribute bytes. The left attribute byte describes
the first field; the right attribute byte describes the following field.

v For SCS1 printers, left and right blanks, reserved for the user-defined field by
MFS.

Connecting Field Outlines and Joining Fields: You can outline multiple fields
jointly as shown in Figure 42.

Figure 42 consists of nine logical fields. A1, B1, ... I1 are fields defined for the 3270
display and A2, B2, ... I2 are fields defined for the SCS1 printer. Note that for 3270
displays, 3270 basic attribute bytes are placed between fields. For SCS1 printers,
the fields are connected without losing any print positions and the field outlines are
connected. The outline specification for each field in Figure 42 is shown in Table 24.

Table 24. Outline Specification for Each Field

LEFT RIGHT OVER UNDER

A1, A2 X X

B1, B2 X

C1, C2 X X

D1, D2 X X

E1, E2 X

F1, F2 X X

Over│line
│
H

┌───────────────────────────┐
Left ┌───┼───────────────────────────┼───┐ Right
line────┼//�│/│ ABC CO. LTD. │//│�//┼────line

└───┼───────────────────────────┼───┘
└───────────────────────────┘i

│──User defined field──│ │
│

Under line

Figure 41. User Field and Field Outlining

Figure 42. Field Outlining When Connecting User Fields

Output Message Formatting

Chapter 7. Message Formatting Functions 219

Table 24. Outline Specification for Each Field (continued)

LEFT RIGHT OVER UNDER

G1, G2 X X X

H1, H2 X X

I1, I2 X X X

You need to define only the message field for 3270 displays in your IMS application
program to produce the same output on displays and printers.

When field outlining is specified for an SCS1 printer, the MFS Language utility
attempts to reserve 1 byte for the left and right lines, but if adjacent fields cannot be
reserved, a warning message is issued.

Cursor Positioning
On 3270, 3604, or SLU 2 display devices, the cursor is positioned by its line and
column position on a physical page. When a specific cursor position is always
required (and device-dependence is not an issue), you can define cursor position in
the DPAGE statement.

The DPAGE statement can also be defined so that cursor position is known to the
application program on input and is specified dynamically by the application
program on output. To dynamically define cursor position on output, specify a
device field name along with its line and column position. If this field is then referred
to by a MID MFLD statement, the cursor position is provided in that message field
on message input. If the message field is referred to in a MOD MFLD statement,
the message field can be used by the application program to specify cursor position
on output.

The application program cursor position request is used if its specified size is within
the line and column specifications of the SIZE= operand of the TERMINAL macro
for device type 3270-An; or within the line and column boundaries of 3270, model 1
or 2. Otherwise, the line and column positions specified on the DPAGE statement or
the default positions (line 1, column 2) are used.

Related Reading: For a description of the TERMINAL macro, see IMS/ESA
Installation Volume 2: System Definition and Tailoring.

The option of providing cursor location on input is available only for 3270 or SLU 2
devices. This method of cursor positioning is not recommended for output, because
it requires the application to use a specific device field position, making the
application device-dependent. MFS considers cursor position as a device field
attribute; the field attribute facility can be used to establish cursor position.

Positioning the Cursor Dynamically: Application programs can dynamically
replace, modify, or simulate attributes for a device field whose corresponding
message field is defined as ATTR=YES or ATTR=nn. At least the first 2 bytes of a
message field defined in this way are reserved for attribute data or extended
attribute data provided by the application program.

For a 3290 in partitioned-format mode, the first partition descriptor (PD) statement
defined in the partition descriptor block (PDB) is the first partition created. The
cursor is placed in this partition, which becomes the active partition unless
overridden by the Jump Partition key or by the ACTVPID= keyword in the DPAGE
statement associated with a subsequent output message.

Output Message Formatting

220 IMS/ESA V6 Appl Pgm: TM

Using the Jump Partition key causes the cursor to jump to the next sequential
partition defined by the application program and that partition becomes the active
one. The ACTVPID= keyword allows the application program to activate and locate
the cursor in a specific partition.

Prompt Facility
The prompt facility provides a way to automatically notify you if the current page of
output is the last page of the message. The notification text is defined as a literal
which MFS inserts into a specified device field when it formats the last logical page
of the message. To further assist you, the prompting text can be used to tell you
what input is expected next.

Recommendation: For a 3270 or SLU 2 device, the combination of PROMPT and
FILL=NULL should be used with care because, once the prompt literal is displayed,
it can remain on the screen if your input does not cause reformatting of the screen.

System Message Field (3270 or SLU 2 Display Devices)
Output formats for 3270 or SLU 2 display devices can be defined to include a
system message field. If defined in this way, all IMS messages except
REQUESTED FORMAT BLOCK NOT AVAILABLE are sent to the system message
field whenever the device is in formatted mode. Using a system message field or
setting byte 1 bit 5 to B'0' in the DSCA specification prevents an IMS message from
destroying a screen format.

When MFS sends a message to the system message field, it activates the device
alarm (if any) but does not reset modified data tags (MDTs), move the cursor, or
change the protect/unprotect status of the display, except in the event of a
multi-segment message. In this case, the status is changed to protected, and the
enter key must be pressed to view the next segment or segments of the message.
Because IMS error messages are an immediate response to MDTs in input, MDTs
remain as they were at entry and you must correct the portion of the input that was
in error.

After input from an operator identification (OID) card reader, the device is no longer
in formatted mode. Therefore, an IMS message is not sent to a SYSMSG field; it is
sent using the default system message format. This is also the case after an XRF
takeover because the device is no longer in formatted mode.

Printed Page Format Control
The PAGE= keyword of the DEV statement provides much of the formatting control
of the format of output messages sent to printer devices.

The WIDTH= keyword provides additional formatting control. In conjunction with the
FEAT=(1...10) keyword, WIDTH= provides additional formatting control for printer
devices specified as 3270P. (See WIDTH= under the DEV statement for additional
information.) The WIDTH= keyword, in conjunction with the HTAB=, VTAB=, VT=,
SLDI= and SLDP= keywords, provides additional formatting control for 3770, SLU 1,
or SLU 4 printer devices.

Using a PAGE= operand (DEFN, SPACE, FLOAT, or EJECT), with the page depth
(the number of lines per page), determines how MFS controls the printing of the
output message. The PAGE= operands are described below.

DEFN MFS prints each line as defined by DFLD statements. In this mode,
if the first DFLD defined line is greater than 1, the printer position is
moved to the first defined line. The printer position is also moved
over the blank lines between defined DFLDs. However, MFS does

Output Message Formatting

Chapter 7. Message Formatting Functions 221

not add blank lines to the bottom of the page of output if the last
defined line is less than the page depth. The next page of output
begins on the line following the current line of output. The number
specified in the PAGE= keyword is used to check the validity of the
line specification of the DFLD POS= keyword.

SPACE This produces the same printing mode as DEFN except that lines
are added to the bottom of the page if the last defined line is less
than the page depth. The printer is positioned through a series of
new lines. This option can be used for devices that do not have the
page eject feature so that pages are not grouped together.

FLOAT This operand is used to request that lines not be printed if they are
defined by DFLD statements, or if they contain no data after
formatting (all blank or NULL).

EJECT This operand is specified for FIN, 3770, SLU 1, or SLU 4 printers.
The following options can be specified for EJECT (or any
combination of these):

BGNPP or ENDPP MFS ejects the page before
(BGNPP) or after (ENDPP) each
physical page of the output
message.

BGNMSG MFS ejects the page before any
data in the output message is
printed.

ENDMSG MFS ejects the page after all the
data in the output message is
printed.

MFS does not add lines to or delete lines from the page. EJECT
can be specified for FIN, 3770, SLU 1, or SLU 4 printers.

Format Control for 3770, SLU 1, and SLU 4 Printers
MFS provides several specifications to control the format of output messages to
3770 printer devices and SLU 1 (print data set) (DEV TYPE=SCS1) or SLU 4 (DEV
TYPE=SCS1). Printer formatting features are listed and described below.

Print Mode: The section, “Printed Page Format Control” on page 221, describes
print mode for 3770, SLU 1 or SLU 4 printers.

Page Depth: The page depth, as specified in the PAGE= keyword, is discussed in
the section “Printed Page Format Control” on page 221.

Line Width: The WIDTH= keyword of the DEV statement is used to specify the
maximum width of a print line, relative to column 1. The specified width is used in
place of the physical device line width. Specification of a line width also establishes
the right margin of the printed page (relative to column 1). Valid values are less
than or equal to the physical device line width. For example, if WIDTH=80 is
specified, data can be printed in columns 1 through 80.

Left Margin Position: The left margin operand of the HTAB= keyword of the DEV
statement can be used to specify where MFS should set the left margin for the
device before sending an output message. A left margin specification should be
made if output fields always start at a column position other than column 1 (the
default). For example, if fields are always defined in columns 5 through 80,
HTAB=(5) and WIDTH=80 can be specified on the DEV statement.

Output Message Formatting

222 IMS/ESA V6 Appl Pgm: TM

Horizontal Tabbing: The HTAB= keyword of the DEV statement is used to specify
where MFS should set horizontal tab stops before sending an output message.

MFS can insert tab control characters into the message to reduce the number of
characters transmitted. To control when tab control characters are inserted, specify
the ONLINE or OFFLINE operand for the HTAB= keyword. OFFLINE specifies that
MFS insert the tab control characters during compilation of the control blocks by the
offline MFS Language utility program. ONLINE specifies that MFS insert the control
characters during online processing of the message. MFS can only be directed to
insert tab control characters into messages that have legitimate fill characters
specified (FILL=X'hh' or FILL=C'c' in the DPAGE statement), or use the default fill
character, X'40'.

Specify OFFLINE when the message definition always supplies data to most
defined device fields, or the fill character is not a blank. Specify ONLINE if some
device fields do not receive data, or the data contains blanks. Even though the
ONLINE specification increases MFS online processing, it reduces character
transmission to the device.

Vertical Tabbing: The VT= keyword of the DEV statement is used to specify
where MFS should insert vertical tab control characters into the page of the output
message. MFS assumes that the vertical tab stops are relative to line 1 and have
been set at the device by the specification of the VTAB= keyword or other means
prior to message transmission. VT= must be specified if vertical tabbing is required.
There are no default values. VT= is invalid if page control specifications direct MFS
to delete lines that contain no data after formatting. EJECT BGNMSG or EJECT
BGNPP should be specified in conjunction with the VT= keyword to ensure proper
alignment at the beginning of a page. A specification of VT= without a suitable
EJECT operation defined can result in invalid device formatting.

Top and Bottom Margins: Top and bottom margins can be specified for printers
specified as DEV TYPE=SCS1 by using the VTAB= keyword on the DEV statement.
VTAB= is invalid if page control specifications (PAGE=n,FLOAT) direct MFS to
delete lines that contain no data after formatting.

When used together, the page depth (PAGE=), vertical tab (VT=), and top and
bottom margin (VTAB=) specify a “set vertical format” data stream.

Line Density: For printers specified as DEV TYPE=SCS1, the density of lines on
an output page can be specified with the SLDx= keyword on the DEV statement,
the DFLD statement, or both. Line density can be set in terms of lines per inch or
points per inch. If SLDx= is specified on both the DEV and DFLD statements, two
SLD data streams are sent, one at the beginning of a message and one within the
message, just before the field on which the SLDx specification, was encountered,
but after any vertical tabs and new line characters. The SLDx specification within
the message changes the line density from that set at the beginning of the
message to that specified within the message. The line density specified within the
message remains in effect until explicitly reset.

Output Format Control for 3270P Printers
MFS provides several specifications to control the format of messages to 3270P
printer devices.

Print Mode: “Printed Page Format Control” on page 221 describes print mode for
3270P printers.

Output Message Formatting

Chapter 7. Message Formatting Functions 223

Page Depth: The page depth, as specified in the PAGE= keyword, is discussed in
“Printed Page Format Control” on page 221.

Line Width: The WIDTH= keyword of the DEV statement is used to specify the
maximum width of a print line relative to column 1. The specified width is used in
place of the physical device line width. The default for 3270P printers is 120. When
WIDTH= is specified, a feature code from 1 to 10 must also be specified via the
FEAT= keyword on the DEV statement.

Output Format Control for SLU P DPM-An
For SLU P devices with the DPM-An option, You can use several specifications in
MFS to control the format of output messages.

The RCDCTL= operand of the DIV and RCD statements identifies a related group
of device field (DFLD) definitions that are within one record, which is usually sent to
a remote program as one transmission (that is, if the RCDCTL= value is less than
or equal to the value in the OUTBUF= parameter of the system definition
TERMINAL macro).

The number of device fields in the record is determined by the length (numeric
value) specified in RCDCTL. Device fields can be arranged in records through the
RCD statements. The records created can be smaller than the size specified in
RCDCTL. The SPAN/NOSPAN parameter determines whether fields are allowed to
span record boundaries. All output messages are sent in record mode.

The PPAGE statement identifies a presentation page of a device format and can
contain one or more records.

The DPAGE statement defines a logical page of a device format and can contain
one or more records.

Paging: The MSG, DPAGE, or PPAGE operands of the OPTIONS= specification
of the DIV statement is used to determine how the output message is sent to the
remote program.

MSG This specifies that all the data in the output message is to be
transmitted together to the remote program in one chain. This is the
default.

After transmitting the message to the remote program, IMS does
not transmit another output message if PROGRAM2 has been
specified as the media parameter of the COMPTn operand of the
system definition TERMINAL macro. An input request is required
from the remote program before the next message is sent. If
PROGRAM1 is specified, IMS does not wait for an input request,
but sends another output message if one is available.

DPAGE This specifies that all the data in the logical page is to be
transmitted together to the remote program in one chain. A paging
request is required from the remote program to retrieve the next
logical page of the output message.

PPAGE This specifies that all the data in the presentation page is to be
transmitted together to the remote program in one chain. A paging
request is required from the remote program to retrieve the next
presentation page of the output message.

Output Message Formatting

224 IMS/ESA V6 Appl Pgm: TM

A paging request can be specified through the input message header or through an
operator control table. For OPTIONS=DPAGE or PPAGE, when the last logical or
presentation page has been sent to the remote program, IMS MFS action is the
same as for 3270 and 3604 devices (shown in Table 18 on page 205) regardless of
PROGRAM1 or PROGRAM2 specification.

Each chain contains an output message header. The DATANAME in the output
message header is the format name if OPTIONS=MSG is specified, the current
name of the device logical page (DPAGE) if OPTIONS=DPAGE is specified, or the
current name of the presentation page if OPTIONS=PPAGE is specified.

The output message header is always present in the first transmission record of the
chain. For OPTIONS=MSG, the first transmission record contains only the output
message header, and the next transmission begins the data for the message.

For OPTIONS=DPAGE or PPAGE, the data follows the output message header in
the first transmission record if either of the following occurs:

v RCDCTL=(,SPAN) is specified, and the RCDCTL length is greater than the output
message header length.

v RCDCTL=(,NOSPAN) is specified, the RCDCTL length is greater than the output
message header length, and at least the first data field defined in the current
DPAGE or PPAGE can be fully contained within the first transmission record.

Output Message Header: The basic output message header contains the
following MFS fields, presented in this sequence:

VERSION ID

MIDNAME

DATANAME

DATANAME is the FMT label for OPTIONS=MSG, the DPAGE label for
OPTIONS=DPAGE, and the PPAGE label for OPTIONS=PPAGE.

If a forms literal is specified in the DEV statement, the FORMSNAME field is
present in the output message header. For OPTIONS=MSG the FORMSNAME is
present in the basic header after the DATANAME. For OPTIONS=DPAGE OR
PPAGE, an optional forms output message header precedes the basic output
message header. It contains the following fields:

MIDNAME

FORMSNAME

The forms header is sent to the remote program as the only element of a chain. A
paging request is required after the header has been processed and the remote
program is ready to process the first logical or presentation page of an output
message.

The length of the output message header can be defined in the HDRCTL= operand
of the DIV statement as fixed or variable.

The length of the fixed basic output message header (without FORMSNAME) is 23
bytes for OPTIONS=MSG and 25 bytes for OPTIONS=DPAGE or PPAGE. If
FORMSNAME is present, the maximum length of the basic output message header
for OPTIONS=MSG is 40 bytes, and the maximum length for OPTIONS=DPAGE or
PPAGE is 33 bytes.

v If HDRCTL=FIXED is specified, the MIDNAME and DATANAME fields are always
padded with blanks to the maximum definable length: MIDNAME to 8 bytes (if

Output Message Formatting

Chapter 7. Message Formatting Functions 225

MIDNAME is not supplied, 8 blanks are presented), FMT name to 6 bytes, and
DPAGE or PPAGE name to 8 bytes. For this reason, the position of the
DATANAME is always at the same displacement in the basic output message
header, and the FORMSNAME, if present, is always at the same displacement,
following the FMT name if OPTIONS=MSG and following the MIDNAME if
OPTIONS=DPAGE or PPAGE.

v If HDRCTL=VARIABLE is specified, neither MIDNAME nor DATANAME is
padded. If MIDNAME is less than 8 bytes or is not present, the position of the
DATANAME, FORMSNAME, or both within the output message header is
variable.

Figure 43 shows the format of the fixed output message header for
OPTIONS=MSG.

BASE The base DPM-An output header with a length of 7 bytes, including
the version ID.

L1 The full length of the MIDNAME plus 1. Contains the value 9.

MIDNAME Contains the MIDNAME to be used for input. If this name is less
than 8 characters, it is padded with blanks to a full 8 bytes. If the
MIDNAME is not specified, this field contains 8 blanks.

L2 The full length of the format name (DATANAME) plus 1. Contains
the value 7.

DATANAME The name of the format that was used to format the data fields. If
the format name specified is less than 6 characters, it is padded to
a full 6 bytes.

L3 Contains the length of the forms literal plus 1. The maximum value
is 17.

FORMSNAME Contains the literal specified in the FORS= parameter of the DEV
statement. It can have a length of 1-16 bytes. If FORS= is not
specified in the DEV statement, the L3 and FORMSNAME fields
are not included in the output message header.

If a variable output message header is specified in the HDRCTL= operand of the
DIV statement, the output message header for OPTIONS=MSG will have the same
format, but MIDNAME and DATANAME will have trailing blanks omitted and their
length fields adjusted accordingly. If MIDNAME is not used, neither the MIDNAME
field nor its length is present.

Figure 44 shows the format of the fixed basic output message header (without
FORMSNAME) for OPTIONS=DPAGE or PPAGE.

┌───────┬────────┬────┬─────────┬────┬──────────┬────┬─────────────────┐
│ FIELD │ BASE │ L1 │ MIDNAME │ L2 │ DATANAME │ L3 │ FORMSNAME │
│ │ │ │ │ │ │ │ │
│ BYTES │ 7 │ 1 │ 8 │ 1 │ 6 │ 1 │ (user─coded │
│ │ │ │ │ │ │ │ literal} │
└───────┴────────┴────┴─────────┴────┴──────────┴────┴─────────────────┘

Figure 43. Fixed Output Message Header Format for OPTIONS=MSG

Output Message Formatting

226 IMS/ESA V6 Appl Pgm: TM

BASE Content is the same as for OPTIONS=MSG (Figure 43 on
page 226).

L1 Content is the same as for OPTIONS=MSG (Figure 43 on
page 226).

MIDNAME Content is the same as for OPTIONS=MSG (Figure 43 on
page 226).

L2 This is the full length of the DPAGE or PPAGE name (DATANAME
plus 1). Contains the value 9.

DATANAME Contains the name of the DPAGE or PPAGE that was used to
format the data fields for the current logical or presentation page. If
the DPAGE or PPAGE name specified is less than 8 characters, it
is padded with blanks to the full 8 bytes.

Figure 45 shows the format of the optional forms output message header for
OPTIONS=DPAGE or PPAGE.

BASE The base of the optional forms output message header does not
include a version ID.

L1 Contains the value 9.

MIDNAME Content is the same as for OPTIONS=MSG (Figure 43 on
page 226).

L3 Contains the length of the coded forms literal plus 1.

FORMSNAME Contains a user-coded literal, as in the fixed output message
header for OPTIONS=MSG. (See Figure 43 on page 226.)

Naming Conventions: Establish naming conventions for formats, device logical
pages, and presentation pages (that is, for the labels of the FMT, DPAGE, and
PPAGE statements). For example, you can establish conventions for FMT, DPAGE,
and PPAGE names that allow the remote program to interpret them in terms of
3790 panels or functional program subroutines. Also standardize DPM-An output
message headers.

User-written labels for PPAGE statements must be unique within a format definition.
It is recommended that labels also be unique within the IMS system.

┌───────┬────────┬────┬────────────┬────┬──────────────────────────────┐
│ FIELD │ BASE │ L1 │ MIDNAME │ L2 │ DATANAME │
│ │ │ │ │ │ │
│ BYTES │ 7 │ 1 │ 8 │ 1 │ 8 │
└───────┴────────┴────┴────────────┴────┴──────────────────────────────┘

Figure 44. Fixed Basic Output Message Header (Without FORMSNAME) for
OPTIONS=DPAGE or PPAGE

┌───────┬──────┬────┬─────────┬────┬───────────────────────────────────┐
│ FIELD │ BASE │ L1 │ MIDNAME │ L2 │ FORMSNAME │
│ │ │ │ │ │ │
│ BYTES │ 5 │ 1 │ 8 │ 1 │ (user─coded literal) │
└───────┴──────┴────┴─────────┴────┴───────────────────────────────────┘

Figure 45. Optional Forms Output Message Header for OPTIONS=DPAGE or PPAGE

Output Message Formatting

Chapter 7. Message Formatting Functions 227

If OPTIONS=PPAGE has been selected for a format definition, the PPAGE label is
sent as the DATANAME in the output message header. The label should give the
remote program information that can be used in deciding how to process the data.
When you have not coded a label for a PPAGE, MFS generates a label for it and
sends this generated name in the output message header. The MFS-generated
names can be used by the remote program, but leaving the label specification up to
MFS is not recommended, because the generated name for a given PPAGE can
change every time the MFS definitions are recompiled.

Deletion of Null Characters in DPM Output Records: See the discussion of
FILL=NULL in the DPAGE statement in “Chapter 10. MFS Language Utility” on
page 311 for a discussion of deletion of null characters in transmission records.

Output Format Control for ISC (DPM-Bn) Subsystems
This section describes the major output message formatting functions of MFS with
ISC nodes.

Format Control
For ISC nodes, MFS allows several specifications to control the format of output
messages. If OPTIONS=DPAGE or OPTIONS=PPAGE is specified on the DIV
statement, MFS sends an output message in multiple logical or presentation pages.
Transmission of these pages within the message occurs on demand or
automatically when you set byte 1 bit 5 of the system control area (SCA). For
details, see “System Control Area (SCA)” on page 278.

Function Management (FM) Headers
FM headers are headers on output messages that control functions such as paging.

Paged Output Messages
For DPM-Bn paging support, if OPTIONS=DPAGE or OPTIONS=PPAGE is
specified on the DIV statement, MFS sends an output message in multiple logical or
presentation pages.

Demand Paging
With demand paging, the logical or presentation pages are sent only when a paging
request is received from the other subsystem. The initial output for the message
contains only the ATTACH FM header. If DIV OPTIONS=DNM is specified, the data
structure name (DSN) is also transmitted.

Autopaged Output
This option is available message-by-message, based on SCA values. With this
facility, the logical or presentation pages are sent immediately, in multiple
transmission chains (one transmission chain per page). With this option, the
receiver obtains an entire output message in multiple transmission chains. Each
transmission chain contains the DSN, if required.

Restriction: Paging requests cannot be entered to control receipt of the message.

If no data exists for variable-length fields of a page within the message, a null data
chain can result.

Byte 1 bit 5 in the DSCA= operand of the DEV statement or in the SCA option of
the MFLD statement indicates autopaged output.

Output Message Formatting

228 IMS/ESA V6 Appl Pgm: TM

If PAGE=YES is specified in the corresponding MSG definition and autopaged
output is requested, the PAGE=YES specification (operator logical paging) function
is reset and the output message is dequeued at the end of the message. Operator
logical paging applies only to MFS demand paged output.

Output Modes
For output from IMS, the ATTACH manager provides for two blocking algorithms:
variable length, variable blocked (VLVB) records and chained Request/Response
Unit (RUs, MFS stream mode). Each record presented by MFS to the ATTACH
manager is preceded by a length field when sent to the other subsystem. The
length field contains the size of the record presented by MFS. The record itself is
sent in as many RUs as required. Fields span RU boundaries but do not span
record boundaries. The number of VLVB records in the transmission chain and the
maximum size of the MFS record depend on the output mode selected and the
paging option specified.

In stream mode, the way DFLDs are defined depends on the OPTIONS= keyword
used:

v For OPTIONS=MSG (paging is not defined), DFLDs are defined in a DPAGE.

v For OPTIONS=DPAGE (paging is defined), DFLDs are defined in a DPAGE.

v For OPTIONS=PPAGE (paging is defined), DFLDs are defined in a PPAGE.

For all three OPTIONS= keyword settings, All the DFLDs defined in a DPAGE (or
PPAGE) are grouped into a single MFS record for transmission, and all the data in
one DPAGE (or PPAGE) is equal to one MFS record and equal to one output RU
chain. One or more RUs are sent in the single transmission chain of the output
message.

If the OFTAB parameter of a DIV or DPAGE statement is defined, contiguous output
field tab separator characters are removed and are not sent to the subsystem in the
following cases:

v At end of message for OPTIONS=MSG

v At end of DPAGE for OPTIONS=DPAGE

v At end of PPAGE for OPTIONS=PPAGE

In record mode, the DFLDs defined in a DPAGE or PPAGE are grouped into
smaller records for transmission. The RCDCTL parameter of the DIV statement is
used to define the maximum length of the MFS record created. If the RCDCTL=
parameter is not specified, the default value allows for records of up to 256 bytes in
length. The RCD statement is used to start a DFLD on a new record boundary.

If the OFTAB parameter is defined, contiguous output field tab separator characters
at the end of the record (for omitted fields and possible short last data field) are
removed before transmission. If the entire record is thus eliminated and additional
data records follow, a 1-byte record containing the single output field tab separator
character is sent. The record is eliminated in the following cases:

v At end of message for OPTIONS=MSG

v At end of DPAGE for OPTIONS=DPAGE

v At end of PPAGE for OPTIONS=PPAGE

One or more VLVB records are sent in a single transmission chain of the output
message (OPTIONS=MSG) or the page (OPTIONS=DPAGE or PPAGE).

Output Format Control for ISC

Chapter 7. Message Formatting Functions 229

Variable-Length Output Data Stream
The output field tab separator character (OFTAB) provides an alternative to
fixed-length field output and reduces the number of bytes transmitted over the
communication lines when only graphic data is sent.

Output Field Tab Separator Character
If the length of the data supplied by an IMS application is less than the length
defined for the corresponding DFLD, or if there is no data for the field, you can
direct MFS to insert field tab separators to delimit output fields. You can also direct
MFS to insert field tab separators for all output fields, regardless of their data
length. To do this, specify the output field tab separator character (OFTAB operand).
If OFTAB is used, output fields are not padded to their defined lengths.

The following definition is provided on the DIV and DPAGE statements:
,OFTAB=(X'hh', MIX)

C'c' ALL

Follow these rules when you specify an OFTAB operand:

1. For OPTIONS=MSG, specify the OFTAB operand on the DIV statement only. If
you specify the OFTAB operand on the DPAGE statement it is ignored.

2. For OPTIONS=DPAGE and OPTIONS=PPAGE, specify the OFTAB operand on
the DIV statement, the DPAGE statement, or both. If you specify the OFTAB
operand on the DIV statement, the output field tab separator character specified
is used as a default output field tab separator specification for each field of the
entire output message. If you also specify the OFTAB operand on a DPAGE
statement, the output field tab separator character specification on the DPAGE
is used for the DPAGE being described.

3. The output field tab separator character cannot be defined as X'3F' or as a
blank (X'40' or C' ').

Additionally, the following guidelines apply when you specify OFTAB.

v The output field tab separator specification overrides any FILL=NULL
specification or default on the DPAGE or MSG statement. The MFS Language
utility issues a warning diagnostic if the FILL= operand is specified on the
DPAGE statement and the OFTAB= parameter is present on the DIV or the
DPAGE statement.

v The user-defined output field tab separator character cannot be present in the
data from the IMS application program. If it is, MFS changes it to a blank (X'40').

v Any JUST=R (right-justify) specification on the MFLD statement for an output
message that uses the output field tab separator is ignored and the JUST=L
(left-justify) specification is assumed.

v If GRAPHIC=YES is specified on the SEG statement that maps to a DPAGE
where the OFTAB specification applies, the output field tab separator should be a
nongraphic character (X'FF', or X'00' through X'3E'), instead of an EBCDIC
graphic character (X'40' through X'FE'), because EBCDIC characters can be
present in the data from the IMS application program.

v If GRAPHIC=NO is specified in the SEG statement, an output field tab separator
specification can produce undesirable results. However, MFS does not restrict
the use of nongraphic data with the output field tab separator. If GRAPHIC=NO is
specified on the SEG statement that maps to a DPAGE where the OFTAB
specification applies, the output field tab separator character must be a unique
character that is not present in your data. Additionally, if X'3F' is present in your
data, it is compressed. Carefully examine your applications before you choose

Output Format Control for ISC

230 IMS/ESA V6 Appl Pgm: TM

the above combination, because this function effectively prohibits sending binary
or packed decimal data from the application program.

v If MIX is specified (or the default used), the output field tab separator character is
inserted only if the data length is less than the DFLD defined length.

v If ALL is specified, the output field tab separator character is inserted after every
DFLD.

v If MODE=RECORD is specified, contiguous output field tab separator characters
at the end of a record are removed. Records with no data at the end of DPAGE
or PPAGE are not sent. Otherwise, a 1-byte record containing the output field tab
separator character is sent.

For OPTIONS=DPAGE and OPTIONS=PPAGE, the OFTAB specification on the
DPAGE statement (instead of on the DIV statement) allows the following:

v Mixing of fixed-length fields and variable-length fields in one output message.
With proper design, this function allows all graphic segments to be mapped to a
DPAGE with an OFTAB specification to produce a transmission chain of
variable-length fields. This function also allows any nongraphic segments to be
mapped to a DPAGE without an OFTAB specification to produce a transmission
chain of fixed-length fields.

v A different output field tab separator character to be used for each DPAGE.

For OPTIONS=MSG, the OFTAB specification on the DIV statement imposes the
following restrictions:

v If the OFTAB= specification is used, fields in the entire message are treated as
variable-length fields.

v The output field tab separator character cannot be present in the entire output
message from the IMS application program. Therefore, output field tab separator
characters should not be specified if nongraphic data is being sent.

FILL=NULL Specification
Specify FILL=NULL on the DPAGE or MSG statement and specify the OFTAB=
parameter in the DIV or DPAGE statement to preserve field separation. If
FILL=NULL is specified on the DPAGE or MSG statement and the OFTAB=
parameter is not present on the DIV statement or the DPAGE statement, a
compressed output data stream is produced and field separation is not evident.

Use FILL=NULL for graphic data. If GRAPHIC=NO and FILL=NULL are specified in
the SEG statement, any X'3F' in the non-graphic data stream is compressed out of
the segment and undesirable results can be produced. Send non-graphic data on
output as fixed length output fields and do not specify FILL=NULL.

Output message segments and message fields defined for each segment are
processed sequentially by MFS if option 1 or 2 is defined in the OPT= operand of
the MSG statement. Message fields in option 1 and 2 segments are defined as
fixed-length fields and in fixed position. The data for these fields can be supplied as
fixed-length fields, or it can be shortened by the application program. The data can
be shortened by two methods:

v By inserting a short segment if no data exists for fields defined at the end of a
segment.

v By placing a null character (X'3F') in the field. MFS scans segment data left to
right for a null character. The first null character encountered terminates the data
for a corresponding MFLD. Positioning of all fields in the segment remains the
same as the positioning of defined fields regardless of null characters.

Output Format Control for ISC

Chapter 7. Message Formatting Functions 231

Trailing Blank Compression
Blanks at the end of segments are compressed if all of the following are true:

v OFTAB= is specified on the DIV or DPAGE statement, or if FILL=NULL or
FILL=PT.

v GRAPHIC=YES is specified for the segment.

v OPT=1 or OPT=2 is specified in the MSG statement.

Specifying COMPR
You can specify trailing blank compression (COMPR=) as FIXED, SHORT, or ALL.

FIXED: If COMPR=FIXED is specified, MFS removes trailing blanks from
fixed-length data fields. The resulting mapping in the DFLD is as if the application
program inserted a short data field (by inserting X'3F' in the position after significant
data or by inserting a short segment) or omitted the field (by inserting X'3F' in the
first position of the field or by inserting a short segment) if the entire field contains
blanks.

Fields shortened by an application program are not compressed in the same way
as when COMPR=FIXED is specified. This option is provided for application
programs that always supply maximum-length fields (such as the NAME field) for
simplicity of the application program, and these blanks are not significant to the
receiver. The receiver can assume that fields shortened or omitted by the compress
option or by the application program have the same meaning.

SHORT: If COMPR=SHORT is specified, MFS removes trailing blanks from the
data fields shortened by the application program. The resulting mapping in the
DFLD is as if the application program inserted a short field with no trailing blanks or
omitted the field. Fixed-length fields do not undergo this compression.

This option is provided for application programs written for the 3270 and without
application program changes.

ALL: If COMPR=ALL is specified, the trailing blanks in the fixed-length and short
fields are removed.

Trailing blanks in a short field or a single blank short field causes a specific
operation on the 3270 (that is, to clear the entire field on the screen for a single
blank and insert a program tab character (FILL=PT), or to clear the remaining
portion of the updated field and insert one or more null characters (FILL=NULL)).

Saving Line Transmission Time
Line transmission time can be saved by using one of the following methods:

v Specifying COMPR=ALL, which removes the trailing blanks in fixed-length and
short fields

v Defining record mode, and defining the fields as occurring at the end of the
record

Blank Compression on Variable-Length Output
Examples of variable-length output with blank compression are shown in Figure 47
and in Figure 48 on page 235.

Figure 46 shows the data entered by the IMS application.

Output Format Control for ISC

232 IMS/ESA V6 Appl Pgm: TM

Table 25 shows the MFS definitions used in Figure 46.

Table 25. MFS Definitions for Data Entered by IMS Application
MSGOUT MSG TYPE=OUTPUT,

SOR=FMTOUT
SEG
MFLD A1,LTH=10
MFLD A2,LTH=10
MFLD A3,LTH=10
MFLD A4,LTH=10
MFLD C1,LTH=10
MFLD C2,LTH=10
SEG
MFLD B1,LTH=10
MFLD B2,LTH=10
MFLD D1,LTH=10
MFLD D2,LTH=10
MFLD D3,LTH=10
MFLD E1,LTH=10
MSGEND

FMTOUT FMT

Figure 47 shows how blank compression and mapping occurs in record mode.

Segment 1:
DLZZ FIELD A1 | FIELD A2 |FIELD A3 |FIELD A4 |FIELDC1|FIELD C2
0200 AAAAA44444|1234563...|43.......|A4A4A4
0800 00000| F |0F

Segment 2:
DLZZ FIELD B1 | FIELD B2 |FIELD D1 |FIELD D2 |FIELD D3|FIELD E1
0300 BBBBBBBBBB|4444444444|DDDDDD43.|3........|D3D3D3D3
0400 |0000000000| 0F |F |

Note: Both segments entered are shortened by the program.

Figure 46. Data Entered by the IMS Application

Output Format Control for ISC

Chapter 7. Message Formatting Functions 233

Table 26 shows the MFS definitions used for record mode output as shown in
Figure 47.

Table 26. MFS Definitions for Record Mode
DEV TYPE=DPM-B1,

FEAT=5,
MODE=RECORD

DIV TYPE=OUTPUT, X
OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10
A2 DFLD LTH=10
A3 DFLD LTH=10
A4 DFLD LTH=10

RCD
B1 DFLD LTH=10
B2 DFLD LTH=10

RCD
C1 DFLD LTH=10
C2 DFLD LTH=10

RCD
D1 DFLD LTH=10
D2 DFLD LTH=10
D3 DFLD LTH=10

RCD
E1 DFLD LTH=10

Figure 48 shows how compression and mapping occur in stream mode.

VLVB FIELD A1 THRU A4: (First record)
01 AAAAA,123456,,A4A4A4
06
VLVB FIELD B1: (Second record)
00 BBBBBBBBBB
0C
VLVB NO DATA: (Third record)
00
03
VLVB FIELDS D1 and D3: (Fourth record)
01 DDDDDD,,D3D3D3D3
02

Notes:

1. Field A2 was short.

2. Field A3 had no data.

3. Field A4 was short. Trailing separators in a record are not transmitted.

4. Field B2 had no data.

5. Fields C1 and C2 had no data. A 1-byte record is transmitted because more
data follows.

6. Field D1 was short.

7. Field D2 had no data.

8. Field E1 had no data. A record is not transmitted because no more data follows.

Figure 47. Variable-Length Output with Blank Compression in Record Mode

Output Format Control for ISC

234 IMS/ESA V6 Appl Pgm: TM

Table 27 shows the MFS definitions used for stream mode output as shown in
Figure 48.

Table 27. MFS Definitions for Stream Mode
DEV TYPE=DPM-B1,

FEAT=6,
MODE=STREAM

DIV TYPE=OUTPUT, X
OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10
A2 DFLD LTH=10
A3 DFLD LTH=10
A4 DFLD LTH=10
B1 DFLD LTH=10
B2 DFLD LTH=10
C1 DFLD LTH=10
C2 DFLD LTH=10
D1 DFLD LTH=10
D2 DFLD LTH=10
D3 DFLD LTH=10
E1 DFLD LTH=10

FMTEND

Data Structure Name
The data structure name is sent in a separate DD header unless you code
OPTIONS=NODNM on the DIV statement. If you code OPTIONS=DNM or the
default is used, the DD header is present in each transmission chain of an output
message, or each transmission chain of a demand paged output message.

In addition to the data structure name parameter in the DD header, the version
identification parameter is present in the only transmission chain of an output
message or in the first transmission chain of paged output messages.

Version Identification
You have an option of coding a 2-byte value on the DEV statement to be included
in the DOF or DIF control block as the version ID. If this parameter is not coded,
the version ID is generated by MFS using a hashing algorithm on the date and
time. The value is also printed in the MFS Language utility output so that you can
reference it in format definitions in remote programs.

Your Control of MFS
This section describes the MFS facilities that can assist you, or allow a remote
program to control the display or transmission of output messages. This section
also describes paging action at the device, the unprotected screen option, and your
control when using the 3290 Information Panel in partitioned format mode.

VLVB FIELDS A1 THROUGH D3: (Single record)
03 AAAAA,123456,,A4A4A4,BBBBBBBBBB,,,DDDDDD,,D3D3D3D3

Note: In stream mode, a separator is not transmitted for field D3, which is short,
and for field E1, which is omitted.

Figure 48. Variable-Length Output with Blank Compression in Stream mode

Output Format Control for ISC

Chapter 7. Message Formatting Functions 235

Operator Logical Paging
Operator logical paging allows you (or, for SLU P, a remote program, or ISC
subsystems) to request a specific logical page of an output message. It is defined
on a message basis in the PAGE= operand of the MOD’s MSG statement.

Functions Provided
When a MOD is defined to allow operator logical paging, the following functions are
available to you once the first physical page of the output message is displayed:

v Enter = to display the next logical page of the current message.

v Enter =n, =nn, =nnn, or =nnnn (where n is the logical page number) to display a
specific logical page of the current message.

v Enter =+n, =+nn, =+nnn, or +nnnn to display the n th logical page past the
current logical page.

v Enter =−n, =−nn, =−nnn, or =-nnnn to display the n th logical page before the
current logical page.

v Enter =L to display the first physical page of the last logical page of the current
message.

Format Design Considerations
When operator logical paging is permitted, message and device formats should be
designed to allow you to enter the page request onto a currently displayed page
and have the request edited to the first field of the first input segment. If this is not
done, or the PAGEREQ function is not used (see “Operator Logical Paging”),
paging requests can only be entered on a cleared device.

Preferably, the installation standard for device formats should include a specific
device field for you to enter logical page requests, transaction codes, and IMS
commands. If the transaction code is normally provided through a message or
program function key literal, the PAGEREQ function can be used, or a field can be
defined at the beginning of the first segment using the null pad character. A page
request field on the device can map to this field. If you do not enter a page request,
the null pad causes the field to be removed from the segment and the second field
(literal transaction code) appears at the beginning of the segment.

Transaction Codes and Logical Page Requests
If the PAGEREQ function is not used to specify a page request, MFS formats input
data according to the defined MID prior to determining whether operator logical
paging was specified, and whether the input contained a page request. If operator
logical paging was not specified, the message undergoes standard IMS destination
determination.

If operator logical paging was specified, MFS examines the first data of the first
message segment (first field if the message uses format option 3) for an equals
sign (=). If MFS does not find an equals sign, it routes the message to its
destination. If an equals sign is present, all following characters up to a maximum of
4, or the first blank, are considered to be a page request.

A message destined for a single-segment command or transaction, as required in
Fast Path applications, should be defined as single-segment in its MID. If the MID
defines more than one segment, you must ensure that only one segment is created
when the destination is a single-segment command or transaction. This can be
achieved by careful input and the use of option 2, null compression (FILL=NULL) or
both.

Your Control of MFS

236 IMS/ESA V6 Appl Pgm: TM

|
|

|

|
|

|
|

|
|

|
|

|

Operator Control Tables
Input device fields can be defined to invoke MFS control functions when either the
data or the data length satisfies a predefined condition. Do this by defining one or
more operator control tables and including the related table name in the device field
definition. When a device field is defined with an associated operator control table,
MFS processes the device input field and performs the requested control function if
the input data satisfies the conditions of the operator control table.

The following control functions are available when you use operator control tables:

NEXTPP Provides the next physical page of the current message.

NEXTLP Provides the next logical page of the current message.

PAGEREQ Provides the logical page requested by the second through last
characters of this field. PAGEREQ functions are specified as in
operator logical paging. The first character is a page request
“trigger” character defined by the customer. The remaining
characters must be n[nnn], +n[nnn], −n[nnn], or L (an equals sign
(=) is not allowed).

NEXTMSG Dequeues the current output message and provides the first
physical page of the next message, if any.

NEXTMSGP Dequeues the current output message and provides the first
physical page of the next message, if any; or notifies you that there
are no other messages in the queue.

ENDMPPI Terminates a multiple physical page input message. Available only
for the 3270.

Unlike operator logical paging requests, these functions are always located by MFS
during the editing process.

3270 or SLU 2-Only Feature Definitions
If you use SLU 2 or a 3270, MFS provides several ways to invoke MFS control
functions:

v Program function keys and display device fields defined as detectable by the
selector light pen can be defined for all MFS control functions except PAGEREQ.

v The PA1 key is equivalent to, and reserved for, the NEXTPP function.

v The PA2 key is equivalent to the NEXTMSG function.

v The PA3 key, when not used for the copy function, is equivalent to the
NEXTMSGP function.

v The PF12 key, or PA3 key on data entry keyboards, requests the copy function.
This IMS-supported copy function causes a copy of the currently displayed
physical page to be printed on an available candidate printer. This printer must
be attached to the same control unit (3271 or 3274, for example) as the display
station containing the information to be copied.

Restriction: The request for a copy function is ignored if the device is not
defined to allow the copy function or the device does not support the copy
function.

For more information about the copy function, see the DFLD statement field
definitions for ALPHA/NUM and NOPROT/PROT 377.

Your Control of MFS

Chapter 7. Message Formatting Functions 237

||
|
|
|
|
|

Paging Action at the Device
The paging operation for an MFS device depends on MFS control block definitions,
the output message content, and your input. If the device is a printer, each physical
page of each logical page is transmitted to the device in sequence and the
message is dequeued.

During output paging, if online change processing occurs that changes the format of
the output message you access, you can get an error message or get the message
in a format different from the one expected.

If operator logical paging is not specified for a 3604, 3270, SLU 2 display, or SLU P
using the DPM paging option, each physical page of each logical page can be
viewed in sequence using the NEXTPP function. Because operator logical paging is
not specified, entering NEXTPP after the last physical page of the last logical page
has been displayed causes the next message to be transmitted if only one exists in
the queue. If no message is in the queue, no action takes place.

If operator logical paging is specified for a 3604, 3270, SLU 2 display, or SLU P
using the DPM paging option, the NEXTPP function can be used to view pages
sequentially. However, entering NEXTPP after the last physical page of the last
logical page causes MFS to return an error message and reset the page position to
the first page. As noted in “Operator Logical Paging of Output Messages” on
page 207, if you are going to view pages out of sequence, the formats should be
designed to use the PAGEREQ capability or to have the page request edited to the
first field of the first input segment. If not, the screen must be cleared before the
page request is entered as unformatted input. For performance reasons, avoid this
method.

Table 28 on page 240 describes IMS actions, and the possible message and device
status from your input or remote program actions after a successful message
transmission.

The following factors must be considered and are included in the figure:

v Macro/statement specifications:

1. TERMINAL (or TYPE) macro (IMS system definition)

�� OPTIONS = (

,

other options
PAGDEL
NPGDEL) ��

or

�� PAGDEL =
YES
NO ��

When you use the default (PAGEDEL=YES), your input that invokes
processing for a new transaction causes the output message for the current
transaction to be dequeued. To prevent current output from being dequeued,
OPTIONS=(...,NPGDEL,...), or PAGDEL=NO for nonswitched 3270 devices,
must be specified.

2. MSG statement (MOD definition)

Your Control of MFS

238 IMS/ESA V6 Appl Pgm: TM

�� PAGE =
NO
YES ��

PAGE=YES specifies that operator logical paging is permitted. PAGE=NO
specifies that paging is not permitted.

v Whether the last physical page of the last logical page in the current message
has been sent.

v An IMS action performed automatically after successful message transmission
and before your input.

v Your input or remote program action after receiving a message:

– PAGE ADVANCE: NEXTPP request is entered (or you press PA1 key on 3270
or SLU 2).

– LOGICAL PAGE ADVANCE: NEXTLP request is entered.

– =PAGE: specific logical page is requested.

– PAGEREQ: specific logical page is requested.

– MESSAGE ADVANCE: NEXTMSG request is entered (or you press the PA2
key on a 3270 or SLU 2 device).

– MESSAGE ADVANCE PROTECT: NEXTMSGP request is entered (or you
press PA3 key on 3270 or SLU 2 when PA3 is not defined for copy function).

– You enter (or a remote program enters) data that does not invoke an operator
control function, followed by enter (or 3270 or SLU 2 PFK, CARD,
IMMEDIATE DETECT).

3270 or SLU 2 operators can also press the CLEAR key. The CLEAR key
causes the screen to be unprotected, and subsequent input is edited by IMS
basic edit. CLEAR does not affect the status of the current output message.
The result of any operator action after using CLEAR is the same as if CLEAR
had not been used.

v Table 28 on page 240 uses the following abbreviations to describe IMS action:

MSG DEQ Message dequeue. IMS removes the current output message
from the message queue. The message is available until this
action takes place.

MSG ENQ Message enqueue. IMS places the input message in the
message queue.

PROTECT IMS prevents the device from receiving output from IMS.

UNPROTECT IMS makes the device eligible to receive output from IMS. If a
message is currently queued for this device, IMS sends it
(subject to controls established by response mode,
conversational or exclusive device status).

If a paged message is sent to the terminal with the unprotected screen option set to
“unprotected” (during system definition or using the DSCA or SCA specification), the
screen is not protected between pages and the IMS-described actions shown in
Table 28 on page 240 should be ignored. If the message is sent to the terminal with
the unprotected screen option set to “protect”, the IMS actions shown in Table 28 on
page 240 apply. For more information about the unprotected screen option, see
“Unprotected Screen Option” on page 242.

Your Control of MFS

Chapter 7. Message Formatting Functions 239

Table 28. Paging Operation for a Device with MFS. IMS-MFS Action and Resulting Terminal
and Message Status

System/Message definition values and page position in current message with PAGDEL
option specified:

PAGE= NO YES

Last physical
page of last
logical page of
current msg
sent?1

YES NO YES NO

IMS action (after successful IMS transmission of message and
terminal receipt of message):

MSG DEQ,
protect

Protected Protected

Valid operator
action: Resulting IMS action:

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next
physical page
unprotected

Send error
message,
protected2

Send next
physical page,
protect

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first
physical page of
next logical page
in current msg 3

Send error
message,
protected 2

Send first
physical page of
next logical page
in current msg 3

Request specific
logical page
using =PAGE

Send error
message,
protected 4

MSG DEQ, send
error message
protected 4

If valid, send first physical page of
requested logical page, protected. 2

If invalid, send error message
protected. 2

Request specific
logical page
using PAGEREQ

Send error
message,
protected

Send error
message,
protected 2

If valid, send first physical page of
requested logical page, protected. 2

If invalid, send error message
protected. 2

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ, unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 5 MSG DEQ,
protected
5

MSG DEQ, protected 5

Enter data MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

MSG DEQ, MSG ENQ, unprotected

System/Message definition values and page position in current message with
NPAGDEL option specified:

PAGE= NO YES

Your Control of MFS

240 IMS/ESA V6 Appl Pgm: TM

Table 28. Paging Operation for a Device with MFS (continued). IMS-MFS Action and
Resulting Terminal and Message Status

Last physical
page of last
logical page of
current msg
sent? 1

YES NO YES NO

IMS action (after successful IMS transmission of message and
terminal receipt of message):

MSG DEQ Protected Protected

Valid operator
action: Resulting IMS action:

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next
physical page:
protected

Send error
message,
protected. 2

Send next
physical page,
protected

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first
physical page of
next logical page
in current msg. 3

Send error
message,
protected. 2

Send first
physical page of
next logical page
in current msg 3

Request specific
logical page
using =PAGE

Send error
message,
protected 4

Send error
message,
protected 4, 2

If valid, send first physical page of
requested logical page, protected.

If invalid, send error message
protected 2

Request specific
logical page
using PAGEREQ

Send error
message,
protected

Send error
message,
protected 2

If valid, send first physical page of
requested logical page, protected.

If invalid, send error message
protected 2

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ, unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 5 MSG DEQ,
unprotected

MSG DEQ, protected 5

Enter data MSG ENQ,
unprotected

MSG ENQ 6 MSG ENQ 6

Your Control of MFS

Chapter 7. Message Formatting Functions 241

Table 28. Paging Operation for a Device with MFS (continued). IMS-MFS Action and
Resulting Terminal and Message Status

Notes:

1. If an error message has been sent to the last page, do not follow this chart. See note 2.

2. The original message is still in the queue. See IMS/ESA Messages and Codes for the
proper response to the message.

3. If the current page was the last logical page, no new page is sent, and device status is
unprotected.

4. If the device is preset or in conversation, the input is queued; no error message is sent
and the device status is unprotected.

5. If a message is in the queue and exclusive or conversational status does not prevent it
from being sent, it will be sent. If no message can be sent, a system message is sent
indicating that no output is available.

6. The original message is still in the queue. The first physical page of the first logical page
is sent unless the device is currently involved in an active conversation. If in
conversation, an error message is sent. To continue after a conversational response,
NEXTMSG must be entered to dequeue that response.

Unprotected Screen Option
IMS allows you to leave the screen in unprotected status when an output message
is sent to the 3270 display and the message is formatted by MFS. This option is
provided on a terminal-by-terminal basis or on a message-by-message basis,
except messages bypassing MFS. The terminal option of unprotected status applies
to:

v All user-output messages that bypass MFS

v All IMS-generated messages (for example, error, /BROADCAST, and /DISPLAY
command output)

v All messages that are formatted by MFS with one of the IMS-supplied default
formats or with user-supplied formats

If you do not select the unprotected screen option your messages that are
formatted by MFS with user-supplied formats or IMS-supplied default formats, and
IMS-generated messages, leave the screen protected or unprotected on a
message-by-message basis.

If the message is paged, the screen is unprotected between pages. Therefore, this
option is not recommended for paged messages.

Use this option through one of the following:

v SCA output message option of the MFLD statement

v System definition TERMINAL macro specification

v DSCA specification on the DEV statement

Byte 1, bit 5 in the DSCA= operand of the DEV statement and in the SCA output
message option of the MFLD statement is defined for protecting or not protecting
the screen when the message is sent to the 3270 display:

B'0' Protects the screen when output is sent. B'0' (protected) is the default. This
bit is used for autopaged output in ISC.

B'1' The screen is unprotected when output is sent.

Your Control of MFS

242 IMS/ESA V6 Appl Pgm: TM

If the DSCA value is set to B'0' and PROT (protected) is specified or used as the
default on the TERMINAL or TYPE macro, the application program can request that
the screen be unprotected when this output is sent (by setting the SCA value to
B'1'). If unprotected status is requested when operator logical paging (OLP) is used
for the message (PAGE=YES is specified in the corresponding MSG definition),
then OLP is reset. You can modify IMS-supplied default formats to set the DSCA
value to B'1'.

Whether your messages that bypass MFS leave the display protected or
unprotected depends on the OPTIONS specification on the TERMINAL or TYPE
macro during system definition. The default is protected.

If MFS formats an IMS message sent to the SYSMSG field of a user-defined format
the screen is protected or unprotected depending on the DSCA or SCA option of
the format on the device.

When the display is in unprotected status, IMS can send output to the terminal at
any time. If you press ENTER, a PA key, or a PF key just before the IMS output,
your input or request can be lost. This can be avoided if MFS is used for output and
input and you enter the NEXTMSGP function or press PA3 (if PA3 is not used for
copy) to obtain protected status before entering input data.

If MFS is not used or is only used for output, and the MOD name specifies
DFS.EDT, then PA3 protects input data and must not be used for copying.

Table 29 illustrates the action to be taken (protected or unprotected) by IMS based
on the OPTIONS specification on the TERMINAL or TYPE macro during system
definition, and the type of output message sent.

Table 29. IMS Protect or Unprotect Action Based on OPTIONS Specification

Output Message
IMS System Definition
(PRO)

IMS System Definition
(UNPRO)

IMS-generated message with:
DSCA|SCA=PROTECT

PROTECT UNPROTECT

IMS-generated message with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Message using MFS bypass PROTECT UNPROTECT

Your message using MFS
and user-supplied format or
IMS-supplied default format
with: DSCA|SCA=PROTECT

PROTECT UNPROTECT

Your message using MFS
and user-supplied format or
IMS-supplied default format
with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Note:

1. PROTECT: Do not send additional output; wait for input.

2. UNPROTECT: Send output if an output message is available and eligible to be sent.

The 3290 in Partitioned Format Mode
This section describes interactions with the 3290 in partitioned format mode.

Your Control of MFS

Chapter 7. Message Formatting Functions 243

Support of 3290 partitioning and scrolling is provided for devices defined to IMS as
SLU 2 terminals. Partitioning and scrolling are not provided for devices using BTAM
or non-SNA VTAM.

Partition Initialization Options and Paging
You can choose one of three different options for initializing the partition set and
paging. The option you select determines how many logical pages of the output
message are presented to their appropriate partitions at the initial transmission of a
message to a partition formatted screen. (An output message consists of one or
more logical pages, each destined for a particular partition according to the DPAGE
specifying that partition.) The option also determines how paging requests present
additional logical pages to their appropriate partitions. You can specify the option on
the PAGINGOP= operand of the partition descriptor block (PDB) statement.

The three options are:

Option 1 The initial data stream presented to the 3290 LU consists of the
first logical page of the output message, which is mapped via the
DPAGE to the appropriate partition. Thereafter you control all
paging with keyed-in paging requests. You use the PA1 and PA2
keys just as in standard, non-partitioned mode. The terminal can be
using basic paging support or OLP.

When you request the next logical page, MFS gets the next
sequential logical page and sends it to its associated partition. It
does not matter which partition is active. A request for the next
page results in the next sequential page in the message being sent
to the inputting (active) partition or to another partition.

Example: If you enter =+1, the next logical page in the message is
presented to the appropriate partition, whatever that partition might
be. If you enter =+3, the page that is sequentially third from the last
logical page presented is presented next.

Option 2 The initial data stream presented to the 3290 LU consists of the
first logical page of the message and additional logical pages in
sequence until the second logical page of any partition is reached,
or until the end of the message. Thereafter you control all paging
with keyed-in paging requests as described for Option 1.

Option 3 The initial data stream presented to the 3290 LU consists of the
first logical page of each partition of the partition set. Thereafter you
control all paging with keyed-in paging requests, with one crucial
difference from Options 1 and 2: the order in which subsequent
logical pages are presented to the partitions depends on the active
partition, from which the request is entered. All requests for logical
pages apply only to logical pages associated with the active
partition.

Example: If you enter =+1, the next logical page destined for the
active partition is presented—not necessarily the one that happens
to be sequentially next in the message. This means that, for the
3290 operator, management of logical paging within the active
partition is identical to paging support in a non-partitioned
environment.

Regardless of the option chosen, one partition is active after the initial data stream
is sent. The active partition is the one in which the cursor is located.

Your Control of MFS

244 IMS/ESA V6 Appl Pgm: TM

An ACTVPID operand might have been specified on one of the DPAGEs that points
to an initialized partition. The ACTVPID allows the application program to declare
which partition is the active partition. If option 2 or 3 is being used and data has
been sent to several partitions, it is possible that more than one partition has been
specified by ACTVPID keywords. In that case, the last partition activated is the
active partition. If no ACTVPID keywords are encountered, the active partition is the
partition defined by the first partition descriptor (PD) statement in the PDB.

Clearing the Display
There are two levels of clearing the screen and buffer:

v The CLEAR key (X'6D') resets the 3290 to base state, (non-partitioned mode),
sets the buffer positions to null, and places the cursor in the upper left corner of
the screen. It also places the active message back onto the queue and deletes
the control block structure that was created for partitioning.

v The CLEAR PARTITION key (X'6A') resets only the active partition buffer to nulls
and clears the active partition viewport. It also places the cursor in the top left
corner of the partition. The partition is considered unformatted; any input from it
is considered unformatted by MFS and is processed by basic edit.

The JUMP PARTITION Key
Using the JUMP PARTITION key, you can move from one partition to the next, in
the order that the PD statements define the partitions in the PDB.

Movement between partitions is determined by the order of the PD statements, not
by the order of the associated partition identifier (PID) values.

The partition to which the cursor moves becomes the active partition. Using this key
causes no interaction with the host.

Scrolling Operations
The VERTICAL SCROLLING keys cause the data to move up or down in the
viewport, so that different parts of the presentation space appear in the scrolling
window. The scrolling window is the portion of the presentation space that is
mapped to the viewport at a given time. If the viewport has the same depth as the
presentation space, the viewport is nonscrollable. If the viewport depth is smaller
than the presentation space, it is scrollable.

The amount scrolled each time depends on what is specified by the SCROLLI
keyword on the PD statement. The default scrolling increment is one row. Scrolling
causes no interaction with the host.

The 3180 in Partitioned Format Mode
IMS support for the 3180 in partitioned format mode is provided through 3290
partitioning and scrolling support. Although interaction with the 3180 and the 3290 in
partitioned format mode are similar, the following differences apply:

v With the 3180, only one partition with specific size limits is possible. The 3290
supports multiple partitions of various sizes.

v Logical unit display screen size and viewport location for the 3180 cannot be
specified in picture elements (pels). The 3290 supports rows, columns, and pels.

v With the 3180, the single partition is the only one initialized. With the 3290, the
application program can determine, with the ACTVPID keyword, which of the
various partitions to initialize.

Your Control of MFS

Chapter 7. Message Formatting Functions 245

Partition Option and Paging
Because only one active partition is available on the 3180, you can either specify
Option 1 on the PAGINGOP= operand of the PDB statement or accept the default
of 1. With this option, the initial data stream presented to the 3180 LU consists of
the first logical page of the output message, which is mapped by the DPAGE to the
single partition. When you request the next logical page, MFS gets the logical page
that is sequentially next in the message and sends it to the partition. For more
information, refer to the description of Option 1 in “Partition Initialization Options and
Paging” on page 244.

Clearing the display and scrolling is handled in the same way on the 3180 as on
the 3290 in partitioned format mode.

MFS Format Sets Supplied by IMS
Several format sets are provided by IMS for system use and to serve as defaults
when you have not supplied a correct MOD name. The IMS-supplied control blocks
reside in the IMS.FORMAT library. When the MFSTEST facility is in use, these
control blocks also reside in the IMS.TFORMAT library. They can be used in any
IMS installation with MFS by specifying the appropriate MOD name after the
/FORMAT command. In addition, the format definitions can be used independently by
specifying the format name in the SOR= operand of the user-written message
definition.

The format definitions supplied by IMS combine with various message definitions to
create several separate message formats. All of the format sets except the MFS
3270 and the SLU 2 master terminal formats use one of the following format
definitions:

DFSDF1

DFSDF2

DFSDF4

The format for the master terminal is described in “MFS 3270 or SLU 2 Master
Terminal Format” on page 247. These format definitions include literals for two of
the 3270 or SLU type 2 program function keys, PFK1 and PFK11. Pressing PFK1
inserts the /FORMAT command into the first message segment, in front of the entered
data. Pressing PFK11 causes a NEXTMSGP request.

System Message Format
The system message format is used for single-segment output messages from IMS
and single-segment broadcast messages. It permits two segments of input
(transaction, command, or message switch). DFSDF1 is the format name. The
MOD name is DFSMO1, and the MID name is DFSMI1. Messages that use this
format are eligible for the SYSMSG field on 3270 or SLU 2 devices.

Multisegment System Message Format
The multisegment system message format is used for multisegment messages from
IMS and multisegment broadcast messages. It permits an output message of up to
22 segments. DFSDF2 is the format name. The MOD name is DFSMO5, and the
MID name is DFSMI2. Messages that use this format are eligible for the SYSMSG
field on 3270 or SLU 2 devices. Use the PA1 key to obtain subsequent segments.

Your Control of MFS

246 IMS/ESA V6 Appl Pgm: TM

Output Message Default Format
For 3270 or SLU 2 devices, the output message default format is used for
message switches from other terminals and application program output messages
with no MOD name specified. It permits two segments of input (transaction,
command, or message switch). DFSDF2 is the format name. The MOD name is
DFSMO2, and the MID name is DFSMI2.

Block Error Message Format
The block error message format is used for the DFS057I REQUESTED BLOCK NOT
AVAILABLE message sent by MFS when an error is encountered during output
format block selection. This message is accompanied by a return code (indicating
the severity of error) and the block name (the name of the MOD or DOF in error). It
can include up to 21 segments of output per logical page. This format permits two
segments of input (transaction, command, or message switch). DFSDF2 is the
format name. The MOD name is DFSMO3, and the MID name is DFSMI2.

/DISPLAY Command Format
The /DISPLAY command format is used for /DISPLAY command output. Up to 22
segments per logical page are permitted. This format permits two segments of input
(transaction, command, or message switch). DFSDF2 is the format name; The
MOD name is DFSDSP01, and the MID name is DFSMI2.

Multisegment Format
The multisegment format is used for entering multisegment transactions and
commands. A /FORMAT command specifying a MOD name of DFSMO4 can be used
to obtain this format. This format is also used for multisegment output messages
not exceeding four segments. Up to four segments of input are permitted. DFSDF4
is the format name. The MOD name is DFSMO4, and the MID name is DFSMI4.

MFS 3270 or SLU 2 Master Terminal Format
The MFS 3270 or SLU 2 master terminal format is used when the optional
IMS-supplied MFS support for the 3270 or SLU 2 master terminal is selected. This
support is described in “MFS Formatting for the 3270 or SLU 2 Master Terminal”.

MFS Sign-On Device Formats
The MFS sign-on device format is used for terminals that require user signon, such
as terminals defined with the extended terminal option (ETO). (For more information
about ETO, see IMS/ESA Administration Guide: Transaction Manager.) The format
applies to 3270 and SLU2 devices only. For devices that can receive the formatted
/SIGN ON command panel (devices with at least 12 lines and 40 columns), the MOD
is DFSIGNP, and the MID is DFSIGNI. For devices with smaller screens, the MOD
is DFSIGNN, and the MID is DFSIGNJ.

MFS Formatting for the 3270 or SLU 2 Master Terminal
If the IMS master terminal is a 3270 or SLU 2 display device defined as a 3275,
3277 model 2, or 3270-An with SIZE=24×80, you can select the IMS-supplied
format that uses MFS. To use the IMS-supplied format you must specify
OPTIONS=(...,FMTMAST,...) in the COMM macro during IMS system definition.

When this format is used, the display screen is divided into four areas and several
program function keys are reserved.

MFS Format Sets

Chapter 7. Message Formatting Functions 247

The four areas of the screen are:

Message Area
This area is for IMS command output (except /DISPLAY and
/RDISPLAY), message switch output, application program output that
uses a MOD name beginning with DFSMO, and IMS system
messages.

Display Area This area is for /DISPLAY and /RDISPLAY command output.

Warning Message Area
This area can display the following warning messages:

MASTER LINES WAITING

MASTER MESSAGE WAITING

DISPLAY LINES WAITING

USER MESSAGE WAITING

You can also enter an IMS password in this area.

User Input Area
This area is for your input.

Related Reading: The format and use of these screen areas is described in
IMS/ESA Operations Guide.

The IMS-supplied master terminal format defines literals for nine of the 3270 or SLU
2 program function (PF) keys. PF keys 1 through 7 can be used for IMS command
input. Pressing a PF key inserts a corresponding command into the first message
segment in front of the entered data. The keys and their corresponding commands
are:

PF Key
Command

1 /DISPLAY

2 /DISPLAY ACTIVE

3 /DISPLAY STATUS

4 /START LINE

5 /STOP LINE

6 /DISPLAY POOL

7 /BROADCAST LTERM ALL

The PF11 key issues a NEXTMSGP request, and the PF12 key requests the copy
function.

Do not change the definitions for the master terminal format, with the exception of
the PFK literals.

When the master terminal format is used, any message whose MOD name begins
with DFSMO (except DFSMO3) is displayed in the message area. Any message
whose MOD name is DFSDSPO1 is displayed in the display area. Messages with
other MOD names generate the warning message: USER MESSAGE WAITING.

MFS Formatting

248 IMS/ESA V6 Appl Pgm: TM

MFS Device Characteristics Table
The MFS Device Characteristics table (DFSUDT0x) is generated during system
definition for the 3270 or SLU 2 devices defined as TYPE=3270-An in the TYPE or
TERMINAL macro statement.

The MFS Device Characteristics table can be updated with the MFS MFS Device
Characteristics Table utility, which allows updates to the table without system
regeneration. The 'x' in DFSUDT0 x corresponds to the parameter specified on the
SUFFIX= keyword of the IMSGEN macro. Each entry in the table contains the
user-defined device type symbolic name (3270-An), associated screen size (from
SIZE= parameter), and physical terminal features (from FEAT= parameter). Different
specifications of the physical terminal features (FEAT= parameter) for the same
device type symbolic name cause separate entries to be generated in the MFS
Device Characteristics table.

Related Reading: For a description of the TYPE and TERMINAL macros, see
IMS/ESA Installation Volume 2: System Definition and Tailoring.

MFS source definitions specify TYPE=3270-An and FEAT as operands on the DEV
statement. For the specified device type, MFS extracts the screen size from the
specified DFSUDT0 x in the IMS.RESLIB library.

The MFS Language utility uses the screen size, feature, and device type
specifications to build a DIF/DOF member in the IMS.FORMAT library to match the
IMS system definition specification. Because the screen size is specified only during
IMS system definition, an IMS system definition must be performed before
execution of the MFS Language utility for user-defined formats with DEV
TYPE=3270-An.

The MFS Device Characteristics table is created during stage 2 of IMS system
definition using the same suffix as the IMS composite control block, nucleus, and
security directory block modules as specified in the SUFFIX= keyword of the
IMSGEN macro. If terminals defined with ETO are added to the system, the MFS
MFS Device Characteristics Table utility can be used to add to or update the table
without regenerating the system definition.

Related Reading: For more information about ETO, see IMS/ESA Administration
Guide: Transaction Manager.

The alphanumeric suffix (x) of the table name (DFSUDT0 x) is the level
identification for the version of the table to be read. The x suffix can also be
specified using the DEVCHAR= parameter of the EXEC statement for the MFSUTL,
MFSBTCH1, MFSTEST, and MFSRVC procedures. Repetitive use of the same
suffix by the MFS Language utility causes the same version of the MFS device
Characteristics table to be read from the IMS.RESLIB library.

If an MFS Device Characteristics table is required, and either no suffix was
provided or the suffixed table is not present in the IMS.RESLIB library, the MFS
Language utility attempts to load the IMS Device Characteristics table using the
default name (DFSUDT00).

During the logon process for an ETO terminal, the MFS Device Characteristics table
is used to determine the MFS device type for the terminal. The screen size from the
BIND unique data and the device features from the ETO logon descriptor are used
as search arguments.

MFS Device Characteristics

Chapter 7. Message Formatting Functions 249

Related Reading: For more information about ETO, see IMS/ESA Administration
Guide: Transaction Manager.

Associate only one symbolic name with a given screen size. Establish a standard
for relating the device type symbolic name to the screen size.

Recommendation: Use the following screen sizes; for each of the user-defined
symbolic names below:

User-Defined Symbolic Name Screen Size

3270-A1 12×80

3270-A2 24×80

3270-A3 32×80

3270-A4 43×80

3270-A5 12×40

3270-A6 6×40

3270-A7 27×132

3270-A8 62×160

Version Identification Function for DPM Formats
The MFS DOF defines how data is formatted for presentation to the remote
program so the remote program can efficiently locate and process the data. The
MFS DIF defines how data is presented to IMS from the remote program.

To ensure proper formatting and to present and interpret the data correctly the MFS
DOFs and DIFs and the remote program control blocks of the data formats must be
at the same level. The current level of the MFS control block is a unique 2-byte field
called the version identification (version ID). The version ID is either user-supplied
on the DEV statement or, if not specified, it is created by the MFS Language utility
at the time the source definition is stored in the IMS.REFERRAL library in an ITB
format. The version ID is printed in the information messages DFS1048I and
DFS1011I of the MFS Language utility for the DOF or DIF, and must be included in
the remote program if verification is to be performed.

The version ID of the DOF used in mapping the output message is provided in the
output message header and must be used by the remote program to verify that the
control block in the remote program is at the same level as the DOF’s version ID.

The version ID of the control block used in mapping the input message to IMS must
be provided by the remote program in the input message header. It is used to verify
that the correct level of the DIF is provided to map the data for presentation to the
IMS application program. If the version ID sent on input does not match the version
ID in the DIF, the input data is not accepted and an error message is sent to the
remote program. If the verification is not desired, the version ID can be sent with
hexadecimal zeros (X'0000') or it can be omitted from the input message header. In
this case, both the remote program and MFS assume that the DIF can be used to
map the data correctly.

MFS Device Characteristics

250 IMS/ESA V6 Appl Pgm: TM

Chapter 8. MFS Application Program Design

Design objectives for MFS application programs should focus on device
independence, operator convenience, and application program simplicity. Effective
design requires a fundamental understanding of the MFS functions and of the
factors that affect MFS operation and performance. This chapter addresses those
factors that should be understood and considered when MFS applications are
designed.

In this Chapter:

v “Relationships Between MFS Control Blocks”

v “Format Library Member Selection” on page 258

v “3270 or SLU 2 Screen Formatting” on page 261

v “Performance Factors” on page 265

Relationships Between MFS Control Blocks
Several levels of linkage exist between MFS control blocks. You must understand
these linkages to design an application environment properly.

Figure 49 on page 252 shows the interrelationships between MFS control blocks.
Figure 50 on page 253 through Figure 53 on page 255 illustrate the four levels of
linkages, which are then summarized in Figure 54 on page 256.

© Copyright IBM Corp. 1974, 2000 251

Figure 50 on page 253 shows the highest-level linkage, that of chained control
blocks.

MFS DEVICE MFS FORMATTING
APPLICATION
PROGRAM
SEGMENTS

MESSAGE 1 OUTPUT

3270-A4

274X

3270-A2

3270-A4

274X

FIN

3270-A2

DPM

3270-A4

274X

FIDS

3270-A2

SCS1

DPM

3270-4

3270-4

3270-4

274X

274X

274X

3270-2

3270-2

3270-2

Finance Controller

SLU P

SLU P

Finance Display

3287

MESSAGE 2 INPUT

MESSAGE 3 OUTPUT

DOF
X

DOF
X

DOF
X

DIF
X

DIF
X

DIF
X

DIF
X

DIF
X

DOF
Y

DOF
Y

DOF
Y

DOF
Y

DOF
Y

DOF
Y

MOD
A

MOD
B

MOD
C

Figure 49. Control Block Interrelationships

MFS Control Blocks

252 IMS/ESA V6 Appl Pgm: TM

Notes to Figure 50:

1. This linkage must exist.

2. If the linkage does not exist, device input data from 3270 devices is not
processed by MFS. For other devices, the MID name can be provided by the
operator.

3. This linkage is provided for application program convenience. It provides a MOD
name to be used by IMS if the application program does not provide a name via
the format name option of the DL/I ISRT or PURG call. This MOD name is also
used if the input is a message switch to an MFS-supported terminal.

4. The user-provided names for the DOF and DIF used in one output-input
sequence are normally the same. The MFS language utility alters the name for
the DIF to allow the MFS pool manager to distinguish between the DOF and
DIF.

The direction of the linkage allows many message descriptors to use the same
device format if desired. One common device format can be used for several
application programs whose output and input message formats as seen at the
application program interface are quite different.

Figure 51 on page 254 shows another level of linkage that exists between message
fields and device fields. The dots show the direction of reference, not the direction
of data flow, in the MFS language utility control statements; that is, the item at the
dotted end of a line references the item at the other end of the line.

References to device fields by message fields do not need to be in any particular
sequence. An MFLD does not need to refer to any DFLD. In this case, MFLD
defines space in the application program segment that is to be ignored if the MFLD
is for output and padded if the MFLD is for input. Device fields do not need to be
referenced by message fields. In this case the fields are established on the device,
but no output data is transmitted to them and any input data from them is ignored.

Figure 50. Chained Control Block Linkage

MFS Control Blocks

Chapter 8. MFS Application Program Design 253

Figure 52 shows a third level of linkage, which exists between the LPAGE and the
DPAGE.

A MOD LPAGE must refer to a DPAGE in the DOF. However, not all DPAGEs must
be referred to from a given MOD.

If no MID LPAGE is defined, the defined MFLDs can refer to fields in any DPAGE.
However, input data for any given input message from the device is limited to fields
that are defined in a single DPAGE.

If one or more MID LPAGEs are defined, each LPAGE can refer to one or more
DPAGEs. All DPAGEs must be referred to by an LPAGE. When input data is
processed as defined by a particular DPAGE, the LPAGE referring to it governs the
message editing.

Figure 51. Linkage between Message Fields and Device Fields

Figure 52. LPAGE and DPAGE Relationships

MFS Control Blocks

254 IMS/ESA V6 Appl Pgm: TM

Figure 53 shows a fourth level of linkage that is optionally available to allow
selection of the MID based on which MOD LPAGE is displayed when input data is
received from the device.

Notes to Figure 53:

1. The next MID name provided with the MSG statement is used if no name is
provided with the current LPAGE.

2. If a next MID name is provided with the current LPAGE, input is processed
using this name.

3. When the format definition includes 3270 or SLU 2 devices, all MIDs must refer
to the same DIF. The same user-provided name must be used to refer to the
DOF when the MOD is defined.

Figure 54 summarizes the previously explained MFS control block linkages.

Figure 53. Optional Message Descriptor Linkage

MFS Control Blocks

Chapter 8. MFS Application Program Design 255

Device Considerations Relative to Control Block Linkages
Control block linkages are fundamental to MFS functions but there are a few
device-oriented conditions that could affect application design.

3270 or SLU 2 Display Devices
Because output to these devices establishes fields on the device using hardware
capabilities, and field locations cannot be changed by the operator, special linkage
restrictions exist. Because formatted input can only occur from a screen formatted
by output, the DPAGE and physical page definition used for formatting input is

Figure 54. Summary of Control Block Linkages

MFS Control Blocks

256 IMS/ESA V6 Appl Pgm: TM

always the same as that used to format the previous output. Control block
compilation by the MFS language utility verifies that the MID referenced by the
MOD refers to the same FMT name that the MOD references. During online
processing, if the DIF corresponding to the previous DOF cannot be fetched, an
error message is sent to the display.

3290 Information Panel in Partitioned Format Mode
The screen of the 3290 can be divided into several rectangular areas called
partitions. Depending on LPAGE/DPAGE selection, each logical page of an output
message is sent to the partition specified on the DPAGE statement.

When the 3290 is operating in partitioned mode, the usual control block linkages
are in effect. There are, however, additional functions, because the logical pages
described in the MOD can be sent to different partitions. The partition descriptor
block (PDB) is a type of intermediate text block (ITB). The PDB describes the set of
partitions that can appear on the screen in response to a single output message.
Among other things, the PDB contains one partition definition statement coded with
a partition descriptor (PD) for each partition. Taken together, the PDs define a
partition set.

The linkages work as follows:

1. A MOD is requested for a particular message. The MOD names an FMT and
becomes associated with the appropriate DEV statement—in this case, the DEV
statement for the 3290. A DOF is created to format the 3290 for the message.

2. The DEV statement itself names a PDB. Thus the MOD is linked to the DOF,
which in turn links to the PDB via the DEV statement for the 3290. This linkage
gives the logical pages of the MOD (defined by the LPAGE statements) access
to the PDs in the PDB.

3. Each LPAGE statement in the MOD names a DPAGE statement in the DOF.

4. For the 3290 with partitioning, a DPAGE statement contains a PD keyword,
which identifies one of the partition descriptors in the PDB.

Because of this linkage, each logical page is associated with its appropriate
partition that is described by a partition descriptor. When the logical page is
retrieved from the message queue, it is sent to that partition.

274X, Finance, 3770, SLU 1, NTO, SLU 4, or SLU P
Because no hardware-established field capabilities exist, no correlation is necessary
between output fields and input fields on these devices. Operator input or the
user-written program in the Finance or SLU P workstation controller can determine
which FMT is used (by specifying a MID name) and which DPAGE within the FMT
is used (by the COND= specification for the DPAGE).

Figure 55. Linkages in Partitioned Format Mode

MFS Control Blocks

Chapter 8. MFS Application Program Design 257

Finance or SLU P Workstations
Because of the asynchronous capabilities of the Finance and SLU P workstations,
MFS cannot automatically maintain the chain between the MOD and the MID.
Therefore the MID name is sent to the device in the output message header. The
chain can be maintained, transparent to the operator, if the user-written application
program in the remote controller returns the MID name in the input message
header.

ISC Subsystem (DPM-Bn)
The NXT=midname that is specified on the MSG TYPE=OUTPUT becomes the
RDPN on output and, if not changed by the remote program or subsystem,
becomes the DPN on input.

Format Library Member Selection
When a message is received as input or prepared for output, the DIF or DOF is
selected on the basis of the user-provided name from the message descriptor and
the device type and features of the terminal.

The MFS language utility constructs the member name of each DIF and DOF in the
IMS.FORMAT library from the FMT label and the DEV TYPE= and FEAT=
specifications as follows:

Byte Contents

1 Device type indicator (hexadecimal). For a list of device types by indicator,
see page 258.

2 Device feature indicator (hexadecimal). For a list of indicators by feature,
see page Table 30 on page 260.

3 If DOF, first character of label provided in the FMT statement. If DIF, first
character of label provided in the FMT statement converted to lowercase.

4-8 Remaining characters from the label of the FMT statement.

For byte 1 of the DEV specification FMT=, the device type indicators are as follows:

Indicator (Hex) Device Type

00 SLU 2, Model 1 display

01 3284-1 or 3286-1 printer

02 3277, or SLU 2, Model 2 display

03 3284-2 or 3286-2 printer

05 3604-1 or 2 (FIDS)

06 3604-3 (FIDS3)

07 3604-4 (FIDS4)

08 3600 (FIN)

09 3610, 3612 journal printer (FIJP)

0A 3611, 3612 passbook printer (FIPB)

0B 3618 administrative printer (FIFP)

0C SCS1: 3770; NTO; SLU 1 (print data set), and SLU
4

MFS Control Blocks

258 IMS/ESA V6 Appl Pgm: TM

0D SCS2: 3521 card punch, 3501 card reader, 2502
card reader, SLU 1 (transmit data set), and SLU 4

0E 3604-7 (FIDS7)

11 through 1F DPM-A1 through DPM-A15, respectively

21 through 2F DPM-B1 through DPM-B15, respectively

41 through 4F 3270-A1 through 3270-A15, respectively

Recommendation: You should define device formats for each device type expected
to receive a given message. If the MOD or the DOF with the required device type
and feature specification cannot be located during online execution, the IMS error
default format (containing an error message) is used to display the output message.
If the MID or the DIF with the required device type and feature specification cannot
be located, input is ignored and an error message is sent to the device that entered
it.

However, it is possible to use the same format for a variety of specific devices.
Formats defined as TYPE=3270,2 with FEAT=IGNORE specified, can be used as
default formats for users of the following devices:

v 3275

v 3276, models 2/3/4

v 3277, model 2

v 3278, models 2/3/4

v 3279, models 2/3

To define the terminal to IMS, you must specify TYPE=3270-An with SIZE=(n,80),
where n≥24.

Restriction: The IGNORE feature is not supported in MFSTEST mode.

The terminal must be defined to IMS as TYPE=3270,2 or MFS searches for a block
with the exact TYPE and FEAT specification, and if one is not found, MFS searches
for the default TYPE=3270,2 with FEAT=IGNORE.

Another level of defaulting occurs for ETO terminals prior to the already described
defaulting. If an ETO terminal is defined with a screen size of 12x40 or 24x80 in the
VTAM PSERVIC information, and that format block is not found, an additional
search is made for a format of the same name using TYPE=3270,1 (12x40) or
TYPE=3270,2 (24x80) and using the same features. If that search is unsuccessful,
the already described default search is performed. This new default search is also
used when in MFSTEST mode, whereas the old default search is not.

Device format selection is based upon the features of the destination terminal as
defined at IMS system definition. If feature selection is used, a device format must
be created for every combination of features in the system that can receive a
message using feature selection. Feature selection is performed based on the
specification of the message descriptor (MOD or MID). If the IGNORE option is
specified on the MOD, device formats must be created with the IGNORE feature
option to ensure proper operation.

Because the screen size for 3270 or SLU 2 devices, other than 3270 model 1 or 2,
is specified during IMS system definition, an IMS system definition must be
performed before execution of the MFS language utility for user-defined formats.

Format Library Member Selection

Chapter 8. MFS Application Program Design 259

Use feature selection when devices with different feature combinations are to
receive or enter a message and the special features of each device are to be used.

Example: An operator at a device with program function keys can enter a literal in
a field using a program function key, and another operator at a device without
program function keys can enter the same literal by typing it in a field on the
screen. To the application program, these literals are the same. To the application
program, the following input devices can enter messages that can look identical
regardless of how they were entered:

v Device Features

v Print Line 120

v Print Line 126

v Print Line 132

v Data Entry Keyboard

v Program Function Keys

v Selector Light Pen Detect

v Magnetic Card Reading Devices (OICR and MSR)

v Dual Platen

v User-defined features for the 3270, SCS1, and SCS2 devices and DPM
programs

Use the device feature indicator values listed in Table 30 for byte 2 of the DEV
FEAT= specification:

Table 30. Example of Device Feature Indicator Values

Device Feature Indicator (Hex)

P.L. 120 (Print Line 120) 40

P.L. 126 50

P.L. 132 60

DEK (data entry keyboard) C8

PFK (program function keys) C4

SLPD (selector light pen detect) C2

OICR/MSR (magnetic card reading devices) C1

IGNORE 7F

DEK,SLPD 4A

DEK,OICR C9

DEK,SLPD,OICR 4B

PFK,SLPD C6

PFK,OICR C5

PFK,SLPD,OICR C7

SLPD,OICR C3

DUAL (dual platen) C1

P.L. 132,DUAL 61

No features (3270) 40

Format Library Member Selection

260 IMS/ESA V6 Appl Pgm: TM

Table 30. Example of Device Feature Indicator Values (continued)

Device Feature Indicator (Hex)

3270,3270P,3770,SLU 1, SLU 2,SLU 4,SLU P,ISC
(User-defined features)

Indicators available for definition:

1. 01

2. 02

3. 03

4. 04

5. 05

6. 06

7. 07

8. 08

9. 09

10. 0A

3270 or SLU 2 Screen Formatting
MFS is designed to transmit only required data to and from the 3270 display device.
Device orders to establish fields and display literals can cause significant
transmission time—there can be more orders and literal data than program data.
Under normal operation, when the format to be displayed already exists on a
device, only user-supplied data from the message and modifiable field attributes are
transmitted. The current format on the device is determined by the device output
format name, the DPAGE within the format, and the physical page within the
DPAGE. The following conditions cause MFS to perform a full format operation
(device buffer erased and all fields and literals are transmitted) for device output:

v The device output format changes.

v The DPAGE changes within a device output format.

v The physical page number changes.

v The operator presses the CLEAR key.

v The operator presses the CLEAR PARTITION key, which causes a full format
write to the cleared partition.

v DSCA option of the DEV statement requests format write.

v SCA field in the output message requests format write.

v The MFS bypass has been used.

v Terminal has been stopped as a result of a permanent I/O error. 4

v The operator uses the operator identification card reader. 4

A full format operation must be carefully planned. Several factors can result in
undesirable screen displays, program input, or both:

1. If the program depends upon the existence of data in nonliteral fields and does
not include this data in the output message, the data might not be on the screen
when the device receives the output message. Several actions can cause this to
occur:

v The terminal operator pressing the CLEAR key

v A device error

v Another message sent to the device before the response

4. The screen is cleared and the next output is a full format operation.

Format Library Member Selection

Chapter 8. MFS Application Program Design 261

v An IMS restart

This dependency also makes the application 3270 device-dependent.

2. If the program sends only part of an output field, data that already exists in the
nonliteral fields can cause confusion. If a partial field is transmitted to a filled-in
field, any modification of the field causes the old data remaining in the field to
be included in the new input. Use the PT (program tab X'05') as a fill character
on the DPAGE statement to solve this problem. If the PT fill character is
specified, message data fields (and message literal fields) that are to be
transmitted are followed by a program tab order if the data does not fill the
device field. This clears the remainder of the device field to nulls.

When a program sends only a few of the output data fields on a given display
screen, it might be desirable to clear all the unprotected filled-in fields first. The
unprotected fields can be cleared by specifying the “erase all unprotected”
option in the application program output with the system control area (SCA)
operand of the MFLD statement or the default SCA (DSCA) operand of the DEV
statement.

3. Premodified attributes can be requested by the application program to ensure
input of field data. If premodified attributes are requested and the message was
completely transmitted to the device and not operator logically paged, then a
device error, or IMS restart, prevents input. This error occurs because the
screen is not reestablished with the message when the terminal is started or
IMS is restarted.

4. If dynamic attribute modification is specified for a device field with predefined
attributes, an attribute is sent to the device for that field in every output
operation, even if the data for this device field is not included in the output
message. These attributes are used in the following ways:

v If the output message field has an attribute and the attribute is valid, then the
dynamic attribute modification is performed.

v If the message field is not included in the LPAGE being used or the attribute
is not valid, the predefined attribute for the device field is used.

Recommendation: For application design, you should:

1. Use a common device format for as many applications as possible. Reducing
the number of full format operations can significantly reduce response time.
Format block pool requirements are reduced as well as format pool I/O activity.

2. Allow MFS to determine when a format operation is required. This results in
transmission time savings when formatting is not required.

3. Ensure that the application program output message contains all nonliteral data
required by the device operator. Do not rely on previous data remaining on the
device.

4. Use the PT fill option to ensure that fields on the device that receive program
output data contain only data from the message.

5. Use the erase all unprotected option of the SCA or DSCA if the application
requires that unprotected fields be cleared.

Two MFS facilities are available for controlling format operations. Both the system
control area (SCA) of the message field and the default SCA (DSCA) option of the
DEV statement provide the ability to cause IMS to force a reformat or to erase all
unprotected fields or all partitions before transmitting output. The force format write
option causes the device buffer to be erased, all fields to be established, and all
literals to be transmitted. The erase all option causes all unprotected fields or all
partitions to be cleared to NULLs before data is written. For more information, see
“System Control Area (SCA) and Default SCA (DSCA)” on page 209.

3270 or SLU 2 Screen Formatting

262 IMS/ESA V6 Appl Pgm: TM

3290 Screen Formatting
A 3290 screen can be divided into several independent areas, called logical units
(LUs). Each LU can be in base state or formatted state. If it is in formatted state,
the LU can be in standard or partitioned format mode. Descriptions of 3290 screen
formatting follow.

Screen Division
The 3290 has a large screen, which allows the display of up to 62 rows by 160
columns for small character cells (6 × 12 pels), and up to 50 rows by 106 columns
for large character cells (9 × 15 pels).

The 3290 screen can be divided into several areas, each of which interacts
independently with the operator. This can be done in two ways:

v By dividing the screen into separate LUs

v By dividing a logical unit into separate partitions

In the first case, the 3290 terminal and its screen can be defined as up to four
separate LUs. Each LU is independent of the others, and is defined to IMS as a
separate terminal with its own address. This support is transparent to IMS. Defining
multiple LUs is useful if the IMS application calls for more than one input or output
message (or both) to be concurrently active between the 3290 terminal and IMS.
For each logical unit, however, only one input or output message can be active.

In addition, with software partitioning, each logical unit can be divided into as many
as 16 partitions. Each application message can specify a set of partitions, and each
logical page of the message is associated with a particular partition of the partition
set. Software partitioning is useful if:

v The operator needs to view more than one logical page at a time.

v One partition is needed to view an output page and another to input data.

v A partition is to be defined to receive IMS system error messages while the
logical unit is in formatted mode. This function could be used in place of the
current MFS SYSMSG field support.

v Scrolling is desired. Scrolling moves data up and down in the partition viewport. It
can be defined only for a 3290 in partitioned mode. With explicit partition
scrolling, you can define MFS pages for a presentation space larger than the
viewport on the physical screen. This reduces the number of interactions
between IMS and the terminal that must occur to display the message.

The 3290 allows a maximum of 16 partitions per physical device. Also, each LU
defined in partitioned state must have available to it a minimum of 8 partitions, no
matter how many partitions are actually defined for it. Thus, if one LU is defined
with 9 partitions, no other LU can be in partitioned state, because there are only 7
partitions left for the physical device. Consequently, no more than 2 LUs (of the
maximum 4 allowed) can be in partitioned state.

The following considerations also apply to defining partitions:

v Partitions must be rectangular.

v A single input message is constructed from one physical page of a single
partition unless Multiple Physical Page Input is used. If it is used, then multiple
physical pages for a single input message must come from a single partition.

v If the current PDB does not define a partition for system messages, and if the
DOF does not define a system message field, then a system message destroys

3270 or SLU 2 Screen Formatting

Chapter 8. MFS Application Program Design 263

the current partitioned format mode and the 3290 (or the particular LU in
question) returns to standard format mode.

Terminal States and Modes
The 3290 as a single LU, or any of the LUs into which it has been divided, can be
in terminal base state or terminal formatted state.

In terminal base state, the 3290 operates in the same way as any other currently
supported SLU 2 node when it is initially connected to IMS or when the clear key
has been pressed. In this state, input messages to IMS are edited with basic edit,
and output messages without an associated MOD are formatted using the default
MFS MOD.

In terminal formatted state, the 3290 can be in:

v Standard format mode

v Partitioned format mode

The choice of format mode is made dynamically at the time of message output. The
output message is associated with a MOD, which in turn names a DOF. The
specifications in the DOF determine the 3290 format mode:

v The 3290 is in standard format mode if the DOF does not name a partition
descriptor block (PDB). The terminal is then formatted and operated as an
ordinary SLU2 node.

v The 3290 is in partitioned format mode if the DOF names a partition descriptor
block (PDB).

Partition Set Initialization, Paging, and Activation
If the 3290 (or any of the LUs into which it can be divided) is in partitioned format
mode, there are various ways in which:

v The partitions are initialized with one or more logical pages from the output
message.

v The operator subsequently controls the flow of logical pages to the partitions.

v One particular partition becomes the active partition.

Initialization and operator-controlled paging are determined by selecting one of the
three options. The option is specified by the PAGINGOP operand of the PDB.
According to the selected option, initialization can consist of:

1. The message’s first logical page going to the appropriate partition

2. The message’s initial logical pages going to their appropriate partitions until the
second logical page of any partition is reached

3. Each partition receiving its first appropriate logical page

The option also determines whether operator-controlled paging is affected,
depending on which partition is active.

When the 3290 enters partitioned format mode, one particular partition is the active
partition. This is determined in one of two ways:

v Logical pages are routed to their partitions via DPAGE statements. An ACTVPID
operand might have been specified on one of the DPAGEs that points to an
initialized partition. The ACTVPID allows the application program to declare which
partition is the active partition.

v If no ACTVPID keywords are encountered, the active partition is the partition
defined by the first PD statement in the PDB.

The active partition can be a partition that has not initially received any data.

3270 or SLU 2 Screen Formatting

264 IMS/ESA V6 Appl Pgm: TM

For more details about initialization, paging, and activation, see “The 3290 in
Partitioned Format Mode” on page 243.

3180 Screen Formatting
Like the 3290, the 3180 terminal is supported by IMS as an SLU 2 device.
Partitioning and scrolling support for the 3180 is similar to what is provided for the
3290.

Exceptions: For the 3180:

v Only one partition with specific size limits can be defined. (For the 3290, multiple
partitions of various sizes can be defined.)

v Logical unit display screen size and viewport location cannot be specified in
picture elements (pels). (The 3290 supports pels.)

v You cannot specify an active partition. (For the 3290, active partitions can be
specified.)

These restrictions apply only if you want the 3180 screen size when it is connected
to IMS to differ from the 3180 screen size when it is connected to other
subsystems. If no change is required, then the 3180 customer set up installation
instructions can be used and no special IMS code is necessary.

Performance Factors
The design of message and device formats usually has only a minor effect on the
time or resources required to edit a message. It can, however, have a considerable
effect on transmission and response time. The following considerations affect
performance.

All MFS-Supported Devices
The IMS /DISPLAY POOL command can be used to evaluate format pool operation.
The objective should be to reduce the value of:
I/O+DI (The sum of the numbers of fetch
REQ1 I/O operations and directory I/O operations

divided by the number of block requests from
the pool.)

To reduce this value, do one or more of the following:

v Reduce format block I/O. The most significant and tunable portions of MFS
processing cost are the CPU cycles and channel/device time required to read
format blocks. To reduce format block I/O, use the following techniques:

– Evaluate and implement $$IMSDIR, the optional MFS index directory. Index
the selected MFS control blocks based on how frequently they are used. In
most cases, using $$IMSDIR eliminates one read per format block during
online operation.

– Increase the size of the MFS buffer pool.

– Increase the number of fetch request elements (FREs).

v Minimize the number of segments. Messages should be segmented for
application program convenience or to meet segment size restrictions. Segment
processing in MFS and DL/I requires a considerable number of CPU cycles, so
do not segment unnecessarily.

v Use option 2 input. In some cases, the application input can be segmented so
that no device input can be presented for segments under certain conditions. In

3270 or SLU 2 Screen Formatting

Chapter 8. MFS Application Program Design 265

such cases, option 2 input messages reduce processing time slightly and reduce
IMS message queue space requirements.

v Use option 3 input. Option 3 input can provide better performance than option 1
or 2 if many fields are defined, but only a few fields are received on input.
Additional buffer pool space is required during editing, but message queue space
requirements are reduced. When most of the defined fields are received on input,
option 3 performance is not as good as 1 or 2, either in processing time or in
message queue space.

For an explanation of input message formatting options, see “Input Message
Formatting Options” on page 186.

v Combine multiple DFLD literals. When multiple DFLD literals are positioned at
adjacent or nearly adjacent device field locations, consideration should be given
to combining the literals in fewer DFLD literal definitions. The only limitation to
the number of literals combined is the maximum DFLD literal length. Combining
DFLD literals reduces block size, reducing MFS processing time and, for 3270 or
SLU 2 display devices, reducing transmission time.

v Do not define DFLDs that are not referred to by any MSG descriptor. Such
DFLDs occupy block space and, if used extensively, could adversely affect MFS
processing time.

v Combine output message fields if appropriate. Where multiple, contiguous, output
message fields of a segment map to contiguous device fields of the same
relative length, consider combining both the message fields and the device fields
so that a single message field maps to a single device field. The greatest
potential advantage is in those situations where only one blank separates the
displayed fields, and message data is always present and equal to the device
field length.

Combining message fields is not recommended, however, in cases where an
additional formatting burden would be placed upon the application program.

v Do not define duplicate formats.

v Do not define separate formats for simple input. Most MFS device formats should
include some user input fields that allow the operator to enter any simple
transaction or command, related or not related to the application for which the
format was designed. Any format requires four control blocks, and formats
designed specially for simple input should not be defined unnecessarily.

3270 or SLU 2 Display Devices
To enhance system performance when using 3270 or SLU 2 display devices, you
can do the following:

v Use preformatted screens. This is the most significant performance consideration
for MFS when 3270 or SLU 2 display devices are used. Significant amounts of
data are usually required to define fields and establish literals on a screen. These
field definitions and literals do not always have to be transmitted (see “3270 or
SLU 2 Screen Formatting” on page 261). If the format on the device can be used,
transmission time for remote terminals can be reduced up to 50 percent.

v Pad message output with nulls. The use of the FILL=NULL or PT option in the
DPAGE statement reduces the amount of data transmitted to the device and the
amount of processing required to format the output.

v Reduce mixed-mode operations. A mixed mode operation occurs when the
selector light pen is used on an immediately detectable field and other fields on
the device are modified. The mixed mode operation requires multiple I/O
operations that increase response time, line utilization, and processing time. In
addition, the resulting message contains the same data as would be produced by
the enter key except for the indication that the selector pen was used.

Performance Factors

266 IMS/ESA V6 Appl Pgm: TM

v Use paging requests. Where application design permits, the PA1 (program
access key 1) page advance facility should be used instead of operator entry of a
logical page request. The PA1 facility requires less operator action and less
communication line time, and does not require input editing before page request
processing.

v Define the length of a literal DFLD followed by a nonliteral DFLD to include
space between the last significant literal character and the position preceding the
attribute position of the nonliteral field. This action can reduce block size and
character transmission but should only be considered when the separating space
is between two and five characters.

v Increase the length of DFLDs with the PROTECT attribute. When a nonliteral
DFLD is defined with the PROTECT attribute, separated from the next device
field by two or more blanks, and is expected to receive output data, consider
increasing its length. The output data can originate from an application program,
a /FORMAT command, or an MFLD literal. Multiple MODs can be used to map
message data to the DFLD. Increasing DFLD length should reduce character
transmission unless character fill (FILL=C' ') is specified. Specifying FILL=C' ' is
not recommended.

v Minimize the use of the CLEAR key. Advise terminal operators not to use the
CLEAR key unnecessarily. In addition, explain to terminal operators the proper
use of other function keys such as the ERASE INPUT and ERASE EOF.

Design screen formats with the objective of minimizing the use of the CLEAR
key. Allow simple input from a formatted screen. To provide for this capability,
establish the same device field location of all formatted screens as the standard
device field for simple input. Enforce this standard for all format definitions.

Decreasing CLEAR key usage can improve response time and use
communication lines more effectively.

3270 or SLU 2 Devices with Large Screens
In addition to the performance factors listed in the previous section, the following
performance factors apply only to large-screen devices:

v If pages are combined for display on large screens, operator paging is reduced
proportionally to the reduction of number of pages. If the OUTBUF keyword of
the IMS system definition TERMINAL macro or ETO logon descriptor cannot
specify the amount of data for an entire page, more than one VTAM SEND is
required to send the page.

Related Reading: For more information on ETO, see IMS/ESA Administration
Guide: Transaction Manager.

v For remote BTAM 3270s, IMS sends a maximum of 4 KB of data in one
transmission. For local 3270s and remote VTAM 3270s, IMS sends the entire
message in one transmission. These facts and the line error rate should be
considered when designing support for large-screen devices.

SLU P and ISC Subsystems with DPM
If OPTIONS=PPAGE is specified in the DIV statement, the set of fields in a PPAGE
(presentation page) is transmitted together in one or more records. Additional
presentation pages are sent on request of the remote program or ISC subsystem
for demand paging. This level of paging is the simplest for the remote program or
ISC subsystem to process but imposes the most burden on IMS processing time.

If OPTIONS=DPAGE is specified, all fields within a logical page are transmitted
together in one or more records. Additional logical pages are sent on request of the
remote program or ISC subsystem for demand paging. This level of paging makes it

Performance Factors

Chapter 8. MFS Application Program Design 267

more difficult for the remote program or ISC subsystem to process the data if more
than one presentation page is included, but imposes less burden on IMS processing
time.

If OPTIONS=MSG is specified, all the data within a message is sent together and
no paging is performed. This technique might require more processing and logic in
the remote program or ISC subsystem but is the best for IMS performance if all
pages are actually used by the remote program or ISC subsystem. If many pages
are not used by the remote program or ISC subsystem, this option results in
unnecessary line traffic and IMS processing.

If autopage is specified (SCA byte 1, bit 5) and option PPAGE or DPAGE is desired
for DPM-Bn, all data within the message is sent and no demand paging is
performed.

The RCD statement can be used to influence the placement of fields within records.
The DFLD that follows the RCD statement begins in the first user data location of a
new record. Fields can be placed in records so that no field spans a record
boundary, or so that logically related fields appear together in the same record.

Restriction: For ISC subsystems, fields cannot span records.

Use of the RCD statement to set record boundaries can reduce transmission time
and IMS processing time only if records of maximum length are created. If field
placement into records is controlled using the RCDCTL specification only, the SPAN
option causes the minimum number of records to be sent to the remote program.
Use of SPAN requires, however, that the remote program put together the fields
that have been split across records.

Loading Programmed Symbol Buffers
If programmed symbol (PS) buffers are desired and if they have not been loaded by
another means (for example, a VTAM application), the buffers must be loaded.

Using an Application Program to Determine Whether
Programmed Symbol Buffers Are Loaded
The buffers might have been loaded with the desired programmed symbols by a
previous user of the device, and this knowledge can save resending the entire
programmed symbol data stream. A handwritten log at the device is one method of
maintaining the current status of the programmed symbol buffers for subsequent
users.

Another method is a user-written application program that attempts to use the
desired programmed symbols. If the desired programmed symbols are already
loaded, the output from the application program is successfully displayed at the
device. If the programmed symbols are not loaded, the output message is returned
to the IMS message queue, the terminal is made inoperable, and a message is sent
to the master terminal operator (MTO). The MTO should have a procedure to
correct this condition. For example, the MTO could do one of the following:

v Reassign the LTERM, assign an LTERM that has the correct PS load message,
restart the terminal, and then reassign the first LTERM back to the terminal.

v If the terminal does not have PS capability, reassign the LTERM to one that
does.

v If the terminal does not have PS capability, dequeue the rejected message.

Performance Factors

268 IMS/ESA V6 Appl Pgm: TM

Exception: For an SLU 2 terminal, the output rejected was not a response mode
reply. In this case, the MTO receives the error message and can try to enter a
transaction that would cause the buffers to be loaded.

How to Load the Programmed Symbol Buffers
If the operator knows the programmed symbol buffers need loading (because the
device was just turned on, from one of the methods described above, or some other
method), the operator should enter a response mode transaction that loads the
programmed symbols.

Make available, to all users at the installation, a user-written application program to
load the programmed symbols. The first part of the message sent by this
application program should be the programmed symbol data stream, and the
remainder should be some user data displayed at the device (such as THE
PROGRAMMED SYMBOL LOAD FOR programmed-symbol-name COMPLETE).
The user data displayed at the device informs the terminal operator when the
programmed symbols have been loaded. This application program should use the
MFS bypass option, because the write structured field (WSF) 3270 command used
to send the programmed symbol message is only supported by IMS through the
MFS bypass option.

When the programmed symbol buffers that are to be loaded include a printer or a
different display, other techniques must be used. Programmed symbol buffer loads
are restricted to 3 KB for BSC-attached devices.

Example: The following shows the loading of a programmed symbol buffer using an
automated operator interface (AOI) application program.

1. The operator at display A enters a transaction (response or conversational)
requesting programmed symbol loads for display A, printer B, and display C.

2. Another AOI transaction assigns LTERMs for printer B and display C,
temporarily, to a special PTERM. The AOI program assigns dummy LTERMs to
printer B and display C.

3. The AOI program inserts a programmed symbol message to the dummy
LTERMs of printer B and display C.

4. The AOI program sends programmed symbol messages to display A.

5. The operator visually verifies messages on both displays and the printer and
confirms that the transaction executed correctly.

6. Another AOI transaction reassigns LTERMs to their original status.

Solving Programmed Symbol Load Problems
If a hardware error occurs while a programmed symbol buffer is being loaded, then
the following actions occur:

1. The programmed symbol load message is returned to the IMS message queue.

2. The terminal is taken out of service, except for SLU 2 devices when
programmed symbols are not available.

3. The error is logged to the IMS log.

4. A message is sent to the IMS master terminal.

Once the hardware error is corrected and the terminal is in service, the
programmed symbol load message is re-sent.

If the programmed symbol load failed because of an error in the programmed
symbol load message, the operator must:

Performance Factors

Chapter 8. MFS Application Program Design 269

1. Dequeue (/DEQ) the message (the master terminal operator might have to issue
the /DEQ command).

2. Correct the error.

3. Reenter the transaction to send the programmed symbol load message again.

If a method is available for informing the next user of the programmed symbol
buffer status, then the terminals with loaded programmed symbol buffers should not
be turned off. When a power failure occurs, or a terminal is turned off, the contents
of the programmed symbol buffers are lost.

When a terminal is turned on and no IMS messages are waiting to be sent to the
display, load all required programmed symbol buffers using an IMS transaction (or
some non-IMS method). However, if IMS messages are waiting to be sent, and
these messages require the use of one or more programmed symbol buffers, the
sending of the queued messages must be delayed until the programmed symbol
buffers can be reloaded. This can be accomplished using response mode
transactions to load the programmed symbol buffers.

If the programmed symbol buffers are not loaded and a message that requires a
programmed symbol buffer is sent to the terminal, the following actions take place:

v For non-SLU 2 devices, IMS takes the terminal out of service, sends a message
to the master terminal, and returns the output message to the message queue.

v For SLU 2 devices, the message is rejected and a sense code is returned to
IMS. IMS then:

– Returns the invalid message to the IMS queue.

– Logs the error to the IMS log.

– Sends an error message to the IMS master terminal if the output was a
response mode reply, and takes the terminal out of service. If it is not in
response mode, the error message is sent to the terminal and it is left in
protected mode.

If the user-written application program is designed to queue an unsolicited message
requiring a particular programmed symbol load buffer to an LTERM, the first part of
the message could include a load programmed symbol data stream; however, this
message could not be processed by MFS.

When a message is waiting on the IMS queue for a terminal and requires a
programmed symbol that is not loaded, perform one of the following:

v If the terminal is attached by VTAM, load the programmed symbol buffers using a
VTAM application.

v If a queued message requires a programmed symbol buffer and it is “normal”
user output (for example, the output is not response mode or conversational),
then the use of a response mode transaction to load the programmed symbol
buffer permits the queued message to be properly displayed. If loading the
buffers requires multiple messages, multiple response mode transactions can be
used.

v Dequeue (/DEQ) the message (or have the master terminal operator dequeue
the message) requiring use of a programmed symbol buffer; enter a transaction
to load the programmed symbol buffer required; and then reenter the transaction
that originally generated the queued message.

v Temporarily assign the LTERM to which the message is queued to another
physical terminal. Load the programmed symbol buffer, then reassign the LTERM
to the original physical terminal. The LTERM must be assigned to a terminal that

Performance Factors

270 IMS/ESA V6 Appl Pgm: TM

will not cause a message to be sent (as, for example, a 3270 display or
SLUTYPE2 that is in protected screen mode).

Performance Factors

Chapter 8. MFS Application Program Design 271

Performance Factors

272 IMS/ESA V6 Appl Pgm: TM

Chapter 9. Application Programming Using MFS

This chapter contains information for application programmers whose programs
communicate with devices using MFS. It describes general MFS items and specific
device-oriented items that govern the format of input and output messages.

In this Chapter:

v “Input Message Formats”

v “Output Message Formats” on page 275

Input Message Formats
MFS edits input data from a device into an IMS application message format using
the message definition that the MFS application designer writes as input to the MFS
language utility program. An input message consists of all segments presented to
an IMS application program when the program issues a DL/I GU or GN call.

The format of input messages is defined to the MFS Language utility. Each
message consists of one or more segments; each segment consists of one or more
fields:
MESSAGE

SEGMENTS
FIELDS

Message field format is defined specifically to the utility in terms of data source,
field length, justification, truncation, and use of fill (pad) characters. How MFS
actually formats the field is a function of the formatting option selected for the
message. The option used is identified in the second byte of the 2-byte ZZ field
(Z2) preceding the message text. An application program that depends on MFS
should check this field to verify that the expected option was used; a X'00' in the Z2
field indicates MFS did not format the message. The format options are explained
and illustrated with examples in “Input Message Formatting Options” on page 186.

Logical Pages
For 3270 or SLU 2, the input message is created from the currently displayed
DPAGE on the device. For some other devices, if the device input format has more
than one DPAGE defined, the device data entered determines which input LPAGE
is selected to create an input message. However, for ISC (DPM-Bn) subsystems,
OPTIONS=DNM or COND= can be used for DPAGE selection. For more
information, see “Input Format Control for ISC (DPM-Bn) Subsystems” on page 201.

When LPAGEs are defined, each LPAGE is related to one or more DPAGEs.

Device-Dependent Input Information (3270 or SLU 2)
Using certain options for inputting information can make the application program
device-dependent. Descriptions of the effects of various input options follow.

Cursor Location
As an option of the MFS Language utility, a field in the message can contain the
location of the cursor on the device when input was transmitted to IMS. This option
is only available for 3270 or SLU 2 display devices and its use can make programs
device-dependent. The format of the cursor information is two 2-byte binary
numbers, the first containing the line number, the second containing the column

© Copyright IBM Corp. 1974, 2000 273

number. The minimum value for the line or column is 1. For 3270-An device types,
the maximum value for the line is the first parameter of the SIZE= operand; the
maximum value for the column is the second parameter of the SIZE= operand.

Table 31 lists the valid line and column values.

Table 31. Maximum Line and Column Values for 3270 Device Types

MFS Device Type

Maximum Value

Line Column

3270,1 12 40

3270,2 24 80

3270-An

SIZE=(12,40) 12 40

SIZE=(12,80) 12 80

SIZE=(24,80) 24 80

SIZE=(32,80) 32 80

SIZE=(43,80) 43 80

SIZE=(27,132) 27 132

SIZE=(62,160) 62 160

Selector Pen
Use of the selector light pen can affect input fields in several ways:

v If the ATTR output field option is not used dynamically to create detectable fields,
the following occurs:

– A message field that refers to device fields defined with the attributes
DET,STRIP is presented as a device-independent field.

– The first data byte available for the message field is the byte beyond the
designator character in the device field.

– A message field that references device fields defined with the attributes
IDET,STRIP is also presented with device-independent data.

– The designator character is removed.

– Data from this field is not presented if no modified fields exist on the device
when the field is selected. In this case, the only device information available
for the message is the value specified for literal on the PEN= operand of the
DFLD statement.

v If the ATTR output field option is used dynamically to create detectable fields,
then the following occurs:

– Fields dynamically established as either deferred detectable or immediate
detectable do not have designator characters removed from input.

– If a field altered to immediate detectable is selected when no other fields on
the device are modified, no device input data is available for the message.

v If a message field is defined to receive immediate detect selector pen literal data,
one of the following occurs:

– If device input is not the result of an immediate selector pen detect, the field is
padded as requested.

– If device input is the result of an immediate selector pen detect, but at least
one other field on the device is modified, one data character of a question
mark (?) is presented in the field with the requested padding.

Input Message Formats

274 IMS/ESA V6 Appl Pgm: TM

– If the device input is the result of an immediate selector pen detect and no
other modified fields exist on the device, that literal is placed in the message
as requested if the detected field is defined with a PEN=literal. If the detected
field is not defined with a PEN=literal, one data byte of a question mark (?) is
placed in the message field. In either case, no other device information is
provided.

v If an EGCS attribute is defined for a light-pen-detectable field, you should specify
ATTR=NOSTRIP on the DFLD statement and design your application program to
bypass or remove the two designator characters from the input data. If
ATTR=STRIP is specified or defaulted, MFS removes only the first designator
character and truncates the last data character in the field.

Magnetic Stripe Reading Devices
The use of magnetic stripe reading devices is transparent to the application
program. For operator identification (OID) card readers, the framing characters
(SOR, EOR, EOI, LRC) are removed and parity checking is performed before
editing.

Program Function Keys
Use of program function keys is transparent to the application program.

Program Access Keys
Program access key information is not available to application programs.

Output Message Formats
MFS edits output segments created by an IMS application program into a device
format suitable for the device or remote program for which the message is destined.
Normally, the output segments from the IMS program contain no device-related
data. All information needed for output to a device or remote program is provided
when the message format is defined to the MFS Language utility program. For a
remote program with DPM, specific device-dependent information is provided by the
remote program without interpretation by MFS.

An output message consists of all segments presented to IMS with an ISRT call
between a GU call to the I/O PCB and either a PURG call, another GU call to the I/O
PCB, or normal program termination.

The format of output messages is defined to the MFS utility just like the format of
input messages—one or more segments, each with one or more fields.
MESSAGE

SEGMENTs
FIELDs

Logical Pages
Output segments can be grouped for formatting by defining logical pages (LPAGE
statement).
MESSAGE

LPAGEs
SEGMENTs

FIELDs

When LPAGEs are defined, each LPAGE is related to a specific DPAGE that
defines the device format for the logical page. If LPAGEs are not defined, MFS

Input Message Formats

Chapter 9. Application Programming Using MFS 275

considers the defined message as one LPAGE, and the rules described below for
messages with one LPAGE apply. Table 18 to Table 20 on page 206 illustrate
various LPAGE definitions.

When a message has one LPAGE with one segment, each segment inserted by the
application program is edited in the same manner.

When a message has one LPAGE with multiple segments, message segments
must be inserted in the defined sequence. Not all segments in an LPAGE must be
presented to IMS, but be careful when segments are omitted. An option 1 or 2
segment can be omitted if all segments to the end of the LPAGE are omitted;
otherwise, a null segment must be inserted to indicate segment position. Option 3
output message segments can be omitted but the segments sent must include the
segment number identifier.

Multiple series of segments can be presented to IMS as an output message. If the
LPAGE is defined as having N segments, segment N+1 is edited as if it were
segment 1, unless a segment with the page bit (X'40') in the Z2 field is encountered
prior to segment N+1. When multiple series of output segments are presented and
segments are omitted, the segment which begins a series must have bit 1 (X'40') of
the Z2 field turned on.

When a message has multiple LPAGEs, data in the first segment of a series
determines which LPAGE the series belongs to, which determines the editing to be
performed on the segments. If the LPAGE to be used cannot be determined from
the first segment of a series, the last LPAGE defined is used. Rules for segment
omission are the same as those described above. A bit in the Z2 field (X'80') of the
message indicates structured data is present in the outbound data stream. An
output message using structured data must either define the MODNAME as blanks
or binary zeros, or use MFS bypass.

Segment Format
Each output segment has a 4-byte prefix defining the length of the segment and, if
required, whether the segment is the first segment of an LPAGE series. Option 3
output messages must contain an additional two bytes identifying the relative
segment number within the LPAGE series.
┌─────┬────┬────┬─────┬──┐
│ LL │ Z1 │ Z2 │ SN │ FIELDs │
└─────┴────┴────┴─────┴──┘

LL This is a 2-byte binary field representing the total length of the message
segment, including LL, Z1, and Z2 and if present, SN. The value of LL
equals the number of bytes in text (all segment fields) plus 4 (6 if option 3).
The application program must fill in this count. If a size limit was defined for
output segments of a transaction being processed, LL must not exceed the
defined limit.

The segment length must be less than the message queue buffer data size
(buffer size—prefix size) specified at IMS system definition. The segment
length can be less than the length defined to the MFS Language utility. If a
segment is inserted that is larger than the segment defined to the MFS
utility, the segment is truncated. No error messages are issued. Fields
truncated or omitted are padded as requested in the format definition to the
MFS Language utility.

When PL/I is used, the LL field must be defined as a binary fullword. The
value provided by the PL/I application program must represent the actual

Output Message Formats

276 IMS/ESA V6 Appl Pgm: TM

segment length minus two bytes. For example, if an output message
segment is 16 bytes, LL=14 and is the sum of: the length of LL (4 bytes − 2
bytes) + Z1 (1 byte) + Z2 (1 byte) + TEXT (10 bytes).

Z1 This is a 1-byte field containing binary zeros and is reserved for IMS.

Z2 This is a 1-byte field that can be used by the application program for control
of various output device functions.

For more information on this field, see IMS/ESA Administration Guide:
Transaction Manager.

SN For option 3 only. This is a 2-byte binary field containing the relative
segment number of the segment within the LPAGE. The first segment is
number 1.

A NULL segment can be used to maintain position within a series of option 1 or 2
output segments within an LPAGE. A null segment must be used if segments in the
middle of an LPAGE series are to be omitted. If all segments to the end of the
LPAGE series are to be omitted, null segments are not required. A null segment
contains one data byte (X'3F') and has a length of 5.

Example
An example of coding a null character in COBOL is shown in Figure 56.

Field Format (Options 1 and 2)
All fields in option 1 and 2 output segments are defined as fixed length and fixed
position. The data in the fields can be truncated or omitted by two methods:

v Inserting a short segment

v Placing a NULL character (X'3F') in the field

Fields are scanned left to right for a null character. The first null encountered
terminates the field. If the first character of a field is a null character, the field is
omitted (depending on the fill character used). Positioning of all fields in the
segment remains the same regardless of null characters. Fields truncated or
omitted are padded as defined to the MFS Language utility.

ID DIVISION.
PROGRAM-ID. SAMPLPGM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PART1 PIC 9(3) VALUE 123.
77 CUR-NAME PIC 99 COMP VALUE 0.
77 CUR-PART PIC 99 COMP VALUE 0.
01 NULLC.

02 FILLER PIC 9 COMP-3 VALUE 3.
01 LINE-A.

02 NAME-1.
03 NAME-2 OCCURS 30 PIC X.

02 PARTNUM.
03 PARTNUM1 OCCURS 10 PIC 9.

PROCEDURE DIVISION.
MOVE ''ONES' TO NAME-1.
MOVE 6 TO CUR-NAME.
MOVE NULLC TO NAME-2 (CUR-NAME).
MOVE 4 TO CUR-PART.
MOVE NULLC TO PARTNUM1 (CUR-PART).

Figure 56. Coding a Null Character in COBOL

Output Message Formats

Chapter 9. Application Programming Using MFS 277

If ATTR=YES is specified in the MFLD definition, and if X'3F' is the first or second
byte of the attribute portion of the field, the field is omitted and the attributes
specified on the DFLD statement are used.

For an example of field truncation and omission, see “Output Message Formatting
Options” on page 204.

Field Format (Option 3)
Under option 3 output, fields can be placed in their segments in any order and with
any length that conforms to the segment size restriction. Short fields or omitted
fields are padded as defined to the MFS Language utility. Each field must be
preceded by a 4-byte field prefix of the same format provided by MFS for option 3
input fields:
┌───────┬───────┬──┐
│ FL │ FO │ DATA │
└───────┴───────┴──┘

FL The length of the field, including the 4-byte field prefix. FL consists of 2
binary bytes, which require no alignment.

FO The relative offset of the field in the segment, based on the definition of the
message to the MFS Language utility. FO consists of 2 binary bytes, which
require no alignment. The relative offset of the first field defined in the
segment is 4. The relative offset of the second field is 4 plus the length of
the first field as defined to the MFS Language utility.

Errors in the contents of FL and FO cause unpredictable results.

Option 3 fields do not need to be in sequence in the output segment, but all fields
must be contiguous in the segment; that is, the field prefix of the second field must
begin in the byte beyond the first field’s data. Null characters in option 3 fields have
no effect on the data transmitted to the device. They are treated as any other
nongraphic characters; that is, replaced with blanks.

Device control characters are invalid in output message fields. For 3270 display and
SLU 2 terminals, the control characters HT, CR, LF, NL, and BS are changed to null
characters. For all other devices, these control characters are changed to blanks.
All other nongraphic characters (X'00' through X'3F', and X'FF') are changed to
blanks before transmission. For DPM devices, control characters are permitted if
GRAPHIC=NO has been specified.

Examples of field formats are shown under “Output Message Formatting Options”
on page 204.

Device-Dependent Output Information
Using certain options for outputting information can make the application program
device-dependent. Some options allow the application program to control certain
features of devices receiving output. Descriptions of the effects of various output
options follow.

System Control Area (SCA)
An option of the MFS Language utility allows the creation of an SCA field in the first
segment of a message or, if LPAGEs are defined, in the first segment of any or all
LPAGEs. This field allows application program control of specific device features
when the features apply to the device for which the message is destined. The first 2
bytes of the SCA field are defined as shown in Table 32 on page 279 and Table 33
on page 279

Output Message Formats

278 IMS/ESA V6 Appl Pgm: TM

on page 277.

Table 32. Valid Bytes and Bits for TYPE=3270, SLU 2, DPM-An, or DPM-Bn

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

1 Force format write (erase device buffer and write all required data).

2 Erase unprotected fields before write.

3 Sound device alarm.

4 Copy output to candidate printer.

5 B'0'—For 3270, protect the screen when output is sent. For DPM,
demand paging can be performed.

B'1'—For 3270, do not protect the screen when output is sent. For
DPM-B, autopaging can be performed.

6 For the partition formatted 3290: B'0'—do not erase existing
partitions. B'1'—erase all partitions before sending message. For
others, should be 0.

7 Should be 0.

Notes:

1. For the 3290 in partition format mode, the DOF on the current message is checked to
see if it is the same DOF used last. If it is, bit 6 in the SCA and DSCA operands is
checked for the erase/do not erase partitions option before the output message is sent.

2. The default for bit 6 is B'0', “do not erase”. If this bit is not specified, the output is sent
according to the partition paging option specified, and partitions that do not receive output
remain unchanged.

3. If bit 6 is set to B'1', then existing partitions will be erased and the output is sent
according to the partition paging option specified. See “Partition Initialization Options and
Paging” on page 244 for more information.

4. The SCA bit settings are “OR’d” to the DSCA bit settings. For example, if byte 1 bit 5 in
the DSCA for DPM-B is set to B'0' in the DSCA for DPM-B, the application program can
request autopaged output by setting the SCA value to B'1'. (This request is honored only
if present in the first segment of the first LPAGE of the output message.)

5. SCA information is sent to the remote program or ISC subsystem in a DFLD identified by
the parameter SCA (see “Chapter 6. Introduction to MFS” on page 169). Any invalid bits
for the device type are reset. The valid bits are used.

Table 33. Valid Bytes and Bits for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or FIFP

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

1-2 Not applicable for FIN output devices.

3 Set “device alarm” in output message header.

4 Not applicable for FIN output devices.

5-7 Should be 0.

Output Message Formats

Chapter 9. Application Programming Using MFS 279

Table 33. Valid Bytes and Bits for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or
FIFP (continued)

Byte Bit Description

Notes:

1. Bits 1, 2, and 4 function only for 3270 and are not applicable to finance workstations. If
set on by the program, and the message is edited for a finance workstation, they are
ignored.

2. For TYPE=274X, SCS1, or SCS2, the SCA parameter is ignored.

3. For TYPE=3270P, all bits except “set device alarm” are ignored.

Cursor Location
An application program can set the cursor location on the screen either by setting a
cursor attribute for a field or by using a special cursor positioning field in the output
message.

Recommendation: Use the cursor attribute method because the application
program does not need to know the position of fields on a device.

Cursor positioning using the cursor attribute method is described in “Dynamic
Attribute Modification” on page 281.

Using an option of the MFS Language utility, you can define a field in an output
segment to allow the application program to request cursor positioning to a specific
line and column on the device. Depending on the device output format used, there
can be one or more such fields per LPAGE. If the field contains an invalid number it
is ignored and the cursor is positioned as requested in the device output format.

The cursor field should contain two 2-byte binary numbers (no alignment required),
the first containing the line number, the second containing the column number. The
minimum value for the line or column is 1. For 3270-An device types, the maximum
value for the line is the first parameter of the SIZE= operand; the maximum value
for the column is the second parameter of the SIZE= operand. Table 34 lists the
valid line and column values.

Table 34. Maximum Line and Column Values for MFS Device Types

MFS Device Type

Maximum Value

Line Column

FIDS (240 characters) 6 40

FIDS3 (480 characters) 12 40

FIDS4 (1024 characters) 16 64

FIDS7 (1920 characters) 24 80

3270,1 (480 characters) 12 40

3270,2 (1920 characters) 24 80

3270-An

SIZE=(12,40) (480 characters) 12 40

SIZE=(12,80) (960 characters) 12 80

SIZE=(24,80) (1920 characters) 24 80

SIZE=(32,80) (2560 characters) 32 80

SIZE=(43,80) (3440 characters) 43 80

Output Message Formats

280 IMS/ESA V6 Appl Pgm: TM

Table 34. Maximum Line and Column Values for MFS Device Types (continued)

MFS Device Type

Maximum Value

Line Column

SIZE=(27,132) (3564 characters) 27 132

SIZE=(62,160) (9920 characters) 62 160

Dynamic Attribute Modification
An option of the MFS Language utility allows an IMS application program to
dynamically modify, replace, or simulate the attributes of a device field. This
dynamic attribute modification is requested in an output message definition by
specifying ATTR=YES in an MFLD statement. MFS then reserves the first two data
bytes of the output message field for attribute definition. Errors detected in the data
of the 2-byte specification or X'3F' in the first or second attribute byte produce the
results shown in Table 35.

Table 35. Results of Data Errors

Message data
from application
(first 3 bytes)

Output message to device

Video, attribute
source

Nonvideo, attribute
used

User dataSIM NOSIM2

3Fxxxx DFLD b 0000 Fill character used

xx3Fxx DFLD b xx00 Fill character used

xxxx3F Message y xxxx Fill character used

IIII3F DFLD b 0000 Fill character used

xxxxxx Message y xxxx Sent

IIIIxx DFLD b 0000 Sent

Notes:

b Blank

xx Valid attributes or data

y Simulated attribute

II Invalid attribute

Attributes are always sent, even if no data is sent.

When dynamic attribute modification is specified for a device field with predefined
attributes, an attribute is sent to the device for that field in every output operation,
even if the data for this device field is not included in the output message. These
attributes are used in the following ways:

v If the output message field has an attribute and the attribute is valid, then the
dynamic attribute modification is performed.

v If the message field is not included in the LPAGE being used or the attribute is
not valid, the predefined attribute for the device field is used.

When attribute simulation is defined, the first byte of the device field is reserved for
attribute data. The following attributes can be simulated:

v Cursor position (3604 display only)

Output Message Formats

Chapter 9. Application Programming Using MFS 281

v Nondisplayable

v High-intensity displayable

v Modified attributes

The two attribute bytes are defined in Table 36.

Table 36. Definitions of the Two Attribute Bytes

Byte Bit Definition

0 0-1 If both bits are on, requests that the cursor be placed on the first
position of this field on the device. The first cursor-positioning
request encountered in an LPAGE series (first MFLD with cursor
attribute or cursor line/column value) that applies to a physical
page is honored; these bits must be 00 or 11.

2-7 Must be off.

1 0 Must be on.

1 1. If on, these attribute specifications are to replace the attribute
byte defined for the field.

2. If off, these attribute specifications are to be added to the
attribute byte defined for the field logical “OR” operation. A zero
in a bit position indicates that the defined attribute is to be
used (that is, if bit 2 is 0 then the field will be protected or
unprotected depending on the DFLD definition. A 1 in a bit
position indicates that the corresponding attribute is to be used
(that is, if bit 3 is 1 then the field will have the numeric
attribute.)

2 Protected

3 Numeric

4 High-intensity (forces detectable and displayable); if simulated, an
* appears in the first byte of the device field.

5 Nondisplayable (forces nondetectable); if simulated, no data is sent
regardless of other attributes.

6 Detectable (forces normal intensity).

7 Premodified; if simulated, an underscore (_) appears in the first
byte of the device field.

Notes:

1. Bits 4, 5, and 6 are incompatible. If more than one is set, bit 4 takes precedence over
bits 5 and 6. Bit 5 takes precedence over bit 6.

2. If both bits 4 and 7 are simulated, an ! appears in the first byte of the device field.

Dynamic modification of attributes to detectable requires other action by the IMS
application program to make the device function properly. Detectable fields must
have a designator character and certain padding characters.

For DPM, field attribute information can be passed from the IMS application
program to the remote program, but cannot be specified, unless ATTR=(YES,nn)
appears in the MFS DFLD definitions.

See the appropriate component description manual to determine which extended
attributes are available to a given terminal type.

Output Message Formats

282 IMS/ESA V6 Appl Pgm: TM

Dynamic Modification of Extended Field Attributes
For an application program to modify extended attribute data, the MFLD statement
must specify ATTR=nn. Any error causes the DFLD EATTR= specification for that
extended attribute byte to be used.

For modification of the extended attributes, two additional bytes per attribute must
be reserved. The values that can be specified in these extended attribute
modification bytes and the resulting values that are used are:

Specification Value Used

X'00' Device default

Valid value Your specification

Invalid or omitted From EATTR= on DFLD statement

Duplicate Last (rightmost) specification

During online execution, if ATTR=PROT is specified as a dynamic modification, any
field validation attributes defined on the DFLD statement or specified as a dynamic
modification are reset.

Restriction: Trigger fields are not supported by MFS.

Table 37 shows the format of the extended attribute modification bytes.

Table 37. Format of Extended Attribute Modification Bytes

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value ATTR n type ATTR n value

1 2 3 2xn_2 2xn_1

Types
Hexadecimal specifications:

01 Validation replacement

02 Validation addition

03 Field outlining replacement

04 Field outlining addition

05 Input control replacement

06 Input control addition

Field outlining applies to 3270 display devices, and to printers defined as 3270P or
SCS1 that support the 3270 Structured Field and Attribute Processing option, and
support the Extended Graphics Character Set (EGCS).

Character specifications (the letter C indicates character):

C1 Highlighting

C2 Color

C3 Programmed Symbols

Values
Field validation in hexadecimal:

Bit Meaning

Output Message Formats

Chapter 9. Application Programming Using MFS 283

0 to 4 Reserved

5 Mandatory fill

6 Mandatory field

7 Reserved

For field highlighting as shown below:

Character Meaning

X'00' Device default

X'F1' Blink

X'F2' Reverse video

X'F4' Underline

Field color (seven-color models only):

Character Meaning

X'00' Device default

X'F1' Blue

X'F2' Red

X'F3' Pink

X'F4' Green

X'F5' Turquoise

X'F6' Yellow

X'F7' Neutral

Field outlining in hexadecimal:

Bit Meaning

0 to 3 Reserved

4 Left line

5 Over line

6 Right line

7 Under line

X'00' Default (no outline)

Input control (of DBCS/EBCDIC mixed fields) in hexadecimal:

Bit Meaning

0 to 6 Reserved

7 SO/SI creation

X'00' Default (no SO/SI creation)

For the programmed symbols, valid local ID values are in the range X'40'—X'FE', or
X'00' for the device default.

Output Message Formats

284 IMS/ESA V6 Appl Pgm: TM

Ways to specify the binary validation attribute type and value in COBOL are shown
in Figure 57.

Ways to specify field outlining attributes, input control types, and values in COBOL
are shown in Figure 58.

VAL_REP_MFILL PIC 9(3) COMP VALUE 260 (replace-mandatory fill)
*
VAL_REP_MFLD PIC 9(3) COMP VALUE 258 (replace-mandatory field)
*
VAL_ADD_MFILL PIC 9(3) COMP VALUE 516 (add-mandatory fill)
*
VAL_ADD_MFLD PIC 9(3) COMP VALUE 514 (add-mandatory field)
*

Figure 57. Binary Validation Attribute Type and Value Specification in COBOL

01 BINVALUE.
02 VAL0000 PIC S999 COMP VALUE +0.
02 VAL0000X REDEFINES VAL0000.

03 FILLER PIC X.
03 VAL00 PIC X.

* (NO FIELD OUTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 1 of 16)

02 VAL0001 PIC S999 COMP VALUE +1.
02 VAL0001X REDEFINES VAL0001.

03 FILLER PIC X.
03 VAL01 PIC X.

* (UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 2 of 16)

02 VAL0002 PIC S999 COMP VALUE +2.
02 VAL0002X REDEFINES VAL0002.

03 FILLER PIC X.
03 VAL02 PIC X.

* (RIGHTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 3 of 16)

02 VAL0003 PIC S999 COMP VALUE +3.
02 VAL0003X REDEFINES VAL0003.

03 FILLER PIC X.
03 VAL03 PIC X.

* (RIGHTLINE & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 4 of 16)

Output Message Formats

Chapter 9. Application Programming Using MFS 285

02 VAL0004 PIC S999 COMP VALUE +4.
02 VAL0004X REDEFINES VAL0004.

03 FILLER PIC X.
03 VAL04 PIC X.

* (OVERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 5 of 16)

02 VAL0005 PIC S999 COMP VALUE +5.
02 VAL0005X REDEFINES VAL0005.

03 FILLER PIC X.
03 VAL05 PIC X.

* (OVERLINE & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 6 of 16)

02 VAL0006 PIC S999 COMP VALUE +6.
02 VAL0006X REDEFINES VAL0006.

03 FILLER PIC X.
03 VAL06 PIC X.

* (OVERLINE & RIGHTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 7 of 16)

02 VAL0007 PIC S999 COMP VALUE +7.
02 VAL0007X REDEFINES VAL0007.

03 FILLER PIC X.
03 VAL07 PIC X.

* (OVERLINE & RIGHTLINE
* & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 8 of 16)

02 VAL0008 PIC S999 COMP VALUE +8.
02 VAL0008X REDEFINES VAL0008.

03 FILLER PIC X.
03 VAL08 PIC X.

* (LEFTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 9 of 16)

02 VAL0009 PIC S999 COMP VALUE +9.
02 VAL0009X REDEFINES VAL0009.

03 FILLER PIC X.
03 VAL09 PIC X.

* (LEFTLINE & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 10 of 16)

Output Message Formats

286 IMS/ESA V6 Appl Pgm: TM

Examples: The following examples show the use of the EATTR= and ATTR=(,nn)
operands:

02 VAL000A PIC S999 COMP VALUE +10.
02 VAL000AX REDEFINES VAL000A.

03 FILLER PIC X.
03 VAL0A PIC X.

* (LEFTLINE & RIGHTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 11 of 16)

02 VAL000B PIC S999 COMP VALUE +11.
02 VAL000BX REDEFINES VAL000B.

03 FILLER PIC X.
03 VAL0B PIC X.

* (LEFTLINE & RIGHTLINE
* & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 12 of 16)

02 VAL000C PIC S999 COMP VALUE +12.
02 VAL000CX REDEFINES VAL000C.

03 FILLER PIC X.
03 VAL0C PIC X.

* (LEFTLINE & OVERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 13 of 16)

02 VAL000D PIC S999 COMP VALUE +13.
02 VAL000DX REDEFINES VAL000D.

03 FILLER PIC X.
03 VAL0D PIC X.

* (LEFTLINE & OVERLINE
* & UNDERLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 14 of 16)

02 VAL000E PIC S999 COMP VALUE +14.
02 VAL000EX REDEFINES VAL000E.

03 FILLER PIC X.
03 VAL0E PIC X.

* (LEFTLINE & OVERLINE
* & RIGHTLINE)

Figure 58. Various Ways to Specify Field Outlining (Part 15 of 16)

02 VAL000F PIC S999 COMP VALUE +15.
02 VAL000FX REDEFINES VAL000F.

03 FILLER PIC X.
03 VAL0F PIC X.

* (BOX)

Figure 58. Various Ways to Specify Field Outlining (Part 16 of 16)

Output Message Formats

Chapter 9. Application Programming Using MFS 287

AX DFLD EATTR=(VMFILL,HUL),ATTR=(NUM,HI)
AY MFLD AX,ATTR=(,2)

The EATTR= operand of the DFLD statement requests that the specified field must
be completely filled with data, high intensity, and underlined. The ATTR= operand of
the DFLD statement requests that the specified field be numeric and high intensity.

Specifying the ATTR=(,2) operand indicates the application program can
dynamically modify the two extended attributes specified in the EATTR= operand. If
this is specified, the LTH= value on the MFLD statement must be increased by 4
bytes for the modified attribute bytes. The application program can dynamically
modify the validation and the extended highlighting attributes. The extended
attributes of color and programmed symbols cannot be dynamically modified,
because they were not specified in the EATTR= operand. The existing 3270
attributes cannot be dynamically modified, because ATTR=YES was not specified
on the MFLD statement.

To dynamically modify the extended highlighting to blinking, and add mandatory
field validation when data is entered into the field, the information shown in Table 38
must be placed in the field referenced by the MFLD “AY” in the preceding example.

Table 38. Extended Attribute Types and Values for COBOL

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value Field data

C1 F1 02 02 data

0 1 2 3 4–n

Specification of color and programmed symbols, if present, is ignored. Regardless
of the number of attribute modification bytes specified, MFS sends the number of
extended attributes specified in the EATTR=operand of the DFLD.

Because the validation addition type (X'02') is specified, rather than the validation
replacement type (X'01'), the change to the validation attribute byte is an addition
rather than a replacement.
BX DFLD EATTR=(CD,HD,PC'Z'),ATTR=(PROT)
BY MFLD BX,ATTR=(YES,3)

The EATTR= operand of the DFLD statement requests a field with a programmed
symbol buffer local ID of “Z” and the protected attribute. If no dynamic modification
by an IMS application program occurs, the color and highlighting device defaults are
used. Because of the specification of ATTR=(YES,3) in this example, the color,
extended highlighting, programmed symbol buffer local ID, and existing 3270
attributes can be dynamically modified.

You can dynamically modify the color, extended highlighting, and the 3270 attribute
bytes, while keeping the programmed symbol local ID (PC'Z') as specified on the
DFLD statement. For example, to dynamically modify the color to pink, the
extended highlighting to reverse video, and the 3270 attribute bytes to numeric and
unprotected, use the attribute modification bytes for fields referenced by MFLD “BY”
as shown in Table 39 on page 289.

Output Message Formats

288 IMS/ESA V6 Appl Pgm: TM

Table 39. Example of Dynamically Modified Attribute Bytes

Existing 3270
ATTR mods

ATTR 1
type

ATTR 1
value

ATTR 2
type

ATTR 2
value

ATTR 3
type

ATTR 3
value

Field
data

00 D0 C2 F3 C1 F2 40 40 data

0 1 2 3 4 5 6 7 8–n

With byte 1, bit 1 of the existing 3270 attribute modification bytes on, IMS replaces
the existing 3270 attribute byte rather than adding to it. This changes the field to
unprotected and specifies the numeric attribute. The third attribute has a type of
X'40' (an invalid type) specified, which causes IMS to use the DFLD specification
for programmed symbols.

Dynamic Modification of EGCS Data
EGCS data can also be dynamically modified to permit EBCDIC or EGCS data to
be mapped to a particular field on the 3270 display. With this function:

v You can enter EBCDIC or EGCS data.

v The application program can receive EBCDIC or EGCS data.

v EBCDIC or EGCS data can be passed to an SLU P remote program or to an ISC
subsystem.

If ATTR=(,nn) is specified in the MFLD statement and a programmed symbol
attribute is specified in the corresponding DFLD statement, the application program
can modify the field programmed symbol attribute. Dynamic modification of the
programmed symbol attribute for EGCS requires two additional bytes. These
additional bytes precede the MFLD data and must be included in the MFLD LTH=
specification.

The IMS application program can modify the DFLD programmed symbol attribute if
all the following conditions are met:

v The DFLD specifies EATTR=PX'hh', PC'c', EGCS'hh' or EGCS.

v The corresponding MFLD statement specifies ATTR=(,nn), where nn is a value
from 1 through 4.

v The application program includes 2 × nn additional bytes preceding the data field.

v One set of two attribute bytes has an X'C3' as its first byte and a valid value
(X'00' or X'40'—X'FE') as its second byte.

Table 40 illustrates what MFS transmits in the value byte of the programmed symbol
attribute type, if the DFLD statement does or does not specify a programmed
symbol attribute, and the IMS application program does or does not modify it.

Table 40. Attribute Type Value Byte Contents

Application Program
Programmed
Symbol Attribute
Bytes of X and: C3 EATTR= ATTR= EATTR=

Programmed symbol
specified

Programmed symbol
default

Not specified

X'40_FE'1 Send X'40_FE' Send X'40_FE' Send no attribute

Default X'00'1 Send X'00' Send X'00' Send no attribute

Output Message Formats

Chapter 9. Application Programming Using MFS 289

Table 40. Attribute Type Value Byte Contents (continued)

Application Program
Programmed
Symbol Attribute
Bytes of X and: C3 EATTR= ATTR= EATTR=

Not specified 2 Send programmed
symbol DFLD
specification

Send no attribute N/A

Omitted or Invalid 3 Send programmed
symbol DFLD
specification

Send X'00' Send no attribute

Notes:

1. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement.
The IMS application program specifies a programmed symbol attribute of X'40' to X'FE'.

2. ATTR=nn is not specified on any MFLD statement that maps to this DFLD statement.

3. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement.
The application program omits specifying this attribute, or the specified attribute is not
X'00' or X'40' to X'FE'.

Dynamic Modification of DBCS/EBCDIC Mixed Data
Programmed symbols and input control attribute bytes can be dynamically modified
to permit EBCDIC or EGCS data to be mapped to a particular field on the 3270
display. DBCS/EBCDIC mixed data can also be dynamically modified. DBCS is a
subset of EGCS, so the EGCS field can contain DBCS data, as shown in Figure 59.

The IMS application program can make a field EBCDIC, EGCS, or DBCS/EBCDIC
mixed when all of the following conditions are satisfied:

v One of the following is specified on the DFLD statement:
EATTR=(EGCS,MIXD)
EATTR=(EGCS'00',MIX)
EATTR=(EGCS'00',MIXD)

A DBCS keyword does not exist; DBCS fields are specified using the EGCS
keyword. The initial attribute must specify an EGCS field, a DBCS/EBCDIC
mixed field, or an EBCDIC field.

v The corresponding MFLD statement specifies ATTR=(,nn) where nn is 2 or
greater.

v The application program contains 2 × nn additional bytes preceding the data
field.

┌──────────────┐ 1 ┌──────────────┐
│ EBCDIC field │�───────�│ EGCS field │
└──────────────┘ └─────┬────────┘

A A
2 └───────┐ ┌────────┘ 3

│ │
H H

┌─────────────────────────┐
│ DBCS/EBCDIC mixed field │
└─────────────────────────┘

Figure 59. Dynamic Modification of a DBCS/EBCDIC Mixed Field

Output Message Formats

290 IMS/ESA V6 Appl Pgm: TM

When nn=2, the initial attribute is changed as shown in Table 41 according to the
value of the two attribute byte sets (4 bytes) specified in front of the data field by
the application program.

Table 41. Dynamic Modification of a DBCS/EBCDIC Mixed Field

Attribute Byte EBCDIC EGCS Mixed

40404040 EBCDIC EGCS Mixed

05014040 Mixed Mixed Mixed

0501C3F8 EGCS EGCS EGCS

C3F84040 EGCS EGCS EGCS

C3F80501 Mixed Mixed Mixed

0500C3F8 EGCS EGCS EGCS

C3000501 Mixed Mixed Mixed

C3000500 EBCDIC EBCDIC EBCDIC

When the initial attribute specifies an EGCS field and the application program
specifies dynamic modification of the input control attribute to a DBCS/EBCDIC
mixed field, MFS replaces the value of the programmed symbol for which the EGCS
field is specified with the device default. For more information, refer to “Dynamic
Modification of Extended Field Attributes” on page 283.

Specification of Message Output Descriptor Name
Output messages destined for MFS terminals are formatted using a message output
descriptor (MOD). Which MOD IMS uses can be specified within the output call,
either insert (ISRT) or purge (PURG). Both ISRT and PURG allow you to specify an
output MOD name parameter on the call that provides a segment of an output
message.

When the output MOD name parameter is specified, IMS uses the name supplied to
select the message output descriptor. If the call is directed to the I/O PCB or
alternate response PCB, IMS updates the MESSAGE OUTPUT DESCRIPTOR
NAME field of the I/O PCB with the name supplied in the output call. The MOD
name of all output messages inserted on an alternate PCB that did not explicitly
specify a MOD name is set to the previous MOD name.

Which MOD IMS uses to format the message depends on the name specified:

Name Specified Descriptor Used

Valid output MOD name Message output descriptor named by output MOD
name

Eight blanks IMS default message output descriptor (3270 or
SLU 2 only—other devices use IMS basic edit for
output)

Invalid output MOD name IMS error default message output descriptor

If the output MOD name parameter is not specified, IMS formats the message using
the MOD named in the MESSAGE OUTPUT DESCRIPTOR NAME field of the I/O
PCB.

Output Message Formats

Chapter 9. Application Programming Using MFS 291

MFS Bypass for the 3270 or SLU 2
IMS MFS allows the IMS application program to bypass MFS formatting of input
and output messages. With this option, the IMS application program can load
programmed symbol buffers, or send a device-dependent data stream to format and
update the 3270 display, or write a message to a 3270 printer. The bypass can be
used only on the SLU 2, and 3270 devices (except the 3275 dial-up BTAM
terminal). Optionally, the IMS application program can examine an input message
with the attention identification (AID) byte, cursor address, SBA orders, and buffer
addresses as received from the display. For BTAM and non-SNA VTAM
transmissions, the data to be sent must be equal to or less than the value specified
in the system definition OUTBUF parameter. Data sent to a printer using the MFS
bypass is restricted to 4 KB.

MFS recognizes two special message output descriptor (MOD) names: DFS.EDT
and DFS.EDTN.

Output messages bypass MFS formatting only if DFS.EDT or DFS.EDTN is
supplied as the MOD name parameter of the application program CALL statement
(for more information, see “Specifying Input Forms for MFS Bypass”). IMS system
messages, IMS error messages, application program messages with no MOD
name, and message switches are always formatted by MFS (using the
IMS-supplied formats).

When MFS is bypassed on output, the application program is responsible for
constructing the entire 3270 data stream, beginning with the command code and
ending with the last data byte. An exception to this could be 3270 output using the
MFS bypass and destined to a printer. The following table shows the hexadecimal
EBCDIC command codes for use with the 3271/3274 controllers:

Command 3271/3274

Erase All Unprotected 6F

Erase/Write F5

Erase/Write Alternate 7E

Read Buffer F2

Read Modified F6

Read Modified All 6E

Write F1

Write Structured Field F3

The user-written application program has two ways to send output to printers:

v By providing the command code and WCC character in the application program
and by setting bit 0 to 1 (X'80') in the Z2 field of the message segment to show
that the appropriate command is provided.

v By allowing IMS to provide the command code and other characters. However, to
print less than the maximum line length, insert new line (NL) characters at the
appropriate places in the data stream. This method is the default.

Specifying Input Forms for MFS Bypass
After using the MFS bypass, the IMS application program must accept the input in
one of two forms depending on the MOD name specified for the output message:

v MODNAME=DFS.EDT edits the input data.

Output Message Formats

292 IMS/ESA V6 Appl Pgm: TM

v MODNAME=DFS.EDTN performs no editing on the input data.

MODNAME=DFS.EDT: The AID and the cursor address are removed from the
data stream and any SBA or start field sequences are replaced with blanks. In
addition, the basic input edit routine performs the editing. If the AID code received is
a CLEAR, PA2, PA3, PFK12, or selector pen attention, existing IMS functions are
performed. If a PA1 is received, IMS performs the same function as for PA2 (that is,
the next output message is sent if one is available).

MODNAME=DFS.EDTN: If the transaction is in conversational mode, all input is
passed to the application as received from the terminal. If the transaction is not in
conversational mode, the transaction code must be positioned to precede the AID
character of the data stream received from the terminal.

The password should never be passed to the IMS application program. The basic
editing functions are performed on the destination and password fields only. If the
password appears within parentheses immediately after the transaction code, basic
edit removes the password. No editing is performed on the remainder of the data.
Existing IMS functions are bypassed for AID codes resulting from a CLEAR, PA1,
PA2, PA3, or selector pen attention. PFK12 causes a copy to be performed if it is
allowed.

Position the transaction code using the physical terminal input edit exit, or cause
IMS to supply it using the conversational or preset destination mode.

If the terminal is in conversational mode, the message is sent to the application
program in the conversation. If the terminal is in preset mode, the transaction code
is added to the beginning of the message and the message is sent to the
destination established by the /SET command. Therefore, while in preset mode, a
slash (/) as the first character of the input data is not considered an IMS command.
To be recognized as a command, /RESET must immediately follow the cursor
address in the input data stream. To do this, enter the /RESET command from an
unformatted screen (no fields defined for the screen). If the screen is formatted
(fields defined for the screen), press the clear key to unformat the screen. However,
an application program must receive the clear AID byte and write a data stream that
does not format the screen.

Example:
Data stream = F5C3, erases the 3270 buffer.
Data stream = F5C3114040, erases the 3275 buffer.

Entering: The /RESET command
resets preset mode.

If /RESET is received from an unformatted screen, while bypassing MFS and basic
edit (MOD name is DFS.EDTN) and in preset mode, the input is treated as a
command, and the terminal is taken out of preset mode. You are responsible for
sending a data stream that leaves the screen unformatted.

If the transaction code and password (if required) are entered with the input
message and the terminal is not in conversational or preset mode, your physical
terminal input edit exit routine must be included in the IMS system definition. The
physical terminal input edit routine gains control before IMS destination and security
checking and must modify the input to place the transaction code and password (if
required) in front of the AID code.

Output Message Formats

Chapter 9. Application Programming Using MFS 293

If the OPTIONS keyword of the IMS system definition TERMINAL or TYPE macro
specifies that the keyboard is to remain locked, and the MFS bypass with MOD
name DFS.EDTN is used, the application program must assume responsibility for
unlocking the 3270 keyboard and resetting the MDT flags.

After use of the MFS bypass, the next output message is formatted by MFS if the
MOD name is not supplied or the MOD name supplied is not DFS.EDT or
DFS.EDTN.

MFS bypass is intended primarily for subsystems executing under IMS and is not
recommended for normal application usage. If IMS application programs deal with
3270 data streams, they become device-dependent, which complicates the
application development process.

When a read command is executing in the MFS bypass, the output message
containing the read command is dequeued or re-enqueued when the input is
received, depending on the option (PAGDEL/NPGDEL) specified on the TERMINAL
macro during system definition.

MFS Bypass for the SLU 2 (3290) with Partitioning
When the MOD specified in an application is either DFS.EDT or DFS.EDTN, the
output message generated can cause an SLU 2 terminal to function in partitioned
mode. Using DFS.EDTN, a conversational application can send a Query and
receive a Query reply.

For output, the application program must supply the Create Partition data stream
within the output message, along with the data for the partitions. Also, the SLU 2
Device-Dependent Module sets Change Direction (CD) on non-last conversational
output messages. This allows Reads and Queries to be sent in Write Structured
Fields data streams.

A Query Reply input can be processed only if the previous MOD specified is
DFS.EDTN. A Query Reply input can be received but does not have a transaction
code in the data stream.

For partitions 01 through 0F, the X'88' byte is followed by a 2-byte field that is not
used. If a X'80' byte follows this field, then the next byte is the PID byte (X'01'
through X'0F'). For partition 00, the input will have the same format as input data
from a non-partitioned SLU 2.

For input with DFS.EDT or DFS.EDTN, the first AID byte, X'88', causes the proper
decoding of the second AID byte. Depending on the second AID byte, one of the
following occurs:

v If the second AID byte decoded is X'80', a third AID byte is decoded. The data
stream following that AID byte is passed to the application program as follows:

– Using basic edit, if DFS.EDT is specified

– As a complete data stream, if DFS.EDTN is specified

v If the second AID byte is not X'80', input is passed only if the MOD specified in
the application is DFS.EDTN. When DFS.EDTN is specified, the complete data
stream starting with the X'88' AID byte is passed to the application program.

DIV Statement
The DIV statement defines device formats within a DIF or DOF. The formats are
identified as input, output, or both input and output, and can consist of multiple
physical pages. For DEV TYPE=274X, SCS1, SCS2, or DPM-AN, two DIV

Output Message Formats

294 IMS/ESA V6 Appl Pgm: TM

statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all
other device types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=274X, SCS1, or SCS2 and DIV TYPE=INPUT:

��
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

��

Format for DEV TYPE=3270 or 3270-An:

��
label

DIV
INOUT

TYPE = OUTPUT

��

Format for DEV TYPE=FIN:

��
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

��

Format for DEV TYPE=274X, SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7,
FIJP, FIPB, or FIFP and DIV TYPE=OUTPUT:

��
label

DIV
OUTPUT

TYPE = ──── , COMPR = FIXED
SHORT
ALL

��

Format for DEV TYPE=DPM-An:

��
label

DIV
INPUT A

TYPE = OUTPUT B

��

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

KEEP
, NULL = DELETE

�

Output Message Formats

Chapter 9. Application Programming Using MFS 295

�
FLDEXIT ,SEGEXIT ,MSG

,NODNM
, OPTIONS = ()

NOFLDEXIT ,NOSEGEXIT ,DPAGE

B:

256 ,SPAN
, RCDCTL = ()

nnnnn ,NOSPAN

�

�
FIXED ,7

, HDRCTL = ()
VARIABLE ,nn

�

�
MSG ,SIM

,OPTIONS=(
DPAGE ,NOSIM2 ,DNM)
PPAGE

, COMPR = FIXED
SHORT
ALL

Format for DEV TYPE=DPM-Bn:

��
label

DIV
INPUT A

TYPE = OUTPUT B

��

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

�

�
FLDEXIT ,SEGEXIT ,MSG ,DNM

, OPTIONS = ()
NOFLDEXIT ,NOSEGEXIT ,DPAGE ,NODNM

�

�
, DPN = dfldname , RDPN = dfldname , RPRN = dfldname

B:

Output Message Formats

296 IMS/ESA V6 Appl Pgm: TM

,NOSPAN
, RCDCTL = ()

256
nnnnn

�

�
,MSG ,SIM ,DNM

, OPTIONS = ()
,DPAGE ,NOSIM2 ,NODNM
,PPAGE

�

�
, DPN = ('literal')

,dfldname

�

�
, PRN = ('literal')

,dfldname

�

�
, RPRN = ('literal')

,dfldname

�

�
X'hh' ,MIX

, OFTAB = ()
C'c' ,ALL

, COMPR = FIXED
SHORT
ALL

Parameters:

label
A one- to eight-character alphanumeric name that is specified to uniquely
identify this statement.

TYPE=
This describes the format as input, output, or both.

INOUT
Describes an input and output format.

INPUT|OUTPUT
Describes an input-only format (INPUT) or an output-only format
(OUTPUT). Certain DEV statement keywords can be used. For example:

v Specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields can be
printed in columns 1 through 80 on output and received from columns 1
through 80 on input.

v Specifying WIDTH=80 for DEV TYPE=SCS2 indicates that both the card
reader and card punch have the same number of punch positions.

v Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1
indicates that fields can be printed in columns 5 through 80 on output
and received from columns 5 through 80 on input. In this case DFLD
POS=(1,5) or POS=5 on input is the same as if you specified column 1
and a left margin position at 1.

You enter data the same way, regardless of where the left margin is
currently set.

Output Message Formats

Chapter 9. Application Programming Using MFS 297

RCDCTL=
Creates record definitions even if RCD statements are used in the same format
definition. RCDCTL is valid only if MODE=RECORD is specified on the DEV
statement.

The first data field is the first field of the message for OPTIONS=MSG. The first
data field is the first field of the DPAGE or PPAGE for OPTIONS=DPAGE and
PPAGE, respectively. If the first data field does not fit in the same record as the
output message header, and if OPTIONS=DPAGE or PPAGE has been
specified, the first data record will be sent in the next transmission. The output
message header will be transmitted by itself (as is always the case for
OPTIONS=MSG).

256
The maximum length of an input or output transmission. The value 256 is
valid only for DEV TYPE=DPM-An or DPM-Bn.

nnnnn
The maximum length of an input or output transmission. A value is valid
only for DEV TYPE=DPM-An or DPM-Bn. The length cannot be greater
than 32000 or less than the length of the message output header. For
information about the DPM-An message output header, see the “HDRCTL
parameter” on page 301.

When TYPE=OUTPUT is specified, nnnnn is less than or equal to the
output buffer size specified in the OUTBUF= macro at IMS system
definition. If nnnnn is greater than the OUTBUF= value specified, one
record can require multiple output transmissions and can produce
undesirable results in the remote program. If fields do not exactly fit in the
defined records, and NOSPAN has been specified, records might not be
completely filled.

SPAN
Specifies that fields can span records.

When TYPE=OUTPUT is specified you can specify SPAN only with DEV
TYPE=DPM-An. Fields can span a record boundary but not a PPAGE
boundary. The remote program must include logic to associate the partial
fields or deal with them separately.

NOSPAN
Specifies that fields cannot span records. Every field is contained within a
record and no field has a length greater than the value specified. NOSPAN
is the default.

NULL=
Specifies how MFS is to handle trailing nulls. NULL= is valid only for DEV
TYPE=DPM-An and TYPE=INPUT.

KEEP
Directs MFS to ignore trailing nulls.

DELETE
Directs MFS to search for and replace trailing nulls. MFS searches input
message fields for trailing nulls or for fields that are all nulls, and replaces
the nulls with the fill character specified in the message definition. See
“Optional Deletion of Null Characters for DPM-An” on page 196 for a
discussion of the effects of NULL=DELETE.

Output Message Formats

298 IMS/ESA V6 Appl Pgm: TM

OPTIONS=
Specifies formatting and mapping of data.

DNM
Specifies the data name.

v For TYPE=INPUT:

DNM can be specified only for DEV TYPE=DPM-Bn. A specific
DPAGE is selected to map the current or only data transmission when
the DPAGE data name is supplied as the DSN parameter in the
message header, and the DPAGE data name matches a defined
DPAGE data name. If these conditions are not met, the last defined
DPAGE name is used to map the data, unless the DPAGE is defined
as conditional.

v For TYPE=OUTPUT:

DNM can be specified for DEV TYPE=DPM-An or DPM-Bn.

For DEV TYPE=DPM-An, use DNM with the FORS keyword on the
DEV statement to specify a literal in the message header. See the
discussion of the FORS= keyword and output message headers with
the forms literal in “Output Message Header” on page 225 and
“Chapter 5. More about Message Processing” on page 123. This
parameter is optional.

For DEV TYPE=DPM-Bn, MFS includes the following in the DD
header:

- The FMT name if OPTIONS=MSG

- The DPAGE name if OPTIONS=DPAGE

- The PPAGE name if OPTIONS=PPAGE

NODNM
Specifies that there is no data name.

v For TYPE=INPUT:

NODNM can be specified for either DEV TYPE=DPM-An or DPM-Bn.
MFS selects a specific DPAGE by performing a conditional test on the
data received and the COND= parameter.

v For TYPE=OUTPUT:

NODNM can be specified only for DEV TYPE=DPM-Bn. If NODNM is
specified, no data structure name (DSN) is supplied in the DD
header.

DPAGE
Specifies different ways of receiving and transmitting data, depending on
the device type and whether TYPE=INPUT or TYPE=OUTPUT:

v For TYPE=INPUT:

For 274x, SCS1, SCS2, or FIN, or for DEV TYPE=DPM-An or
DPM-Bn, DPAGE specifies that an input message can be created
from multiple DPAGEs.

If multiple DPAGE input is not requested in MFS definitions,
messages cannot be created from more than one DPAGE.

If a single DPAGE is transmitted and contains more data than defined
for the DPAGE selected, or multiple pages are transmitted, the input
message is rejected and an error message is sent to the other
subsystem.

v For TYPE=OUTPUT:

Output Message Formats

Chapter 9. Application Programming Using MFS 299

For DEV TYPE=DPM-An or DPM-Bn, DPAGE specifies that IMS
transmits all DFLDs that are grouped in one page together. The
logical page is transmitted in one or more records. If PPAGE
statements are defined with the DPAGE, each PPAGE statement
begins a new record. An additional logical page is sent when a
paging request is received from the remote program. Each logical
page is preceded by an output message header, and the label on the
DPAGE is placed in the header. For DEV TYPE=DPM-Bn, the data
structure name is optional in the DD header and depends on the
specification of DNM or NODNM.

FLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be called for
DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT.

FLDEXIT is the default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and
TYPE=INPUT.

NOFLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be
bypassed.

MSG
Specifies different ways of creating and transmitting messages, depending
on the device and whether TYPE=INPUT or TYPE=OUTPUT:

v For TYPE=INPUT:

For DEV TYPE=274x, SCS1, SCS2, or FIN, or for DEV
TYPE=DPM-An or DPM-Bn, MSG specifies that an input message
can be created from a single DPAGE.

v For TYPE=OUTPUT:

For DEV TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT, MSG is
the default and specifies that IMS transmits all the DFLDs within a
message together as a single message group. The message is
preceded by an output message header. All DFLDs are transmitted.
For DEV TYPE=DPM-Bn, the data structure name is optional in the
header.

PPAGE
Specifies that IMS transmits the DFLDs that are grouped in one
presentation page (PPAGE) together in one chain. PPAGE is valid only
when DEV TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT. The
presentation page is transmitted in a group of one or more records. An
additional presentation page is sent when a paging request is sent to IMS
from the remote program. Each presentation page is preceded by an output
message header, and the label on the PPAGE statement is placed in the
header. For DEV TYPE=DPM-Bn, the data structure name is optional in the
DD header and depends on the specification of DNM or NODNM.

SEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be called for
DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT. SEGEXIT is the
default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and
TYPE=INPUT.

Output Message Formats

300 IMS/ESA V6 Appl Pgm: TM

NOSEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be bypassed.

SIM
Specifies that MFS is to simulate attributes. This is valid only when DEV
TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT. SIM indicates that MFS is
to simulate the attributes specified by the IMS application program and
place the simulated attributes in corresponding DFLDs that are defined with
ATTR=YES or YES,nn. The first byte of the field is used for the simulated
attributes.

If the MFLD does not supply 3270 attribute information (by means of the
ATTR=YES or YES,nn operand) for the corresponding DFLD specifying
ATTR=YES or YES,nn, a blank is sent in the first byte of the field. The
application designer of the remote program or ISC subsystem is responsible
for interpreting the simulated attribute within the remote program or ISC
subsystem.

SIM is the default of SIM/NOSIM2.

NOSIM2
Specifies that MFS sends a bit string that is 2 bytes long to the remote
program or subsystem. This bit string is sent exactly as received from the
IMS application program. 3270 extended bytes, if any (ATTR=YES,nn), are
always sent as received from the application program and follow the 2-byte
string of 3270 attributes.

If the MFLD does not supply attribute information, binary zeros are sent in
the 2 bytes preceding the data for the field.

See ATTR=YES on the MFLD statement on page 277 for additional
information.

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the
characteristics of the output message header.

FIXED
Specifies that a fully padded output message header is to be sent to the remote
program. The structure of the fixed output message header is the same for all
DPM output messages that are built using this FMT definition. The content of
the output message header is shown in an example under “Output Format
Control for SLU P DPM-An” on page 224. The base DPM output message
header has a length of 7, and includes the version ID.

VARIABLE
Specifies that MIDNAME and DATANAME have trailing blanks omitted and their
length fields adjusted accordingly. If MIDNAME is not used, neither the
MIDNAME field nor its length is present.

nn Specifies the minimum length of the header, that is, the base header without
MFS fields, as shown in the example under “Output Format Control for SLU P
DPM-An” on page 224. The default is 7, which is the length of the base
message header for DPM. Specifying other than 7 can cause erroneous results
in the remote program.

The parameters RDPN=, DPN=, PRN=, and RPRN= refer to both the ISC ATTACH
function management header and the equivalent ISC SCHEDULER function
management header.

Output Message Formats

Chapter 9. Application Programming Using MFS 301

RDPN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
destination process name (RDPN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RDPN is supplied in
the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this
literal as the DPN in the output ATTACH message header. literal cannot exceed
eight characters, and must be enclosed in single quotes. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as
the DPN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, literal is used. If the data in the MFLD
referencing the dfldname is greater than eight characters, the first eight
characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested
primary resource name (PRN) to be supplied in the input message MFLD
referencing this dfldname. If the dfldname is not specified, no PRN is supplied
in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use literal as
the PRN in the output ATTACH message header. literal cannot exceed eight
characters and must be enclosed in single quotes. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as
the PRN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, 'literal' is used. If the data in the MFLD
referencing the dfldname is greater than eight characters, the first eight
characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
primary resource name (RPRN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RPRN is supplied in
the input message to the application program.

For DIV TYPE=OUTPUT, 'literal' specification requests MFS to use literal as the
suggested return primary resource name (RPRN) in the output ATTACH
message header. literal cannot exceed 8 characters and must be enclosed in
single quotes. If the dfldname is also specified, the data supplied in the MFLD
referencing this dfldname is used as the RPRN in the output ATTACH message
header. If no output message MFLD reference to the dfldname exists, 'literal' is
used. If the data in the MFLD referencing the dfldname is greater than 8
characters, the first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data
stream for the message. If OPTIONS=DNM and OFTAB, then the OFTAB
character is placed in the DD header and an indicator is set to MIX or ALL. If
OPTIONS=NODNM, then no DD header is sent.

X’hh’
Specifies a hexadecimal character (hh) to be used as the output field tab
separator character. X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator
character. You cannot specify a blank for the character (C' ').

Output Message Formats

302 IMS/ESA V6 Appl Pgm: TM

The character specified cannot be present in the data stream from the IMS
application program. If it is present, it is changed to a blank (X'40').

If an output field tab separator character is defined, either MIX or ALL can
also be specified. The default is MIX.

MIX
Specifies that the output field tab separator character is inserted into each
individual field with no data or with data that is less than the defined DFLD
length.

ALL
Specifies that the output field tab separator character is inserted into all
fields, regardless of data length.

COMPR=
Directs MFS to remove trailing blanks from short fields, fixed-length fields, or all
fields presented by the application program.

For DPM-An devices, trailing blanks are removed from the end of a segment if
all of the following are specified:

v FILL=NULL or FILL=PT

v GRAPHIC=YES for the current segment being mapped

v OPT=1 or OPT=2, in the MSG segment

If these conditions are met, trailing blanks are replaced as follows:

FIXED
Specifies that trailing blanks from fixed-length fields are replaced by nulls.

SHORT
Specifies that trailing blanks from fields shortened by the application are
replaced by nulls.

ALL
Specifies that trailing blanks from all fields are replaced by nulls.

The trailing nulls are compressed at the end of the record. See the FILL=
operand on page 307 for additional information.

For DPM-Bn devices, trailing blanks are removed if all of the following are
specified:

v OFTAB (on the current DIV statement), FILL=NULL, or FILL=PT

v GRAPHIC=YES for the current segment being mapped

v OPT=1 or OPT=2 in the MSG segment

If these conditions are met, trailing blanks are removed as follows:

FIXED
Specifies that trailing blanks are to be removed from fixed-length fields.

SHORT
Specifies that trailing blanks are to be removed from fields shortened by the
application.

ALL
Specifies that trailing blanks are to be removed from all fields.

Output Message Formats

Chapter 9. Application Programming Using MFS 303

For additional information on blank compression for DPN-BN devices, see
“Trailing Blank Compression” on page 232.

DPAGE Statement
The DPAGE statement defines a logical page of a device format. This statement
can be omitted if none of the message descriptors referring to this device format
(FMT) contain LPAGE statements and no specific device option is required.

Format for DEV TYPE=274X, DPM-An, or DPM-Bn AND DIV TYPE=INPUT:

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=274X or DPM-An AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=DPM-Bn AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

�

�
,MIX

, OFTAB = ()
X'hh' ,ALL
C'c'

��

Format for DEV TYPE=3270-An:

��
label

DPAGE

,

CURSOR = ((111,ccc))
,dfld

�

Output Message Formats

304 IMS/ESA V6 Appl Pgm: TM

�
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES , PD = pdname
�

�
, ACTVPID = dfldname

��

Format for DEV TYPE=3270:

��
label

DPAGE

,

CURSOR = ((111,ccc))
,dfld

�

�
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES
��

Format for DEV TYPE=3270P:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=FIN:

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7:

Output Message Formats

Chapter 9. Application Programming Using MFS 305

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

�

�

,

CURSOR = ((111,ccc))
,dfld

�

�

,
ABSOLUTE

, ORIGIN = (RELATIVE)

��

Format for DEV TYPE=FIJP or FIPB:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=FIFP:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

�

�

,
LEFT

SELECT = (RIGHT)
DUAL

��

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=INPUT:

Output Message Formats

306 IMS/ESA V6 Appl Pgm: TM

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Parameters:

label
A 1- to 8-byte alphanumeric name can be specified for this device format that
contains LPAGE SOR= references, or if only one DPAGE statement is defined
for the device. If multiple DEV statements are defined in the same FMT
definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is
sent to the remote program as the data name in the output message header. If
label is omitted, MFS generates a diagnostic name and sends it to the remote
program in the header. If the DPAGE statement is omitted, the label on the FMT
statement is sent in the output message header. If OPTIONS=DNM, the label
on the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset
specified is relative to zero. The specification of the offset must allow for the
LLZZ field of the input record (for example, the first data byte is at offset 4). If
the condition is satisfied, the DFLDs defined following this DPAGE are used to
format the input. When no conditions are satisfied, the last defined DPAGE will
be used only if the last defined DPAGE does not specify COND=. If the COND=
parameter is specified for the last DPAGE defined and the last defined DPAGE
condition is not satisfied, the input message will be rejected. Multiple LPAGE
definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV
statement, this specification is used for DPAGE selection. If this keyword is
specified and OPTIONS=DNM is specified on the DIV statement, the COND=
specification is ignored and the data structure name from the DD header is
used for DPAGE selection.

Lowercase data entered from 274X, Finance, SCS1, or SCS2 keyboards is not
translated to uppercase when the COND= comparison is made. Therefore, the
literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device

Output Message Formats

Chapter 9. Application Programming Using MFS 307

types except the 3270 display is X'40'; default for the 3270 display is PT. For
3270 output when EGCS fields are present, only FILL=PT or FILL=NULL should
be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only
when data is sent to the field, and thus does not erase the DFLD if the
application program message omits the MFLD. For DPM-Bn, if OFTAB is
specified, FILL= is ignored and FILL=NULL is assumed.

NONE
Must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

X’hh’
Specifies a hexadecimal character (hh) that is used to fill the device fields.

C'c'
Specifies a character (c) that is used to fill the device fields.

NULL
Specifies that fields are not to be filled. For devices other than the 3270
display, compacted lines are produced when message data does not fill the
device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records
transmitted to the remote program or subsystem. Trailing nulls are removed
up to the first non-null character. Null characters between non-null
characters are transmitted. If the entire record is null, but more data records
follow, a record containing a single null is transmitted to the remote
program. If the entire record is null and more records follow, if
OPTIONS=MSG or DPAGE, or in a PPAGE, if OPTIONS=PPAGE, then all
null records are deleted to the end of that DPAGE or PPAGE.

PT
Is identical to NULL except for the 3270 display. For the 3270 display,
specifies that output fields that do not fill the device field (DFLD) are
followed by a program tab character to erase data previously in the field;
otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is
changed to X'00' for control characters or to X'40' for other nongraphic
characters. For all other devices, any FILL=X'hh' or FILL=C'c' specification with
a value less than X'3F' is ignored and defaulted to X'3F' (which is equivalent to
a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages are allowed for this
DPAGE.

CURSOR=
Specifies the position of the cursor on a physical page. Multiple cursor positions
might be required if a logical page or message consists of multiple physical
pages. The value lll specifies line number and ccc specifies column. Both lll and
ccc must be greater than or equal to 1. The cursor position must either be on a
defined field or defaulted. The default lll,ccc value for 3270 displays is 1,2. For
Finance display components, if no cursor position is specified, MFS does not
position the cursor—the cursor is normally placed at the end of the output data
on the device. For Finance display components, all cursor positioning is
absolute, regardless of the ORIGIN= parameter specified.

Output Message Formats

308 IMS/ESA V6 Appl Pgm: TM

The dfld parameter provides a method for supplying the application program
with cursor information on input and allowing the application program to specify
cursor position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the
MFLD statement) for output cursor positioning.

The dfld parameter specifies the name of a field containing the cursor position.
This name can be referenced by an MFLD statement and must not be used as
the label of a DFLD statement in this DEV definition. The format of this field is
two binary halfwords containing line and column number, respectively. When
this field is referred to by a message input descriptor, it contains the cursor
position at message entry. If referred to by a message output descriptor, the
application program places the desired cursor position into this field as two
binary halfwords containing line and column, respectively. Binary zeros in the
named field cause the values specified for lll,ccc to be used for cursor
positioning during output. During input, binary zeros in this field indicate that the
cursor position is not defined. The input MFLD referring to this dfld should be
defined within a segment with GRAPHIC=NO specified or should use
EXIT=(0,2) to convert the binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page
defined. Default value is ABSOLUTE.

ABSOLUTE
Erases the previous screen and positions the page at line 1 column 1. The
line and column specified in the DFLD statement become the actual line
and column of the data on the screen.

RELATIVE
Positions the page starting on column 1 of the line following the line where
the cursor is positioned at time of output. Results might be undesirable
unless all output to the device is planned in a consistent manner.

OFTAB=
Directs MFS to insert the output field tab separator character specified on this
DPAGE statement for the output data stream of the DPAGE being described.

X’hh’
Specifies a hexadecimal character (hh) to be used as the output field tab
separator character. X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator
character. You cannot specify a blank for the character (C' ').

The character specified cannot be present in data streams from the IMS
application program. If it is present, it is changed to a blank (X'40').

If the output field tab separator character is defined, either MIX or ALL can
also be specified. Default value is MIX.

MIX
Specifies that an output field tab separator character is to be inserted into
each individual field with no data or with data less than the defined DFLD
length.

Output Message Formats

Chapter 9. Application Programming Using MFS 309

ALL
Specifies that an output field tab separator character is to be inserted into
all fields, regardless of data length.

SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the
previous DEV statement. It is your responsibility to ensure that proper forms are
mounted and that left margins are set properly. Default value is LEFT.

LEFT
Causes the corresponding physical page defined in this DPAGE to be
directed to the left platen.

RIGHT
Causes the corresponding physical page defined in this DPAGE to be
directed to the right platen.

DUAL
Causes the corresponding physical page defined in this DPAGE to be
directed to both the left and right platens.

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the
partition descriptor of the partition associated with the DPAGE statement. This
is the parameter that maps a logical page of a message to or from the
appropriate partition. The name of the PD must be contained within the PDB
statement specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field
in the message containing the partition identification number (PID) of the
partition to be activated. This dfldname must be referenced by an MFLD
statement and must not be used as the label of a DFLD statement in the DEV
definition. The application program places the PID of the partition to be
activated in this field. The PID must be in the format of a two byte binary
number ranging from X'0000' to X'000F'.

Restriction: Do not specify this operand for the 3180. Because only one
partition is allowed for this device, you do not need to specify an active
partition.

Output Message Formats

310 IMS/ESA V6 Appl Pgm: TM

Chapter 10. MFS Language Utility

This chapter describes the control statements used by the MFS Language utility.
There are two major categories of control statements:

v Definition statements are used to define message formats, device formats,
partition sets, and operator control tables.

v Compilation statements are those used to control the compilation and SYSPRINT
listings of the definition statements.

Use the definition and compilation control statements to identify a particular function
performed by the utility and to specify various options.

In this Chapter:

v “Utility Control Statements”

Utility Control Statements
Listed below are the definition and compilation control functions.

v SYSPRINT LISTING CONTROL

The following parameters are provided to format the compilation listing: XREF,
SUBS, COMP, DIAG, and LINECNT.

v SYSIN and SYSLIB RECORD STACKING and UNSTACKING

Control statements are provided to allow one or more SYSIN or SYSLIB records
to be processed and kept in processor storage for reuse later in the compilation.
These statements are an alternative to the COPY facility for groups of statements
that are repeated.

MFLD and DFLD statements can be repetitively generated if preceded by a DO
statement and followed by an ENDDO statement. Repetitive DFLD generation
supports increments to line and column position information.

v ALPHA CHARACTER GENERATION

The ALPHA statement allows specification of additions to the set of characters as
alphabetic.

v COPY

The COPY statement allows members of partitioned data sets to be copied into
the input stream of the utility preprocessor.

Control Statement Syntax
The control statements are written in assembler-like language with the following
standard format:

label
Identifies the statement; if it is shown as optional, it can be omitted. When
included, the name must begin in the first position of the statement (column 1)
and must be followed by one or more blanks. It can contain from one to eight
alphanumeric characters (one to six, for the FMT label), the first of which must
be alphabetic.

label operation operand comments

Figure 60. Control Statement Syntax for MFS Language Utility

© Copyright IBM Corp. 1974, 2000 311

operation
Identifies the type of control statement. It normally begins in column 10 and
must be preceded and followed by one or more blanks.

operand
Is made up of one or more parameters, which can be positional or keyword
parameters. A positional parameter in MFS control statements always appears
in the first position of the operand, normally starting in column 16. The position
of a keyword parameter is not important. The parameters within one operand
are separated by commas. In the syntactical description of the control
statements below, parameters preceded by commas are thus identified as
keyword parameters. The operand field itself must be preceded and followed by
one or more blanks.

comments
Can be written in a utility control statement, but they must be separated from
the last parameter of the operand field by one or more blanks. (If the statement
does not include an operand, the comment should be separated from the
statement by at least one blank.) A comment line begins with an asterisk in
column 1.

Continuation is accomplished by entering a nonblank character in column 72. If the
current line is a comment, then the continuation line can begin in any column.

Other considerations are as follows:

v There is no limit on the number of continuation lines.

v There is no limit on the number of characters in the operand field. Individual
operand items cannot exceed 256 characters, excluding trailing and embedded
second quote characters.

v If a nonstandard character (for definition, see “ALPHA Statement” on page 391) is
detected in a literal, a severity 4 warning message is issued. The nonstandard
character is retained in the literal.

v If the current line is a control statement, the continuation line must begin in
column 16.

v A single ampersand is needed to generate one ampersand character in the
literal.

In addition to the definition and compiler statement specifications, several
parameters can be specified in the EXEC statement PARM keyword to control the
current compilation for the preprocessor and phase 1; one parameter can be
specified for phase 2.

Five Special Rules
The five special rules that follow use actual MFS code as examples.

1. If you code a statement such that an equal sign or a left parenthesis
immediately precedes a comma, you can omit the comma.

,FTAB=(,FORCE) could be coded as ,FTAB=(FORCE)

2. If you code a statement such that an equal sign immediately precedes a single
item enclosed in parentheses, you can omit the parentheses.

,FTAB=(,FORCE) could be coded as ,FTAB=,FORCE

3. You can apply both Rule 1 and Rule 2, in either order, to a single item.

,FTAB=(,FORCE) could be coded as ,FTAB=FORCE

4. Under no condition can you specify a keyword without specifying at least one
parameter immediately after that keyword.

Utility Control Statements

312 IMS/ESA V6 Appl Pgm: TM

Neither ,FTAB= nor ,FTAB=,LDEL='**' is permitted.

5. Blanks are required between labels and statement type names, and between
statement type names and their parameters; they are not permitted elsewhere
unless explicitly represented by the symbol �.

DEV ,PAGE is correct, but DEV,PAGE and ,FTAB= (,MIX) are incorrect.

Syntax Errors
The MFS Language utility attempts to recover from syntax errors in source
statements. No guarantee exists for the correctness of the assumptions made in the
recovery, and these assumptions can differ in different releases of IMS.
Assumptions made during recovery are based on (1) what is expected when the
incorrect item is encountered; (2) what could appear to the right of the item
preceding the incorrect item; and (3) what could appear to the left of the incorrect
item.

During the process of error recovery, the following notation can be used in the
diagnostic messages:

; indicates that the end of the source statement was encountered. The
position marker points to the position immediately following the last source
item scanned.

L refers to a literal operand item.

V refers to an identifier operand item (alphabetic character optionally followed
by alphanumeric characters).

I refers to a numeric operand item.

A refers to an alphanumeric operand item (numeric character optionally
followed by alphanumeric characters).

D refers to a delimiter operand item.

Most error recovery messages have a severity code of 4, indicating a warning level
error. When an item is deleted, or the syntax scan is aborted, the statement cannot
be validly processed and a severity code of 8 is generated.

Invalid Sequence of Statements
The language utility preprocessor routines that process MSG, FMT, PDB, or TABLE
definition statements are organized hierarchically. A routine for a given level
processes a statement at that level, reads the next statement, then determines
which routine will next receive control.

If the statement just read is the next lower level statement (for example, a DIV
statement following a DEV statement), the next lower level routine (for example, the
DIV statement processor) is called.

If the statement just read is not the next lower level statement, control can be
passed to one of the following three routines:

1. The next lower level routine to assume the missing statement (for example, the
DIV processor if a DEV statement is followed by a DPAGE statement)

2. The same level routine if the statement just read is of the same level as the
processor (for example, a series of DFLD statements)

3. The next higher level routine (the calling routine) if the statement just read is not
the same or the next lower level (for example, a DEV statement following a
DFLD statement, an invalid statement, or a statement out of sequence)

Utility Control Statements

Chapter 10. MFS Language Utility 313

Thus, if the hierarchic structure of a MSG, FMT, PDB, or TABLE definition is invalid
or a statement operator is misspelled, case (3) will result in control being returned
to successively higher level routines. At the highest level, only a FMT, MSG, TABLE,
PDB, or END statement will be accepted by the preprocessor. Therefore, all
statements before the next FMT, PDB, MSG, TABLE or END statement will be
flushed (that is, not processed) and flagged with the appropriate error message.

Summary of Control Statements
The definition of message formats, device formats, partition sets, and operator
control tables is accomplished with separate hierarchic sets of definition statements.

MSG Statement Set
is used to define message formats. It includes the following statements:

MSG Identifies the beginning of a message definition.

LPAGE Identifies a related group of segment/field definitions.

PASSWORD Identifies a field or fields to be used as an IMS password.

SEG Identifies a message segment.

DO Requests iterative processing of the subsequent MFLD
statements.

MFLD Defines a message field. Iterative processing of MFLD
statements can be invoked by specifying DO and ENDDO
statements. To accomplish iterative processing, the DO
statement is placed before the MFLD statements and the
ENDDO after the MFLD statements.

ENDDO Terminates iterative processing of the preceding MFLD
statements.

MSGEND Identifies the end of a message definition.

FMT Statement Set
is used to define device formats. It consists of the following statements:

FMT Identifies the beginning of a format definition.

DEV Identifies the device type and operational options.

DIV Identifies the format as input, output, or both.

DPAGE Identifies a group of device fields corresponding to an LPAGE
group of message fields.

PPAGE Identifies a group of logically related records that can be sent to
a remote application program at one time.

DO Requests iterative processing of the subsequent RCD or DFLD
statements.

RCD Identifies a group of related device fields that are sent to a
remote application program as a single record.

DFLD Defines a device field. Iterative processing of DFLD statements
can be invoked by specifying DO and ENDDO statements. To
accomplish iterative processing, the DO statement is placed
before the DFLD statements and the ENDDO after the DFLD
statements.

ENDDO Terminates iterative processing of the previous RCD or DFLD
statements.

Utility Control Statements

314 IMS/ESA V6 Appl Pgm: TM

FMTEND Identifies the end of a format definition.

PDB Statement Set
is used to define partition sets (Partition Descriptor Blocks). It consists of the
following statements:

PDB Identifies the beginning of a partition set definition and allows
the specification of several parameters that describe it.

PD Defines a Partition Descriptor, which contains the parameters
necessary to describe a partition.

PDBEND Identifies the end of a partition set definition.

TABLE Statement Set
is used to define operator control tables. It includes the following statements:

TABLE Identifies the beginning of a table definition.

IF Defines a conditional test and resulting action.

TABLEEND Identifies the end of a table definition.

Compilation Statements
are used for variable functions. Compilation statements that are supported by
the MFS Language utility are listed below in alphabetic order:

ALPHA Defines a set of characters to be considered alphabetic for the
purpose of defining field names and literals.

COPY Copies a member of the partitioned data set represented by the
SYSLIB DD statement into the input stream of the
preprocessor.

DO Requests iterative processing of MFLD or DFLD definition
statements.

EJECT Ejects SYSPRINT listing to the next page.

END Defines the end of data for SYSIN processing.

ENDDO Terminates iterative processing of MFLD, RCD, or DFLD
definition statements.

EQU Equates a symbol with a number, alphanumeric identifier, or
literal.

PRINT Controls SYSPRINT options.

RESCAN Controls EQU processing.

SPACE Skips lines on the SYSPRINT listing.

STACK Delineates one or more SYSIN or SYSLIB records that are to
be kept in processor storage for reuse.

TITLE Provides a title for the SYSPRINT listing.

UNSTACK Retrieves previously stacked SYSIN or SYSLIB records.

Compilation statements are inserted at logical points in the sequence of control
statements. For example, TITLE could be first, and EJECT could be placed
before each MSG, FMT, or TABLE statement.

Utility Control Statements

Chapter 10. MFS Language Utility 315

EXEC Statement Parameters
EXEC statement parameters supported by the MFS Language utility have variable
compilation control functions. Parameters can be specified on the EXEC statement
for the preprocessor and phase 1 to:

v Control the printed output

v Compress the reference library (IMS.REFERAL)

v Request diagnostic information

v Indicate which MFS device characteristics table is to be used

v Prevent control blocks with a specified level of error from being written in
IMS.REFERAL

Parameters can also be specified on the EXEC statement for phase 2 to specify
whether IMS.FORMAT and IMS.REFERAL should be compressed and whether
$$IMSDIR should be automatically updated after deletions.

The DEVCHAR parameter specifies the suffix of the MFS device characteristics
table to be used. The device characteristics table is accessed only if DEV
TYPE=3270-An (where n is 1 to 15) is coded as input to the MFS Language utility.
For a description of the MFS device characteristics table, see “MFS Device
Characteristics Table” on page 249.

The EXEC statement parameters supported by the MFS Language utility have
variable compilation control functions. The parameters that can be specified are:

NOXREF|XREF
Specifies whether (XREF) or not (NOXREF) a sorted cross-reference listing
should be provided. A sorted cross-reference listing includes a list of all the
labels and related references. The default is NOXREF.

NOCOMP|COMP
Specifies whether (COMP or COMPOSITE) or not (NOCOMP) the composite or
final version of the statement, after error recovery or substitution has modified it,
will be printed. A composite statement reflects syntactic assumptions made
during error recovery. Semantic assumptions do not appear in composite
statements but are reflected in the intermediate text blocks. The default is
NOCOMP.

NOSUBS|SUBS
Specifies whether (SUBS or SUBSTITUTE) or not (NOSUBS) any statement
containing a substitution variable (EQU operand) is printed. The default is
NOSUBS.

NODIAG|DIAG
Specifies whether (DIAG or DIAGNOSTIC) or not (NODIAG) the XREF, COMP,
and SUBS options should be set on and diagnostic information be printed. The
default is NODIAG, which has no effect on the setting of the XREF, COMP, and
SUBS options but suppresses printing of the diagnostic information.

NOCOMPRESS|COMPRESS
Specifies whether (COMPRESS) or not (NOCOMPRESS) the IMS.REFERAL
library is to be compressed before new ITBs are added. The default is
NOCOMPRESS.

DIRUPDT= UPDATE|NOUPDATE
Specifies whether (UPDATE) or not (NOUPDATE) the special index directory
($$IMSDIR) will be automatically updated after one or more blocks have been
deleted from a format library. You can bypass the $$IMSDIR update by
specifying NOUPDATE. The default is UPDATE.

Utility Control Statements

316 IMS/ESA V6 Appl Pgm: TM

LINECNT=nn
Specifies how many lines per page should be printed. The default is 55.

STOPRC=nn
Specifies the severity code compare value. MSG, FMT, and TABLE blocks
whose error severity equals or exceeds this value will not be written to the
IMS.REFERAL library. The default is 08.

DEVCHAR=n
Specifies the alphanumeric suffix character (x) used as the final character of the
name of the device characteristics table DFSUDT0x loaded when DEV
TYPE=3270-An is encountered. The default is zero (DFSUDT00).

The remainder of this chapter describes, in detail, the utility control statements. The
definition statements are described in the sequence shown above, with the DO and
ENDDO compilation statements where they would normally be coded—before and
after the MFLD or DFLD statements. The compilation statement formats are
sequenced according to related function (if any)—ALPHA; COPY; EQU and
RESCAN (equate processing); STACK and UNSTACK (stacking SYSIN/SYSLIB
records); TITLE, PRINT, SPACE, and EJECT (SYSPRINT listing control); and END.

Message Definition Statements

MSG Statement
The MSG statement initiates and names a message input or output definition.

Format for MSG TYPE=INPUT or OUTPUT:

�� label MSG
INPUT

TYPE = OUTPUT

�

� , SOR = (formatname)
,IGNORE 1

, OPT = 2
3

�

�
, NXT = msgcontrolblockname

��

Format for MSG TYPE=OUTPUT Only:

��
NO

, PAGE = YES
C ’ ’

, FILL = C ’ c ’
NULL
PT

��

Parameters:

label
A one- to eight-character alphanumeric name must be specified. This label can
be referred to in the NXT operand of another message descriptor.

Utility Control Statements

Chapter 10. MFS Language Utility 317

TYPE=
Defines this definition as a message INPUT or OUTPUT control block. The
default is INPUT.

SOR=
Specifies the source name of the FMT statement which, with the DEV
statement, defines the terminal or remote program data fields processed by this
message descriptor. Specifying IGNORE for TYPE=OUTPUT causes MFS to
use data fields specified for the device whose FEAT= operand specifies
IGNORE in the device format definition (see “DEV Statement” on page 330).
For TYPE=INPUT, IGNORE should be specified only if the corresponding
message output descriptor specified IGNORE. If you use SOR=IGNORE, you
must specify IGNORE on both the message input descriptor and the message
output descriptor.

OPT=
Specifies the message formatting option used by MFS to edit messages. The
default is 1. Options 1, 2, and 3 are described in “Output Message Formatting
Options” on page 204 and “Input Message Formatting Options” on page 186.

NXT=
Specifies the name of a message descriptor to be used to map the next
expected message as a result of processing a message using this message
descriptor. If TYPE=INPUT, NXT= specifies a message output descriptor. If
TYPE=OUTPUT, NXT= specifies a message input descriptor. For ISC output,
NXT= becomes the RDPN in the ATTACH FM header.

If TYPE=OUTPUT and the formatname specified in the SOR= operand contains
formats for 3270 or 3270P device types, the msgcontrolblockname referred to
by NXT= must use the same formatname.

PAGE=
Specifies whether (YES) or not (NO) operator logical paging (forward and
backward paging) is to be provided for messages edited using this control
block. This operand is valid only if TYPE=OUTPUT. The default is NO, which
means that only forward paging of physical pages is provided.

FILL=
Specifies a fill character for output device fields. This operand is valid only if
TYPE=OUTPUT. The default is C' '. The fill specification is ignored unless
FILL=NONE is specified on the DPAGE statement in the FMT definition. For
3270 output when EGCS fields are present, only FILL=PT or FILL=NULL should
be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only
when data is sent to the field, and thus does not erase the DFLD if the
application program message omits the MFLD. For DPM-Bn, if OFTAB is
specified, FILL= is ignored and FILL=NULL is assumed.

C'c'
Character 'c' is used to fill device fields. For 3270 display devices, any
specification with a value less than X'3F' is changed to X'00' for control
characters or to X'40' for other nongraphic characters. For all other devices,
any FILL=C'c' specification with a value less than X'3F' is ignored and
defaulted to X'3F' (which is equivalent to a specification of FILL=NULL).

NULL
Specifies that fields are not to be filled. For devices other than 3270 and
SLU 2 display, 'compacted lines' are produced when message data does
not fill device fields.

Message Definition Statements: MSG

318 IMS/ESA V6 Appl Pgm: TM

PT
Is identical to NULL except for 3270 and SLU 2 display. For 3270 and SLU
2 display, PT specifies that output fields that do not fill the device field
(DFLD) are followed by a program tab character to erase data previously in
the field.

LPAGE Statement
The optional LPAGE statement defines a group of segments comprising a logical
page.

Format for MSG TYPE=OUTPUT:

��
label LPAGE SOR = dpagename

�

�
, COND = (mfldname , > , 'value')

mfldname (pp) <
segoffset ≥

≤
=
!=

�

�
, NXT = msgcontrolblockname

�

�
, PROMPT = (dfldname , 'literal')

��

Format for MSG TYPE=INPUT:

��
label

,

LPAGE SOR = (dpagename)

�

�
, NXT = msgcontrolblockname

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified to uniquely
identify this statement.

SOR=
Specifies the name of the DPAGE statement that defines the device format for
this logical page. If TYPE=INPUT and more than one DPAGE can be used as a
source of data to create an input message, more than one dpagename can be
specified.

Message Definition Statements: MSG

Chapter 10. MFS Language Utility 319

COND=
Describes a conditional test that, if successful, specifies that the segment and
field definitions following this LPAGE are to be used for output editing of this
logical page. The specified portion of the first segment of a logical page is
examined to determine if it is greater than (>), less than (<), greater than or
equal to (≥), less than or equal to (≤), equal to (=), or not equal to (≠) the
specified literal value to determine if this LPAGE is to be used for editing.
COND= is not required for the last LPAGE statement in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a
field (mfldname(pp) where pp is the offset in the named field), or an offset in the
segment (segoffset). If the mfldname(pp) form is used, pp must be greater than
or equal to 1. The length of the compare is the length of the specified literal. If
OPT=3 is specified on the previous MSG statement, the area to be examined
must be within one field as defined on an MFLD statement.

If segoffset is used, it is relative to zero, and the specification of that offset must
allow for LLZZ of the segment (that is, the first data byte is at offset 4).

If pp is used, the offset is relative to 1 with respect to the named field (that is,
the first byte of data in the field is at offset 1, not zero).

If the mfldname specified is defined with ATTR=YES, the pp offset must be
used. The minimum offset specified must be 3. That is, the first byte of data in
the field is at offset 3, following the two bytes of attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if
ATTR=2 is specified, pp must be at least 5, and, if ATTR=(YES,2) is specified,
pp must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition
is used for editing.

If LPAGE selection is to be specified using the command data field, that is,
/FORMATmodname...(data), the MFLD specified in the LPAGE COND=mfldname
parameter should be within the first 8 bytes of the associated LPAGEs of the
MOD.

NXT=
Specifies the name of the message descriptor to be used to map the next
message if this logical page is processed. This name overrides any
NXT=msgcontrolblockname specified on the preceding MSG statement.

PROMPT=
Specifies the name of the DFLD into which MFS should insert the specified
literal when formatting the last logical page of an output message. If FILL=NULL
is specified once the prompt literal is displayed, it can remain on the screen if
your response does not cause the screen to be reformatted.

PASSWORD Statement
The PASSWORD statement identifies one or more fields to be used as an IMS
password. When used, the PASSWORD statement and its associated MFLDs must
precede the first SEG statement in an input LPAGE or MSG definition. Up to 8
MFLD statements can be specified after the PASSWORD statement but the total
password length must not exceed 8 characters. The fill character must be X'40'. For

Message Definition Statements: LPAGE

320 IMS/ESA V6 Appl Pgm: TM

option 1 and 2 messages, the first 8 characters of data after editing are used for the
IMS password. For option 3 messages, the data content of the first field after
editing is used for the IMS password.

A password for 3270 input can also be defined in a DFLD statement. If both
password methods are used, the password specified in the MSG definition is used.

Format:

��
label

PASSWORD blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified to uniquely
identify this statement.

SEG Statement
The SEG statement delineates message segments and is required only if
multisegment message processing is required by the application program. Output
message segments cannot exceed your specified queue buffer length. Only one
segment should be defined for TYPE=INPUT MSGs when the input message
destination is defined as a single segment command or transaction. If more than
one segment is defined, and the definition is used to input a single segment
command or transaction, care must be used to ensure that your input produces only
one segment after editing.

Format for MSG TYPE=INPUT:

��
label

SEG
EXIT = (exitnum , exitvect)

�

�
YES

, GRAPHIC = NO ��

Format for MSG TYPE=OUTPUT:

��
label

YES
SEG , GRAPHIC = NO ��

Parameters:

label
A 1- to 8-character name can be specified to uniquely identify this statement.

EXIT=
Describes the segment edit exit routine interface for this message segment.
exitnum is the exit routine number and exitvect is a value to be passed to the
exit routine when it is invoked for this segment. exitnum can range from 0 to
127. exitvect can range from 0 to 255. Unless NOSEGEXIT is specified on the

Message Definition Statements: PASSWORD

Chapter 10. MFS Language Utility 321

DIV statement (for DPM devices only), the SEG exit is invoked when
processing completes for the input segment.

GRAPHIC=
Specifies for MSG TYPE=INPUT whether (YES) or not (NO) IMS should
perform upper case translation on this segment if the destination definition
requests it (see the EDIT= parameter of the TRANSACT or NAME macro). The
default is YES. If input segment data is in nongraphic format (packed decimal,
EGCS, binary, and so forth), GRAPHIC=NO should be specified. When
GRAPHIC=NO is specified, FILL=NULL is invalid for MFLDs within this
segment.

The list below shows the translation that occurs when GRAPHIC=YES is
specified and the input message destination is defined as requesting upper
case translation:

Before Translation After Translation

a through z A through Z

X'81' through X'89' X'C1' through X'C9'

X'91' through X'99' X'D1' through X'D9'

X'A2' through X'A9' X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as
GRAPHIC=YES, the hexadecimal character X'3F' is compressed out of the
segment. If GRAPHIC=NO and FILL=NULL are specified in the SEG statement,
any X'3F' in the non-graphic data stream is compressed out of the segment and
undesirable results might be produced. Non-graphic data should be sent on
output as fixed length output fields and the use of FILL=NULL is not
recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It
specifies whether (YES) or not (NO) nongraphic control characters (X'00' to
X'3F') in the data from the IMS application program are to be replaced by
blanks. The default value is YES. If NO is specified, MFS allows any bit string
received from an IMS application program to flow unmodified through MFS to
the remote program.

Restriction: When GRAPHIC=NO is specified, IMS application programs using
Options 1 and 2 cannot omit segments in the middle of an LPAGE, or truncate
or omit fields in the segment using the null character (X'3F').

DO Statement
The DO statement causes repetitive generation of MFLD statements between the
DO and ENDDO statements. DO is optional, but a message that includes a DO
must include a subsequent ENDDO.

Format:

��
label

DO count
01

, SUF = number

��

Parameters:

Message Definition Statements: SEG

322 IMS/ESA V6 Appl Pgm: TM

label
A one- to eight-character alphanumeric name can be specified. It is not used.

count
Specifies how many times to generate the following MFLD statements. The
maximum count that can be specified is 99; if more than 99 is specified, the 2
rightmost digits of the specified count are used (for example, 03 would be used
if 103 were specified) and an error message is issued.

SUF=
Specifies the 1- or 2-digit suffix to be appended to the MFLD label and
dfldname of the first group of generated MFLD statements. The default is 01.
MFS increases the suffix by 1 on each subsequent generation of statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2
digits, MFS reduces the count to the largest legitimate value. For example, if
count equals 8 and SUF=95, invalid suffixes of 100, 101, and 102 would result.
In this instance, MFS reduces count to 5, processes the statement, and issues
an error message.

Printing Generated MFLD Statements
The generated MFLD statements can be printed in a symbolic source format by
specifying COMP in the parameter list of the EXEC statement. This provides a
means of seeing the results of the MFLD statement generation without having to
interpret the intermediate text blocks.

The following items are printed for each generated MFLD statement:

v The generated statement sequence number followed by a + (plus sign) to
indicate that the MFLD statement was generated as a result of DO statement
processing.

v The MFLD statement label, if present, including the appended suffix.

v The statement operator, MFLD.

v dfldname, if present, including the appended suffix.

v For ECGS literals, the G, SO, and SI is not present. Literals are truncated if there
is insufficient room to print all specifications. Truncation is indicated by a portion
of the literal followed by an ellipsis (...) representing the truncated portion.

v The system literal name, if present.

If both dfldname and a literal are present, they are enclosed in parentheses.

v (,SCA), if present.

v The field length, in the form LTH=nnnn (or LTH=(pppp,nnnn), if present).

v JUST=L or R, if present.

v ATTR=YES, if present.

v ATTR=nn, if present.

No other operands are printed, even if specified on the source MFLD statement.

MFLD Statement
The MFLD statement defines a message field as it will be presented to an
application program as part of a message output segment. At least one MFLD
statement must be specified for each MSG definition.

Format for MSG TYPE=INPUT:

Message Definition Statements: DO

Chapter 10. MFS Language Utility 323

��
label

MFLD
()

dfldname ,'literal'

�

�
1

, LTH = nn
(pp,nn)

L
, JUST = R

�

�
NO

, ATTR = ()
YES , nn

�

�
, FILL = X ’ 40 ’

X ’ hh ’
C ’ c ’
NULL

�

�
, EXIT = (exitnum , exitvect)

��

Format for MSG TYPE=OUTPUT:

��
label

MFLD
dfldname
(dfldname , 'literal')
(dfldname , system-literal)
(, SCA)

�

�
1

, LTH = nn
L

, JUST = R

�

�
NO

, ATTR = ()
YES , nn

��

Parameters:

label
A one-to eight-character alphanumeric name can be specified. label is required
if it is referred to in the COND operand of the previous LPAGE statement. It can
be used to uniquely identify this statement. If the MFLD is between the DO and
ENDDO statements, label is restricted to 6 characters or less. DO statement
processing appends a 2-digit suffix (a sequence number, 01 to 99) to the label
and prints the label as part of the generated MFLD statement. If label is more
than 6 characters and iterative generation is used, the label is truncated at 6

Message Definition Statements: MFLD

324 IMS/ESA V6 Appl Pgm: TM

characters, and the 2-digit sequence number is added to make the 8-character
name. No error message is issued if this occurs.

dfldname
Specifies the device field name (defined via the DEV or DFLD statement) from
which input data is extracted or into which output data is placed. If this
parameter is omitted when defining a message output control block, the data
supplied by the application program is not displayed on the output device. If the
repetitive generation function of MFS is used (DO and ENDDO statements),
dfldname should be restricted to 6 characters maximum length. When each
repetition of the statement is generated, a 2-character sequence number (01 to
99) is appended to dfldname. If the dfldname specified here is greater than 6
bytes and repetitive generation is used, dfldname is truncated at 6 characters
and a 2-character sequence number is appended to form an 8-character name.
No error message is provided if this occurs. This parameter can be specified in
one of the following formats:

dfldname
Identifies the device field name from which input data is extracted or into
which output data is placed.

'literal'
Can be specified if a literal value is to be inserted in an input message.

(dfldname,'literal')
If TYPE=OUTPUT, this describes the literal data to be placed in the named
DFLD. When this form is specified, space for the literal must not be
allocated in the output message segment supplied by the application
program.

If TYPE=INPUT, this describes the literal data to be placed in the message
field when no data for this field is received from the device. If this dfldname
is used in the PFK parameter of a DEV statement, this literal is always
replaced by the PF key literal or control function. However, when this
dfldname is specified in the PFK parameter, but the PF key is not used, the
literal specified in the MFLD statement is moved into the message field.
When physical paging is used, the literal is inserted in the field but is not
processed until after the last physical page of the logical page has been
displayed.

In both cases, if the LTH= operand is specified, the length of the literal is
truncated or padded as necessary to the length of the LTH= specification. If
the length of the specified literal is less than the defined field length, the
literal is padded with blanks if TYPE=OUTPUT and with the specified fill
character (FILL=) if TYPE=INPUT. If no fill character is specified for input,
the literal is padded with blanks (the default). The length of the literal value
cannot exceed 256 bytes.

(dfldname,system-literal)
Specifies a name from a list of system literals. A system literal functions like
a normal literal except that the literal value is created during formatting prior
to transmission to the device. The LTH=, ATTR=, and JUST= operands
cannot be specified. When this form is specified, space for the literal must
not be allocated in the output message segment supplied by the application
program.

The system literals and their associated lengths and formats are shown in
Table 42 on page 326.

Message Definition Statements: MFLD

Chapter 10. MFS Language Utility 325

Table 42. Lengths and Formats of System Literals

System Literal Name

Produces Literal of:

NotesLength Format

LTSEQ 5 nnnnn 1

LTNAME 8 aaaaaaaa 1

TIME 8 HH:MM:SS

DATE1 or YYDDD 6 YY.DDD

DATE2 or MMDDYY 8 MM/DD/YY

DATE3 or DDMMYY 8 DD/MM/YY

DATE4 or YYMMDD 8 YY/MM/DD

DATE1Y4 or
YYYYDDD or
DATEJUL

8 YYYY.DDD

DATE2Y4 or
MMDDYYYY or
DATEUSA

10 MM/DD/YYYY

DATE3Y4 or
DDMMYYYY or
DATEEUR

10 DD/MM/YYYY

DATE4Y4 or
YYYYMMDD or
DATEISO

10 YYYY/MM/DD

LPAGENO 4 nnnn 2

LTMSG 14 MSG WAITING Qx 3

Message Definition Statements: MFLD

326 IMS/ESA V6 Appl Pgm: TM

Table 42. Lengths and Formats of System Literals (continued)

System Literal Name

Produces Literal of:

NotesLength Format

Notes:

1. LTSEQ is the output message sequence number for the logical terminal. The value
created is the logical terminal dequeue count plus 1. The first output message after an
IMS cold start or /NRESTART BUILDQ has a sequence number of 00001. Certain
IMS-created messages do not change this number.

LTNAME is the logical terminal (LTERM) name of the LTERM for which this message is
being formatted.

Messages generated by the IMS control region in response to terminal input (error
messages, most command responses) do not have an LTSEQ or an LTNAME. These
messages use the IMS message output descriptor DFSMO1. In these instances, the
values provided are 00000 and blanks, respectively.

2. LPAGENO specifies that the current logical page number of the message be provided as
a system literal. This number corresponds to the page number you entered for an
operator logical page request. The literal produced is a 4-digit number with leading zeros
converted to blanks.

3. LTMSG specifies that when this output message is sent to the terminal, the literal 'MSG
Waiting Qx' (where x is message queue number 1, 2, 3, or 4) is sent in the LTMSG field
if there are messages in the queue for the terminal. If there are no messages in the
queues, other than the current queue, blanks are sent in the LTMSG field.

Usually the message waiting is sent when the current message is dequeued. If the
message is waiting in Q1, it is sent. If the message is in Q2 and the terminal is in
exclusive mode, it is sent (when any other messages from Q1 are sent). If the message
is in Q2 and conversational status does not prevent it from being sent or if the message
is in Q3 or Q4 and the exclusive or conversational status does not prevent it from being
sent, it is sent. If a message is waiting to be sent on another queue and the terminal is in
conversation, the conversation can be held to view the message; if the terminal is in
exclusive mode, the message can be viewed when the terminal is taken out of exclusive
mode. If you are entering response mode transactions, the message can be viewed
before entering response mode transaction input from the terminal.

This system literal is recommended for conversational mode. It is not recommended for
ISC subsystems.

(,SCA)
Defines this output field as the system control area which is not displayed
on the output device. There can be only one such field in a logical page
(LPAGE) and it must be in the first message segment of that page. If no
logical pages are defined, only one SCA field can be defined and it must be
in the first segment of the output message. This specification is valid only if
TYPE=OUTPUT was specified on the previous MSG statement.

LTH=
Specifies the length of the field to be presented to an application program on
input or received from an application program on output. Default or minimum
value is 1. Maximum value is 8000. (The maximum message length must not
exceed 32767.)

The form (pp,nn) can be used when defining an input field; however, a field
name must be specified in the first positional parameter if the (pp,nn) form is
used. The value supplied for pp specifies which byte in the input data field is to
be considered the first byte of data for the message field. For example, a pp of
2 specifies that the first byte of input data is to be ignored, and the second byte

Message Definition Statements: MFLD

Chapter 10. MFS Language Utility 327

becomes the first byte of this field. The value of pp must be greater than or
equal to 1. The value supplied for nn specifies the length of the field to be
presented to an application program.

If (,SCA) is specified in the positional parameter, the specified LTH= value must
be at least 2.

LTH= can be omitted if a literal is specified in the positional operand
(TYPE=INPUT), in which case, length specified for literal is used. If LTH= is
specified for a literal field, the specified literal is either truncated or padded with
blanks to the specified length. If the MFLD statement appears between a DO
and an ENDDO statement, a length value is printed on the generated MFLD
statement, regardless of whether LTH= is specified in the MFLD source
statement.

JUST=
Specifies that the data field is to be left-justified (L) or right-justified (R) and
right- or left- truncated as required, depending upon the amount of data
expected or presented by the device format control block. The default is L.

ATTR=
Specifies whether (YES) or not (NO) the application program can modify the
3270 attributes and the extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by
the application program on output and to be initialized to blanks on input. These
2 bytes must be included in the LTH= specification.

The value supplied for nn is the number of extended attributes that can be
dynamically modified. The value of nn can be a number from 1 to 6. An invalid
specification will default to 1. Two additional bytes per attribute must be
reserved for the extended attribute data to be filled in by the application
program on output and to be initialized to blanks on input. These attribute bytes
must be included in the MFLD LTH= specification.

Example: Shown below are valid specifications for ATTR= and the number of
bytes that must be reserved for each different specification:

MFLD ,ATTR=(YES,nn)
2 + (2 × nn)

MFLD ,ATTR=(NO,nn)
2 × nn

MFLD ,ATTR=(nn)
2 × nn

MFLD ,ATTR=YES
2

MFLD ,ATTR=NO
0

ATTR=YES and nn are invalid if a literal value has been specified through the
positional parameter in an output message.

The attributes in a field sent to another IMS ISC subsystem are treated as input
data by MFS regardless of any ATTR= specifications in the format of the

Message Definition Statements: MFLD

328 IMS/ESA V6 Appl Pgm: TM

receiving subsystem. For example, a message field (MFLD) defined as
ATTR=(YES,1),LTH=5 would contain the following:
00A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=9 and without
ATTR=, the application program receives:
00A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and
ATTR=(YES,1), the application program receives:
4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and
ATTR=(YES,1), the application program receives:
4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent
translation of the attribute data to uppercase.

FILL=
Specifies a character to be used to pad this field when the length of the data
received from the device is less than the length of this field. This character is
also used to pad when no data is received for this field (except when MSG
statement specifies option 3.) This operand is only valid if TYPE=INPUT. The
default is X'40'.

X’hh’
Character whose hexadecimal representation is hh is used to fill fields.
FILL=X'3F' is the same as FILL=NULL.

C'c'
Character c is used to fill fields.

NULL
Causes compression of the message segment to the left by the amount of
missing data in the field. Refer to “Cursor Position Input and FILL=NULL” on
page 191 for more information.

EXIT=
Describes the field edit exit routine interface for this message field. The exit
routine number is specified in exitnum, and exitvect is a value to be passed to
the exit routine when it is invoked for this field. The value of exitnum can range
from 0 to 127. The value of exitvect can range from 0 to 255. The address of
the field as it exists after MFS editing, (but before NULL compression for option
1 and 2), is passed to the edit exit routine, along with the vector defined for the
field. (If NOFLDEXIT is specified for a DPM device, the exit routine will not be
invoked.) The exit routine can return a code with a value from 0 to 255. MFS
maintains the highest such code returned for each segment for use by the
segment edit routine. EXIT= is invalid if 'literal' is specified on the same MFLD
statement.

ENDDO Statement
The ENDDO statement terminates the group of MFLD statements that are to be
repetitively generated. The generated MFLD statements are printed immediately
following the ENDDO statement. ENDDO is required when a DO statement has
been specified.

Message Definition Statements: MFLD

Chapter 10. MFS Language Utility 329

��
label

ENDDO blanks
comments

��

label
A one- to eight-character alphanumeric name can be specified. It is not used.

MSGEND Statement
The MSGEND statement terminates a message input or output definition and is
required as the last statement in the definition. If this is the end of the job
submitted, it must also be followed by an END compilation statement.

��
label

MSGEND blanks
comments

��

label
a one- to eight-character alphanumeric name can be specified. It is not used.

Format Definition Statements

FMT Statement
The FMT statement initiates and names a format definition that includes one or
more device formats differing only in the device type and features specified in the
DEV statement. Each device format included in the format definition specifies the
layout for data sent to or received from a device or a remote program.

Format:

�� label FMT blanks
comments

��

Parameters:

label
A required one- to six-character alphanumeric name that is referred to by
message descriptors in the SOR= operand of MSG statements.

The name specified for label becomes part of the member name used for the
resulting device output format and device input format blocks that are stored in
the IMS.FORMAT library.

If DEV TYPE=DPM-An, and DIV OPTIONS=MSG, the name specified for label
is sent to the remote program as the data name in the output message header.

If DEV TYPE=DPM-Bn, and DIV OPTIONS=(MSG,DNM), the name specified
for label is sent to the other subsystem as the data structure name in the DD
FM header.

DEV Statement
The DEV statement defines device characteristics for a specific device or data
formats for a specific device type. The DFLD statements following this DEV
statement are mapped using the characteristics specified until the next DEV or

Message Definition Statements: ENDDO

330 IMS/ESA V6 Appl Pgm: TM

FMTEND statement is encountered. For DPM devices, the DEV statement specifies
the DPM program type number and (optionally) a feature set number.

Recommendation: Read the TYPE= operand description before using the DEV
statement.

Format for 2740 or 2741:

��
label

DEV TYPE=274X
IGNORE

, FEAT =

FOR INPUT
FOR OUTPUT

��

FOR INPUT:

RECORD
, MODE = STREAM

�

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

�

�
’ ** ’

, LDEL = ’ ldelchars ’
X ’ value ’
NONE

FOR OUTPUT:

55 ,DEFN
, PAGE = ()

number ,FLOAT
,SPACE

, DSCA = X ’ value ’
number

Format for 3270 Display:

��
label

DEV TYPE 3270
2

(3270 , 1)
3270-An

�

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 331

�
, FEAT = IGNORE

1
2
3
4
5
6
7
8
9
10

CARD ,PFK ,PEN
()

NOCD ,NOPFK ,NOPEN
,DEKYBD

�

�
, PEN = dfldname , CARD = dfldname , SYSMSG = dfldlabel

�

�
, DSCA = X ’ value ’

number

�

�

,

, PFK = (dfldname , ’ literal ’)
NEXTPP
NEXTMSG
NEXMSGP
NEXTLP
ENDMPPI

,

integer = ’ literal ’
NEXTPP
NEXTMSG
NEXMSGP
NEXTLP
ENDMPPI

�

�
, SUB = X ’ hh ’

C ’ c ’
, PDB = pdbname

��

Format for 3270 Printers:

Format Definition Statements: DEV

332 IMS/ESA V6 Appl Pgm: TM

��
label

DEV TYPE= 3270P
2

(3270P , 1)
, FEAT = 120

126
132
IGNORE
1
2
3
4
5
6
7
8
9
10

�

�
120

, WIDTH = number
55 ,DEFN

, PAGE = ()
number ,FLOAT

,SPACE

�

�
, DSCA = X ’ value ’

number

��

Format for Finance Workstations (3600 OR 4700):

��
label

DEV TYPE= 3600
36DS
36DS3
36DS4
36DS7
36JP
36PB
36FP

��

Format for DEV TYPE=FIN:

��
label

DEV TYPE=FIN
RECORD

, MODE = STREAM

�

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

�

�
’ ** ’

, LDEL = ’ ldelchars ’
X ’ value ’
NONE

��

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 333

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7:

��
label

DEV TYPE= FIDS
FIDS3
FIDS4
FIDS7

, DSCA = X ’ value ’
number

�

�
IGNORE

, FEAT =

��

Format for DEV TYPE=FIJP, FIPB, FIFP:

��
label

DEV TYPE=FIN FIJP
FIPB
FIFP

�

�

55 ,DEFN
, PAGE = ()

number ,SPACE
,FLOAT
,EJECT

(BGNPP)

(ENDPP)
(BGNMSG)
(ENDMSG)

�

�
, DSCA = X ’ value ’

number
, FORMS = ’ literal ’

�

�
IGNORE

(1)
, FEAT = DUAL

(1)
132

(1)
(DUAL,132)

��

Notes:

1 FIFP only

Format for SCS1:

Format Definition Statements: DEV

334 IMS/ESA V6 Appl Pgm: TM

��
label

DEV TYPE=SCS1
IGNORE

, FEAT = 1
2
3
4
5
6
7
8
9
10

�

�
, FORMS = ’ literal ’

FOR INPUT
FOR OUTPUT

��

FOR INPUT:

RECORD
, MODE = STREAM

�

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

�

�
’ ** ’

, LDEL = ’ ldelchars ’
X ’ value ’
NONE

, CARD = dfldname
�

�
132

, WIDTH = number

FOR OUTPUT:

55 ,DEFN
, PAGE = ()

number ,SPACE
,FLOAT

(BGNPP)
, EJECT

(ENDPP)
(BGNMSG)
(ENDMSG)

�

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 335

�
, DSCA = X ’ value ’

number
132

, WIDTH = number

�

�

SET ,1
, HTAB = ()

OFFLINE ,1 m ,
ONLINE

, HT = (t1)
t2
t3
t4
t5
t6
t7
t8
t9
t10

�

�

,

, VT = (t1)
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11

, VTAB = (tm , bm)
�

�
, SLDI = nn
, SLDP = nn

Format for SCS2:

��
label

DEV TYPE=SCS2
IGNORE

, FEAT = 1
2
3
4
5
6
7
8
9
10

FOR INPUT
FOR OUTPUT

��

FOR INPUT:

RECORD
, MODE = STREAM

�

Format Definition Statements: DEV

336 IMS/ESA V6 Appl Pgm: TM

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

�

�
’ ** ’

, LDEL = ’ ldelchars ’
X ’ value ’
NONE

80
, WIDTH = number

FOR OUTPUT:

55 ,DEFN
, PAGE = ()

number ,FLOAT
,SPACE

, DSCA = X’value’
number

�

�
80

, WIDTH = number

Format for DPM-An:

��
label

DEV TYPE=DPM-An
IGNORE

, FEAT = 1
2
3
4
5
6
7
8
9
10

�

�
MFS

, VERSID = X ’ value ’
’ chars ’

FOR INPUT
FOR OUTPUT

��

FOR INPUT:

NONE
, LDEL = ’ ldelchars ’

X ’ value ’

�

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 337

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

�

�
RECORD

, MODE = STREAM

FOR OUTPUT:

, DSCA = X ’ value ’
number

, FORMS = ’ literal ’

Format for DPM-Bn:

��
label

DEV TYPE=DPM-Bn
IGNORE

, FEAT = 1
2
3
4
5
6
7
8
9
10

�

�
RECORD

, MODE = STREAM
MFS

, VERSID = X ’ value ’
’ chars ’

�

� FOR INPUT
FOR OUTPUT

��

FOR INPUT:

NONE
, LDEL = ’ ldelchars ’

X ’ value ’

�

�
,FORCE

, FTAB = ()
’ tabchars ’ ,MIX
X ’ value ’ ,ALL

Format Definition Statements: DEV

338 IMS/ESA V6 Appl Pgm: TM

FOR OUTPUT:

, DSCA = X ’ value ’
number

Parameters:

label
An optional one- to eight-character alphanumeric name that uniquely identifies
this statement.

TYPE=
Specifies the device type and model number of a device using this format
description. The 3284-3 printer attached to a 3275 is supported only as
TYPE=3270P. The model number specified when defining a format for a 3284-3
is the model number of the associated 3275.

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with
the screen size defined during IMS system definition, feature numbers n=1-15.
This specification causes the MFS Language utility to read the MFS device
characteristics table (DFSUDT0x) to extract the screen size.

TYPE=DPM-Bn specifies the device as an ISC node. The device type specified
by n must agree with the specification of the component (COMPT=) on the
system definition TERMINAL macro.

Based on the device and model used, specify:

TYPE= Device-Model

274X 2740-1, 2741-1, or 2740-2

3270, 1 3275-1

3276-1,11 (defined at IMS system definition as 3270 model 1)

3277-1

3278-1 (defined at IMS system definition as 3277 model 1)

SLU 2 (480 characters)

3270,2 3275-2 SLU 2 (1920 characters)

(any display defined during IMS system definition as 'mod 2'
with screen area of 1920 characters)

3270-An 3270-An (applies to any 3270 or SLU 2 display defined as
TYPE=3270-An during IMS system definition)

Examples of 3270 devices that can be defined as 3270-An and
the recommended standard of associating screen sizes with the
device type symbolic name follow:

Device Screen size and definition

3180 24×80 screen size defined as 3270-A2

327X-1,11 12×80 screen size defined as 3270-A1

327X-2,12 24×80 screen size defined as 3270-A2

327X-3,13 32×80 screen size defined as 3270-A3

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 339

327X-4,14 43×80 screen size defined as 3270-A4

3278-5 27x132 screen size defined as 3270-A7

3290 62x160 screen size defined as 3270-A8

or

24×80 screen size defined as 3270-A2

5550 3270 Kanji Emulation or 3270 PC with 24×80
screen size defined as 3270-A2

3270P,1 3284-1

3286-1

3287 (with 480 character print feature and not attached as SLU
1 or SLU 4)

3289 (with 480 character print feature and not attached as SLU
1 or SLU 4)

3270P,2 3284-2

3286-2

3287 (with 1920 character print feature and not attached as
SLU 1 or SLU 4)

3289 (with 1920 character print feature and not attached as
SLU 1 or SLU 4)

FIN Finance application program (input only)

FIDS Finance display component (6×40; for example, 3604-1 or -2)

FIDS3 Finance display component (12×40; for example, 3604-3)

FIDS4 Finance display component (16×64; for example, 3604-4)

FIDS7 Finance display component (24×80; for example, 3604-7)

FIJP Finance journal printer

FIPB Finance passbook printer

FIFP Finance administrative printer

SCS1 The following console keyboard printers:

NTO

3771

3773

3774

3775

3776

5553

5557

SLU 1 (with a print data set or bulk printer)

SLU 4

3289 and 3287 when attached to IMS as SLU 1

SCS2 3521 card punch

3501 card reader

Format Definition Statements: DEV

340 IMS/ESA V6 Appl Pgm: TM

2502 card reader

SLU 1 (transmit data set)

SLU 4

DPM-An SLU P (n is value 1-15)

DPM-Bn ISC (n is value 1-15)

MODE=
Specifies the manner in which field scanning is to occur. Default value is
RECORD. MODE= is valid for DPM-An input only, and for DPM-Bn input and
output. For DPM-Bn, if the input and output modes are not the same, each DIV
statement must be preceded by a DEV statement.

RECORD
Specifies that fields are defined as occurring within specific records (a line
from a device, a transmission from a remote program) that is transmitted
from the device or program. For DPM-Bn, Record mode must be specified
for variable length, variable blocked (VLVB) format records.

STREAM
Specifies that fields are defined as a contiguous stream of fields—record
boundaries do not affect the MFS scan. Fields can be split across records
and fields can be entered from any record provided they are entered in the
defined sequence. For DPM-Bn, Stream mode must be specified for
chained request/response units (RUs).

FTAB=
Specifies the field tab (FTAB) characters that you or a remote program can use
to terminate an input field when either the length of the data entered is less
than the defined field length, or no data for the field exists:

v For FIN, DPM-An, and DPM-Bn, a maximum of eight FTAB characters or 16
hexadecimal digits can be specified, and at least one character (or two
hexadecimal digits) should be specified.

v For SCS1, up to four FTAB characters or eight hexadecimal digits can be
specified; the characters NL, LF, HT, and VT are always FTAB characters
and do not need to be specified.

v For SCS2, up to three FTAB characters or six hexadecimal digits can be
specified. The characters NL, CR, LF, HT, and VT are always FTAB
characters and do not have to be specified; however, they are received by
MFS only if the Hollerith code is punched in the card if the input is from the
card reader.

If no FTAB characters are defined, each device input field is considered to be of
its defined length. In Record mode, when the end of a record is reached, the
current field is terminated and all subsequent fields defined for that record are
processed with no device data (message fill). In Stream mode, all transmissions
that comprise the input message are treated as a stream of data fields
unaffected by transmission boundaries. If FTABs are not defined or are not
used for DPM input, each input field is considered to be of defined length
except when NULL=DELETE is specified. With NULL=DELETE, if trailing nulls
are encountered in a field or an entire field is null, the field is padded to defined
length using the message fill character.

If FTAB characters are defined in this operand, either FORCE, MIX, or ALL can
also be specified. The default is FORCE.

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 341

FORCE
Specifies that an FTAB is not required until you or a remote program enters
an FTAB character. In record mode, if an FTAB is used for one field, the
remaining fields of the current record must be terminated with an FTAB,
regardless of length. In stream mode, if an FTAB is used for one field, the
remaining fields in the message must be terminated with an FTAB.

MIX
Specifies that an FTAB is never required but can be used to terminate any
input field when data is less than the defined field length.

ALL
Specifies that an FTAB must be used to terminate all fields, regardless of
length, except for certain mode (MODE=) dependent conditions. In record
mode, an FTAB is not required for the last field defined or entered in the
record. In stream mode, an FTAB is not required for the last field defined or
entered in the message.

LDEL=
Specifies two characters or four hexadecimal digits, which, if entered as the last
two characters of a record of input data, cause the record to be discarded. A
specification of NONE causes IMS to bypass record delete processing, except
for the first record, which is always deleted if the last two characters are
asterisks (**). NONE is the default for DPM devices. For other devices, the
default is **.

PAGE=
Specifies output parameters as follows:

number
For printer devices, number defines the number of print lines on a printed
page; for card devices, number defines the number of cards to be punched
per DPAGE or physical page (if pp parameter is used in the DFLD
statements). This value is used for validity checking. The number specified
must be greater than or equal to 1 and less than 256. The default is 55.

If VTAB= is specified for SCS1 printers, then the minimum value for PAGE=
is 3.

DEFN
Specifies that lines/cards are to be printed/punched as defined by DFLD
statements (no lines/cards are to be removed or added to the output page).

SPACE
Specifies that each output page contains the exact number of lines/cards
specified in the number parameter.

FLOAT
Specifies that lines/cards with no data (all blank or NULL) after formatting
are to be deleted.

For 3270P and SCS1 devices, some lines having no data (that is, all blank
or null) must not be deleted under the following circumstances:

v The line contains one or more set line density (SLDx=) specifications.

v A field specified as having extended attributes spans more than one line.

EJECT
Specifies that a forms eject operation should be performed for printer
devices. EJECT is valid only when TYPE=FIJP, FIPB, FIFP, or SCS1. If

Format Definition Statements: DEV

342 IMS/ESA V6 Appl Pgm: TM

EJECT is specified for SCS1, MFS assumes the Vertical Forms Control
feature is present. The default for the sublist is BGNPP.

The sublist specifies when ejects are to be performed:

BGNPP
Specifies that an eject is to be performed before each physical page of
output.

ENDPP
Specifies that an eject is to be performed after each physical page is
printed.

BGNMSG
Specifies that an eject is to be performed before any data in the
message is printed.

ENDMSG
Specifies that an eject is to be performed after all message data is
printed.

DSCA=
Specifies a default system control area (DSCA) for output messages using this
device format. The DSCA supersedes any SCA specified in a message output
descriptor if there are conflicting specifications. Normally, the functions specified
in both SCAs are performed. If the DSCA= operand is specified for SCS1 or
SCS2, it is ignored. If the DSCA= operand is specified for 3270P, it is ignored,
except for the bit setting for “sound device alarm”. If this bit is specified on the
DSCA/SCA option, it is sent to the device. For TYPE=DPM-An or DPM-Bn,
DSCA/SCA information is sent to a remote program or ISC subsystem only if a
DFLD definition requests it.

The value specified here must be a decimal number not exceeding 65535 or
X'hhhh'. If the number is specified, the number is internally converted to
X'hhhh'.

The two bytes of the DSCA field should be defined as shown in Table 43 or
Table 45 on page 344.

Table 43 shows the DSCA bit settings for 3270 display or SLU 2 devices or
TYPE=DPM-An or DPM-Bn.

Table 43. Bit Settings for DSCA Field. For 3270 Display, SLU 2 Devices, TYPE=DPM-An, or
DPM-Bn

Byte Bit

0 0-7 Should be 0.

1 0 Should be 1.

1 Force format write (erase device buffer and write all required data).

2 Erase unprotected fields before write.

3 Sound device alarm.

4 Copy output to candidate pointer. Bits 1-4 are ignored for DPM-Bn.

5 B'0'- For 3270, protect the screen when output is sent. For DPM,
demand paging can be performed. B'1'- For 3270, do not protect
the screen when output is sent. For DPM-B, autopaging can be
performed.

6-7 Should be 0, except for the 3290 in partitioned format mode.

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 343

If byte 1 bit 5 is set to B'1' (unprotect screen option) for a 3275 display, and
both input and output occur simultaneously (contention), the device is
disconnected. For non-3275 devices, the SCA option is ignored. If byte 1 bit 5 is
set to B'0', the application program can request autopaged output by setting the
SCA value to B'1'. This request is honored only if present in the first segment of
the first LPAGE of the output message.

If a nonzero value is specified for byte 0, or for bit 6 or 7 in byte 1, MFS
overrides the specified value with zero, except for the 3290 in partitioned format
mode.

For the 3290 in partitioned format mode, byte 1 bit 6 has special significance. If
the DOF of the output message is the same as the DOF of the last message,
then byte 1 bit 6 of the DSCA is checked for the erase/not erase partitions
option before the output message is sent. Meanings of the bit 6 settings are
shown in Table 44.

Table 44. 3290 Partitioned Format Mode Bit Setting

Byte Bit Setting Meaning

1 6 B'1' Erase all partitions before sending output
message.

B'0111' Do not erase existing partitions.

The default is B'0' (do not erase). If bit 6 is defined, all existing partitions are
erased and the output is sent according to the specified partition paging option
(see “Partition Initialization Options and Paging” on page 244). If bit 6 is not
defined, the output is sent according to the specified partition paging option and
partitions that do not receive output remain in the state they were in before
output was sent.

Table 45 shows the DSCA bit settings for TYPE=FIDS, FIDS3, FIDS4, FIDS7,
FIJP, FIPB, or FIFP.

Table 45. Bit Settings for DSCA Field. For TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or
FIFP

Byte Bit

0 0-7 Should be 0.

1 0 Should be 1.

1-2 Not applicable for FIN output devices.

3 Set 'device alarm' in output message header.

4 Not applicable for FIN output devices.

5-7 Should be 0.

For FIN devices, if a nonzero value is specified for byte 0, or for bits 1, 2, 5, 6,
or 7 in byte 1, MFS overrides the specified value with zero.

Bits 1, 2, and 4 in byte 1 only function for 3270 and SLU 2 and are therefore
not applicable to FIN. If set on, and the message is edited for an FIN output
device, they are ignored.

Format Definition Statements: DEV

344 IMS/ESA V6 Appl Pgm: TM

For 3270 and FIN devices, the function specified is performed. For DPM
devices, the specification is supplied to the remote program in a user-defined
device field (DFLD).

FEAT=
Specifies features for this device or program group.

IGNORE
Specifies that device features are to be ignored for this device.

120|126|132
Specifies line length for 3284, and 3286 device types (TYPE=3270P).

CARD
Specifies that the device has a 3270 operator identification card reader.
NOCD specifies the absence of the CARD feature.

DEKYBD
Specifies data entry keyboard feature. This feature implies PFK feature;
therefore, PFK is invalid if DEKYBD is specified. NOPFK implies the
absence of PFK and DEKYBD features.

PFK
Specifies that the device has program function keys. NOPFK specifies the
absence of the PFK and DEKYBD features.

PEN
Specifies the selector light pen detect feature. NOPEN specifies the
absence of the PEN feature.

DUAL
Specifies that the FIFP device has the dual independent forms feed feature.

132
Specifies that the FIFP device has the expanded print line feature.

1|2|3|4|5|6|7|8|9|10
Specifies customer-defined features for the SCS1, SCS2, 3270P, DPM-An,
or DPM-Bn device type.

For SCS1, SCS2, and 3270P devices, FEAT= allows grouping of devices with
special device characteristics. For example, FEAT=1 could group devices with a
maximum of 80 print positions and no VFC, and FEAT=2 could group devices
with 132 print positions and the VFC feature. FEAT=IGNORE should be
specified to group together devices with a minimum set of device capabilities.
For 3270P devices, when WIDTH= is specified, FEAT=(1...10) must also be
specified. If FEAT=(1...10) is specified but WIDTH= is not specified, WIDTH=
defaults to 120.

For DEV TYPE=DPM-An or DPM-Bn, FEAT= specifies a user-defined group of
device formats so that programs with common features and dependencies can
be selected together.

When IGNORE is specified, no other values should be coded in the FEAT=
operand. When FEAT=IGNORE is not specified in the TERMINAL macro during
system definition, the MSG statement must specify IGNORE in the SOR=
operand for the device format with the IGNORE specification. Unless
FEAT=IGNORE is used, FEAT= must specify exactly what was specified in the
TERMINAL macro during IMS system definition. If it does not, the DFS057 error
message is issued. When FEAT=IGNORE or 1-10 is specified for 3270 devices,

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 345

the operands PEN=, CARD=, and PFK= can still be specified. When
TYPE=3270P and FEAT=IGNORE, MFS allows a line width of 120 characters.

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270
displays. DUAL is valid only if TYPE=FIFP. If the FEAT= operand is omitted, the
default features are CARD, PFK, and PEN for 3270 displays; the default line
width is 120 for TYPE=3270P and 80 for TYPE=FIFP.

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are valid values only for 3270, 3270P, 3270-An,
SCS1, SCS2, DPM-An, and DPM-Bn (for DEV TYPE=). For 3270 displays, the
FEAT= specifications of 1 to 5 can be used to group devices with specific
features or hardware data stream dependencies.

Restriction: This keyword is optional and cannot be used with any other
feature specification for 3270 displays.

When using the same format for both the 3290 and the 3180, you must specify
a different value on the FEAT= operand for each device type. The FEAT
parameter values selected for each device must also be specified on the
TERMINAL macro in the IMS SYSGEN.

For 274X, FIN, FIDS, FIDS3, FIDS4, FIDS7, FIJP, and FIPB, FEAT is always
IGNORE. For FIFP, IGNORE is used unless 132 and DUAL are specified.

Feature operand values can be specified in any order, and only those values
desired need be specified. The underlined values do not have to be specified
because they are defaults. Only one value in each vertical list can be specified.

Examples: Some of the uses of the FEAT= specification are:

v TYPE=DPM-A1,FEAT=1 could group device formats with DPAGE paging option
and simulated attributes.

v TYPE=DPM-A5,FEAT=2 could group device formats with no paging option and bit
string attributes (which are not interpreted by MFS).

v TYPE=DPM-B1,FEAT=IGNORE could identify device formats with PPAGE paging
option and a minimum set of program requirements.

PFK=
Defines an input field name to contain program function key literal or control
function data (first subparameter) and, in positional or keyword format, either
the literal data to be placed in the specified field, or the control function to be
performed when the corresponding function key is entered (remaining
subparameters).

The name of the first subparameter (the input field name that will contain the
program function key literal or control function data) can be referred to by an
MFLD statement and must not be used as the label of a DFLD statement within
this DEV definition. The remaining subparameters can be specified in positional
or keyword format. If the subparameters are in keyword format, the integer
specified must be from 1 to 36, inclusive, and not duplicated. Only one PFK=
operand format (positional or keyword) can be specified on a DEV statement.
This operand is valid only for 3270 displays. At the time the actual format blocks
are created, each literal is padded on the right with blanks to the length of the
largest literal in the list. The maximum literal length is 256 bytes.

Format Definition Statements: DEV

346 IMS/ESA V6 Appl Pgm: TM

If the device supports the IMS copy function, then PFK12 invokes the copy
function and the definition of PFK12 in the DEV statement is ignored; otherwise,
the definition of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of
user-defined PFKs is 36.

Control functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output
message. If no output message is in progress, no explicit response is
made.

NEXTMSG—MESSAGE ADVANCE
Specifies a request to dequeue the output message in progress (if any) and
to send the next output message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any),
and send the next output message or return an information message
indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of a multiple physical page input message.

PEN=
Defines an input field name to contain literal data when an immediate light pen
detection of a field with a space or null designator character occurs. The literal
data is defined on the DFLD statement with the PEN= operand. (See PEN=
operand on the DFLD statement.) This name can be referred to by an MFLD
statement and must not be used as the label of a DFLD statement within this
DEV definition. The PEN= operand is valid only for 3270 displays. If
FEAT=NOPEN is specified, it is changed to PEN.

If an immediate detect occurs on a field defined with a space or null designator
character, and either another field has been selected or modified or has the
MOD attribute, or the PEN= operand is not defined for the DFLD, a question
mark (?) is inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on a field
defined with an ampersand (&) designator character, the PEN= operand is
padded with the fill specified in the MFLD statement.

CARD=
Defines the input field name to receive operator identification card data when
that data is entered. This name can be referenced by an MFLD statement and
must not be used as the label of a DFLD statement within this DEV definition.
This operand is valid only if a 3270 display or SCS1 is specified. If
FEAT=NOCD is specified for a 3270 display, it is changed to CARD. All control
characters are removed from magnetic card input before the data is presented
to the input MFLD that refers to this card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic
card data and control characters must be defined through a DFLD statement.
Position the cursor to this field and insert the card in the reader to enter card

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 347

information. The card data is logically associated with the CARD= field name,
not the name used in the DFLD statement.

For device TYPE=SCS1, only card data with the operator ID (OID) character is
associated with this field name. Cards with the OID character can be entered at
any time during data entry. MFS treats data without the OID character as if it
were data entered from the keyboard.

SYSMSG=
Specifies the label of the DFLD statements that define the device field in which
IMS system messages are to be displayed. This operand is valid only if a 3270
display is specified. A DFLD with this label should be defined for each physical
page within each DPAGE defined within this DEV definition. DFLDs for
SYSMSG should be at least LTH=79 to prevent message truncation. The
referenced DFLD can also be referenced by an MFLD statement.

FORMS=
Specifies a 1- to 16-byte literal. For the FIN, this literal is included in the output
message header for each message sent to the device using this FMT. The data
can be used by the FIN application program to ensure that special forms
required for a given message are mounted on the device and that page size
and forms alignment are established.

For SCS1 output to SLU 1 print data set components or SLU 4, this literal
names the data set to receive IMS output. For 3770 programmable models
defined to IMS as SLU 1 or SLU 4, however, the literal is ignored by the
terminal and all print data set output goes to the SYS.INTR data set. For all
SCS1 output to 3770 (nonprogrammable), SLU 1 non-PDS components or SLU
4, the literal is ignored.

For DEV TYPE DPM-An, this literal is included in the output message header. If
the DPAGE or PPAGE paging option is specified, the literal is part of the special
forms output message header sent as a separate transmission, followed (after a
paging request from the remote program) by the DPAGE or PPAGE output
message header and data records. If the default MSG option is selected, the
output message header with literal is sent as the first record, followed by data
records. See “Output Message Header” on page 225 for a discussion of output
headers with the forms literal.

WIDTH=
Specifies the maximum line width for this DEV type as one of:

v Number of print positions per line of input or output data

v Number of punch positions per card of input or output data

v Card width for card reader input data

The defaults are 132 for SCS1 input and output, 80 for SCS2 input and output,
and 120 for 3270P output. A specified number cannot exceed 255 for SCS1 and
249 for SCS2. Line width is specified relative to column 1, regardless of
whether a left margin value is specified in the HTAB= keyword (SCS1 and
SCS2 only). The width specified must be greater than or equal to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1...10) must also be
specified. If FEAT=(1...10) is specified, and WIDTH= is not specified, WIDTH=
defaults to 120.

HTAB=
Specifies when TYPE=SCS1:

Format Definition Statements: DEV

348 IMS/ESA V6 Appl Pgm: TM

v Where on the device MFS should set horizontal tab stops

v Whether and when MFS should insert tab control characters in the output
message to cause horizontal tabbing

v Where on the device MFS should position the left margin

If HTAB= is not specified, no horizontal tabbing is done and the left margin
position is assumed to be column 1.

SET|ONLINE|OFFLINE
Specifies that MFS should set horizontal formatting controls for the device.
When MFS sets horizontal format controls for the device, the following
characteristics are established: maximum line width, left and right margins,
and horizontal tab stops. The default is SET when the HTAB= keyword is
present.

SET
Specifies that MFS should set horizontal tab stops but should not insert
tab control characters into the output message. You can then use
horizontal tabbing on subsequent input.

ONLINE
Specifies that MFS should set horizontal tab stops at the specified
(HT=) locations and insert tab control characters during online
processing.

OFFLINE
Specifies that MFS should set horizontal tab stops at the specified
(HT=) locations and insert tab control characters during offline
compilation of the format.

1|lm (left margin)
Specifies the column position of the left margin. The default is 1. The value
specified must be less than the WIDTH= value.

HT=
Specifies from 1 to 10 horizontal tab stop locations. The values specified
must be relative to position 1, equal to or greater than the left margin value,
and less than the WIDTH= value.

VT=
Specifies that MFS should insert tab control characters at the specified
locations. From 1 to 11 vertical tab stop locations can be specified. If VTAB= is
specified, the VT= values specified must be relative to line 1 and equal to or
less than the bottom margin specified on the VTAB= keyword. If VTAB= is not
specified, the VT= values must be equal to or less than the page depth
specified in the PAGE= keyword. The maximum value is 255. If a value greater
than 255 is specified, 255 is assumed and no error message is generated. VT=
is valid only when TYPE=SCS1. If PAGE=(n,FLOAT) is specified, VT= is invalid.

X'00' is accepted as a valid tab stop only if VTAB= is also specified.

Together with VTAB= and PAGE=, VT= comprises a data stream to set the
vertical format of the page. tm on the VTAB= keyword must be greater than or
equal to 1 and less than t1 on the VT= keyword. bm on the VTAB= keyword
must be greater than or equal to t11 on the VT= keyword and less than or
equal to the maximum page length specified on the PAGE= keyword.

VTAB=
For SCS1 printers, specifies top (tm) and bottom (bm) page margins. Together

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 349

with VT= and PAGE=, VTAB= comprises a data stream to set the vertical format
of the page. tm must be greater than or equal to 1 and less than t1 on the VT=
keyword. The maximum tm is 253.

bm must be greater than or equal to t11 on the VT= keyword and less than or
equal to the maximum page length specified on the PAGE= keyword. bm must
be at least two greater than tm. If VTAB= is specified, then the PAGE= value
must be 3 or greater.

A form feed (FF) is inserted after the set vertical format (SVF) data stream if the
top margin (tm) specified on the VTAB= keyword is not equal to 1.

If PAGE=(n,FLOAT) is specified, VTAB= is invalid.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per
inch. (See also SLDP=). SLDI= can also be specified on the DFLD statement.
The SLDI= value must be from 1 through 72 and consistent with the
architecture of the device for which it is specified (see the appropriate device or
component manual).

If SLDI= is specified both on the DEV statement and the DFLD statement, two
SLD data streams are created. One is sent at the beginning of a message to
set the line density. The second is sent within the message, just prior to the
field on which the SLDI= specification is encountered, but after any vertical tabs
and new line characters.

Restriction: You cannot specify both SLDI= and SLDP= on the DEV statement.

The SLDI= specification within the message changes the line density from that
set at the beginning of the message, and this latter line density remains in
effect until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points
per inch. (See also SLDI=). SLDP= can also be specified on the DFLD
statement. The SLDP= value must be from 1 through 72 and consistent with the
architecture of the device for which it is specified (see the appropriate device or
component manual).

If SLDP= is specified both on the DEV statement and the DFLD statement, two
SLD data streams are created. One is sent at the beginning of a message to
set the line density. The second is sent within the message, just prior to the
field on which the SLDP= specification is encountered, but after any vertical
tabs and new line characters.

Restriction: You cannot specify both SLDP= and SLDI= on the DEV statement.

The SLDP= specification within the message changes the line density from that
set at the beginning of the message, and this latter line density remains in
effect until explicitly reset.

Recommendation: Be careful when defining set line density (SLDx) keywords
to ensure that forms alignment is maintained. If SLDx= is improperly defined,
loss of forms alignment can occur.

Format Definition Statements: DEV

350 IMS/ESA V6 Appl Pgm: TM

VERSID=
Specifies any two-character or 2-byte hexadecimal value as the version ID. If
MFS is specified or if the VERSID keyword is not specified, MFS calculates the
version ID. MFS is the default.

The version ID is calculated by MFS and is based on the date and time stamp
that an FMT definition has compiled. The value is printed on the MFS Language
utility output so you can refer to it in format definitions.

SUB=
Specifies the character used by MFS to replace any X'3F' characters in the
input data stream. No translation occurs if this parameter is specified as X'3F'
or this parameter is not specified, or the input received bypasses MFS editing.
The specified SUB character should not appear elsewhere in the data stream;
therefore, it should be nongraphic.

X'hh'
Character whose hexadecimal representation is 'hh' replaces all X'3F' in the
input data stream.

C'c'
Character 'c' replaces all X'3F' in the input data stream.

PDB=
(For the 3290 or 3180 in partitioned format mode) specifies the name of the
Partition Descriptor Block that is used to describe the partition set for an output
or input message. This parameter is valid only for DEV statements that specify
TYPE=3270-An.

DIV Statement
The DIV statement defines device formats within a DIF or DOF. The formats are
identified as input, output, or both input and output, and can consist of multiple
physical pages. For DEV TYPE=274X, SCS1, SCS2, or DPM-AN, two DIV
statements can be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all
other device types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=274X, SCS1, or SCS2 and DIV TYPE=INPUT:

��
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

��

Format for DEV TYPE=3270 or 3270-An:

��
label

DIV
INOUT

TYPE = OUTPUT

��

Format for DEV TYPE=FIN:

��
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

��

Format Definition Statements: DEV

Chapter 10. MFS Language Utility 351

Format for DEV TYPE=274X, SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7,
FIJP, FIPB, or FIFP and DIV TYPE=OUTPUT:

��
label

DIV
OUTPUT

TYPE = ──── , COMPR = FIXED
SHORT
ALL

��

Format for DEV TYPE=DPM-An:

��
label

DIV
INPUT A

TYPE = OUTPUT B

��

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

KEEP
, NULL = DELETE

�

�
FLDEXIT ,SEGEXIT ,MSG

, OPTIONS = ()
NOFLDEXIT ,NOSEGEXIT ,DPAGE ,NODNM

B:

256 ,SPAN
, RCDCTL = ()

nnnnn ,NOSPAN

�

�
FIXED ,7

, HDRCTL = ()
VARIABLE ,nn

�

�
MSG ,SIM

, OPTIONS = ()
DPAGE ,NOSIM2 ,DNM
PPAGE

�

�
, COMPR = FIXED

SHORT
ALL

Format for DEV TYPE=DPM-Bn:

Format Definition Statements: DIV

352 IMS/ESA V6 Appl Pgm: TM

��
label

DIV
INPUT A

TYPE = OUTPUT B

��

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

�

�
FLDEXIT ,SEGEXIT ,MSG ,DNM

, OPTIONS = ()
NOFLDEXIT ,NOSEGEXIT ,DPAGE ,NODNM

�

�
, DPN = dfldname , RDPN = dfldname , RPRN = dfldname

B:

,NOSPAN
, RCDCTL = ()

256
nnnnn

�

�
,MSG ,SIM ,DNM

, OPTIONS = ()
,DPAGE ,NOSIM2 ,NODNM
,PPAGE

�

�
, DPN = ('literal')

,dfldname

�

�
, PRN = ('literal')

,dfldname

�

�
, RPRN = ('literal')

,dfldname

�

�
,MIX

, OFTAB = ()
X'hh' ,ALL
C'c'

, COMPR = FIXED
SHORT
ALL

Format Definition Statements: DIV

Chapter 10. MFS Language Utility 353

Parameters:

label
A one- to eight-character alphanumeric name can be specified to uniquely
identify this statement.

TYPE=
Describes an input only format (INPUT), an output only format (OUTPUT), or
both (INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement
keywords are applicable.

For example, specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields
can be printed in columns 1 through 80 on output and received from columns 1
through 80 on input. Specifying WIDTH=80 for DEV TYPE=SCS2 indicates that
both the card reader and card punch have the same number of punch positions.
Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1 indicates that
fields can be printed in columns 5 through 80 and received from columns 5
through 80 on input. In this case DFLD POS=(1,5) or POS=5 on input is the
same as if you specified column 1 and a left margin position at 1. You enter
data the same way, regardless of where the left margin is currently set.

RCDCTL=
This parameter is valid only if MODE=RECORD is specified on the DEV
statement. For DEV TYPE=DPM-An or DPM-Bn only, RCDCTL specifies the
maximum length of an input or output transmission record. For DPM-An,
RCDCTL specifies whether (SPAN) or not (NOSPAN) fields can span records.
The RCDCTL number cannot be larger than 32000 and should not be less than
the length of the message output header (For DPM-An, see HDRCTL
discussion.) The default value is 256. RCDCTL creates record definitions even if
RCD statements are used in the same format definition.

v For DEV TYPE=DPM-An or TYPE=Bn and DIV TYPE=INPUT

For an input format definition, fields must not span record boundaries, and
therefore must be within the length specified by the RCDCTL value. NOSPAN
is the default.

v For DEV TYPE=DPM-An or Bn and DIV TYPE=OUTPUT

The RCDCTL size specified should be less than or equal to the output buffer
size specified in the OUTBUF= macro at IMS system definition. If the
RCDCTL size is greater than the OUTBUF value specified, one record may
require multiple output transmissions and may produce undesirable results in
the remote program. If fields do not exactly fit in the defined records, and
NOSPAN has been specified, records may not be completely filled.

The RCDCTL also specifies whether (SPAN) (for DPM-An only) or not
(NOSPAN) a field may span record boundaries. If SPAN is specified (for
DPM-An only), some fields may span a record boundary (but never a PPAGE
boundary), and the remote program must include logic to associate the
partial fields or deal with them separately.

If NOSPAN is specified, every field is entirely contained within a record and
no field will have a length greater than the RCDCTL value specified.

The first data field is the first field of the message for OPTIONS=MSG. The
first data field is the first field of the DPAGE or PPAGE for
OPTIONS=DPAGE and PPAGE respectively. If the first data field does not fit
in the same record as the output message header, and if OPTIONS=DPAGE

Format Definition Statements: DIV

354 IMS/ESA V6 Appl Pgm: TM

or PPAGE has been specified, the first data record will be sent in the next
transmission. The output message header will be transmitted by itself (as is
always the case for OPTIONS=MSG).

NULL=
For DEV TYPE=DPM-An and DIV TYPE=INPUT only, NULL= specifies whether
MFS is to ignore (KEEP) or search for and replace (DELETE) trailing nulls in
fields. If NULL=DELETE is specified, MFS searches input message fields for
trailing nulls or for fields that are all nulls, and replaces the nulls with the fill
character specified in the message definition. See “Optional Deletion of Null
Characters for DPM-An” on page 196 for a discussion of the effects of
NULL=DELETE.

OPTIONS=
For DIV TYPE=INPUT, the OPTIONS keyword specifies the exit routines to be
called, the type of paging or delivery requested, and, for DPM-Bn only, the
selection of the DPAGE data name to be used to map data.

For DIV TYPE=OUTPUT, the OPTIONS= keyword specifies the type of paging
or delivery requested, the type of attribute processing requested, and, for
DPM-Bn only, the selection of the DPAGE data name to be used to map data.

For DPM output messages, the option selection determines how records are
constructed for transmission to the remote program or ISC subsystem and
effects the distribution of processing and logic between the IMS application
program and the remote program or ISC subsystem.

v For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=INPUT

FLDEXIT|NOFLDEXIT

SEGEXIT|NOSEGEXIT
Input data from this device type can be partially edited by the remote
program before it is sent to IMS. For input format definitions, this
parameter specifies whether (FLDEXIT and SEGEXIT) or not
(NOFLDEXIT and NOSEGEXIT) exit routines specified in the MSG
definition MFLD and SEG statements, respectively, are to be called for
this DPM format. If NOFLDEXIT or NOSEGEXIT is specified, the
corresponding exit routine is bypassed. FLDEXIT and SEGEXIT are the
defaults.

MSG
Specifies that an input message can be created from a single DPAGE.

DPAGE
Specifies that an input message can be created from multiple DPAGEs. If
multiple DPAGE input is not requested in MFS definitions, messages may
not be created from more than one DPAGE. In this case:

If a single DPAGE is transmitted and contains more data than defined for
the DPAGE selected, the input message is rejected and an error
message is issued.

If multiple DPAGEs are transmitted, the input message is rejected and an
error message is issued.

NODNM (DPM-An only)

Format Definition Statements: DIV

Chapter 10. MFS Language Utility 355

DNM/NODNM (DPM-Bn only)
When a data name (DNM) is specified or defaulted to (DPM-Bn only), a
specific DPAGE is selected to map the current or only data transmission
when:

The DPAGE data name is supplied as the DSN parameter in the
message header, and

The DPAGE data name matches a defined DPAGE data name.

If these conditions are not met, the last defined DPAGE name is used to
map the data, unless the DPAGE is defined as conditional.

When no data name (NODNM) is specified (for either DPM-An or -Bn)
MFS selects a specific DPAGE by performing a conditional test on the
data received and the COND= parameter.

v For DEV TYPE=274x, SCS1, SCS2, FIN, and DIV TYPE=INPUT

MSG
Specifies that an input message can be created from a single DPAGE.

DPAGE
Specifies that an input message can be created from multiple DPAGEs. If
multiple DPAGE input is not requested in MFS definitions, messages may
not be created from more than one DPAGE. In this case:

– If a single DPAGE is transmitted and contains more data than defined
for the DPAGE selected, the input message is rejected and an error
message is sent to the other subsystem.

– If multiple DPAGEs are transmitted, the input message is rejected and
an error message is sent to the other subsystem.

v For DEV TYPE=DPM-An or TYPE=DPM-Bn and DIV TYPE=OUTPUT

MSG
Is the default and specifies that IMS will transmit all the DFLDs within a
message together as a single message group. The message is preceded
by an output message header. All DFLDs are transmitted. For DPM-Bn,
the data structure name is optional in the header.

DPAGE
Specifies that IMS will transmit all DFLDs that are grouped in one logical
page together. The logical page will be transmitted in one or more
records. If PPAGE statements are defined with the DPAGE, each PPAGE
statement begins a new record. An additional logical page will be sent
when a paging request is received from the remote program. Each
logical page is preceded by an output message header, and the label on
the DPAGE is placed in the header. For DPM-Bn, the data structure
name is optional in the DD header and depends on the specification of
DNM/NODNM.

PPAGE
Specifies that IMS will transmit the DFLDs that are grouped in one
presentation page (PPAGE) together in one chain. The presentation page
will be transmitted in a group of one or more records. An additional
presentation page will be sent when a paging request is sent to IMS from
the remote program. Each presentation page is preceded by an output
message header, and the label on the PPAGE statement is placed in the

Format Definition Statements: DIV

356 IMS/ESA V6 Appl Pgm: TM

header. For DPM-Bn, the data structure name is optional in the DD
header and depends on the specification of DNM/NODNM.

SIM/NOSIM2
Specifies whether (SIM) or not (NOSIM2) MFS is to simulate attributes.
SIM, the default, indicates that MFS is to simulate the attributes specified
by the IMS application program and place the simulated attributes in
corresponding DFLDs that are defined with ATTR=YES or YES,nn. The
first byte of the field is used for the simulated attributes. If the MFLD
does not supply 3270 attribute information (by means of the ATTR=YES
or YES,nn operand) for the corresponding DFLD specifying ATTR=YES
or YES,nn, a blank is sent in the first byte of the field. The application
designer of the remote program or ISC subsystem is responsible for
interpreting the simulated attribute within the remote program or ISC
subsystem.

If NOSIM2 is specified, MFS sends a 2-byte bit string to the remote
program or subsystem. This bit string is sent exactly as received from the
IMS application program. 3270 extended bytes, if any (ATTR=YES,nn),
are always sent as received from the application program and follow the
2-byte string of 3270 attributes. If the MFLD does not supply attribute
information, binary zeros are sent in the two bytes preceding the data for
the field.

See ATTR= on the DFLD statement for additional information.

DNM (DPM-An only)
May be used with the FORMS= keyword on the DEV statement to
specify a literal in the message header. See the FORMS= keyword in this
chapter and the discussion of output message headers with the forms
literal in Chapter 4. This parameter is optional.

DNM/NODNM (DPM-Bn only)
If DNM is specified or defaulted to, MFS includes the following in the DD
header:

The FMT name, if OPTIONS=MSG

The DPAGE name, if OPTIONS=DPAGE

The PPAGE name, if OPTIONS=PPAGE

If NODNM is specified, no data structure name (DSN) is supplied in the
DD header.

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the
characteristics of the output message header.

FIXED
Specifies that a fully padded output message header is to be sent to the
remote program. The structure of the fixed output message header is the
same for all DPM output messages built using this FMT definition. The
content of the output message header is shown in an example under
“Output Format Control for SLU P DPM-An” on page 224. The base DPM
output message header has a length of 7, and includes the version ID.

VARIABLE
Specifies that MIDNAME and DATANAME will have trailing blanks omitted

Format Definition Statements: DIV

Chapter 10. MFS Language Utility 357

and their length fields adjusted accordingly. If MIDNAME is not used,
neither the MIDNAME field nor its length is present.

nn Specifies the minimum length of the header, that is, the base header
without MFS fields, as shown in the example under “Output Format Control
for SLU P DPM-An” on page 224. The default is 7, which is the length of
the base message header for DPM. Specifying other than 7 may cause
erroneous results in the remote program.

The parameters referenced below as RDPN=, DPN=, PRN=, and RPRN= refer to
both the ISC ATTACH function management header and the equivalent ISC
SCHEDULER function management header.

RDPN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
destination process name (RDPN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RDPN is supplied in
the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this
literal as the DPN in the output ATTACH message header. The literal cannot
exceed 8 characters. If the dfldname is also specified, the data supplied in the
MFLD referencing this dfldname is used as the DPN in the output ATTACH
message header. If no output message MFLD reference to the dfldname exists,
the 'literal' is used. If the data in the MFLD referencing the dfldname is greater
than 8 characters, the first 8 characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested
primary resource name (PRN) to be supplied in the input message MFLD
referencing this dfldname. If the dfldname is not specified, no PRN is supplied
in the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this
literal as the PRN in the output ATTACH message header. The literal cannot
exceed 8 characters. If the dfldname is also specified, the data supplied in the
MFLD referencing this dfldname is used as the PRN in the output ATTACH
message header. If no output message MFLD reference to the dfldname exists,
the 'literal' is used. If the data in the MFLD referencing the dfldname is greater
than 8 characters, the first 8 characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
primary resource name (RPRN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RPRN is supplied in
the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this
literal as the suggested return primary resource name (RPRN) in the output
ATTACH message header. The literal cannot exceed 8 characters. If the
dfldname is also specified, the data supplied in the MFLD referencing this
dfldname is used as the RPRN in the output ATTACH message header. If no
output message MFLD reference to the dfldname exists, the 'literal' is used. If
the data in the MFLD referencing the dfldname is greater than 8 characters, the
first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data

Format Definition Statements: DIV

358 IMS/ESA V6 Appl Pgm: TM

stream for the message. If OPTIONS=DNM and OFTAB, then the OFTAB
character is placed in the DD header and an indicator is set to MIX or ALL. If
OPTIONS=NODNM, then no DD header is sent.

X’hh’
Character whose hexadecimal representation is "hh" is used as the output
field tab separator character. Specification of X'3F' or X'40' is invalid.

C"c"
Character "c" is used as the output field tab separator character.
Specification of C""� is invalid.

Restriction: The character specified cannot be present in the data stream
from the IMS application program. If it is present, it is changed to a blank
(X'40').

If an output field tab separator character is defined, either MIX or ALL may
also be specified. Default value is MIX.

MIX
Specifies that the output field tab separator character is to be inserted into
each individual field with no data or with less data than the defined DFLD
length.

ALL
Specifies that the output field tab separator character is to be inserted into
all fields, regardless of data length.

COMPR=
Requests MFS to remove trailing blanks from short fields, fixed-length fields, or
all fields presented by the application program.

For DPM-AN devices, trailing blanks are removed at the end of a segment if all
of the following conditions are true:

1. FILL=NULL or FILL=PT is specified.

2. GRAPHIC=YES is specified for the current segment being mapped.

3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 above are met, replacement of trailing blanks occurs as
follows:

FIXED
Specifies that trailing blanks from fixed-length fields are to be replaced by
nulls.

SHORT
Specifies that trailing blanks fields shortened by the application program are
to be replaced by nulls.

ALL
Specifies that trailing blanks from all fields are to replaced by nulls.

The trailing nulls are then compressed at the end of the record. See the
description of the FILL= operand for additional information.

For DPM-BN devices, trailing blanks are removed if all of the following
conditions are true:

1. OFTAB is specified on the current DIV statement, or FILL=NULL or FILL=PT
is specified.

Format Definition Statements: DIV

Chapter 10. MFS Language Utility 359

2. GRAPHIC=YES is specified for the current segment being mapped.

3. OPT=1 or OPT=2 is specified in the MSG segment.

If conditions 1, 2, and 3 above are met, the removal of trailing blanks occurs as
follows:

FIXED
Specifies that trailing blanks are to be removed from fixed-length fields.

SHORT
Specifies that trailing blanks are to be removed from fields shortened by the
application program.

ALL
Specifies that trailing blanks are to be removed from all fields.

Related Reading: For additional information about blank compression for
DPN-BN devices, see “Trailing Blank Compression” on page 232.

DPAGE Statement
The DPAGE statement defines a logical page of a device format. This statement
can be omitted if none of the message descriptors referring to this device format
(FMT) contains LPAGE statements and if no specific device option is required.

Format for DEV TYPE=274X, DPM-An, or DPM-Bn AND DIV TYPE=INPUT:

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=274X or DPM-An AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=DPM-Bn AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

�

Format Definition Statements: DIV

360 IMS/ESA V6 Appl Pgm: TM

�
,MIX

, OFTAB = ()
X'hh' ,ALL
C'c'

��

Format for DEV TYPE=3270-An:

��
label

DPAGE

,

CURSOR = ((111,ccc))
,dfld

�

�
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES , PD = pdname
�

�
, ACTVPID = dfldname

��

Format for DEV TYPE=3270:

��
label

DPAGE

,

CURSOR = ((111,ccc))
,dfld

�

�
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES
��

Format for DEV TYPE=3270P:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=FIN:

Format Definition Statements: DPAGE

Chapter 10. MFS Language Utility 361

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

�

�

,

CURSOR = ((111,ccc))
,dfld

�

�

,
ABSOLUTE

, ORIGIN = (RELATIVE)

��

Format for DEV TYPE=FIJP or FIPB:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Format for DEV TYPE=FIFP:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

,
LEFT

SELECT = (RIGHT)
DUAL

��

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=INPUT:

Format Definition Statements: DPAGE

362 IMS/ESA V6 Appl Pgm: TM

��
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

��

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=OUTPUT:

��
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

��

Parameters:

label
A 1- to 8-byte alphanumeric name may be specified for this device format that
contains LPAGE SOR= references, or if only one DPAGE statement is defined
for the device. If multiple DEV statements are defined in the same FMT
definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is
sent to the remote program as the data name in the output message header. If
the label is omitted, MFS generates a diagnostic name and sends it to the
remote program in the header. If the DPAGE statement is omitted, the label on
the FMT statement is sent in the output message header. If OPTIONS=DNM,
the label on the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset
specified is relative to zero. The specification of the offset must allow for the
LLZZ field of the input record (for example, the first data byte is at offset 4). If
the condition is satisfied, the DFLDs defined following this DPAGE will be used
to format the input. When no conditions are satisfied, the last defined DPAGE
will be used only if the last defined DPAGE does not specify COND=. If the
COND= parameter is specified for the last DPAGE defined and the last defined
DPAGE condition is not satisfied, the input message will be rejected. Multiple
LPAGE definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV
statement, this specification is used for DPAGE selection. If this keyword is
specified and OPTIONS=DNM is specified on the DIV statement, the COND=
specification is ignored and the data structure name from the DD header is
used for DPAGE selection.

Lowercase data entered from 274X, Finance, SCS1, or SCS2 keyboards is not
translated to uppercase when the COND= comparison is made. Therefore, the
literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device
types except the 3270 display is X'40'; default for the 3270 display is PT. For

Format Definition Statements: DPAGE

Chapter 10. MFS Language Utility 363

3270 output when EGCS fields are present, only FILL=PT or FILL=NULL should
be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only
when data is sent to the field, and thus does not erase the DFLD if the
application program message omits the MFLD. For DPM-Bn, if OFTAB is
specified, FILL= is ignored and FILL=NULL is assumed.

NONE
Must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

X’hh’
Character whose hexadecimal representation is 'hh' will be used to fill the
device fields.

C'c'
Character 'c' will be used to fill the device fields.

NULL
Specifies that fields are not to be filled. For devices other than the 3270
display, 'compacted lines' are produced when message data does not fill the
device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records
transmitted to the remote program or subsystem. Trailing nulls are removed
up to the first non-null character. Null characters between non-null
characters are transmitted. If the entire record is null, but more data records
follow, a record containing a single null is transmitted to the remote
program. If the entire record is null and more records follow, if
OPTIONS=MSG or DPAGE, or in a PPAGE, if OPTIONS=PPAGE, then all
null records are deleted to the end of that DPAGE or PPAGE.

PT
Is identical to NULL except for the 3270 display. For the 3270 display,
specifies that output fields that do not fill the device field (DFLD) are
followed by a program tab character to erase data previously in the field;
otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is
changed to X'00' for control characters or to X'40' for other nongraphic
characters. For all other devices, any FILL=X'hh' or FILL=C'c' specification with
a value less than X'3F' is ignored and defaulted to X'3F' (which is equivalent to
a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages will be allowed for this
DPAGE.

CURSOR=
Specifies the position of the cursor on a physical page. Multiple cursor positions
may be required if a logical page or message consists of multiple physical
pages. The value lll specifies line number, ccc specifies column; both lll and ccc
must be greater than or equal to 1. The cursor position must either be on a
defined field or defaulted. The default lll,ccc value for 3270 displays is 1,2. For
Finance display components, if no cursor position is specified, MFS will not
position the cursor—the cursor is normally placed at the end of the output data
on the device. For Finance display components, all cursor positioning is
absolute, regardless of the ORIGIN= parameter specified.

Format Definition Statements: DPAGE

364 IMS/ESA V6 Appl Pgm: TM

The dfld parameter provides a method for supplying the application program
with cursor information on input and allowing the application program to specify
cursor position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the
MFLD statement) for output cursor positioning.

The dfld parameter specifies the name of a field containing the cursor position.
This name may be referenced by an MFLD statement and must not be used as
the label of a DFLD statement in this DEV definition. The format of this field is
two binary halfwords containing line and column number, respectively. When
this field is referred to by a message input descriptor, it will contain the cursor
position at message entry. If referred to by a message output descriptor, the
application program places the desired cursor position into this field as two
binary halfwords containing line and column, respectively. Binary zeros in the
named field cause the specified lll,ccc to be used for cursor positioning during
output. During input, binary zeros in this field indicate that the cursor position is
not defined. The input MFLD referring to this dfld should be defined within a
segment with GRAPHIC=NO specified or should use EXIT=(0,2) to convert the
binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page
defined. Default value is ABSOLUTE.

ABSOLUTE
Erases the previous screen and positions the page at line 1 column 1. The
line and column specified in the DFLD statement will become the actual line
and column of the data on the screen.

RELATIVE
Positions the page starting on column 1 of the line following the line where
the cursor is positioned at time of output. Results may be undesirable
unless all output to the device is planned in a consistent manner.

OFTAB=
Directs MFS to insert the output field tab separator character specified on this
DPAGE statement for the output data stream of the DPAGE being described.

X’hh’
Character whose hexadecimal representation is 'hh' is used as the output
field tab separator character. Specification of X'3F' or X'40' is invalid.

C'c'
Character 'c' is used as the output field tab separator character.
Specification of C' ' is invalid.

Restriction: The character specified cannot be present in data streams
from the IMS application program. If it is present, it is changed to a blank
(X'40').

If the output field tab separator character is defined, either MIX or ALL may
also be specified. Default value is MIX.

MIX
Specifies that an output field tab separator character is to be inserted into
each individual field with no data or with data less than the defined DFLD
length.

Format Definition Statements: DPAGE

Chapter 10. MFS Language Utility 365

ALL
Specifies that an output field tab separator character is to be inserted into
all fields, regardless of data length.

SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the
previous DEV statement. It is your responsibility to ensure that proper forms are
mounted and that left margins are set properly. Default value is LEFT.

LEFT
Causes the corresponding physical page defined in this DPAGE to be
directed to the left platen.

RIGHT
Causes the corresponding physical page defined in this DPAGE to be
directed to the right platen.

DUAL
Causes the corresponding physical page defined in this DPAGE to be
directed to both the left and right platens.

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the
partition descriptor of the partition associated with the DPAGE statement. This
is the parameter that maps a logical page of a message to or from the
appropriate partition. The name of the PD must be contained within the PDB
statement specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field
in the message containing the partition identification number (PID) of the
partition to be activated. This dfldname must be referenced by an MFLD
statement and must not be used as the label of a DFLD statement in the DEV
definition. The application program places the PID of the partition to be
activated in this field. The PID must be in the format of a two byte binary
number ranging from X'0000' to X'000F'.

Do not specify this operand for the 3180. Because only one partition is allowed
for this device, you need not specify an active partition.

PPAGE Statement
The PPAGE statement, valid only for device types of DPM-An or DPM-Bn, defines
the beginning of a presentation page. A presentation page is the unit of data
delivered to the remote program in response to a paging request when
OPTIONS=PPAGE has been specified in the DIV statement for this definition. For
DPM-Bn MODE=RECORD only, if OPTIONS=MSG or DPAGE has been specified,
paging is as described for those options under the DIV statement, and the PPAGE
statement then defines the beginning of a new record (that is, it is equivalent to a
RCD statement).

For an input DPAGE, only one PPAGE statement is allowed, and it must be placed
between the DPAGE statement and the first DFLD statement. For an output
DPAGE, if two consecutive PPAGE statements appear in the DPAGE for a message
defined with OPTIONS=PPAGE, only an output message header with the PPAGE
label as its data name is sent to the remote program, except
OPTIONS=(PPAGE,DNM) for DPM-Bn. For DPM-Bn, a PPAGE statement without a
DFLD statement is not allowed when OPTIONS=(PPAGE, NODNM) is specified for

Format Definition Statements: DPAGE

366 IMS/ESA V6 Appl Pgm: TM

DIV TYPE=OUTPUT. A warning message is issued, and the PPAGE statement is
ignored. For OPTIONS=MSG or DPAGE, consecutive PPAGE statements are
ignored.

Format:

��
label

PPAGE , comments ��

Parameters:

label
A one- to eight-character alphanumeric name should be specified. For
OPTIONS=PPAGE, this label is sent as the data name for DPM-An or as the
data structure name for DPM-Bn in the message output header or DD header to
identify the data structure of this presentation page to the remote program. If no
label is specified, MFS generates a diagnostic label that is sent to the remote
program in the header.

Recommendation: Specify a user-defined label because the MFS-generated
name can change whenever the MFS definitions are recompiled.

The label specified should be unique, at least within a given FMT definition, and
preferably within an IMS system if the remote program uses this label to identify
the appropriate DSECT for formatting the data included in this presentation
page.

DO Statement
The DO statement causes repetitive generation of DFLD and RCD statements
between the DO and ENDDO statements. When DO is used, there are restrictions
in the naming of DFLDs (refer to “DFLD Statement” on page 370).

Format:

��
label

DO count
,1

,line-increment
,position-increment

,MAX

,column-increment

�

�
01

,SUF= number
LINE

,BOUND= FIELD

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

count
Specifies how many times to generate the statements.

line-increment
Specifies how much to increase the line position after the first cycle. The first

Format Definition Statements: PPAGE

Chapter 10. MFS Language Utility 367

cycle uses the lll value specified in the POS= keyword of the DFLD statement.
The default is 1. This parameter is not specified for DEV type DPM-An or
DPM-Bn.

position-increment
Specifies how much to increase the position parameter after the first cycle. The
first cycle uses the nnn value specified in the POS= operand of the DFLD
statement. The position increment is used for an input device format when
MODE=STREAM is specified. This parameter is not specified for DEV type
DPM-An or DPM-Bn.

MAX
Specifies that the line increment to be used at the end of each cycle and the
column values in the DFLDs are to remain the same for each cycle. This
parameter is not used if MODE=STREAM is specified for the device format or if
DEV type is DPM-An or DPM-Bn; if present, it is ignored.

column-increment
Specifies how much to increase the column position after the first cycle. The
first cycle uses the ccc value specified in the POS= keyword of the DFLD
statement. The default is MAX. This parameter is not used for DEV type
DPM-An or DPM-Bn, or when MODE=STREAM is specified for the device
format, because it is ignored.

SUF=
Specifies the 2-digit suffix to be appended to the dfldname of the first group of
generated DFLD statements. The default is 01. MFS increments the suffix by
one on each subsequent generation of statements.

If the specified suffix exceeds 2 digits, MFS uses the rightmost 2 digits.

If the specified count is such that the generated suffix eventually exceeds 2
digits, MFS reduces the count to the largest legitimate maximum value. For
example, if count equals 8 and SUF=95, invalid suffixes of 100, 101, and 102
would result. In this instance, MFS reduces the count to 5, processes the
statement, and issues an error message.

BOUND=
Specifies when updates to line position and column position are to occur. The
default is LINE. This parameter is not used if MODE=STREAM is specified for
the device format or if DEV type is DPM-An or DPM-Bn; if present, it is ignored.

LINE
Specifies that all fields be inspected before the repetition is performed. If
the column increment would cause any field in the group of DFLD
statements to not fit on a line, the column position value for all fields is
reset to the initial value, and the line position values are increased by the
line-increment value.

FIELD
Specifies that each time the statement is repeated, the column position
value is increased by the column-increment value. If MAX is specified, or
the new column position value reaches device line length capacity, the line
position value is increased by the line-increment value and the column
position value is reset to its initial value.

Printing Generated DFLD Statements: The generated DFLD statements can be
printed in a symbolic source format by specifying COMP in the parameter list of the
EXEC statement. This provides a means of seeing the results of the DFLD
statement generation without having to interpret the intermediate text blocks.

Format Definition Statements: DO

368 IMS/ESA V6 Appl Pgm: TM

The following items are printed for each generated DFLD statement:

v The generated statement sequence number followed by a plus sign (+) to
indicate that the DFLD statement was generated as a result of DO statement
processing.

v The DFLD statement label, if present, including the appended suffix.

v The statement operator, DFLD.

v For EGCS literals, the G, SO, and SI are not present. Literals are truncated if
there is insufficient room to print all specifications. Truncation is indicated by a
portion of the literal with three periods (...), representing the truncated portion.

v ATTR=(YES,nn), if present.

v ATTR=YES, if present.

v ATTR=nn, if present.

v ATTR=(...), if attributes are present.

v EATTR=(...), if present.

v The RECORD or STREAM form of the POS= keyword, with the line and column
or stream position updated by the respective increments. This is not printed if
DEV type is DPM-An or DPM-Bn.

v SCA, if present.

v The field length, in the form of LTH=nnnn.

No other operands are printed, even if specified on the source DFLD statement.

For device type DPM-An or DPM-Bn, the RCD statement can appear between a
DO and ENDDO statement. If it does, a new record boundary is created for each
repetitive generation of the DFLD field following the RCD statement. For example,
the following sequence causes the DFLDs A01, B01, and C01 to be in record 1,
while A02, B02, and C02 are in record 2, and A03, B03, and C03 are in record 3.

DO 3
RCD

A DFLD LTH=10
B DFLD LTH=10
C DFLD LTH=10

ENDDO

Alternatively, the RCD statement can immediately precede the DO statement. If it
does, a new record boundary begins with the first DFLD after the DO statement and
does not end until the ENDDO statement (or the maximum record length) is
reached. For example, the following sequence causes the DFLD D01 to begin a
new record, in which E01, D02, and E02 also occur.

RCD
DO 2

D DFLD LTH=10
E DFLD LTH=10

ENDDO

RCD Statement
The RCD statement, valid for DEV TYPE=DPM-An or DPM-Bn only, can be used to
influence the placement of DFLDs in records. The RCD statement precedes a
DFLD statement and initiates a new transmission record for delivery to a remote
program. DFLDs following the RCD statement are included into the transmission
record until the next RCD statement or the maximum record length is reached (or, if
NOSPAN is specified, until a field will not be fully contained in the current record).

Format Definition Statements: DO

Chapter 10. MFS Language Utility 369

The RCD statement can be placed after the PPAGE, DO, DFLD, or ENDDO
statements. (The effects of placing RCD before and after a DO statement are
discussed in “DO Statement” on page 367.) If a RCD statement is immediately
followed by another, only the first one is effective.

The RCD statement is invalid for STREAM mode.

Format:

��
label

RCD , comments ��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

DFLD Statement
The DFLD statement defines a field within a device format which is read from or
written to a terminal or remote program. Only those areas which are of interest to
the IMS or remote application program should be defined. Null space in the format
does not need to be defined.

Format for DEV TYPE=274X AND DIV TYPE=OUTPUT:

��
label

DFLD
'literal'

, POS = (lll,ccc)
,pp

�

�
, LTH = nnn NO

, ATTR =
YES

��

Format for DEV TYPE=274X AND DIV TYPE=INPUT:

��
label

DFLD
(1)

POS = (lll,ccc)

(2)
POS = nnn

, LTH = nnn
�

�
, OPCTL = tablename

��

Notes:

1 Used for MODE=RECORD only.

2 Used for MODE=STREAM only.

Format for DEV TYPE=3270 or 3270-An:

Format Definition Statements: RCD

370 IMS/ESA V6 Appl Pgm: TM

��
label

DFLD
PASSWORD
'literal'

, POS = (lll,ccc)
,pp

�

�
, LTH = nnn

, PEN = 'literal'
NEXTPP
NEXTMSG
NEXTMSGP
NEXTLP
ENDMPPI

�

�
ALPHA ,NOPROT

, ATTR = (<A>
NUM ,PROT

�

�
, OPCTL = tablename

�

�
, EATTR = (

HD ,CD ,PX'00'
HBLINK ,BLUE ,PX'hh'
HREV ,RED ,PC'c'
HUL ,PINK ,EGCS

,GREEN ,EGCS'hh'
,TURQ
,YELLOW
,NEUTRAL

��

<A>:

,NODET

,DET
,IDET

,NORM

,NODISP
,HI

,NOMOD

,MOD

,STRIP

,NOSTRIP
)

:

,VDFLD
,VMFILL,VMFLD
,VMFILL
,VMFLD

,OUTL
,OUTL'hh'
,BOX
,RIGHT
,LEFT
,UNDER
,OVER

,MIX
,MIXD

)

Format for DEV TYPE=3270P:

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 371

��
label

DFLD
'literal'

, POS = (lll,ccc)
,pp

�

�
, LTH = nnn NO

, ATTR =
YES

�

�
, EATTR = ()

HD ,CD ,PX'00'
HBLINK ,BLUE ,PX'hh'
HREV ,RED ,PC'c'
HUL ,PINK

,GREEN
,TURQ
,YELLOW
,NEUTRAL

��

Format for DEV TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, and FIPB:

��
label

DFLD
'literal'

, POS = (lll,ccc)
,pp

�

�
, LTH = nnn NO

, ATTR =
YES

��

Format for DEV TYPE=FIN:

��
label

DFLD
(1)

POS = (lll,ccc)
,pp

(2)
POS = nnn

�

�
, LTH = nnn , OPCTL = tablename

��

Notes:

1 MODE=RECORD only

2 MODE=STREAM only

Format for DEV TYPE=SCS1 OR SCS2 AND DIV TYPE=OUTPUT:

Format Definition Statements: DFLD

372 IMS/ESA V6 Appl Pgm: TM

��
label

DFLD
'literal'

, POS = (lll,ccc)
,pp

�

�
, LTH = nnn , ATTR =

NO
YES

��

Format for SCS1 ONLY:

��
, SLDI = nn
, SLDP = nn

�

�
, EATTR = (<A>

HD ,CD
HBLINK ,BLUE
HREV ,RED
HUL ,PINK

,GREEN
,TURQ
,YELLOW
,NEUTRAL

��

<A>:

,PX'00'
,PX'hh'
,PC'c'
,EGCS

,MIX
, MIX ' nn '
,MIXS
, MIX ' nn '

,OUTL
,OUTL'hh'
,BOX
,RIGHT
,LEFT
,UNDER
,OVER

)

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=INPUT:

��
label

DFLD
(1)

POS = (lll,ccc)
,pp

(2)
POS = nnn

�

�
, LTH = nnn , OPCTL = tablename

��

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 373

Notes:

1 MODE=RECORD only

2 MODE=STREAM only

Format for DEV TYPE=DPM-An or DPM-Bn AND DIV TYPE=INPUT:

��
label

DFLD
, LTH = nnn , OPCTL = tablename

��

Format for DEV TYPE=DPM-An or DPM-Bn AND DIV TYPE=OUTPUT:

��
label

DFLD
PASSWORD

'literal'
SCA

, LTH = nnn
�

�
NO

, ATTR = ()
YES , nn

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. This label
(dfldname) can be referred to by a message descriptor in transferring data to
and from a terminal or remote program. If the repetitive generation function of
MFS is used (DO and ENDDO statements), this dfldname should be restricted
to 6 characters maximum length. When each repetition of the statement is
generated, a 2-digit sequence number (01 to 99) is appended to the label. If the
label specified here is greater than 6 characters and repetitive generation is
used, the label is truncated at 6 characters, and a 2-digit sequence number is
appended to form the 8-character name. No error message is provided if this
occurs.

If PASSWORD, SCA, or 'literal' is specified, label is not valid, and specification
of a label will result in an error message. If a DPN, PRN, RDPN, or RPRN
dfldname is specified on the DIV statement, the dfldname cannot be used as a
DFLD label for the current DIV statement.

PASSWORD
Identifies this field as the location of the IMS password field for input messages.

Recommendation: Use the PASSWORD capability in the input message
definition. If you specify PASSWORD you cannot refer to the field described by
this DFLD statement with a message descriptor. Additionally, if you specify
PASSWORD you must omit label.

'literal'
Specifies a literal character string to be presented to the device. The length of
literal cannot exceed 256 bytes for 3270 display devices, 40 bytes for FIDS and
FIDS3, 64 bytes for FIDS4, 80 bytes for FID57, 132 bytes for 274X, 256 bytes

Format Definition Statements: DFLD

374 IMS/ESA V6 Appl Pgm: TM

for 3270P, and line width for all printer and punch devices. For DPM, the length
of literal cannot exceed the value specified in the RCDCTL operand.

For 3270 displays, literal fields have the PROT attribute whether specified or
not; the NUM attribute is assumed if ALPHA is not specified.

Restriction: If you specify literal you cannot refer to the field described by this
DFLD statement with a message descriptor. Additionally, if you specify literal
you must omit label.

SCA
Specifies, for DPM definitions only, that SCA information, when sent by the IMS
application program or specified in the DSCA, is to be sent in this DFLD.

If SCA is specified, label must not be specified.

POS=
Defines the first data position of this field in terms of line (lll), column (ccc), and
physical page (pp) of the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=274X, FIN,FIDS,FIDS3,FIDS4, FIDS7,FIJP,FIPB,FIFP,SCS1, or
SCS2

lll,ccc
Specifies the record number and position within the record of this field. This
form is required if MODE=RECORD. lll and ccc must be greater than or
equal to 1.

nnn
Specifies the starting position of this field in STREAM mode input. If not
specified, this field starts immediately following the preceding field, or at the
left margin if this is the first field. If MODE=STREAM has been specified,
and POS= is specified, this form is required. nnn must be greater than or
equal to 1.

lll,ccc,pp
Specifies the line, column, and optionally, the physical page number for an
output field. lll, ccc, and pp must be greater than or equal to 1.

For DEV TYPE=3270, 3270-An, or 3270P

lll,ccc,pp
Specifies the line, column, and optionally, the physical page number for an
output field. lll, ccc, and pp must be greater than or equal to 1.

For 3270 displays, POS=(1,1) must not be specified. Fields must not be
defined such that they wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be
copied when a field starting on line 1, column 2, has both alphabetic and
protect attributes.

For DEV TYPE=DPM-An or DPM-Bn

For DPM devices
The POS= keyword is ignored.

LTH=
Specifies the length of the field. This operand should be omitted if 'literal' is
specified in the positional parameter, in which case the length of literal is used

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 375

as the field length. Unpredictable output formatting can occur if this operand is
used in conjunction with a 'literal' and the two lengths are different. The
specified LTH= cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and
DPM with RCDCT=NOSPAN is 8000 characters. For 3270 displays, the
maximum length is one less than screen size. For example, for a 480-character
display, the maximum length is 479 characters. For a FIDS display component,
the maximum length is 240 characters; for a FIDS3, the maximum length is 480
characters; for a FIDS4, the maximum length is 1024 characters; for a FIDS7,
the maximum length is 1920. A length of 0 must not be specified. For DPM, if
RCDCT=NOSPAN is specified, the length must be less than or equal to the
RCDCTL value, if RCDCTL is less than 8000. If SCA and LTH= are both
specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270
display device or a DFLD with ATTR=YES specified. The inclusion of this byte in
the design of display/printer formats is necessary because it occupies the
screen/printed page position preceding each displayed/printed field even though it is
not accessible by an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not
used. Therefore, fields must be defined with a juxtaposition that does not allow for
the attribute character unless ATTR=YES is specified. However, for printers defined
as 3270P the last column of a print line (based on FEAT=, WIDTH=, or the device
default width) cannot be used. The last column of the line is reserved for carriage
control operations performed by IMS. Thus, if the print line specifies 120
(FEAT=120) and the DFLD specifies POS=(1,1),LTH=120 then 119 characters are
printed on line 1 and one character on line 2.

For DPM definitions, if OPTIONS=NOSIM2 is specified on the DIV statement, and
ATTR=YES or YES,nn is specified, 2 bytes plus the extended attributes are added
to the length of the DFLD. The first two bytes are reserved for the binary 3270
attribute, (protect, numeric, and so forth.) If OPTIONS=SIM is specified, 1 byte or 1
byte plus the extended attributes is added to the length of the DFLD with
ATTR=YES or YES,nn. The first byte of the field is thus reserved for the simulated
attribute.

Detectable fields (DET or IDET) must include four positions in POS and LTH for a
1-byte detection designator character and 3 pad characters, unless the detectable
field is the last field on a display line, in which case only one position for the
detection designator character is required. The detection designator character must
precede field data, and pad characters (if required) follow field data. Detection
designator and required pad characters must be supplied by the application
program or MFLD literal with the field data. Pad characters can also be required in
the preceding field on the device.

ATTR=
Defines the display attributes of this field for each of the listed DEV TYPE, DIV
TYPE combinations:

v For DEV TYPE=3270 or 3270-An

Attribute keywords can be specified in any order and only those desired need
be specified. The underlined keywords do not have to be specified, because
they are defaults.

Format Definition Statements: DFLD

376 IMS/ESA V6 Appl Pgm: TM

When two user-defined fields are seperated by two or more characters, MFS
generates an undefined field to represent that space in the display buffer.
The display attributes for an undefined field are NUM, PROT, and NODISP.

ALPHA|NUM
specifies whether the field should have the numeric attribute. The
numeric attribute specifies that the Numeric Lock feature (automatic
upshift of data entry keyboard) will be used by the 3275/3277 or
3276/3278. If NUM and PROT (discussed below) are specified for the
field, the auto-skip feature is used. That is, upon entry of a character into
the last character location of an unprotected field, the cursor
automatically skips the field with the NUM and PROT attribute
specifications and is positioned to the first character location of the next
unprotected field. If an undefined field, as described in the ATTR=
parameter above, follows the filled unprotected field, the auto-skip feature
is used. This parameter, in conjunction with the PROT parameter below,
is used to lock the COPY function. See ″PROT″ for details.

NOPROT|PROT
Specifies whether the field is protected from modification by you. For
literal fields, PROT is used and specification of NOPROT is ignored.

The IMS copy function on remote 3270 terminals can be locked by
setting the attribute value of protect and alpha for an attribute byte in line
1 and column 1 of a display. When the copy function is locked, it cannot
be used to copy the contents of a display to a printer. For more
information, see the appendix “IMS Support of Devices” in IMS/ESA
Operations Guide. The “Local Copy Function” available on the 3274 and
3276 control units is not locked by the attribute setting. The “Local Copy
Function” is invoked by the print key.

NODET|DET|IDET
Specifies the detectability of the field through light pen operations. DET
specifies a deferred detectable field, while IDET indicates an immediately
detectable field. You must provide appropriate designator and pad
characters as discussed under the LTH= operand. Note that the 3270
display devices place restrictions on the number of detectable or mixed
detectable and nondetectable fields that can precede that last detectable
field on a given line.

NORM|NODISP|HI
Specifies the field’s display intensity as normal (NORM), high intensity
(HI), or nondisplayable (NODISP). If NODISP is specified, DET or IDET
cannot be specified.

When defining a high-intensity (HI) field, including a detection designator
character as the first data byte causes the high-intensity (HI) field to be
detectable.

NOMOD|MOD
defines whether or not the field-modified-attribute byte should be
assumed for this field. MOD causes the terminal to assume the field has
been modified by you even though it was not (that is, the modified data
tag (MDT) is set in the field-modified-attribute byte). This should not be
confused with the PROT attribute which prevents modification by you.
MOD is ignored for literal fields.

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 377

When MOD is specified, each time MFS sends output for this physical
page, the modified attribute is set (unless overridden by dynamic attribute
modification).

Related Reading: For a description of when IMS resets modified data
tags, see IMS/ESA Operations Guide.

STRIP|NOSTRIP
Specifies whether the pen detect designator byte preceding the input
field should be stripped (STRIP) before presentation to the application
program. If an EGCS attribute is defined for a light-pen-detectable field,
you should specify ATTR=NOSTRIP on the DFLD statement and design
the application program to bypass or remove the two designator
characters from the input data. If ATTR=STRIP is specified or defaulted,
MFS will only remove the first designator character and the last character
in the field could be lost (truncated).

v For DIV TYPE=OUTPUT and DEV TYPE=274X, 3270P, FIDS, FIDS3, FIDS4,
FIDS7, FIFP, FIJP, FIPB, FIS1, or SCS2

Attribute keywords specify whether (YES) or not (NO) the first byte of this
field will be used to display attribute information when the output message
includes attribute information for the field. The default is NO. If ATTR=YES is
specified, the LTH= and POS= keywords do not have to allow for the
simulated attribute byte because the MFS preprocessor adjusts the keyword
values internally. The action taken when ATTR=YES is specified is:

CURSOR (FIDS, FIDS3, FIDS4, and FIDS7
ABSOLUTE output only). The cursor will be
positioned to the first position of this field.

NODISP No data sent regardless of other attributes

HI An asterisk (*) is placed in the first byte

MODIFIED An underscore character (_) is placed in the
first byte

HI and MODIFIED An exclamation point (!) is placed in the first
byte

If attribute information is not provided from the output message, the first byte
is a blank.

v For DIV TYPE=OUTPUT, DEV TYPE=DPM-An, and DEV TYPE=DPM-Bn,
3270P, FIDS, FIDS3, FIDS4, FIDS7, FIFP, FIJP, FIPB, FIS1, or SCS2

Attribute keywords specify whether (YES) or not (NO) the first one or two
bytes of this field carries existing 3270 attributes and whether extended
attributes (nn) are present. The keywords can be used in various
combinations as follows:

YES
Specifies that the first one or two bytes of this field are used to convey
the existing 3270 attributes (in simulated or binary form depending upon
the specification of SIM or NOSIM2 respectively on the DIV statement)
from the IMS application program to the remote program. (SIM causes
MFS to simulate an attribute. NOSIM2 causes MFS to pass the bits
exactly as entered.)

Thus, if ATTR=YES is specified and OPTIONS=SIM or OPTIONS= is not
specified, one byte is added to the length of the DFLD. If

Format Definition Statements: DFLD

378 IMS/ESA V6 Appl Pgm: TM

OPTIONS=NOSIM2, two bytes are added to the length of the DFLD.
These bytes are reserved as the attribute bytes to be transmitted to the
remote program.

NO
Specifies that the first one or two bytes of this field will not be used to
convey the existing 3270 attributes (in simulated or binary form
respectively) from the IMS application program to the remote program.
This is the default.

nn Is the number of extended attributes that can be dynamically modified,
and is a number from 1 to 4. An invalid specification is defaulted to 1.
Two additional bytes are added to the length of the DFLD for each
attribute specified (2 x nn). The additional bytes, which just precede the
data, either can (YES) or must not (NO) follow the bytes reserved for the
existing 3270 attribute bytes. These bytes are used to convey the
extended attributes (in binary form) from the IMS application program to
the remote program. The attributes are always transmitted as presented
from the IMS application program. They are never simulated or validated.

When used in combination, YES,nn specifies that both attributes and
extended attributes are to be transmitted. In this case, and depending upon
the specification of SIM and NOSIM2 as described above:

YES,nn
When specified with SIM, specifies that 3270 simulated attributes (1 byte)
plus extended attributes (2 x nn bytes) of this field are to be transmitted
from the IMS application program to the remote program. The total
number of bytes used to convey all of these attributes to the remote
program is 1 + (2 x nn).

When specified with NOSIM2, specifies that 3270 attributes in binary
form (2 bytes) plus extended attributes (2 x nn bytes) of this field are to
be transmitted from the IMS application program to the remote program.
The total number of bytes used to convey all of these attributes, which
are all in binary form, to the remote program is 2 + (2 x nn).

When used in combination, NO,nn specifies that only extended attributes are
transmitted. Thus, the number of bytes transmitted, in binary form, is (2 x nn)
only.

Valid specifications and the number of bytes which must be reserved are:

EATTR=
Is valid for output DFLDs only and defines the extended attributes of this field
for DEV TYPE=3270, 3270-An, 3270P, or SCS1.

For DIV ,OPTION=NOSIM2 then:
DFLD ,ATTR=(YES,nn) 2 + (2 × nn)
DFLD ,ATTR=(NO,nn) 2 × nn
DFLD ,ATTR=(,nn) 2 × nn
DFLD ,ATTR=YES 2
DFLD ,ATTR=NO 0
For DIV ,OPTION=SIM or not specified then:
DFLD ,ATTR=(YES,nn) 1 + (2 × nn)
DFLD ,ATTR=(NO,nn) 2 × nn
DFLD ,ATTR=YES 1
DFLD ,ATTR=NO 0

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 379

Not all extended attributes apply to all device types. To ensure that your
specifications for your device types are correct, refer to the component
description manual for your device.

The operands specify:

Additional field highlighting

Field color

Field outlining

Input control

Validation to be performed

Local ID of the programmed symbol buffer

Characters are selected from the programmed symbol buffer and placed in the
field. These operands can be specified in any order. When the device default
value is selected for an operand, it is used to hold a place in the data stream to
permit application program modification of the attribute so specified.

For details on modifying these attributes, see “Extended Field Attributes for
Output Devices” on page 211.

To specify the additional highlighting for the field use the following:

HD device default

HBLINK blink

HREV reverse video

HUL underline

To specify the field’s color use the following:

BLUE

RED

PINK

GREEN

TURQ(uoise)

YELLOW

CD

NEUTRAL

The last two operands are used as follows:

CD Used to specify the default.

NEUTRAL Used to specify device-dependent. The particular color
displayed for NEUTRAL is device-dependent. In general,
NEUTRAL is white on displays and black on printers with
single-plane programmed symbols and as multicolored on
displays or printers with tri-plane programmed symbols.

The following five operands—PX'00', PX'hh', PC'c', EGCS, and EGCS'hh'—are
mutually exclusive. That is, a field can be specified as having one of these
characteristics, but not a combination thereof. For all 3270 devices, MFS does

Format Definition Statements: DFLD

380 IMS/ESA V6 Appl Pgm: TM

not verify that any specified character set has been properly loaded. The
programmed symbol buffers can be loaded by an IMS application program
using the MFS bypass.

PX'00'|PX'hh'|PC'c'
Specifies a value that must correspond to the local ID specified for a
programmed symbol buffer already loaded or to the EGCS programmed
symbol buffer.

PX'00'
Is the same as no specification, except that it allows an application
program to specify a programmed symbol buffer for the field through
dynamic modification of the programmed symbol attribute.

PX'hh'
Is a hexadecimal character in the range X'40' through X'FE'.

PC'c'
Is a hexadecimal character within the range X'40' through X'FE'.

EGCS|EGCS'hh'
Is valid only on output DFLDs for the 3270 display. SCS1 device types can
specify EGCS only and not EGCS 'hh'.

When an extended graphic character set literal is specified on a DFLD
statement, the extended graphic character set attribute is forced—that is,
you do not have to code EATTR=EGCS'hh' for 3270 displays or
EATTR=EGCS for SCS1 device types. For 3270 displays, a programmed
symbol value of X'F8' is set.

Restriction: The IMS application program cannot modify the SCS1 DFLD
extended graphic character set attribute.

When defining an EGCS field for a 3283 Model 52, the length must be an
even number. If the EGCS field spans device lines, WIDTH= and POS=
should be specified so that an even number of print positions are reserved
on each of the device lines.

EGCS
Specifies the field attribute for the field as Extended Graphic Character
Set. Also specifies the field attribute for the field as Double Byte
Character Set.

EGCS'hh'
'hh' is the programmed symbol value that is used. The value for 'hh' can
be any hexadecimal value from X'40' through X'FE' or X'00'. If 'hh' is
omitted from the extended graphic character set specification for a 3270
display, a programmed symbol value of X'F8' is assumed. 'hh' is
ignored if specified for an SCS1 device.

To define an EBCDIC field that can be dynamically modified by the IMS
application program to accept extended graphic character set data, the
programmed symbol attribute should be specified as EGCS'00'.

VDFLD|VMFILL|VMFLD|VMFILL,VMFLD
Defines the type of validation for the field as follows:

VDFLD default

VMFILL mandatory fill

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 381

VMFLD mandatory field

VMFILL,VMFLD a combination of mandatory fill and
mandatory field

If a field is defined as protected (ATTR=PROT) or if it is a literal with
validation attributes specified, then the validation attribute specifications are
reset and a message is issued.

The following are used to specify field outlining:

OUTL'hh' Field outlining with field outlining value 'hh'

OUTL Device default

BOX Box

RIGHT, LEFT, UNDER, OVER Lines that can be specified individually or in
combination

Field outlining value 'hh' is a two-digit hexadecimal number between X'00' and
X'0F'. If any other value is specified, the device default, X'00', is assumed.
Table 46 shows the values for the field outlining patterns:

Table 46. Field Outlining Values

Value UNDER RIGHT OVER LEFT

00
01
02
03

X

X
X
X

04
05
06
07

X

X
X
X

X
X
X
X

08
09
0A
0B

X

X
X
X

X
X
X
X

0C
0D
0E
0F

X

X
X
X

X
X
X
X

X
X
X
X

Field outlining for 3270 displays and SCS1 printers can be dynamically modified
by code in an application program. The position of left, right, over, and
underlines differ according to the device.

The following is a brief description of field outlining for the IBM 5550 family (as
3270) of devices.

3270 display Left and right lines are printed in the position of the 3270 basic
attribute byte. The overline of the current line and the underline
of the preceding line are the same line.

The underline for the 24th line is the same line as the line
separating the application program area and your message
area.

SCS1 printer Left and right lines are printed in the byte reserved by MFS

Format Definition Statements: DFLD

382 IMS/ESA V6 Appl Pgm: TM

before and after the current field. The overline of the current
line and the underline of the preceding line are the same line.
When an underline is specified in the last line of the page, an
underline is drawn in the last line of the page, and an overline
is drawn on the first line of the next page.

If one byte space exists between two adjacent fields, the right
line of the first field is the same line as the left line of the
second field.

MIX|MIXD|MIX’nn’|MIXS|MIXS’nn’
Specify a DBCS/EBCDIC mixed field.

3270 display

MIX DBCS/EBCDIC mixed field

MIXD device default

Input control for the 3270 display can be dynamically modified by
the application program. Refer to “Dynamic Modification of
DBCS/EBCDIC Mixed Data” on page 290 for more information on
dynamic modification.

SCS1 printer

MIX DBCS/EBCDIC mixed field with SO/SI blank print
option.

MIXS DBCS/EBCDIC mixed field with SO/SI blank print
suppress option.

MIX'nn' 'nn' is the maximum number of SO/SI pairs.
DBCS/EBCDIC mixed field with SO/SI blank print
option.

MIXS'nn' 'nn' is the maximum number of SO/SI pairs.
DBCS/EBCDIC mixed field with SO/SI blank print
suppress option.

The 'nn' is buffer information used by MFS message editor and must be a
two-digit decimal number between 01 and 31. If MIX or MIXS is specified,
the MFS default is calculated as follows:

MIX DFLD length divided by 5 plus 1, or 31, whichever is smaller.

MIXS DFLD length divided by 3 plus 1, or 31, whichever is smaller.

When a field spans continuation lines, the number 'nn' obtained from the
field length with either of the above methods plus 1, is assigned to each
line.

With the SCS1 printer, when DBCS/EBCDIC mixed data spanning across
continuation lines is split at a DBCS character, MFS replaces the last
character with a blank and places that character at the beginning of the
next line. As a result, one print position is lost.

PEN=
Specifies a literal to be selected or an operator control function to be performed
when this field is detected. If (1) 'literal' is specified, (2) the field is defined as
immediately detectable (ATTR= operand), and (3) contains the null or space
designator character, the specified literal is placed in the field referred to by the

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 383

PEN operand of the preceding DEV statement when the field is detected (if no
other device fields are modified). If another field on the device is modified, a
question mark (?) is provided instead of the literal. Literal length must not
exceed 256 bytes.

If (1) a control function is specified, (2) the field is defined as immediately
detectable (ATTR= operand), and (3) contains the null or space designator
character, the specified control function is performed when the field is detected
and no other device fields are modified. If another field on the device is
modified, a question mark (?) is provided and the function is not performed.
Control functions that can be specified are:

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output
message. If no output message is in progress, no explicit response is
made.

NEXTMSG—MESSAGE ADVANCE
specifies a request to dequeue the output message in progress (if any) and
to send the next output message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any),
and send the next output message or return an information message
indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of a multiple physical page input message.

ENDMPPI is valid only if data has been received and will not terminate
multiple page input (MPPI) in the absence of data entry.

OPCTL=
Specifies the name of a table, defined by a TABLE statement, that is to be
checked for operator control requests when this device field is received. OPCTL
processing occurs when the input device data is processed. If a control function
is selected, in most cases the control function is performed immediately; no IMS
input message is created.

SLDI=
For SCS1 printers, specifies the line density for an output message in lines per
inch. (See also SLDP=.) SLDI= can also be specified on the DEV statement.
SLDI= is validated for a value from 1 through 72. The value specified must be
consistent with the architecture of the device for which this value is specified
(see the appropriate device or component manual).

If SLDI= is specified both on the DEV statement and the DFLD statement, two
SLD data streams are created. One is sent at the beginning of a message to
set the line density. The second is sent within the message, just prior to the
field on which the SLDI= specification is encountered, but after any vertical tabs
and new line characters. The SLDI= specification within the message changes
the line density from that set at the beginning of the message, and this latter
line density remains in effect until explicitly reset.

SLDP=
For SCS1 printers, specifies the line density for an output message in points
per inch. (See also SLDI=.) SLDP= can also be specified on the DEV

Format Definition Statements: DFLD

384 IMS/ESA V6 Appl Pgm: TM

statement. SLDP= is validated for a value from 1 through 72. The value
specified must be consistent with the architecture of the device for which this
value is specified (see the appropriate device or component manual).

If SLDP= is specified both on the DEV statement and the DFLD statement, two
SLD data streams are created. One is sent at the beginning of a message to
set the line density. The second is sent within the message, just prior to the
field on which the SLDP= specification is encountered, but after any vertical
tabs and new line characters. The SLDP= specification within the message
changes the line density from that set at the beginning of the message, and this
latter line density remains in effect until explicitly reset.

Recommendation: Be careful, when defining set line density (SLDx) keywords, to
ensure that forms alignment is maintained. If SLDx= is improperly defined, the
forms might not align properly. Also, note that SLDI= and SLDP= are mutually
exclusive. Neither SLDI= nor SLDP= can occur on a DFLD statement between a
DO and an ENDDO statement.

ENDDO Statement
The ENDDO statement terminates the group of DFLD statements that are to be
repetitively generated. The generated DFLD statements are printed immediately
following the ENDDO statement. An ENDDO statement is required for each DO
statement entered in this definition.

Format:

��
label

ENDDO blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

FMTEND Statement
The FMTEND statement terminates a device format definition and is required as the
last statement in the device format definition. If this is the end of the input to SYSIN
processing, the FMTEND statement must be followed by an END compilation
statement.

Format:

��
label

FMTEND blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Format Definition Statements: DFLD

Chapter 10. MFS Language Utility 385

Partition Set Definition Statements

PDB Statement
This statement initiates and defines a partition set (a Partition Descriptor Block) for
3290 and 3180 devices in partitioned format mode. The PDB statement contains
several parameters that describe certain characteristics of the entire partition set. Its
name is referenced by the PDB keyword of a DEV statement if a partition set is
required to format logical pages of a message.

At least one PD statement must be specified within each PDB. Note, however, that
for a 3180 in partitioned format mode, only one PD statement should be specified
within each PDB. This is because only one partition can be specified for the 3180.
There are additional differences in specifications that can be made for the
partitioned 3180 and 3290 which are described in the following section.

Format:

�� label PDB LUSIZE= (verticalpels , horizontalpels)
(rows , columns)

�

�
, SYSMSG = pdname 1

, PAGINGOP = 2
3

ROWCOL
, LUDEFN = PELS

��

Parameters:

label
A one- to eight-character alphanumeric name (pdbname) for the PDB must be
specified.

LUSIZE=
Describes the physical size of the Logical Unit display for which the PDB is
defined. If LUDEFN=PELS, the size is specified in picture elements (pels). If
LUDEFN=ROWCOL, the size is specified in rows and columns (this is the
default value). For the 3180, LUSIZE must be specified in terms of rows and
columns.

SYSMSG=
Specifies the partition name (pdname) for displaying system messages. The
system message partition should have only one field defined. This DFLD should
be defined as at least LTH=79 so the system message is not truncated.

If the current PDB defines a system message partition, then all system
messages are directed to this partition. If a system message partition is not
defined, but a SYSMSG field is defined in the current DOF, the system
message is directed to the system message field of the active partition. Finally,
if the current PDB does not define a partition for system messages and the
DOF does not define a field for that purpose, a system message destroys the
current partitioned format mode and the 3290 returns to standard format mode.

PAGINGOP=
Specifies the option number (1, 2, or 3) for the partition page presentation
algorithm. These three algorithms specify different ways of presenting the initial

Format Definition Statements: FMTEND

386 IMS/ESA V6 Appl Pgm: TM

pages of the message to the partitions of the partition set. They also specify
what paging actions result when you enter paging requests from the 3290
device.

The default of 1 must be accepted or specified on this operand for 3180
formats.

LUDEFN=
Indicates whether the LUSIZE parameter in the PDB statement and the
VIEWLOC parameter in the PD statements are specified in rows and columns
or in pels. LUDEFN is optional if all the PD statements use the same cell size
and the default (ROWCOL) is acceptable. Note that ROWCOL must be
specified or accepted as the default for 3180 formats.

If two or more PD statements within the same PDB specify different cell sizes,
PELS must be chosen.

PD Statement
The Partition Definition statement defines one partition and its presentation space.
Every partition set described by a PDB statement must contain at least one PD
statement. Note, however, that for a 3180 in partitioned format mode, only one PD
statement should be specified within each PDB.

Format:

�� label PD PID = nn , VIEWPORT = (rrrrr , ccccc) , VIEWLOC = �

� (rrrrr , ccccc)
(verticalpels , horizontalpels) , PRESPACE = (rrrrr , ccccc)

�

�
, WINDOWOF = rrrrr , CELLSIZE = (hh , vv)

�

�
, SCROLLI = rows

��

Parameters:

label
A one- to eight-character alphanumeric name (pdname) must be specified. This
name is referenced by the DPAGE statement to associate a logical page with
its appropriate partition.

PID=
Specifies a partition identifier number for the partition. Values 00 through 15 are
valid for 3290 formats. Each partition must have a unique PID. A value of 00
must be specified for 3180 formats, because only one partition need be
identified.

VIEWPORT=
Specifies the size of the viewport for the partition. rrrrr indicates rows and ccccc
indicates columns. For the 3180 device, the following restrictions apply:

v If the number of columns is greater than or equal to 80, then the number of
rows must be less than or equal to 43.

Partition Set Definition Statements: PDB

Chapter 10. MFS Language Utility 387

v If the number of columns is greater than 80 and less than or equal to 132,
then the number of rows must be less than or equal to 27.

VIEWLOC=
Specifies the location of the viewport on the display screen, in terms of the
distance offset from the top left of the screen. When the LUDEFN parameter of
the PDB statement is ROWCOL, the distance is expressed in rows and
columns. rrrrr indicates rows and ccccc indicates columns. When the LUDEFN
parameter is PELS, the distance is expressed in the number of pels from the
top of the screen and the number of pels from the left of the screen. When
defining formats for the 3180, VIEWLOC must be expressed in rows and
columns.

PRESPACE=
Indicates the size of the presentation space buffer in rows and columns. rrrrr
indicates rows and ccccc indicates columns. If this parameter is not specified,
the default is the size of the viewport specified on the VIEWPORT parameter.
When this parameter is specified, the columns parameter is optional and
defaults to the columns specification on the VIEWPORT parameter. If columns
are specified, they must be the same as the columns specified in the
VIEWPORT parameter.

When specifying this operand for 3180 formats, the product of the number of
rows times the number of columns might not be greater than 7680.

WINDOWOF=
Indicates the initial offset in rows of the top edge of the view window from the
top of the presentation space. The window maps the portion of the presentation
space to be displayed onto the viewport on the screen. During interactive
processing, change the offset by scrolling. The default value of WINDOWOF is
zero.

CELLSIZE=
Indicates the number of horizontal and vertical pels in a character cell. Note that
this specification is in an unusual order for MFS. That is, the width of the
character cell is specified first, then the height. This is the reverse of the usual
MFS order.

For the 3290, the default is 6 X 12 PEL (for a small character). Valid values for
the 3290 are 6 X 12 to 12 X 31, or the value 00 X 00. If the value is 00 X 00,
the 3290 device will select a cell size for optimum readability. This prevents
MFS from making validity checks on the viewport locations and possible
overlaps. Therefore, be careful to choose viewport size and location
specifications accurately.

For the 3180, this operand should be specified according to usable screen area
size as follows:

v CELLSIZE=(12,12)

– 24 x 80

– 32 x 80

– 43 x 80

v CELLSIZE=(10,16)

– 27 x 132

SCROLLI=
Indicates the number of rows that are scrolled when the scrolling function is
used. The default scrolling increment is one row. If the scrolling increment is

Partition Set Definition Statements: PD

388 IMS/ESA V6 Appl Pgm: TM

larger than the viewport size, part of the presentation space is not viewable on
the screen. Specifying 0 as the scrolling increment disables the scrolling
function.

PDBEND Statement
The PDBEND statement terminates a partition set definition (a partition descriptor
block) and is required as the last statement of the definition. If this is the end of the
input to SYSIN processing, the PDBEND statement must be followed by an END
compilation statement.

Format:

�� PDBEND blanks
comments

��

Table Definition Statements

TABLE Statement
The TABLE statement initiates and names an operator control table that can be
referred to by the OPCTL keyword of the DFLD statement (“DFLD Statement” on
page 370). For a discussion of the use of the table, see “Operator Control Tables”
on page 237. The TABLE statement, and the IF and TABLEEND statements that
follow, must be outside of a MSG or FMT definition.

Format:

�� tablename TABLE blanks
comments

��

Parameters:

tablename
A 1- to 8-byte alphanumeric name for the table must be specified.

IF Statement
The IF statement defines an entry in the table named by the previous TABLE
statement. Each IF statement defines a conditional operation and an associated
control or branching function to be performed if the condition is true.

Format:

��
label

IF DATA
LENGTH

, >=
<=
>
<
=
¬

'literal'
data-length

, NOFUNC
NEXTP
NEXTMSG
NEXTMSGP
NEXTLP
PAGEREQ
ENDMPPI
label

��

Parameters:

Partition Set Definition Statements: PD

Chapter 10. MFS Language Utility 389

label
A one- to eight-character alphanumeric name can be specified. This label is
required if a previous IF statement contained a branch function.

DATA
Specifies that the conditional operation is to be performed against the data
received from the device for the field.

LENGTH
Specifies that the conditional operation is testing the number of characters
entered for the field. The size limit for this field is the same as for DFLDs (see
“DFLD Statement” on page 370).

=,<,>, ¬,≤,≥
Specify the conditional relationship that must be true to invoke the specified
control function.

'literal'
Is a literal string to which input data is to be compared. The compare is done
before the input is translated to upper case. If 'literal' is specified, DATA must be
specified in the first operand. If the input data length is not equal to the literal
string length, the compare is performed with the smaller length, unless the
conditional relationship is ¬ and the data length is zero, in which case the
control function is performed. If the input is in lowercase, the ALPHA statement
should be used and the literal coded in lowercase.

data-length
Specifies an integer value to which the number of characters of input data for
the field is compared.

NOFUNC
Specifies that conditional function testing is to be terminated.

NEXTPP—PAGE ADVANCE
Specifies a request for the next physical page in the current output message. If
no output message is in progress, no explicit response is made.

NEXTMSG—MESSAGE ADVANCE
Specifies a request to dequeue the output message in progress (if any) and to
send the next output message in the queue (if any).

NEXTMSGP—MESSAGE ADVANCE PROTECT
Specifies a request to dequeue the output message in progress (if any), and
either send the next output message or return an information message
indicating that no next message exists.

NEXTLP—NEXT LOGICAL PAGE
Specifies a request for the next logical page of the current message.

PAGEREQ—LOGICAL PAGE REQUEST
Specifies that the second through last characters of input data are to be
considered as a logical page request.

ENDMPPI—END MULTIPLE PAGE INPUT
Specifies the end of multiple physical page input (this input is the last for the
message being created).

label
Specifies that testing is to continue with the IF statement bearing the label
(branch). The label must be placed on an IF statement that follows the current
statement in the TABLE definition (that is, it must be a forward branch function).

Table Definition Statements: IF

390 IMS/ESA V6 Appl Pgm: TM

TABLEEND Statement
The TABLEEND statement establishes the end of a table definition. If this is the end
of the input to SYSIN processing, the TABLEEND statement must be followed by an
END compilation statement.

Format:

��
label

TABLEEND blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Compilation Statements

ALPHA Statement
The ALPHA statement specifies a set of characters to be considered alphabetic by
the MFS language utility for the purpose of defining valid field names and literals.

Restriction: The following characters cannot be made alphabetic using ALPHA.

b ¢ * < (+ | !! *) ; ¬ .
- / , % _ > ? :
' = ”
0 through 9

The characters A through Z, &; (X'50'), #, $, and @ are always considered
alphabetic by the MFS language utility.

All the characters referred to above are known as standard characters. Therefore,
all other characters are referred to as nonstandard characters.

Format:

��
label

ALPHA ' EBCDIC literal character string ' ��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

'literal character string'
Specifies the characters to be considered alphabetic by the MFS language
utility. The use of an EGCS literal in an ALPHA statement causes an ERROR
message.

COPY Statement
The COPY statement invokes a copy of a member of the partitioned data set
represented by the SYSLIB DD statement. The copied member can request the
nested copy of another member. The member to be copied cannot already exist at
a higher level in a nested chain of copy requests. The nesting level available for

Table Definition Statements: TABLEEND

Chapter 10. MFS Language Utility 391

copy is limited only by the amount of storage available to the language utility
preprocessor. The level of the COPY statement is indicated to the right of each
printed COPY record.

Format:

��
label

COPY member-name ��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

member-name
Specifies the name of the partitioned data set member to be copied into the
input stream of the utility preprocessor.

EQU Statement
The EQU statement defines a symbol as a substitution variable. All subsequent
occurrences of the symbol in the operand field of a statement is replaced by the
value specified in the operand field of the EQU statement.

Format:

�� symbol EQU number
alphanumeric identifier
literal

��

Parameters:

symbol
Specifies the symbol to be equated to the value specified in the operand field.
The symbol must be a one- to eight-character alphanumeric identifier, the first
character of which must be alphabetic.

number
Specifies the value to be represented by the symbol, and consists of 1 to 256
decimal digits.

alphanumeric identifier
Specifies the value to be represented by the symbol, and consists of 1 to 256
alphanumeric characters, the first of which must be alphabetic.

literal
Specifies the value to be represented by the symbol, and consists of 1 to 256
valid characters (not counting embedded second quotes), enclosed in quotes.
The characters within the leading and trailing quotes replace the symbol when
substitution occurs. An EGCS literal cannot be equated if any hexadecimal
value within the literal is a X'7D' (a single quote character).

A symbol used in an equate (EQU) statement can be re-equated to another value.

Compilation Statements: COPY

392 IMS/ESA V6 Appl Pgm: TM

There are no reserved words that cannot be used as symbols on the EQU
statement. However, when defining symbols do not use a symbol as one of the
words used by the MFS statement operands. Otherwise, the intended function of
the MFS word cannot be used.

Example: Consider the following equate statement:
NOPROT EQU PROT

Then if one DFLD specifies ATTR=NOPROT and another DFLD specifies
ATTR=PROT, both DFLDs would generate the protect attribute (PROT).

Restriction: Once an MFS word is equated, it cannot be restored to its original
symbol. In other words, a symbol cannot be equated to itself.

Concatenated EQU Statements
A period (.) can be used to concatenate two equated values or one value and
specific data, providing that at the point of concatenation a delimiter exists.

Example: Consider the following EQU statements:
A EQU ATTR

AE EQU 'ATTR='

P EQU '(PROT,NUM)'

EP EQU '=(PROT,NUM)'

The following all produce the same results:
ATTR=(PROT,NUM)

ATTR=P

AE.P

A.EP

A=P

RESCAN Statement
The RESCAN statement controls the operation of EQU statements during
replacement mode.

Format:

��
label

RESCAN
OFF

ON

,5

,number
��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

OFF|ON
Specifies whether (ON) or not (OFF) replacement text should be rescanned for
further substitution. The default is OFF unless a number is specified.

Compilation Statements: EQU

Chapter 10. MFS Language Utility 393

If ON is specified, replacement text can invoke further substitution within the
substituted text up to a maximum number of occurrences.

5|number
Specifies how many times further substitution is allowed in a single rescan
substitution. The default is 5. If recursive substitutions are attempted beyond the
'number', an error message is issued and substitution terminates. RESCAN
ON,0 will be interpreted as RESCAN OFF.

STACK Statement
The STACK statement is used to delineate one or more SYSIN or SYSLIB records,
and to request that those records, once processed, be kept (stacked) in processor
storage for reuse at a later time. A stack of SYSIN/SYSLIB records must not contain
STACK and UNSTACK statements. The letter S to the right of each printed record
indicates that it is being stacked for future use.

Format:

��
label

STACK
ON

,id
OFF

��

Parameters:

label
A 1- to 8-character name can be specified. It is not used.

ON
Specifies the beginning of a stack of SYSIN/SYSLIB records. ON is the default,
and it does not have to be specified to begin stacking.

OFF
Specifies the end of a stack of SYSIN/SYSLIB records.

id Specifies the one-to eight-character alphanumeric name for the record stack. If
the compilation only uses one stack, no ID is required; MFS assigns an ID of
eight blanks to the stack.

When multiple stacking operations are requested, all stacks should be uniquely
identified; one unnamed stack is permitted.

UNSTACK Statement
The UNSTACK statement requests retrieval of a previously processed stack of
SYSIN/SYSLIB records and specifies whether the retrieved stack should be deleted
after processing. The letter U to the right of each printed record indicates that it is
being read from the processor storage stack for processing.

Format:

��
label

UNSTACK
id

,DELETE

,KEEP
��

Parameters:

Compilation Statements: RESCAN

394 IMS/ESA V6 Appl Pgm: TM

label
A one- to eight-character alphanumeric name can be specified. It is not used.

id Specifies the 1- to 8-character identifier of the stack to be retrieved and
processed. If no ID is specified, MFS retrieves the stack identified by eight
blanks.

DELETE|KEEP
Specifies whether (KEEP) or not (DELETE) the stack should be retained after
retrieval and processing. The default is DELETE.

TITLE Statement
The TITLE statement is used to specify the heading to appear on the SYSPRINT
listing.

Format:

��
label

TITLE literal ��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

literal
Specifies the heading to be printed on the output listing. The heading can be
specified as an EGCS literal. An EGCS literal of more than 108 bytes causes
an error message.

PRINT Statement
The PRINT statement provides printing specifications for the SYSPRINT listing.

Format:

��
label

PRINT
ON

OFF

,GEN

,NOGEN
��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

ON|OFF
Specifies whether (ON) or not (OFF) a listing should be printed. The default is
ON.

GEN|NOGEN
Specifies whether (GEN) or not (NOGEN) the intermediate text blocks (ITBs)
should be printed in hexadecimal following the statement at the left margin. If
PRINT GEN is used following the ENDDO statement, all definitions generated
for the iterative DO group are printed. The default is GEN.

SPACE Statement
The SPACE statement specifies the number of lines to skip when output is printed.
The SPACE statement is printed.

Compilation Statements: UNSTACK

Chapter 10. MFS Language Utility 395

Format:

��
label

SPACE
1

number
��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

1|number
Specifies how many lines to skip after this statement is encountered. The
default is 1.

EJECT Statement
The EJECT statement is used to eject a page in an output listing. The EJECT
statement is printed.

Format:

��
label

EJECT blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

END Statement
The END statement is used to define the end of the input to SYSIN processing. If
this statement is omitted, one is provided and an error message is issued.

Format:

��
label

END blanks
comments

��

Parameters:

label
A one- to eight-character alphanumeric name can be specified. It is not used.

Compilation Statements: SPACE

396 IMS/ESA V6 Appl Pgm: TM

Part 3. IMS Adapter for REXX

Chapter 11. IMS Adapter for REXX 399
Addressing Other Environments 400
REXX Transaction Programs 400

IMS Adapter for REXX Overview Diagram 402
IVPREXX Sample Application 403

IVPREXX Example 1 . 403
IVPREXX Example 2 . 403
IVPREXX Example 3 . 404
IVPREXX Example 4 . 404

REXXTDLI Commands . 404
Addressable Environments 405

REXXTDLI Calls . 405
Return Codes . 405
Parameter Handling . 406
Example DL/I Calls . 407

Environment Determination 408
REXXIMS Extended Commands 408

DLIINFO . 409
Format . 409
Usage. 409
Example . 409

IMSRXTRC. 410
Format . 410
Usage. 410
Example . 410

MAPDEF . 410
Format . 410
Usage. 411
Example . 412

MAPGET . 413
Format . 413
Usage. 413
Examples . 413

MAPPUT . 413
Format . 413
Usage. 414
Examples . 414

SET . 414
Format . 414
Usage. 415
Examples . 415

SRRBACK and SRRCMIT 415
Format . 415
Usage. 416

STORAGE . 416
Format . 416
Usage. 416
Example . 417

WTO, WTP, and WTL . 417
Format . 417
Usage. 417
Example . 418

WTOR . 418

© Copyright IBM Corp. 1974, 2000 397

Format . 418
Usage. 418
Example . 418

IMSQUERY Extended Functions 418
Format . 418
Usage. 419
Example . 420

Chapter 12. IMS Adapter for REXX Exit Routine 421
Environment . 421
Parameters . 421

Chapter 13. Sample Execs Using REXXTDLI 425
SAY Exec: For Expression Evaluation 425
PCBINFO Exec: Display PCBs Available in Current PSB 426
PART Execs: Database Access Example 429

PARTNUM Exec: Show Set of Parts Near a Specified Number 430
PARTNAME Exec: Show a Set of Parts with a Similar Name 431
DFSSAM01 Exec: Load the Parts Database. 431

DOCMD: IMS Commands Front End 432
IVPREXX: MPP/IFP Front End for General Exec Execution 436

398 IMS/ESA V6 Appl Pgm: TM

Chapter 11. IMS Adapter for REXX

The IMS adapter for REXX (REXXTDLI) provides an environment in which IMS
users can interactively develop REXX EXECs under TSO/E (time-sharing option
extensions) and execute them in IMS MPPs, BMPs, IFPs, or Batch regions.

This product does not compete with DFSDDLT0 but is used as an adjunct. The IMS
adapter for REXX provides an application programming environment for prototyping
or writing low-volume transaction programs.

The REXX environment executing under IMS has the same abilities and restrictions
as those documented in the TSO/E Version 2 Procedures Language MVS/REXX
Reference. These few restrictions pertain to the absence of the TSO, ISPEXEC,
and ISREDIT environments, and to the absence of TSO-specific functions such as
LISTDS. You can add your own external functions to the environment as
documented in the TSO/E Version 2 Procedures Language MVS/REXX Reference.

IMS calls the REXX EXEC using IRXJCL. When this method is used, Return Code
20 (RC20) is a restricted return code. Return Code 20 is returned to the caller of
IRXJCL when processing was not successful, and the EXEC was not processed.

A REXX EXEC runs as an IMS application and has characteristics similar to other
IMS-supported programming languages, such as COBOL. Programming language
usage (REXX and other supported languages) can be mixed in MPP regions. For
example, a COBOL transaction can be executed after a REXX transaction is
completed, or vice versa.

REXX flexibility is provided by the following:

v REXX is an easy-to-use interpretive language.

v REXX does not require a special PSB generation to add an EXEC and run it
because EXECs can run under a standard PSB (IVPREXX or one that is
established by the user).

v The REXX interface supports DL/I calls and provides the following functions:

– Call tracing of DL/I calls, status, and parameters

– Inquiry of last DL/I call

– Extensive data mapping

– PCB specification by name or offset

– Obtaining and releasing storage

– Messaging through WTO, WTP, WTL, and WTOR

The following system environment conditions are necessary to run REXX EXECs:

v DFSREXX0 and DFSREXX1 must be in a load library accessible to your IMS
dependent or batch region; for example, STEPLIB.

v DFSREXX0 is stand-alone and must have the RENT option specified.

v DFSREXX1 must be link-edited with DFSLI000 and DFSCPIR0 (for SRRCMIT and
SRRBACK) and optionally, DFSREXXU. The options must be REUS, not RENT.

v IVPREXX (copy of DFSREXX0 program) must be installed as an IMS transaction
program. IVP (Installation Verification Program) installs the program. For more
information, see “REXX Transaction Programs” on page 400.

v The PSB must be defined as assembler language or COBOL.

© Copyright IBM Corp. 1974, 2000 399

v SYSEXEC DD points to a list of data sets containing the REXX EXECs that will
be run in IMS. You must put this DD in your IMS dependent or batch region JCL.

v SYSTSPRT DD is used for REXX output, for example tracing, errors, and SAY
instructions. SYSTSPRT DD is usually allocated as SYSOUT=A or another class,
depending on installation, and must be put in the IMS dependent or batch region
JCL.

v SYSTSIN DD is used for REXX input because no console exists in an IMS
dependent region, as under TSO. The REXX PULL statement is the most
common use of SYSTSIN.

In this Chapter:

v “Addressing Other Environments”

v “REXX Transaction Programs”

v “REXXTDLI Commands” on page 404

v “REXXTDLI Calls” on page 405

v “REXXIMS Extended Commands” on page 408

Related Reading: See TSO/E Version 2 Procedures Language MVS/REXX
Reference for more information on SYSTSPRT and SYSTSIN.

Addressing Other Environments
Use the REXX ADDRESS instruction to change the destination of commands. The
IMS Adapter for REXX functions through two host command environments:
REXXTDLI and REXXIMS. These environments are discussed in “Addressable
Environments” on page 405. Other host command environments can be accessed
with an IMS EXEC as well.

MVS is an environment provided by TSO in both TSO and non-TSO address
spaces. MVS is used to run other programs such as EXECIO for file I/O. IMS does
not manage the MVS EXECIO resources. An IMS COMMIT or BACKOUT,
therefore, has no effect on these resources. Because EXECIO is not an
IMS-controlled resource, no integrity is maintained. If integrity is an issue for flat file
I/O, use IMS GSAM, which ensures IMS-provided integrity.

If APPC/MVS is available (MVS 4.2 or higher), other environments can be used.
The environments are:

APPCMVS Used for MVS-specific APPC interfacing

CPICOMM Used for CPI Communications

LU62 Used for MVS-specific APPC interfacing

Related Reading: For more information on addressing environments, see TSO/E
Version 2 Procedures Language MVS/REXX Reference.

REXX Transaction Programs
A REXX transaction program can use any PSB definition. The definition set up by
the IVP for testing is named IVPREXX. A section of the IMS stage 1 definition is
shown in the following example:

IMS Adapter for REXX

400 IMS/ESA V6 Appl Pgm: TM

This example uses a GPSB, but you could use any PSB that you have defined. The
GPSB provides a generic PSB that has an IOPCB and a modifiable alternate PCB.
It does not have any database PCBs. The language type of ASSEM is specified
because no specific language type exists for a REXX application.

Recommendation: For a REXX application, specify either Assembler language or
COBOL.

IMS schedules transactions using a load module name that is the same as the PSB
name being used for MPP regions or the PGM name for other region types. You
must use this load module even though your application program consists of the
REXX EXEC. The IMS adapter for REXX provides a load module for you to use.
This module is called DFSREXX0. You can use it in one of the following ways:

v Copy to a steplib data set with the same name as the application PSB name.
Use either a standard utility intended for copying load modules (such as
IEBCOPY or SAS), or the Linkage Editor.

v Use the Linkage Editor to define an alias for DFSREXX0 that is the same as the
application PGM name.

Example: Shown below is a section from the PGM setup job. It uses the linkage
editor to perform the copy function to the name IVPREXX. The example uses the
IVP.

When IMS schedules an application transaction, the load module is loaded and
given control. The load module establishes the REXX EXEC name as the PGM
name with an argument of the Transaction Code (if applicable). The module calls a
user exit routine (DFSREXXU) if it is available. The user exit routine selects the
REXX EXEC (or a different EXEC to run) and can change the EXEC arguments, or
do any other desired processing. See “Chapter 12. IMS Adapter for REXX Exit
Routine” on page 421 for a description of this user exit.

Upon return from the user exit routine, the action requested by the routine is
performed. This action normally involves calling the REXX EXEC. The EXEC load
occurs using the SYSEXEC DD allocation. This allocation must point to one or
more partitioned data sets containing the IMS REXX application programs that will
be run as well as any functions written in REXX that are used by the programs.

Standard REXX output, such as SAY statements and tracing, is sent to SYSTSPRT.
This DD is required and can be set to SYSOUT=A.

When the stack is empty, the REXX PULL statement reads from the SYSTSIN DD.
In this way, you can conveniently provide batch input data to a BMP or batch

**
* IVP APPLICATIONS DEFINITION FOR DB/DC, DCCTL *
**

APPLCTN GPSB=IVPREXX,PGMTYPE=TP,LANG=ASSEM REXXTDLI SAMPLE
TRANSACT CODE=IVPREXX,MODE=SNGL, X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

//* REXXTDLI SAMPLE - GENERIC APPLICATION DRIVER
//*
//IVPREXX EXEC PROC=LKED
//L.SYSIN DD *

INCLUDE RESLIB(DFSREXX0)
ENTRY DFSREXX0
NAME IVPREXX(R)

/*

REXX Transaction Programs

Chapter 11. IMS Adapter for REXX 401

region. SYSTSIN is optional; however, you will receive an error message if you
issue a PULL from an empty stack and SYSTSIN is not allocated. Figure 61 shows
the JCL necessary for MPP region that runs the IVPREXX sample EXEC.

IMS Adapter for REXX Overview Diagram
Figure 62 on page 403 shows the IMS adapter for REXX environment at a high
level. This figure shows how the environment is structured under the IMS program
controller, and some of the paths of interaction between the components of the
environment.

//IVP32M11 EXEC PROC=DFSMPR,TIME=(1440),
// AGN=IVP, AGN NAME
// NBA=6,
// OBA=5,
// SOUT='*', SYSOUT CLASS
// CL1=001, TRANSACTION CLASS 1
// CL2=000, TRANSACTION CLASS 2
// CL3=000, TRANSACTION CLASS 3
// CL4=000, TRANSACTION CLASS 4
// TLIM=10, MPR TERMINATION LIMIT
// SOD=, SPIN-OFF DUMP CLASS
// IMSID=IVP1, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
// PWFI=Y PSEUDO=WFI
//*
//* ADDITIONAL DD STATEMENTS
//*
//DFSCTL DD DISP=SHR,
// DSN=IVPSYS32.PROCLIB(DFSSBPRM)
//DFSSTAT DD SYSOUT=*
//* REXX EXEC SOURCE LOCATION
//SYSEXEC DD DISP=SHR,
// DSN=IVPIVP32.INSTALIB
// DD DISP=SHR,
// DSN=IVPSYS32.DFSEXEC
//* REXX INPUT LOCATION WHEN STACK IS EMPTY
//SYSTSIN DD *
/*
//* REXX OUTPUT LOCATION
//SYSTSPRT DD SYSOUT=*
//* COBOL OUTPUT LOCATION
//SYSOUT DD SYSOUT=*

Figure 61. JCL Code Used to Run the IVPREXX Sample Exec

REXX Transaction Programs

402 IMS/ESA V6 Appl Pgm: TM

IVPREXX Sample Application
Figure 61 on page 402 shows the JCL needed to use IVPREXX from an MPP
region. This EXEC can also be run from message-driven BMPs or IFP regions.

To use the IVPREXX driver sample program in a message-driven BMP or IFP
environment, specify IVPREXX as the program name and PSB name in the IMS
region program’s parameter list. Specifying IVPREXX loads the IVPREXX load
module, which is a copy of the DFSREXX0 front-end program. The IVPREXX
program loads and runs an EXEC named IVPREXX that uses message segments
sent to the transaction as arguments to derive the EXEC to call or the function to
perform.

Interactions with IVPREXX from an IMS terminal are shown in the following
examples:

IVPREXX Example 1
Entry:

IVPREXX execname

or
IVPREXX execname arguments

Response:
EXEC execname ended with RC= x

IVPREXX Example 2
Entry:

IVPREXX LEAVE

Response:
Transaction IVPREXX leaving dependent region.

Figure 62. IMS Adapter for REXX Logical Overview Diagram

REXX Transaction Programs

Chapter 11. IMS Adapter for REXX 403

IVPREXX Example 3
Entry:

IVPREXX HELLOHELLO

Response:
One-to-eight character EXEC name must be specified.

IVPREXX Example 4
Entry:

IVPREXX

or
IVPREXX ?

Response:
TRANCODE EXECNAME <Arguments> Run specified EXEC
TRANCODE LEAVE Leave Dependent Region
TRANCODE TRACE level 0=None,1=Some,2=More,3=Full
TRANCODE ROLL Issue ROLL call

When an EXEC name is supplied, all of the segments it inserts to the I/O PCB are
returned before the completion message is returned.

REXX return codes (RC) in the range of 20000 to 20999 are usually syntax or other
REXX errors, and you should check the MVS system console or region output for
more details.

Related Reading: See TSO/E Version 2 Procedures Language MVS/REXX
Reference for more information on REXX errors and messages.

Stopping an Infinite Loop: To stop an EXEC that is in an infinite loop, you can
enter either of the following IMS commands from the master terminal or system
console:

/STO REGION p1 ABDUMP p2

/STO REGION p1 CANCEL

In these examples, p1 is the region number and p2 is the TRANCODE that the
EXEC is running under. Use the /DISPLAY ACTIVE command to find the region
number. This technique is not specific to REXX EXECs and can be used on any
transaction that is caught in an infinite loop.

Related Reading: See IMS/ESA Operator’s Reference for more information on
these commands and others to help in this situation.

REXXTDLI Commands
The following section contains REXX commands and describes how they apply to
DL/I calls. The terms command and call can be used interchangeably when
explaining the REXXTDLI environment. However, the term command is used
exclusively when explaining the REXXIMS environment. For consistency, call is
used when explaining DL/I, and command is used when explaining REXX.

REXX Transaction Programs

404 IMS/ESA V6 Appl Pgm: TM

Addressable Environments
To issue commands in the IMS adapter for REXX environment, you must first
address the correct environment. Two addressable environments are provided with
the IMS adapter for REXX. The environments are as follows:

REXXTDLI Used for standard DL/I calls, for example GU and ISRT. The
REXXTDLI interface environment is used for all standard DL/I calls
and cannot be used with REXX-specific commands. All commands
issued to this environment are considered to be standard DL/I calls
and are processed appropriately. A GU call for this environment
could look like this:
Address REXXTDLI "GU MYPCB DataSeg"

REXXIMS Used to access REXX-specific commands (for example, WTO and
MAPDEF) in the IMS adapter for REXX environment. The REXXIMS
interface environment is used for both DL/I calls and REXX-specific
commands. When a command is issued to this environment, IMS
checks to see if it is REXX-specific. If the command is not
REXX-specific, IMS checks to see if it is a standard DL/I call. The
command is processed appropriately.

The REXX-specific commands, also called extended commands,
are REXX extensions added by the IMS adapter for the REXX
interface. A WTO call for this environment could look like this:
Address REXXIMS "WTO Message"

On entry to the scheduled EXEC, the default environment is MVS. Consequently,
you must either use ADDRESS REXXTDLI or ADDRESS REXXIMSto issue the IMS
adapter for REXX calls.

Related Reading: For general information on addressing environments, see TSO/E
Version 2 Procedures Language MVS/REXX Reference.

REXXTDLI Calls

�� dlicall
parm1 parm2 ...

��

The format of a DL/I call varies depending on call type. The parameter formats for
supported DL/I calls are shown in previous chapters of this book. The parameters
for the calls are case-independent, separated by one or more blanks, and are
generally REXX variables. See “Parameter Handling” on page 406 for detailed
descriptions.

Return Codes
If you use the AIBTDLI interface, the REXX RC variable is set to the return code
from the AIB on the DL/I call.

If you do not use the AIBTDLI interface, a simulated return code is returned. This
simulated return code is set to zero if the PCB status code was GA, GK, or ��. If
the status code had any other value, the simulated return code is X'900' or decimal
2304.

REXXTDLI Commands and Calls

Chapter 11. IMS Adapter for REXX 405

Related Reading: For more information on the AIBTDLI interface, see “Using the
AIBTDLI Interface” on page 51“Using the AIBTDLI Interface” on page 93.

Parameter Handling
The IMS adapter for REXX performs some parameter setup for application
programs in a REXX environment. This setup occurs when the application program
uses variables or maps as the parameters. When the application uses storage
tokens, REXX does not perform this setup. The application program must provide
the token and parse the results just as a non-REXX application would. For a list of
parameter types and definitions, see Table 47.

The REXXTDLI interface performs the following setup:

v The I/O area retrieval for the I/O PCB is parsed. The LL field is removed, and the
ZZ field is removed and made available by means of the REXXIMS('ZZ') function
call. The rest of the data is placed in the specified variable or map. Use the
REXX LENGTH() function to find the length of the returned data.

v The I/O area building for the I/O PCB or alternate PCB is done as follows:

– The appropriate LL field.

– The ZZ field from a preceding SET ZZ command or X'0000' if the command
was not used.

– The data specified in the passed variable or map.

v The I/O area processing for the SPA is similar to the first two items, except that
the ZZ field is 4 bytes long.

v The feedback area on the CHNG and SETO calls is parsed. The LLZZLL fields are
removed, and the remaining data is returned with the appropriate length.

v The parameters that have the LLZZ as part of their format receive special
treatment. These parameters occur on the AUTH, CHNG, INIT, ROLS, SETO, and SETS
calls. The LLZZ fields are removed when IMS returns data to you and added (ZZ
is always X'0000') when IMS retrieves data from you. In effect, your application
ignores the LLZZ field and works only with the data following it.

v The numeric parameters on XRST and symbolic CHKP are converted between
decimal and a 32-bit number (fullword) as required.

Table 47. IMS Adapter for REXX Parameter Types and Definitions

Type1 Parameter Definition

PCB PCB Identifier specified as a variable containing one of the following:

v PCB name as defined in the PSB generation on the PCBNAME=
parameter. See IMS/ESA Utilities Reference: Systemfor more
information on defining PCB names. The name can be from 1 to 8
characters long and does not have to be padded with blanks. If this
name is given, the AIBTDLI interface is used, and the return codes
and reason codes are acquired from that interface.

v An AIB block formatted to DFSAIB specifications. This variable is
returned with an updated AIB.

v A # followed by PCB offset number (#1=first PCB). Example settings
are:

– IOPCB=:"#1"

– ALTPCB=:"#2"

– DBPCB=:"#3"

The IOAREA length returned by a database DL/I call defaults to 4096
if this notation is used. The correct length is available only when the
AIBTDLI interface is used.

REXXTDLI Commands and Calls

406 IMS/ESA V6 Appl Pgm: TM

Table 47. IMS Adapter for REXX Parameter Types and Definitions (continued)

Type1 Parameter Definition

In Input variable. It can be specified as a constant, variable, *mapname2, or
!token3.

SSA Input variable with an SSA (segment search argument). It can be
specified as a constant, variable, *mapname2, or !token3.

Out Output variable to store a result after a successful command. It can be
specified as a variable, *mapname2, or !token3.

In/Out Variable that contains input on entry and contains a result after a
successful command. It can be specified as a variable, *mapname2, or
!token3.

Const Input constant. This command argument must be the actual value, not a
variable containing the value.

Note:

1. The parameter types listed above correspond to the types shown (earlier in this book)
under the specific DL/I calls, as well as to those shown in Table 48 on page 408.

All parameters specified on DL/I calls are case independent except for the values
associated with the STEM portion of the compound variable (REXX terminology for an
array-like structure). A period (.) can be used in place of any parameter and is read as a
NULL (zero length string) and written as a void (place holder). Using a period in place of
a parameter is useful when you want to skip optional parameters.

2. For more information on *mapname, see “MAPGET” on page 413 and “MAPPUT” on
page 413.

3. For more information on !token, see “STORAGE” on page 416.

Example DL/I Calls
The following example shows an ISRT call issued against the I/O PCB. It writes the
message “Hello World”.
IO = "IOPCB" /* IMS Name for I/O PCB */
OutMsg="Hello World"
Address REXXTDLI "ISRT IO OutMsg"
If RC¬=0 Then Exit 12

In this example, IO is a variable that contains the PCB name, which is the constant
“IOPCB” for the I/O PCB. If a non-zero return code (RC) is received, the EXEC
ends (Exit) with a return code of 12. You can do other processing here.

The next example gets a part from the IMS sample parts database. The part
number is "250239". The actual part keys have a "02" prefix and the key length
defined in the DBD is 17 bytes.

The following example puts the segment into the variable called Part_Segment.
PartNum = "250239"
DB = "DBPCB01"
SSA = 'PARTROOT(PARTKEY = '||Left('02'||PartNum,17)||')'
Address REXXTDLI "GU DB Part_Segment SSA"

Notes:

v In a real EXEC, you would probably find the value for PartNum from an argument
and would have to check the return code after the call.

v The LEFT function used here is a built-in REXX function. These built-in functions
are available to any IMS REXX EXEC. For more information on functions, see
TSO/E Version 2 Procedures Language MVS/REXX Reference.

REXXTDLI Commands and Calls

Chapter 11. IMS Adapter for REXX 407

v The single quote (') and double quote (") are interchangeable in REXX, as long
as they are matched.

The IMS.DFSISRC library includes the DFSSUT04 EXEC. You can use this EXEC
to process any unexpected return codes or status codes. To acquire the status code
from the last DL/I call issued, you must execute the IMSQUERY('STATUS') function.
It returns the two character status code.

Environment Determination
If you use an EXEC that runs in both IMS and non-IMS environments, check to see
if the IMS environment is available. You can check to see if the IMS environment is
available in two ways:

v Use the MVS SUBCOM command and specify either the REXXTDLI or
REXXIMS environments. The code looks like this:

Address MVS 'SUBCOM REXXTDLI'
If RC=0 Then Say "IMS Environment is Available."

Else Say "Sorry, no IMS Environment here."

v Use the PARSE SOURCE instruction of REXX to examine the address space
name (the 8th word). If it is running in an IMS environment, the token will have
the value IMS. The code looks like this:

Parse Source Token .
If Token='IMS' Then Say "IMS Environment is Available."

Else Say "Sorry, no IMS Environment here."

REXXIMS Extended Commands
The IMS adapter for REXX gives access to the standard DL/I calls and it supplies a
set of extended commands for the REXX environment. These commands are listed
in Table 48 and are available when you ADDRESS REXXIMS. DL/I calls are also
available when you address the REXXIMS environment.

Table 48 shows the extended commands. The following pages contain detailed
descriptions of each command.

Table 48. REXXIMS Extended Commands

Command Parameter Types 1

DLIINFO Out [PCB]

IMSRXTRC In

MAPDEF Const In [Const]

MAPGET Const In

MAPPUT Const Out

SET Const In

SRRBACK Out

SRRCMIT Out

STORAGE Const Const [In [Const]]

WTO In

WTP In

WTL In

WTOR In Out

REXXTDLI Commands and Calls

408 IMS/ESA V6 Appl Pgm: TM

Table 48. REXXIMS Extended Commands (continued)

Command Parameter Types 1

Note:

1. The parameter types listed correspond to the types shown in Table 47 on page 406.

All parameters specified on DL/I calls are case-independent except for the values
associated with the STEM portion of the compound variable (REXX terminology for an
array-like structure). A period (.) can be used in place of any parameter and has the
effect of a NULL (zero length string) if read and a void (place holder) if written. Use a
period in place of a parameter to skip optional parameters.

DLIINFO
The DLIINFO call requests information from the last DL/I call or on a specific PCB.

Format

�� DLIINFO infoout
pcbid

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DLIINFO X X X X X

Usage
The infoout variable name is a REXX variable that is assigned the DL/I information.
The pcbid variable name, when specified as described in “Parameter Handling” on
page 406, returns the addresses associated with the specified PCB and its last
status code.

The format of the returned information is as follows:

Word Description

1 Last DL/I call ('.' if N/A)

2 Last DL/I PCB name (name or #number, '.' if N/A)

3 Last DL/I AIB address in hexadecimal (00000000 if N/A)

4 Last DL/I PCB address in hexadecimal (00000000 if N/A)

5 Last DL/I return code (0 if N/A)

6 Last DL/I reason code (0 if N/A)

7 Last DL/I call status ('.' if blank or N/A)

Example
Address REXXIMS 'DLIINFO MyInfo' /* Get Info */
Parse Var MyInfo DLI_Cmd DLI_PCB DLI_AIB_Addr DLI_PCB_Addr,

DLI_RC DLI_Reason DLI_Status .

Always code a period after the status code (seventh word returned) when parsing to
allow for transparent additions in the future if needed. Words 3, 4, and 7 can be
used when a pcbid is specified on the DLIINFO call.

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 409

IMSRXTRC
The IMSRXTRC command is used primarily for debugging. It controls the tracing
action taken (that is, how much trace output via SYSTSPRT is sent to the user)
while running a REXX program.

Format

�� IMSRXTRC level ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSRXTRC X X X X X

Usage
The level variable name can be a REXX variable or a digit, and valid values are
from 0 to 9. The initial value at EXEC start-up is 1 unless it is overridden by the
user Exit. See “Chapter 12. IMS Adapter for REXX Exit Routine” on page 421.
Traced output is sent to the DDNAME SYSTSPRT.

The IMSRXTRC command can be used in conjunction with or as a replacement for
normal REXX tracing (TRACE).

Level Description

0 Trace errors only.

1 The previous level and trace DL/I calls, their return codes, and environment
status (useful for flow analysis).

2 All the previous levels and variable sets.

3 All the previous levels and variable fetches (useful when diagnosing
problems).

4-7 All previous levels.

8 All previous levels and parameter list to/from standard IMS language
interface. See message DFS3179 in IMS/ESA Messages and Codes.

9 All previous levels.

Example
Address REXXIMS 'IMSRXTRC 3'

IMSRXTRC is independent of the REXX TRACE instruction.

MAPDEF
The MAPDEF command makes a request to define a data mapping.

Format

�� MAPDEF mapname <A>
REPLACE

��

REXXIMS Extended Commands

410 IMS/ESA V6 Appl Pgm: TM

<A>:

:

variable C length
V * startpos
B length
P .digit
Z

· C length
*

:

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPDEF X X X X X

Usage
Data mapping is an enhancement added to the REXXIMS interface. Because REXX
does not offer variable structures, parsing the fields from your database segments
or MFS output maps can be time consuming, especially when data conversion is
necessary. The MAPDEF, MAPGET, and MAPPUT commands allow simple extraction of
most formatted data.

v mapname is a 1- to 16-character case-independent name.

v definition (<A>) is a variable containing the map definition.

v REPLACE, if specified, indicates that a replacement of an existing map name is
allowed. If not specified and the map name is already defined, an error occurs
and message DFS3171E is sent to the SYSTPRT.

The map definition has a format similar to data declarations in other languages, with
simplifications for REXX. In this definition, you must declare all variables that you
want to be parsed with their appropriate data types. The format is shown in <A> in
the syntax diagram.

Variable name: The variable name variable is a REXX variable used to contain
the parsed information. Variable names are case-independent. If you use a STEM
(REXX terminology for an array-like structure) variable, it is resolved at the time of
use (at the explicit or implicit MAPGET or MAPPUT call time), and this can be very
powerful. If you use an index type variable as the STEM portion of a compound
variable, you can load many records into an array simply by changing the index
variable. Map names or tokens cannot be substituted for variable names inside a
map definition.

Repositioning the internal cursor: A period (.) can be used as a variable place
holder for repositioning the internal cursor position. In this case, the data type must
be C, and the length can be negative, positive, or zero. Use positive values to skip
over fields of no interest. Use negative lengths to redefine fields in the middle of a
map without using absolute positioning.

The data type values are:

C Character

V Variable

B Binary (numeric)

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 411

Z Zoned Decimal (numeric)

P Packed Decimal (numeric)

All numeric data types can have a period and a number next to them. The number
indicates the number of digits to the right of a decimal point when converting the
number.

Length value: The length value can be a number or an asterisk (*), which
indicates that the rest of the buffer will be used. You can only specify the length
value for data types C and V. Data type V maps a 2-byte length field preceding the
data string, such that a when the declared length is 2, it takes 4 bytes.

Valid lengths for data types are:

C 1 to 32767 bytes or *

V 1 to 32765 bytes or *

B 1 to 4 bytes

Z 1 to 12 bytes

P 1 to 6 bytes

If a value other than asterisk (*) is given, the cursor position is moved by that value.

The startpos value resets the parsing position to a fixed location. If startpos is
omitted, the column to the right of the previous map variable definition (cursor
position) is used. If it is the first variable definition, column 1 is used.

Note: A length of asterisk (*) does not move the cursor position, so a variable
declared after one with a length of asterisk (*) without specifying a start
column overlays the same definition.

Example
This example defines a map named DBMAP, which is used implicitly on a GU call by
placing an asterisk (*) in front of the map name.
DBMapDef = 'RECORD C * :', /* Pick up entire record */

'NAME C 10 :', /* Cols 1-10 hold the name */
'PRICE Z.2 6 :', /* Cols 11-16 hold the price */
'CODE C 2 :', /* Cols 11-16 hold the code */
'. C 25 :', /* Skip 25 columns */
'CATEGORY B 1' /* Col 42 holds category */

Address REXXIMS 'MAPDEF DBMAP DBMapDef'

...
Address REXXTDLI 'GU DBPCB *DBMAP' /* Read and decode a segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Say CODE /* Can now access any Map Variable*/

The entire segment retrieved on the GU call is placed in RECORD. The first 10
characters are placed in NAME, and the next 6 are converted from zoned decimal
to EBCDIC with two digits to the right of the decimal place and placed in PRICE.
The next 2 characters are placed in CODE, the next 25 are skipped, and the next
character is converted from binary to EBCDIC and placed in CATEGORY. The 25
characters that are skipped are present in the RECORD variable.

REXXIMS Extended Commands

412 IMS/ESA V6 Appl Pgm: TM

MAPGET
The MAPGET command is a request to parse or convert a buffer into a specified data
mapping previously defined with the MAPDEF command.

Format

�� MAPGET mapname buffer ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPGET X X X X X

Usage
The mapname variable name specifies the data mapping to use. It is a 1- to
16-character case-independent name. The buffer variable name is the REXX
variable containing the data to parse.

Map names can also be specified in the REXXTDLI calls in place of variable names
to be set or written. This step is called an implicit MAPGET. Thus, the explicit (or
variable dependent) MAPGET call can be avoided. To indicate that a Map name is
being passed in place of a variable in the DL/I call, precede the name with an
asterisk (*), for example, 'GU IOPCB *INMAP'.

Examples
This example uses explicit support.
Address REXXTDLI 'GU DBPCB SegVar'
If RC=0 Then Signal BadCall /* Check for failure */
Address REXXIMS 'MAPGET DBMAP SegVar'/* Decode Segment */
Say VAR_CODE /*Can now access any Map Variable */

This example uses implicit support.
Address REXXTDLI 'GU DBPCB *DBMAP' /* Read and decode segment if read*/
If RC=0 Then Signal BadCall /* Check for failure */
Say VAR_CODE /* Can now access any Map Variable*/

If an error occurs during a MAPGET, message DFS3172I is issued. An error could
occur when a Map is defined that is larger than the input segment to be decoded or
during a data conversion error from packed or zoned decimal format. The program
continues, and an explicit MAPGET receives a return code 4. However, an implicit
MAPGET (on a REXXTDLI call, for example) does not have its return code affected.
Either way, the failing variable’s value is dropped by REXX.

MAPPUT
This MAPPUT command makes a request to pack or concatenate variables from a
specified Data Mapping, defined by the MAPDEF command, into a single variable.

Format

�� MAPPUT mapname buffer ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPPUT X X X X X

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 413

Usage
The mapname variable name specifies the data mapping to use, a 1- to
16-character case-independent name. The buffer variable name is the REXX
variable that will contain the resulting value.

Map names can also be specified in the REXXTDLI call in place of variable names
to be fetched or read. This step is called an implicit MAPPUT and lets you avoid the
explicit MAPPUT call. To indicate that a Map name is being passed in the DL/I call,
precede the name with an asterisk (*), for example, 'ISRT IOPCB *OUTMAP'.

Note: If the data mapping is only partial and some fields in the record are not
mapped to REXX variables, then the first field in the mapping should be a
character type of length asterisk (*), as shown in the “Example” on page 412.
This step is the only way to ensure that non-mapped (skipped) fields are not
lost between the MAPGET and MAPPUT calls, whether they be explicit or implicit.

Examples
This example uses explicit support.
Address REXXTDLI
'GHU DBPCB SegVar SSA1' /* Read segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Address REXXIMS 'MAPGET DBMAP SegVar' /* Decode Segment */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */
Address REXXIMS 'MAPPUT DBMAP SegVar' /* Encode Segment */
'REPL DBPCB SegVar' /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

This example uses implicit support.
Address REXXTDLI
'GHU DBPCB *DBMAP SSA1' /* Read and decode segment if read */
If RC¬=0 Then Signal BadCall /* Check for failure */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */
'REPL DBPCB *DBMAP' /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

If an error occurs during a MAPPUT, such as a Map field defined larger than the
variable’s contents, then the field is truncated. If the variable’s contents are shorter
than the field, the variable is padded:

Character (C) Padded on right with blanks

Character (V) Padded on right with zeros

Numeric (B,Z,P) Padded on the left with zeros

If a MAP variable does not exist when a MAPPUT is processed, the variable and its
position are skipped. All undefined and skipped fields default to binary zeros. A null
parameter is parsed normally. Conversion of non-numeric or null fields to numeric
field results in a value of 0 being used and no error.

SET
The SET command resets AIB subfunction values and ZZ values before you issue a
DL/I call.

Format

REXXIMS Extended Commands

414 IMS/ESA V6 Appl Pgm: TM

�� SET SUBFUNC variable
ZZ variable

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SET X X X X X

Usage
The SET SUBFUNC command sets the AIB subfunction used on the next DL/I call.
This value is used only if the next REXXTDLI call passes a PCB name. If the call
does pass a PCB name, the IMS adapter for REXX places the subfunction name (1
to 8 characters or blank) in the AIB before the call is issued. This value initially
defaults to blanks and is reset to blanks on completion of any REXXTDLI DL/I call.
For more information on subfunctions, see the appropriate chapters in this book.

The SET ZZ command is used to set the ZZ value used on a subsequent DL/I call.
This command is most commonly used in IMS conversational transactions and
terminal dependent applications to set the ZZ field to something other than the
default of binary zeros. Use the SET command before an ISRT call that requires
other than the default ZZ value. For more explanation on ZZ processing, see
“Parameter Handling” on page 406.

Examples
This example shows the SET SUBFUNC command used with the INQY call to get
environment information.
IO="IOPCB"
Func = "ENVIRON" /* Sub-Function Value */
Address REXXIMS "SET SUBFUNC Func" /* Set the value */
Address REXXTDLI "INQY IO EnviData" /* Make the DL/I Call */
IMS_Identifier = Substr(EnviData,1,8) /* Get IMS System Name*/

This example shows the SET ZZ command used with a conversational transaction
for SPA processing.
Address REXXTDLI 'GU IOPCB SPA' /* Get first Segment */
Hold_ZZ = IMSQUERY('ZZ') /* Get ZZ Field (4 bytes) */

...
Address REXXIMS 'SET ZZ Hold_ZZ' /* Set ZZ for SPA ISRT */
Address REXXTDLI 'ISRT IOPCB SPA' /* ISRT the SPA */

This example shows the SET ZZ command used for setting 3270 Device
Characteristics Flags.
Bell_ZZ = '0040'X /* ZZ to Ring Bell on Term */
Address REXXIMS 'SET ZZ Bell_ZZ' /* Set ZZ for SPA ISRT */
Address REXXTDLI 'ISRT IOPCB Msg' /* ISRT the Message */

SRRBACK and SRRCMIT
The Common Programming Interface Resource Recovery (CPI-RR) commands
allow an interface to use the SAA resource recovery interface facilities for back-out
and commit processing.

Format

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 415

�� SRRBACK return_code
SRRCMIT return_code

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SRRBACK,
SRRCMIT

X X

Usage
The return code from the SRR command is returned and placed in the return_code
variable name as well as the REXX variable RC.

For more information on SRRBACK and SRRCMIT, see IMS/ESA Administration Guide:
Transaction Managerand System Application Architecture Common Programming
Interface: Resource Recovery Reference.

STORAGE
The STORAGE command allows the acquisition of system storage that can be used in
place of variables for parameters to REXXTDLI and REXXIMS calls.

Format

�� STORAGE OBTAIN !token length
KEEP
BELOW

RELEASE !token

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STORAGE X X X X X

Usage
Although REXX allows variables to start with characters (!) and (#), these
characters have special meanings on some commands. When using the REXXTDLI
interface, you must not use these characters as the starting characters of variables.

The !token variable name identifies the storage, and it consists of an exclamation
mark followed by a 1- to 16-character case-independent token name. The length
variable name is a number or variable containing size in decimal to OBTAIN in the
range 4 to 16777216 bytes (16 MB). The storage class has two possible override
values, BELOW and KEEP, of which only one can be specified for any particular
token. The BELOW function acquires the private storage below the 16 MB line. The
KEEP function marks the token to be kept after this EXEC is terminated. The
default action gets the storage in any location and frees the token when the EXEC
is terminated.

Use the STORAGE command to get storage to use on DL/I calls when the I/O area
must remain in a fixed location (for example, Spool API) or when it is not desirable
to have the LLZZ processing. For more information on LLZZ processing, see
“Parameter Handling” on page 406. Once a token is allocated, you can use it in
REXXTDLI DL/I calls or on the STORAGE RELEASE command.

Note the following when using STORAGE:

REXXIMS Extended Commands

416 IMS/ESA V6 Appl Pgm: TM

v When used on DL/I calls, none of the setup for LLZZ fields takes place. You must
fill the token in and parse the results from it just as required by a non-REXX
application.

v You cannot specify both KEEP and BELOW on a single STORAGE command.

v The RELEASE function is only necessary for tokens marked KEEP. All tokens not
marked KEEP and not explicitly released by the time the EXEC ends are
released automatically by the IMS adapter for REXX.

v When you use OBTAIN, the entire storage block is initialized to 0.

v The starting address of the storage received is always on the boundary of a
double word.

v You cannot re-obtain a token until RELEASE is used or the EXEC that obtained
it, non-KEEP, terminates. If you try, a return code of -9 is given and the error
message DFS3169 is issued.

v When KEEP is specified for the storage token, it can be accessed again when
this EXEC or another EXEC knowing the token’s name is started in the same
IMS region.

v Tokens marked KEEP are not retained when an ABEND occurs or some other
incident occurs that causes region storage to be cleared. It is simple to check if
the block exists on entry with the IMSQUERY(!token) function. For more
information, see “IMSQUERY Extended Functions” on page 418.

Example
This example shows how to use the STORAGE command with Spool API.
/* Get 4K Buffer below the line for Spool API Usage */
Address REXXIMS 'STORAGE OBTAIN !MYTOKEN 4096 BELOW'
/* Get Address and length (if curious) */
Parse Value IMSQUERY('!MYTOKEN') With My_Token_Addr My_Token_Len.
Address REXXIMS 'SETO ALTPCB !MYTOKEN SETOPARMS SETOFB'

...
Address REXXIMS 'STORAGE RELEASE !MYTOKEN'

WTO, WTP, and WTL
The WTO command is used to write a message to the operator. The WTP command is
used to write a message to the program (WTO ROUTCDE=11). The WTL command
is used to write a message to the console log.

Format

�� WTO message
WTP message
WTL message

��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTO, WTP,
WTL

X X X X X

Usage
The message variable name is a REXX variable containing the text that is stored
displayed in the appropriate place.

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 417

Example
This example shows how to write a simple message stored the REXX variable
MSG.
Msg = 'Sample output message.' /* Build Message */
Address REXXIMS 'WTO Msg' /* Tell Operator */
Address REXXIMS 'WTP Msg' /* Tell Programmer */
Address REXXIMS 'WTL Msg' /* Log It */

WTOR
The WTOR command requests input or response from the MVS system operator.

Format

�� WTOR message response ��

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTOR X X X X X

Usage
The message variable name is a REXX variable containing the text that will be
displayed on the MVS console. The operator's response is placed in the REXX
variable signified by the response variable name.

Attention: This command hangs the IMS region in which it is running until the
operator responds.

Example
This example prompts the operator to enter ROLL or CONT on the MVS master or
alternate console. Once the WTOR is answered, the response is placed in the REXX
variable name response, and the EXEC will continue and process the IF statement
appropriately.
Msg = 'Should I ROLL or Continue. Reply "ROLL" or "CONT"'
Address REXXIMS 'WTOR Msg Resp' /* Ask Operator */
If Resp = 'ROLL' Then /* Tell Programmer */

Address REXXTDLI 'ROLL' /* Roll Out of this */

IMSQUERY Extended Functions
The IMSQUERY function is available to query certain IMS information either on the
environment or on the prior DL/I call.

Format

�� IMSQUERY (FEEDBACK
IMSRXTRC
REASON
SEGLEVEL
SEGNAME
STATUS
TRANCODE
USERID
ZZ
!token

) ��

REXXIMS Extended Commands

418 IMS/ESA V6 Appl Pgm: TM

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSQUERY X X X X X

Usage
The format of the function call is: IMSQUERY('Argument') where Argument is one of
the following values:

Argument Description of Data Returned

FEEDBACK FEEDBACK area from current PCB.

IMSRXTRC Current IMSRXTRC trace level #.

REASON Reason code from last call (from AIB if used on last
REXXTDLI type call).

SEGLEVEL Segment level from current PCB (Last REXXTDLI
call must be against a DB PCB, or null is returned).

SEGNAME Segment name from current PCB (Last REXXTDLI
call must be against a DB PCB, or null is returned).

STATUS IMS status code from last executed REXXTDLIcall
(DL/I call). This argument is the two character
status code from the PCB.

TRANCODE Current transaction code being processed, if
available.

USERID Input terminal’s user ID, if available. If running in a
non-message-driven region, the value is dependent
on the specification of the BMPUSID= keyword in
the DFSDCxxx PROCLIB member:

v If BMPUSID=USERID is specified, the value from
the USER= keyword on the JOB statement is
used.

v If USER= is not specified on the JOB statement,
the program’s PSB name is used.

v If BMPUSID=PSBNAME is specified, or if
BMPUSID= is not specified at all, the program’s
PSB name is used.

ZZ ZZ (of LLZZ) from last REXXTDLI command. This
argument can be used to save the ZZ value after
you issue a GU call to the I/O PCB when the
transaction is conversational.

!token Address (in hexadecimal) and length of specified
token (in decimal), separated by a blank.

This value can be placed in a variable or resolved from an expression. In these
cases, the quotation marks should be omitted as shown below:
Token_Name="!MY_TOKEN"
AddrInfo=IMSQUERY(Token_Name)

/* or */
AddrInfo=IMSQUERY("!MY_TOKEN")

REXXIMS Extended Commands

Chapter 11. IMS Adapter for REXX 419

Although the function argument is case-independent, no blanks are allowed within
the function argument. You can use the REXX STRIP function on the argument, if
necessary. IMSQUERY is the preferred syntax, however REXXIMS is supported
and can be used, as well.

Example
If REXXIMS('STATUS')='GB' Then Signal End_Of_DB...
Hold_ZZ = IMSQUERY('ZZ') /* Get current ZZ field*/...
Parse Value IMSQUERY('!MYTOKEN') With My_Token_Addr My_Token_Len .

REXXIMS Extended Commands

420 IMS/ESA V6 Appl Pgm: TM

Chapter 12. IMS Adapter for REXX Exit Routine

You can use a user exit routine (DFSREXXU) with the IMS adapter for the REXX
environment. It is optional and can be omitted from the link-edit step. The user exit
routine is used more for an installation than for a specific exec. The user exit
routine is provided by the IMS adapter for REXX and is called only when a new
REXX transaction is scheduled and ends. The user exit is not associated with the
standard REXX exits provided by TSO. A sample user exit routine (DFSREXXU) is
shipped with IMS (in source code only). For the latest version of the DFSREXXU
source code , see the IMS.SVSOURSE distribution library; member name is
DFSREXXU.

The exit routine gets control before the environment is built, just before an exec is
executed, and just after it ends. The routine has the ability to do the following:

v Override the exec name to be executed. This name defaults to the IMS program
name.

v Choose not to execute any exec and have the IMS adapter for REXX return to
IMS.

It is the exit routine’s responsibility to do any required processing such as issuing
a GU (Get-Unique) call if the region type is MPP.

v Issue DL/I calls using the AIB interface as part of its logic in determining what
exec to execute.

v Set REXX variables (through IRXEXCOM) before the exec is started. The
variables are then available to the exec.

v Extract REXX variables (through IRXEXCOM) after the exec ends. These
variables were set earlier by the exec or exit routine.

v Change the initial default IMSRXTRC tracing level.

The user exit routine must conform to all of the restrictions that apply to IMS
application programs.

In this Chapter:

v “Environment”

v “Parameters”

Environment
The user exit routine must be named DFSREXXU and be link-edited with
DFSREXX1 during installation of the IMS adapter for REXX. The routine must be
written to be reentrant (RENT), AMODE 31, RMODE ANY.

Parameters
Entry parameters are:

R0 Pointer to REXX Environment Block as described in TSO/E Version 2
Procedures Language MVS/REXX Reference

R1 Pointer to parameter list

R13 Pointer to save area

R14 Return address

R15 Entry point address

© Copyright IBM Corp. 1974, 2000 421

Upon exit, all registers except R15 must be restored. Only the parameters can be
altered. The content of R15 is ignored on exit.

The parameter list contains a list of pointers to the parameters. All character data is
left justified and padded with blanks, if necessary. Omitted fields are set to blanks.
All fields are read-only unless otherwise specified. Table 49 on page 422 shows the
user exit parameter list format.

Table 49. User Exit Parameter List

Name Offset
(Dec)

Data Type Length
(Dec)

Description

Function 0 Pointer 4 Pointer to one word function type.
Func=0 on Setup Call, Func=1 on
Entry Call, Func=2 on Exit Call.

EXECParm1 4 Pointer 4 Pointer to 128-byte area containing
parameters that are passed to the
REXX interpreter. The format of
the area is a halfword length field
contains the length of the text
string that follows. The first blank
separated word or the entire string
if no blanks are present is the exec
name to execute. On entry this
field is set to the program name
followed by one blank and the
transaction code if available. The
exit can rebuild this field when
called on entry to alter the exec
name and/or parameters that are
passed. The length field can be set
to zero indicating no exec is to be
executed.

PgmName1 8 Pointer 4 Pointer to 8-byte area containing
the Program name that was
scheduled.

TranCode1 12 Pointer 4 Pointer to 8-byte area containing
the Transaction Code that was
scheduled, if available
(MPP,BMP,IFP).

User_ID1 16 Pointer 4 Pointer to 8-byte area containing
the current user ID for the
scheduled program, if available
(MPP,BMP,IFP).

IMSRXTRC 20 Pointer 4 Pointer to one word IMSRXTRC
level. This value defaults to 1 at
exec start-up but can be
overridden by the user exit. See
“IMSRXTRC” on page 410 for
more information on values. Note
that the level field here is a
FULLWORD and not EBCDIC.

Parameters

422 IMS/ESA V6 Appl Pgm: TM

Table 49. User Exit Parameter List (continued)

Name Offset
(Dec)

Data Type Length
(Dec)

Description

UserArea 24 Pointer 4 Pointer to 8-byte (word aligned)
user area that is passed on entry
and is preserved verbatim on exit.
This field is set to binary zeros
whenever the REXX environment
is built in the dependent region.
The user area can be altered by
the user exit and is provided as an
anchor.

RetCode 28 Pointer 4 Pointer to one word return code.
The return code must be set to
zero.

Note:

1. When on a Setup call the next four parameters are not available; their addresses are 0.

For each user exit parameter described in Table 49 on page 422, Figure 63 shows
the corresponding DFSREXXU parameter.

Figure 63. DFSREXXU Parameter List

Parameters

Chapter 12. IMS Adapter for REXX Exit Routine 423

Parameters

424 IMS/ESA V6 Appl Pgm: TM

Chapter 13. Sample Execs Using REXXTDLI

This chapter shows samples of REXX execs that use REXXTDLI to access IMS
services.

The example sets are designed to highlight various features of writing IMS
applications in REXX. The samples in this chapter are simplified and might not
reflect actual usage (for example, they do not use databases).

The PART exec database access example is a set of three execs that access the
PART database, which is built by the IMS installation verification program (IVP). The
first two execs in this example, PARTNUM and PARTNAME, are extensions of the
PART transaction that runs the program DFSSAM02, which is supplied with IMS as
part of IVP. The third exec is the DFSSAM01 exec supplied with IMS and is an
example of the use of EXECIO within an exec.

In this Chapter:

v “SAY Exec: For Expression Evaluation”

v “PCBINFO Exec: Display PCBs Available in Current PSB” on page 426

v “PART Execs: Database Access Example” on page 429

v “DOCMD: IMS Commands Front End” on page 432

v “IVPREXX: MPP/IFP Front End for General Exec Execution” on page 436

SAY Exec: For Expression Evaluation
Figure 64 is a listing of the SAY exec. SAY evaluates an expression supplied as an
argument and displays the results. The REXX command INTERPRET is used to
evaluate the supplied expression and assign it to a variable. Then that variable is
used in a formatted reply message.

This exec shows an example of developing applications with IMS Adapter for
REXX. It also shows the advantages of REXX, such as dynamic interpretation,
which is the ability to evaluate a mathematical expression at run-time.

A PDF EDIT session is shown in Figure 65 on page 426. This figure shows how you
can enter a new exec to be executed under IMS.

/* EXEC TO DO CALCULATIONS */
Address REXXTDLI
Arg Args
If Args='' Then

Msg='SUPPLY EXPRESSION AFTER EXEC NAME.'
Else Do

Interpret 'X='Args /* Evaluate Expression */
Msg='EXPRESSION:' Args '=' X

End
'ISRT IOPCB MSG'
Exit RC

Figure 64. Exec To Do Calculations

© Copyright IBM Corp. 1974, 2000 425

To execute the SAY exec, use IVPREXX and supply an expression such as:
IVPREXX SAY 5*5+7

This expression produces the output shown in Figure 66.

PCBINFO Exec: Display PCBs Available in Current PSB
The PCB exec maps the PCBs available to the exec, which are the PCBs for the
executing PSB. The mapping consists of displaying the type of PCB (IO, TP, or DB),
the LTERM or DBD name that is associated, and other useful information. Mapping
displays this information by using the PCB function described in “DLIINFO” on
page 409. Example output screens are shown in Figure 67 and Figure 68 on
page 427. The listing is shown in Figure 69 on page 428. PCB mappings are
created by placing DFSREXX0 in an early concatenation library and renaming it to
an existing application with a PSB/DBD generation.

EDIT ---- USER.PRIVATE.PROCLIB(SAY) - 01.03 ------------------ COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 /* EXEC TO DO CALCULATIONS */
000002 Address REXXTDLI
000003 Arg Args
000004 If Args='' Then
000005 Msg='SUPPLY EXPRESSION AFTER EXEC NAME.'
000006 Else Do
000007 Interpret 'X='Args /* Evaluate Expression */
000008 Msg='EXPRESSION:' Args '=' X
000009 End
000010
000011 'ISRT IOPCB MSG'
000012 Exit RC
****** **************************** BOTTOM OF DATA ****************************

Figure 65. PDF EDIT Session on the SAY Exec

EXPRESSION: 5*5+7 = 32
EXEC SAY ended with RC= 0

Figure 66. Example Output from the SAY Exec

IMS PCB System Information Exec: PCBINFO
System Date: 09/26/92 Time: 15:52:15

PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
Date=91269 Time=1552155

PCB # 2: Type=TP, LTERM=* NONE * Status=AD
PCB # 3: Type=TP, LTERM=* NONE * Status=
PCB # 4: Type=TP, LTERM=CTRL Status=
PCB # 5: Type=TP, LTERM=T3275 Status=
EXEC PCBINFO ended with RC= 0

Figure 67. Example Output of PCBINFO Exec on a PSB without Database PCBs.

SAY Exec

426 IMS/ESA V6 Appl Pgm: TM

IMS PCB System Information Exec: PCBINFO
System Date: 09/26/92 Time: 15:53:34

PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
Date=89320 Time=1553243

PCB # 2: Type=DB, DBD =DI21PART Status= Level=00 Opt=G
EXEC PCBINFO ended with RC= 0

Figure 68. Example Output of PCBINFO Exec on a PSB with a Database PCB.

PCBINFO Exec

Chapter 13. Sample Execs Using REXXTDLI 427

/* REXX EXEC TO SHOW SYSTEM LEVEL INFO */
Address REXXTDLI
Arg Dest .
WTO=(Dest='WTO')
Call SayIt 'IMS PCB System Information Exec: PCBINFO'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '
/* A DFS3162 message is given when this exec is run because it does */
/* not know how many PCBs are in the list and it runs until it gets */
/* an error return code. Note this does not show PCBs that are */
/* available to the PSB by name only, i.e. not in the PCB list. */
Msg='PCBINFO: Error message normal on DLIINFO.'
'WTP MSG'
Do i=1 by 1 until Result='LAST'

Call SayPCB i
End
Exit 0

SayPCB: Procedure Expose WTO
Arg PCB
'DLIINFO DLIINFO #'PCB /* Get PCB Address */
If rc<0 Then Return 'LAST' /* Invalid PCB Number */
Parse Var DLIInfo . . AIBAddr PCBAddr .
PCBINFO=Storage(PCBAddr,255) /* Read PCB */
DCPCB=(Substr(PCBInfo,13,1)='00'x) /* Date Field, must be DC PCB */
If DCPCB then Do

Parse Value PCBInfo with,
LTERM 9 . 11 StatCode 13 CurrDate 17 CurrTime 21,
InputSeq 25 OutDesc 33 UserID 41

If LTERM='' then LTERM='* NONE *'
CurrDate=Substr(c2x(CurrDate),3,5)
CurrTime=Substr(c2x(CurrTime),1,7)
If CurrDate¬='000000' then Do

Call SayIt 'PCB #'Right(PCB,2)': Type=IO, LTERM='LTERM,
'Status='StatCode 'UserID='UserID 'OutDesc='OutDesc

Call SayIt ' Date='CurrDate 'Time='CurrTime
End
Else

Call SayIt 'PCB #'Right(PCB,2)': Type=TP, LTERM='LTERM,
'Status='StatCode

End
Else Do

Parse Value PCBInfo with,
DBDName 9 SEGLev 11 StatCode 13 ProcOpt 17 . 21 Segname . 29,
KeyLen 33 NumSens 37

KeyLen = c2d(KeyLen)
NumSens= c2d(NumSens)

Call SayIt 'PCB #'Right(PCB,2)': Type=DB, DBD ='DBDName,
'Status='StatCode 'Level='SegLev 'Opt='ProcOpt

End
Return '

SayIt: Procedure Expose WTO
Parse Arg Msg
If WTO Then

'WTO MSG'
Else

'ISRT IOPCB MSG'
Return

Figure 69. PCBINFO Exec Listing

PCBINFO Exec

428 IMS/ESA V6 Appl Pgm: TM

PART Execs: Database Access Example
This set of execs accesses the PART database shipped with IMS. These execs
demonstrate fixed-record database reading, SSAs, and many REXX functions. The
PART database execs (PARTNUM, PARTNAME, and DFSSAM01) are described in
this section.

The PARTNUM exec is used to show part numbers that begin with a number equal
to or greater than the number you specify. An example output screen is shown in
Figure 70.

To list part numbers beginning with the number “300” or greater, enter the
command:
PARTNUM 300

All part numbers that begin with a 300 or larger numbers are listed. The listing is
shown in Figure 72 on page 430.

PARTNAME is used to show part names that begin with a specific string of
characters.

To list part names beginning with “TRAN”, enter the command:
PARTNAME TRAN

All part names that begin with “TRAN” are listed on the screen. The screen is
shown in Figure 71. The listing is shown in Figure 73 on page 431.

IMS Parts DATABASE Transaction
System Date: 02/16/92 Time: 23:28:41

Request: Display 5 Parts with Part_Number >= 300
1 Part=3003802 Desc=CHASSIS
2 Part=3003806 Desc=SWITCH
3 Part=3007228 Desc=HOUSING
4 Part=3008027 Desc=CARD FRONT
5 Part=3009228 Desc=CAPACITOR

EXEC PARTNUM ended with RC= 0

Figure 70. Example Output of PARTNUM Exec

IMS Parts DATABASE Transaction
System Date: 02/16/92 Time: 23:30:09

Request: Display 5 Parts with Part Name like TRAN
1 Part=250239 Desc=TRANSISTOR
2 Part=7736847P001 Desc=TRANSFORMER
3 Part=975105-001 Desc=TRANSFORMER
4 Part=989036-001 Desc=TRANSFORMER
End of DataBase reached before 5 records shown.

EXEC PARTNAME ended with RC= 0

Figure 71. Example Output of PARTNAME Exec

PART Execs

Chapter 13. Sample Execs Using REXXTDLI 429

The DFSSAM01 exec is used to load the parts database. This exec is executed in
batch, is part of the IVP, and provides an example of EXECIO usage in an exec.
For details, see IMS/ESA Installation Volume 1: Installation and Verification.

PARTNUM Exec: Show Set of Parts Near a Specified Number
Requirement:The following REXX exec is designed to be run by the IVPREXX
exec with PSB=DFSSAM02.

/* REXX EXEC TO SHOW A SET OF PARTS NEAR A SPECIFIED NUMBER */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNUM string <start#> */

Address REXXTDLI
IOPCB='IOPCB' /* PCB Name */
DataBase='#2' /* PCB # */
RootSeg_Map = 'PNUM C 15 3 : DESCRIPTION C 20 27'
'MAPDEF ROOTSEG ROOTSEG_MAP'
Call SayIt 'IMS Parts DATABASE Transaction'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '

Arg PartNum Segs .
If ¬DataType(Segs,'W') then Segs=5 /* default view amount */

PartNum=Left(PartNum,15) /* Pad to 15 with Blanks */
If PartNum='' then

Call Sayit 'Request: Display first' Segs 'Parts in the DataBase'
Else

Call Sayit 'Request: Display' Segs 'Parts with Part_Number >=' PartNum
SSA1='PARTROOT(PARTKEY >=02'PartNum')'
'GU DATABASE *ROOTSEG SSA1'
Status=IMSQUERY('STATUS')
If Status='GE' then Do /* Segment Not Found */

Call Sayit 'No parts found with larger Part_Number'
Exit 0

End
Do i=1 to Segs While Status=' '

Call Sayit Right(i,2) 'Part='PNum ' Desc='Description
'GN DATABASE *ROOTSEG SSA1'
Status=IMSQUERY('STATUS')

End
If Status='GB' then

Call SayIt 'End of DataBase reached before' Segs 'records shown.'
Else If Status¬=' ' then Signal BadCall
Call Sayit ' '

Exit 0

SayIt: Procedure Expose IOPCB
Parse Arg Msg
'ISRT IOPCB MSG'
If RC¬=0 then Signal BadCall

Return

BadCall:
'DLIINFO INFO'
Parse Var Info Call PCB Status .
Msg = 'Unresolved Status Code' Status,

'on' Call 'on PCB' PCB
'ISRT IOPCB MSG'

Exit 99

Figure 72. PARTNUM Exec: Show Set of Parts Near a Specified Number

PART Execs

430 IMS/ESA V6 Appl Pgm: TM

PARTNAME Exec: Show a Set of Parts with a Similar Name
Requirement:The following REXX exec is designed to be run by the IVPREXX
exec with PSB=DFSSAM02.

DFSSAM01 Exec: Load the Parts Database
For the latest version of the DFSSAM01 source code, see the IMS.DFSEXECA
distribution library; member name is DFSSAM01.

/* REXX EXEC TO SHOW ALL PARTS WITH A NAME CONTAINING A STRING */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNAME string <#parts> */

Arg PartName Segs .
Address REXXIMS
Term ='IOPCB' /* PCB Name */
DataBase='DBPCB01' /* PCB Name for Parts Database */

Call SayIt 'IMS Parts DATABASE Transaction'
Call SayIt 'System Date:' Date('U') ' Time:' Time()
Call Sayit ' '

If ¬DataType(Segs,'W') & Segs¬='*' then Segs=5
If PartName='' then Do

Call Sayit 'Please supply the first few characters of the part name'
Exit 0

End

Call Sayit 'Request: Display' Segs 'Parts with Part Name like' PartName
SSA1='PARTROOT '
'GU DATABASE ROOT_SEG SSA1'
Status=REXXIMS('STATUS')
i=0
Do While RC=0 & (i<Segs | Segs='*')

Parse Var Root_Seg 3 PNum 18 27 Description 47
'GN DATABASE ROOT_SEG SSA1'
Status=REXXIMS('STATUS')
If RC¬=0 & Status¬='GB' Then Leave
If Index(Description,PartName)=0 then Iterate
i=i+1
Call Sayit Right(i,2)') Part='PNum ' Desc='Description

End
If RC¬=0 & Status¬='GB' Then Signal BadCall
If i<Segs & Segs¬='*' then

Call SayIt 'End of DataBase reached before' Segs 'records shown.'
Call Sayit ' '
Exit 0

SayIt: Procedure Expose Term
Parse Arg Msg
'ISRT Term MSG'
If RC¬=0 then Signal BadCall

Return

BadCall:
Call "DFSSUT04" Term

Exit 99

Figure 73. PARTNAME Exec: Show Parts with Similar Names

PART Execs

Chapter 13. Sample Execs Using REXXTDLI 431

DOCMD: IMS Commands Front End
DOCMD is an automatic operator interface (AOI) transaction program that issues
IMS commands and allows dynamic filtering of their output. The term “dynamic”
means that you use the headers for the command as the selectors (variable names)
in the filter expression (Boolean expression resulting in 1 if line is to be displayed
and 0 if it is not). This listing is shown in Figure 80 on page 434.

Not all commands are allowed through transaction AOI, and some setup needs to
be done to use this AOI.

Related Reading: See “Security Considerations for Automated Operator
Commands” in IMS/ESA Administration Guide: System for more information.

Some examples of DOCMD are given in Figure 74, Figure 75, Figure 76, Figure 77
on page 433, Figure 78 on page 433, and Figure 79 on page 434.

Please supply an IMS Command to execute.
EXEC DOCMD ended with RC= 0

Figure 74. Output from = > DOCMD

Headers being shown for command: /DIS NODE ALL
Variable (header) #1 = RECTYPE
Variable (header) #2 = NODE_SUB
Variable (header) #3 = TYPE
Variable (header) #4 = CID
Variable (header) #5 = RECD
Variable (header) #6 = ENQCT
Variable (header) #7 = DEQCT
Variable (header) #8 = QCT
Variable (header) #9 = SENT
EXEC DOCMD ended with RC= 0

Figure 75. Output from = > DOCMD /DIS NODE ALL;?

Selection criteria =>CID>0<= Command: /DIS NODE ALL
NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
L3270A 3277 01000004 5 19 19 0 26 IDLE CON
L3270C 3277 01000005 116 115 115 0 122 CON
Selected 2 lines from 396 lines.
DOCMD Executed 402 DL/I calls in 2.096787 seconds.
EXEC DOCMD ended with RC= 0

Figure 76. Output from = > DOCMD /DIS NODE ALL;CID>0

DOCMD

432 IMS/ESA V6 Appl Pgm: TM

Selection criteria =>TYPE=SLU2<= Command: /DIS NODE ALL
NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
WRIGHT SLU2 00000000 0 0 0 0 0 IDLE
Q3290A SLU2 00000000 0 0 0 0 0 IDLE
Q3290B SLU2 00000000 0 0 0 0 0 IDLE
Q3290C SLU2 00000000 0 0 0 0 0 IDLE
Q3290D SLU2 00000000 0 0 0 0 0 IDLE
V3290A SLU2 00000000 0 0 0 0 0 IDLE
V3290B SLU2 00000000 0 0 0 0 0 IDLE
H3290A SLU2 00000000 0 0 0 0 0 IDLE
H3290B SLU2 00000000 0 0 0 0 0 IDLE
E32701 SLU2 00000000 0 0 0 0 0 IDLE
E32702 SLU2 00000000 0 0 0 0 0 IDLE
E32703 SLU2 00000000 0 0 0 0 0 IDLE
E32704 SLU2 00000000 0 0 0 0 0 IDLE
E32705 SLU2 00000000 0 0 0 0 0 IDLE
ADLU2A SLU2 00000000 0 0 0 0 0 IDLE
ADLU2B SLU2 00000000 0 0 0 0 0 IDLE
ADLU2C SLU2 00000000 0 0 0 0 0 IDLE
ADLU2D SLU2 00000000 0 0 0 0 0 IDLE
ADLU2E SLU2 00000000 0 0 0 0 0 IDLE
ADLU2F SLU2 00000000 0 0 0 0 0 IDLE
ADLU2X SLU2 00000000 0 0 0 0 0 IDLE
ENDS01 SLU2 00000000 0 0 0 0 0 IDLE
ENDS02 SLU2 00000000 0 0 0 0 0 IDLE
ENDS03 SLU2 00000000 0 0 0 0 0 IDLE
ENDS04 SLU2 00000000 0 0 0 0 0 IDLE
ENDS05 SLU2 00000000 0 0 0 0 0 IDLE
ENDS06 SLU2 00000000 0 0 0 0 0 IDLE
NDSLU2A1 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A2 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A3 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A4 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A5 SLU2 00000000 0 0 0 0 0 IDLE
NDSLU2A6 SLU2 00000000 0 0 0 0 0 ASR IDLE
OMSSLU2A SLU2 00000000 0 0 0 0 0 IDLE
Selected 34 lines from 396 lines.
DOCMD Executed 435 DL/I calls in 1.602206 seconds.
EXEC DOCMD ended with RC= 0

Figure 77. Output from = > DOCMD /DIS NODE ALL;TYPE=SLU2

Selection criteria =>ENQCT>0 & RECTYPE='T02'<= Command: /DIS TRAN ALL
TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC

TACP18 1 119 0 65535 65535 1 1 1 0 0 NONE 1
Selected 1 lines from 1104 lines.
DOCMD Executed 1152 DL/I calls in 5.780977 seconds.
EXEC DOCMD ended with RC= 0

Figure 78. Output from = > DOCMD /DIS TRAN ALL;ENQCT>0 & RECTYPE=’T02’

DOCMD

Chapter 13. Sample Execs Using REXXTDLI 433

The source code for the DOCMD exec is shown in Figure 80.

Selection criteria =>ENQCT>0<= Command: /DIS LTERM ALL
LTERM ENQCT DEQCT QCT
CTRL 19 19 0
T3270LC 119 119 0
Selected 2 lines from 678 lines.
DOCMD Executed 681 DL/I calls in 1.967670 seconds.
EXEC DOCMD ended with RC= 0

Figure 79. Output from = > DOCMD /DIS LTERM ALL;ENQCT>0

/***/
/* A REXX exec that executes an IMS command and parses the */
/* output by a user supplied criteria. */
/* */
/***/
/* Format: tranname DOCMD IMS-Command;Expression */
/* Where: */
/* tranname is the tranname of a command capable transaction that */
/* will run the IVPREXX program. */
/* IMS-Command is any valid IMS command that generates a table of */
/* output like /DIS NODE ALL or /DIS TRAN ALL */
/* Expression is any valid REXX expression, using the header names*/
/* as the variables, like CID>0 or SEND=0 or more */
/* complex like CID>0 & TYPE=SLU2 */
/* Example: TACP18 DOCMD DIS A Display active */
/* TACP18 DOCMD DIS NODE ALL;? See headers of DIS NODE */
/* TACP18 DOCMD DIS NODE ALL;CID>0 Show active Nodes */
/* TACP18 DOCMD DIS NODE ALL;CID>0 & TYPE='SLU2' */
/***/
Address REXXTDLI
Parse Upper Arg Cmd ';' Expression
Cmd=Strip(Cmd);
Expression=Strip(Expression)
If Cmd='' Then Do

Call SayIt 'Please supply an IMS Command to execute.'
Exit 0

End
AllOpt= (Expression='ALL')
If AllOpt then Expression='
If Left(Cmd,1)¬='/' then Cmd='/'Cmd /* Add a slash if necessary */
If Expression='' Then

Call SayIt 'No Expression supplied, all output shown',
'from:' Cmd

Else If Expression='?' Then
Call SayIt 'Headers being shown for command:' Cmd

Else
Call SayIt 'Selection criteria =>'Expression'<=',

'Command:' Cmd
x=Time('R'); Calls=0
ExitRC= ParseHeader(Cmd,Expression)
If ExitRC¬=0 then Exit ExitRC
If Expression='?' Then Do

Do i=1 to Vars.0
Call SayIt 'Variable (header) #'i '=' Vars.i
Calls=Calls+1

End
End

Figure 80. DOCMD Exec: Process an IMS Command (Part 1 of 3)

DOCMD

434 IMS/ESA V6 Appl Pgm: TM

Else Do
Call ParseCmd Expression
Do i=1 to Line.0

If AllOpt then Line=Line.i
Else Line=Substr(Line.i,5)
Call SayIt Line
Calls=Calls+1

End
If Expression¬='' then

Call SayIt 'Selected' Line.0-1 'lines from',
LinesAvail 'lines.'

Else
Call SayIt 'Total lines of output:' Line.0-1

Call SayIt 'DOCMD Executed' Calls 'DL/I calls in',
Time('E') 'seconds.'

End
Exit 0

ParseHeader:
CurrCmd=Arg(1)
CmdCnt=0
'CMD IOPCB CURRCMD'
CmdS= IMSQUERY('STATUS')
Calls=Calls+1
If CmdS=' ' then Do

Call SayIt 'Command Executed, No output available.'
Return 4

End
Else If CmdS¬='CC' then Do

Call SayIt 'Error Executing Command, Status='CmdS
Return 16

End
CurrCmd=Translate(CurrCmd,' ','15'x) /* Drop special characters */
CurrCmd=Translate(CurrCmd,'__','-/') /* Drop special characters */
CmdCnt=CmdCnt+1
Interpret 'LINE.'||CmdCnt '= Strip(CurrCmd)'
Parse Var CurrCmd RecType Header
If Expression='' then Nop
Else If Right(RecType,2)='70' then Do

Vars.0=Words(Header)+1
Vars.1 = "RECTYPE"
Do i= 2 to Vars.0

Interpret 'VARS.'i '= "'Word(CurrCmd,i)'"'
End

End
Else Do

Call SayIt 'Command did not produce a header',
'record, first record's type='RecType

Return 12
End

Return 0

Figure 80. DOCMD Exec: Process an IMS Command (Part 2 of 3)

DOCMD

Chapter 13. Sample Execs Using REXXTDLI 435

IVPREXX: MPP/IFP Front End for General Exec Execution
The IVPREXX exec is a front-end generic exec that is shipped with IMS as part of
the IVP. It runs other execs by passing the exec name to execute after the
TRANCODE (IVPREXX). For further details on IVPREXX, see “IVPREXX Sample
Application” on page 403. For the latest version of the IVPREXX source code, see
the IMS.DFSEXECA distribution library; member name is IVPREXX.

ParseCmd:
LinesAvail=0
CurrExp=Arg(1)
Do Forever

'GCMD IOPCB CURRCMD'
CmdS= IMSQUERY('STATUS')
Calls=Calls+1
If CmdS¬=' ' then Leave
/* Skip Time Stamps */
If Word(CurrCmd,1)='X99' & Expression¬='' then Iterate
LinesAvail=LinesAvail+1
CurrCmd=Translate(CurrCmd,' ','15'x)/* Drop special characters */
If Expression='' then OK=1
Else Do

Do i= 1 to Vars.0
Interpret Vars.i '= "'Word(CurrCmd,i)'"'

End
Interpret 'OK='Expression

End
If OK then Do

CmdCnt=CmdCnt+1
Interpret 'LINE.'||CmdCnt '= Strip(CurrCmd)'

End
End
Line.0 = CmdCnt
If CmdS¬='QD' Then

Call SayIt 'Error Executing Command:',
Arg(1) 'Stat='CmdS

Return

SayIt: Procedure
Parse Arg Line
'ISRT IOPCB LINE'

Return RC

Figure 80. DOCMD Exec: Process an IMS Command (Part 3 of 3)

IVPREXX

436 IMS/ESA V6 Appl Pgm: TM

Part 4. For Your Reference

Chapter 14. Summary of TM Message and System Service Calls 439
Transaction Management Call Summary 439
System Service Call Summary. 440

Chapter 15. DL/I Status Codes 443
Status Code Tables . 443

Categories of DL/I Status Codes 443
Status Code Explanations . 452

Chapter 16. DL/I Return and Reason Codes 475
Return and Reason Code Tables 475
DL/I Return and Reason Code Explanations 491

© Copyright IBM Corp. 1974, 2000 437

438 IMS/ESA V6 Appl Pgm: TM

Chapter 14. Summary of TM Message and System Service
Calls

This chapter contains tables that summarize the transaction management message
calls and the system service calls.

In this Chapter:

v “Transaction Management Call Summary”

v “System Service Call Summary” on page 440

Transaction Management Call Summary
Table 50 shows the parameters that are valid for each of the transaction
management message calls. Optional parameters are enclosed in brackets, [].

Exception: Language-dependent parameters are not shown here. The variable
parmcount is required for all PLITDLI calls. Either parmcount or VL is required for
assembler language calls. Parmcount is optional in COBOL, C, and Pascal
programs. See “Formatting DL/I Calls for Language Interfaces” on page 31 for
language-specific information.

Related Reading: For detailed information on each call, its parameters, usage, and
restrictions, see “Chapter 3. Writing DL/I Calls for Transaction Management” on
page 59. For information on writing calls with programming language interfaces, see
“Chapter 2. Defining Application Program Elements” on page 31.

Table 50. Summary of TM Message Calls

Function Code Meaning Use Parameters Valid for

AUTH Authorization Verifies user’s security
authorization.

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

CHNG Change Sets destination on
modifiable alternate
PCB

function, alt pcb or
aib, destination
name[, options list,
feedback area]

DB/DC, DCCTL

CMD Command Used by a program to
issue IMS commands

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GCMD Get Command Retrieves second and
any subsequent
responses to a
command

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GN Get Next Retrieves second and
any subsequent
message segments

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GU Get Unique Retrieves the first
segment of a
message

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

ISRT Insert Builds an output
message in a
program’s I/O area

function, i/o or alt pcb
or aib, i/o area [,mod
name.]

DB/DC, DCCTL

© Copyright IBM Corp. 1974, 2000 439

Table 50. Summary of TM Message Calls (continued)

Function Code Meaning Use Parameters Valid for

PURG Purge Enqueues messages
from a PCB to
destinations

function, i/o or alt pcb
or aib[, i/o area, mod
name.]

DB/DC, DCCTL

SETO Set options. Sets
processing options for
advanced print
functions and
APPC/IMS message
processing.

Feedback area
returns information
about errors in the
options list.

function, i/o pcb or
alternate pcb or aib,
i/o area, options list[,
feedback area]

BMP, MPP, IFP
DB/DC, DCCTL

System Service Call Summary
Table 51 is a summary of which system service calls you can use in each type of
IMS TM application program, and the parameters for each call. Optional parameters
are shown in brackets ([]).

System service calls issued in a DCCTL environment must refer only to I/O PCBs
or GSAM database PCBs. Calls that cannot be used in a DCCTL environment are
noted.

Language-dependent parameters are not shown here. For language-specific
information, see “Formatting DL/I Calls for Language Interfaces” on page 31.

For detailed information on each call, its parameters, usage, and restrictions see
“Chapter 4. Writing DL/I Calls for System Services” on page 89. For information on
writing calls with programming language interfaces see “Chapter 2. Defining
Application Program Elements” on page 31.

Table 51. Summary of System Service Calls

Function Code Meaning and Use Options Parameters Valid for

APSB Allocate PSB.
Allocates a PSB for
use in CPI-C driven
application programs.

None function, aib MPP

CHKP (Basic) Basic checkpoint. For
recovery purposes.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP

CHKP (Symbolic) Symbolic checkpoint.
For recovery
purposes.

Can specify seven
program areas to be
saved.

function, i/o pcb or
aib, i/o area length, i/o
area[, area length,
area]

batch, BMP

DPSB Deallocate PSB.
Frees a PSB in use
by a CPI-C driven
application program.

None function, aib MPP

GMSG Retrieve a message
from the AO exit
routine.

Can wait for an AOI
message when none
is available.

function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

Transaction Management Call Summary

440 IMS/ESA V6 Appl Pgm: TM

Table 51. Summary of System Service Calls (continued)

Function Code Meaning and Use Options Parameters Valid for

GSCD 1 Get the address of the
system contents
directory.

None function, i/o pcb or
aib, i/o area

batch

ICMD Issue an IMS
command and retrieve
the first command
response segment.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

INIT Application receives
data availability status
codes.

Checks each PCB for
data availability.

function, i/o pcb or
aib, i/o area

batch, BMP, MPP, IFP

INQY Inquiry. Retrieves
information about
output destinations,
session status,
execution
environment, and the
PCB address.

None function, aib, i/o area batch, BMP, MPP, IFP

LOG� Log. Write a message
to the system log.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP, IFP

RCMD Retrieve the second
and subsequent
command response
segments resulting
from an ICMD call.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

ROLB Rollback. Backs out
messages sent by the
application program.

Call returns last
message to i/o area.

function, i/o pcb or
aib[, i/o area]

batch, BMP, MPP, IFP

ROLL Roll. Backs out output
messages and
terminates the
conversation.

None function batch, BMP, MPP

ROLS Returns message
queue positions to
sync points set by the
SETS or SETU call.

Issues call with i/o
PCB or aib

function, i/o pcb or aib
i/o area, token

batch, BMP, MPP, IFP

SETS Sets intermediate
sync (backout) points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP, IFP

SETU Sets intermediate
sync (backout) points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP, IFP

SYNC Synchronization Request commit point
processing.

function, i/o pcb or aib BMP

XRST Restart. Works with
symbolic CHKP to
restart application
program failure.

Can specify up to 7
areas to be saved.

function, i/o pcb or
aib, i/o area length, i/o
area[, area length,
area]

batch, BMP

System Service Call Summary

Chapter 14. Summary of TM Message and System Service Calls 441

Table 51. Summary of System Service Calls (continued)

Function Code Meaning and Use Options Parameters Valid for

Note:

1. GSCD is a Product-sensitive programming interface.

System Service Call Summary

442 IMS/ESA V6 Appl Pgm: TM

Chapter 15. DL/I Status Codes

This section contains reference information on all IMS status codes. The information
is divided into two parts:

v Status code tables

– Database Calls

– Message Calls

– System Service Calls

v Status code explanations

Status Code Tables
The status code tables briefly explain each status code and list the calls for which
you can receive each status code. The tables also include a column of numbers
representing the category of each status code; the numbers and the corresponding
explanations are below.

For information about each of the status codes, see Table 52, Table 53 on
page 447, and Table 54 on page 450.

Exception: Although the calls APSB, DPSB, and ROLL are included in Table 54 on
page 450, they do not receive status codes.

Categories of DL/I Status Codes
The numbers in the category column of the status codes tables refer to the
following categories of status codes:

1. Those indicating exceptional but valid conditions. The call is completed.

2. Those indicating warning or information-only status codes on successful calls
(for example, GA and GK). If the call requested data, IMS returns the data to
the I/O area. The call is completed.

3. Those indicating warning status codes on successful calls when data is not
returned to the I/O area. The call is completed.

4. Those indicating improper user specifications. Most status codes are in this
category. The call is not completed.

5. Those indicating system, I/O, or security errors encountered during the
execution of I/O requests. The call is not completed.

6. Those indicating unavailable data.

Table 52. Database Calls

PCB
Status

Code C
L

S
E

(G
S

A
M

)

D
E

Q
G

U
,

G
H

U
G

N
,

G
H

N
G

N
P,

G
H

N
P

D
L

E
T,

R
E

P
L

IS
R

T
(L

O
A

D
)

IS
R

T
(A

D
D

)

F
L

D

P
O

S

O
P

E
N

(G
S

A
M

)

Q
U

E
R

Y

R
E

F
R

E
S

H

T
E

R
M

C
at

eg
o

ry

Description

AB X X X X X X X X X X 4 Segment I/O area required;
none specified in call. Only
applies to full-function DEQ
calls.

AC X X X X X X 4 Hierarchic error in SSAs.

© Copyright IBM Corp. 1974, 2000 443

Table 52. Database Calls (continued)

PCB
Status

Code C
L

S
E

(G
S

A
M

)

D
E

Q
G

U
,

G
H

U
G

N
,

G
H

N
G

N
P,

G
H

N
P

D
L

E
T,

R
E

P
L

IS
R

T
(L

O
A

D
)

IS
R

T
(A

D
D

)

F
L

D

P
O

S

O
P

E
N

(G
S

A
M

)

Q
U

E
R

Y

R
E

F
R

E
S

H

T
E

R
M

C
at

eg
o

ry

Description

AD X X X X X X X X X X 4 Function parameter incorrect.
Only applies to full-function
DEQ calls.

AF X X 4 GSAM detected invalid
variable-length record.

AH X X 4 Required SSA missing.
Options list not specified in
SETO call.

AI X X X X X X 5 Data management OPEN
error.

AJ X X X X X X X X 4 Incorrect parameter format in
I/O area; incorrect SSA
format; incorrect command
used to insert a logical child
segment. I/O area length in
AIB is invalid; incorrect class
parameter specified in Fast
Path Q command code.

AK X X X X X X X 4 Invalid SSA field name.

AM X X X X X X X X 4 Call function not compatible
with processing option,
segment sensitivity,
transaction code, definition,
or program type.

AO X X X X X X X 5 I/O error: OSAM, BSAM, or
VSAM.

AT X X X 4 User I/O area too long.

AU X X X X X X 4 SSAs too long.

BA X X X X X 6 Call could not be completed
because data was
unavailable.

BB X X X X X 6 Call could not be completed
because data was
unavailable and updates are
backed out only since the last
commit point.

DA X X 4 Segment key field or
nonreplaceable field has
been changed.

DJ X 4 No preceding successful
GHU or GHN call or an SSA
supplied at a level not
retrieved.

DX X 4 Violated delete rule.

EM X Normally for a utility.

FA X X 4 MSDB arithmetic overflow
error occurred.

Status Code Tables

444 IMS/ESA V6 Appl Pgm: TM

Table 52. Database Calls (continued)

PCB
Status

Code C
L

S
E

(G
S

A
M

)

D
E

Q
G

U
,

G
H

U
G

N
,

G
H

N
G

N
P,

G
H

N
P

D
L

E
T,

R
E

P
L

IS
R

T
(L

O
A

D
)

IS
R

T
(A

D
D

)

F
L

D

P
O

S

O
P

E
N

(G
S

A
M

)

Q
U

E
R

Y

R
E

F
R

E
S

H

T
E

R
M

C
at

eg
o

ry

Description

FC X 4 POS call for direct dependent
segments only.

FD X X X X X X X 2 Deadlock occurred.

FE X 4 FSA error, not field name.

FF X 3 No space in MSDB.

FG X 4 Combination of FE and FW
codes.

FH X X X X X X X 3 DEDB inaccessible.

FI X X X X X X X 4 I/O area not in user’s
dependent region.

FM X X X X X X 4 Randomizing routine return
code = 4.

FN X 4 FSA error, field name.

FP X X X 4 Invalid hexadecimal or
decimal data.

FR X X X X X X X X 5 Total buffer allocation
exceeded.

FS X 3 DEDB areas are full.

FT X X X X X X 4 Too many SSAs on call.

FV X 3 MSDB verify condition failed.

FW X X X X X X X X X 2 More resources needed than
normally allowed. For the
DEQ call, Fast Path was not
able to release any buffers.

FY X X X X X X X X 4 Attempt to read sequential
data preceding the current
position.

GA X X 2 Crossing hierarchical
boundary.

GB X 1 End of database.

GC X X X X 3 Crossing unit of work (UOW)
boundary.

GD X 1 Call did not have SSAs for all
levels above insert and has
lost segment position.

GE X X X X 1 Segment not found.

GG X X X 5 Segment contains invalid
pointer.

GK X X 2 Crossing segment boundaries
on same level.

GL X 4 Invalid user log code. Only
applies to full-function DEQ
calls.

Status Code Tables

Chapter 15. DL/I Status Codes 445

Table 52. Database Calls (continued)

PCB
Status

Code C
L

S
E

(G
S

A
M

)

D
E

Q
G

U
,

G
H

U
G

N
,

G
H

N
G

N
P,

G
H

N
P

D
L

E
T,

R
E

P
L

IS
R

T
(L

O
A

D
)

IS
R

T
(A

D
D

)

F
L

D

P
O

S

O
P

E
N

(G
S

A
M

)

Q
U

E
R

Y

R
E

F
R

E
S

H

T
E

R
M

C
at

eg
o

ry

Description

GP X X X 4 No parentage established.

HT X Normally for a utility.

II X 3 Segment already exists.

IX X 4 Violated insert rule.

LB X 1 Segment being loaded
already exists in database.

LC X 4 Key field of segments out of
sequence.

LD X 4 No parent for this segment
has been loaded.

LE X 4 Sequence of sibling
segments not the same as
DBD sequence.

LS X 1 Work may be backed out
because sufficient CI space
was not preallocated for the
area.

NA X X 6 A database was unavailable.

NE X 3 DL/I call issued by index
maintenance cannot find
segment.

NI X X X 1 Index maintenance found
duplicate segment in index.

NO X X X 5 I/O error: OSAM, BSAM, or
VSAM.

NU X X 6 A database was unavailable
for update.

OS X Normally for a utility.

RX X 4 Violated replace rule.

TH X 4 No PSB was scheduled
(command-level only).

TI X 4 Invalid path to segment
(command-level only).

X X X X X X 5 DL/I not active
(command-level only).

X X X X X X 5 Invalid system DIB
(command-level only).

TO X 4 Path replace error
(command-level only).

TP X X X X X X 4 Invalid number for PCB or
invalid processing option
(command-level only).

Status Code Tables

446 IMS/ESA V6 Appl Pgm: TM

Table 52. Database Calls (continued)

PCB
Status

Code C
L

S
E

(G
S

A
M

)

D
E

Q
G

U
,

G
H

U
G

N
,

G
H

N
G

N
P,

G
H

N
P

D
L

E
T,

R
E

P
L

IS
R

T
(L

O
A

D
)

IS
R

T
(A

D
D

)

F
L

D

P
O

S

O
P

E
N

(G
S

A
M

)

Q
U

E
R

Y

R
E

F
R

E
S

H

T
E

R
M

C
at

eg
o

ry

Description

TR X X X X X X X X 4 CICS XDLIPRE user exit
determined the preceding
request should not be
executed.

TY X X X X X X 5 Database not open
(command-level only).

TZ X X X X X X 5 Length of segment greater
than 64 KB.

UC X 1 Checkpoint taken (Utility
Control Facility (UCF) status
code).

US X 1 Stop (UCF status code).

UX X 1 Checkpoint and stop (UCF
status code).

V1 X X X 4 Segment length not within
limits of DBDGEN.

V2 X X X X X X X X 4 Segment length invalid
(command-level only).

V3 X X X X 4 Field length missing or invalid
(command-level only).

V4 X X X X X X 4 Length of variable-length
segment invalid
(command-level only).

V5 X X X X X 4 Offset if invalid
(command-level only).

V6 X X X X X 4 Concatenated key length
invalid (command-level only).

XX X X X X 5 Internal GSAM error.

��1 X X X X X X X X X X X X X X 1 No status code returned.
Proceed.

Note:

1. �� indicates blank.

Table 53. Message Calls

PCB
Status
Code A

U
T

H

G
U

G
N

IS
R

T

C
H

N
G

C
M

D

G
C

M
D

P
U

R
G

S
E

TO

C
at

eg
o

ry

Description

AA X X 4 CHNG call for alternate response PCB can specify only logical
terminal destination; transaction code destination specified.

AB X X X X X X X 4 Segment I/O area required; none specified in call.

AD X X X X X X X X 4 Function parameter invalid.

AH X 4 Required SSA missing. Options list not specified in SETO call.

Status Code Tables

Chapter 15. DL/I Status Codes 447

Table 53. Message Calls (continued)

PCB
Status
Code A

U
T

H

G
U

G
N

IS
R

T

C
H

N
G

C
M

D

G
C

M
D

P
U

R
G

S
E

TO

C
at

eg
o

ry

Description

AJ X 4 Invalid parameter format in I/O area; invalid SSA format; invalid
command used to insert a logical child segment. I/O area
length in AIB is invalid.

AL X X X X X X X X 4 Call using I/O PCB in batch program.

AP X X X X X X X X 4 Specifying more than four user call parameters for a TP PCB
is not valid.

AR X X 4 Error in option list related to IMS/ESA option keyword.

AS X X 4 The PRTO= option contained invalid data set processing
options.

AT X X X 4 User I/O area too long.

AX X X X X 5 System error. Call not completed successfully.

AY X 4 Alternate response PCB referenced by ISRT call has more
than one physical terminal assigned for input purposes. Notify
master terminal operator.

AZ X 4 The conversational program has issued a PURG call to PCB
that cannot be purged.

A1 X X 4 AUTH call attempted with invalid generic class name or error
occurred attempting to set destination name specified in the
CHNG call.

A2 X 4 Call attempted with invalid PCB (PCB not modifiable or ISRT
operation already done).

A3 X X 4 Call attempted to a modifiable TP PCB with no destination set.

A4 X X X 4 Security violation detected during processing of either an
AUTH call, a CHNG call, or an ISRT on a conversational
response.

A5 X X 4 Format name specified on second or subsequent message
ISRT or PURG.

A6 X 4 Output segment size limit exceeded on call.

A7 X 4 Number of output segments inserted exceeded the limit by
one. Any further queue manager calls are prohibited to prevent
message queue overflow.

A8 X 4 ISRT to alternate response PCB followed ISRT to I/O PCB or
ISRT to I/O PCB followed ISRT to alternate response PCB.

A9 X 4 Alternate response PCB referenced by call requires that the
source physical terminal receive the output response.

CA X 4 No such command. No command responses produced.

CB X 4 Command, as entered, not allowed for AOI. No command
responses produced.

CC X 2 Command executed. One or more command responses
produced.

CD X 4 Entered command violates security. No command responses
produced.

CE X 2 Transaction rescheduled after CMD call. Commit point had not
been reached.

Status Code Tables

448 IMS/ESA V6 Appl Pgm: TM

Table 53. Message Calls (continued)

PCB
Status
Code A

U
T

H

G
U

G
N

IS
R

T

C
H

N
G

C
M

D

G
C

M
D

P
U

R
G

S
E

TO

C
at

eg
o

ry

Description

CF X 2 Message on queue before IMS was last started.

CG X 2 Transaction originated from AOI exit routine.

CH X 5 AOI detected system error; CMD request not processed.
Reissue CMD call.

CI X 2 Transaction on queue before IMS last started. Transaction
rescheduled. Commit point not reached.

CJ X 2 Transaction from AOI exit routine. Message rescheduled.
Commit point not reached.

CK X 2 Transaction from AOI exit routine. Message on queue before
IMS last started.

CL X 2 Transaction from AOI exit routine. Message on queue before
IMS last started. Message rescheduled. Commit point had not
been reached.

CM X 3 Command executed. No command response produced.

CN X 4 IOASIZE= parameter on PSBGEN macro does not meet
minimum requirement for CMD call.

FF X 3 No space in MSDB.

FH X 3 DEDB inaccessible.

FI X X X 4 I/O area not in user’s dependent region.

FS X 3 DEDB areas are full.

FV X 3 MSDB verify condition failed.

MR X – Reserved

QC X 3 No more input messages exist.

QD X X 3 No more segments exist for this message.

QE X X 4 GN request before GU. GCMD request before CMD.

QF X X X X 4 Segment less than five characters (segment length is message
text length plus four control characters).

QH X X X 4 Terminal symbolic error; output designation unknown to IMS
(logical terminals or transaction code).

TG X 4 No PSB was scheduled (command-level only).

X 5 Invalid system DIB (command-level only).

TP X 4 Invalid number for PCB or invalid processing option
(command-level only).

TY X 5 Database not open (command-level only).

TZ X 5 Length of segment greater than 64 KB.

XA X 4 Attempt to continue processing the conversation by passing
SPA by a program-to-program switch after answering terminal.

XB X 4 Program passed SPA to other program, but trying to respond.

XC X 4 Program inserted message with Z1 field bits set. These bits
are reserved for system use.

XE X 4 Tried to ISRT SPA to express PCB.

Status Code Tables

Chapter 15. DL/I Status Codes 449

Table 53. Message Calls (continued)

PCB
Status
Code A

U
T

H

G
U

G
N

IS
R

T

C
H

N
G

C
M

D

G
C

M
D

P
U

R
G

S
E

TO

C
at

eg
o

ry

Description

XF X 4 Alternate PCB specified in ISRT call for SPA had destination
set to a logical terminal, but was not defined as
ALTRESP=YES. MSC direct routing does not support
program-to-program switch between conversational
transactions.

XG X 4 Current conversation requires fixed-length SPAs. Attempt was
made to insert SPA to transaction with a different or nonfixed-
length SPA.

X2 X X 4 First insert to transaction code PCB that is conversational is
not a SPA.

X3 X 4 Invalid SPA.

X4 X 4 Insert to a transaction code PCB that is not conversational and
the segment is a SPA.

X5 X 4 Insert of multiple SPAs to transaction code PCB.

X6 X 4 Invalid transaction code name inserted into SPA.

X7 X 4 Length of SPA is incorrect (user modified first 6 bytes).

X8 X 5 Error attempting to queue a SPA on a transaction code PCB.

��1 X X X X X X X X X 1 No status code returned. Proceed.

Note:

1. �� indicates blank.

Table 54. System Service Calls

PCB
Status

Code C
H

K
P

IN
IT

IN
Q

Y

L
O

G

P
C

B

R
O

L
B

R
O

L
L

R
O

L
S

S
E

T
S

S
E

T
U

S
N

A
P

1 S
TA

T
2 S

Y
N

C

X
R

S
T

C
at

eg
o

ry

Description

AB X X X X X 4 Segment I/O area required; none specified
in call.

AC X 4 Hierarchic error in SSAs.

AD X X X X X X X X X X X 4 Function parameter invalid.

AG X 4 Partial data return. I/O area too small.

AJ X X X 4 Invalid parameter format in I/O area; invalid
SSA format; invalid command used to
insert a logical child segment. I/O area
length in AIB is invalid.

AL X X X 4 Call using I/O PCB in batch program.

AP X 4 More than 4 user call parameters for a TP
PCB are invalid.

AQ X 4 Invalid subfunction code.

AT X 4 User I/O area too long.

BC X 6 Call could not be completed because of a
deadlock occurrence; updates are backed
out only since the last commit point.

Status Code Tables

450 IMS/ESA V6 Appl Pgm: TM

Table 54. System Service Calls (continued)

PCB
Status

Code C
H

K
P

IN
IT

IN
Q

Y

L
O

G

P
C

B

R
O

L
B

R
O

L
L

R
O

L
S

S
E

T
S

S
E

T
U

S
N

A
P

1 S
TA

T
2 S

Y
N

C

X
R

S
T

C
at

eg
o

ry

Description

BJ X 6 All of the databases included in the PSB
are unavailable or no database PCBs are
in the PSB.

BK X 6 At least one of the databases included in
the PSB is unavailable or has limited
availability, or at least one PCB received
an NA or NU status code.

FA X X 4 MSDB arithmetic overflow error occurred.

FD X X 3 Deadlock occurred.

FF X 3 No space in MSDB.

FH X X 3 DEDB inaccessible.

FI X X 4 I/O area not in user’s dependent region.

FS X X 3 DEDB areas are full.

FV X X 3 MSDB verify condition failed.

GA X 2 Crossing hierarchic boundary.

GE X X X 1 Segment not found.

GL X 4 Invalid user log code.

NA X 6 A database was unavailable.

NL X 4 XEFRDER card not provided. Please
supply one.

NU X 6 A database was unavailable for update.

QC X 3 No more input messages exist.

QE X X 4 GN request before GU. GCMD request
before CMD.

QF X 4 Segment less than five characters
(segment length is message text length
plus four control characters).

RA X 4 Token does not match one for a SETS, or
the PCB did not get BA or BB on last call.

RC X 4 ROLS call issued with unsupported PCBs
in the PSB, or the program is using an
attached subsystem.

SA X 5 Insufficient space.

SB X 4 Would exceed maximum number of levels
allowed.

SC X X 5 A SETS/SETU call was issued with
unsupported PCBs in the PSB, or the
program is using an attached subsystem.

TA X 5 PSB not in PSB directory (command-level
only).

TC X 4 PSB already scheduled (command-level
only).

Status Code Tables

Chapter 15. DL/I Status Codes 451

Table 54. System Service Calls (continued)

PCB
Status

Code C
H

K
P

IN
IT

IN
Q

Y

L
O

G

P
C

B

R
O

L
B

R
O

L
L

R
O

L
S

S
E

T
S

S
E

T
U

S
N

A
P

1 S
TA

T
2 S

Y
N

C

X
R

S
T

C
at

eg
o

ry

Description

TE X 5 PSB initialization failed (command-level
only).

TJ X 5 DL/I not active (command-level only).

TL X 4 Conflict in scheduling intent
(command-level only).

TN X X X X X X X 5 Invalid system DIB (command-level only).

TP X X 4 Invalid number for PCB or invalid
processing option (command-level only).

TR X X X X 4 CICS XDLIPRE user exit determined the
preceding request should not be executed.

TY X X 5 Database not open (command-level only).

TZ X X 5 Length of segment greater than 64 KB.

V2 X 4 Segment length invalid (command-level
only).

V7 X 4 Statistics area length invalid
(command-level only).

XD X X 1 IMS terminating. Further DL/I calls must
not be issued. No message returned.

��3 X X X X X X X X X X X X X 1 Good. No status code returned. Proceed.

Notes:

1. SNAP is a Product-sensitive programming interface.

2. STAT is a Product-sensitive programming interface.

3. �� indicates blank.

Status Code Explanations
This information appears in the three application programming guides. For EXEC
DL/I commands, all status codes, except those identified as being returned to the
application program, cause an abnormal termination of the application program.

All explanations apply to both DL/I call (call-level) programs and EXEC DLI
(command-level) programs except where split. The term “request” means call,
command, or both.

AA

Explanation: IMS ignored a CHNG or ISRT call because
the alternate response PCB that is referenced in the call
specified a transaction code as a destination. An
alternate response PCB must have a logical terminal
specified as its destination.

Programmer Response: Correct the CHNG or ISRT call.

AB

Explanation: An I/O area is required as one of the
parameters on this call, and the call did not specify one.
After this status code is returned, your position in the
database is unchanged. AB only applies to full-function
DEQ calls.

Programmer Response: Correct the call by including
the address of an I/O area as one of the call
parameters.

Status Code Tables

452 IMS/ESA V6 Appl Pgm: TM

AC

Explanation:

For call-level programs:

An error is in an SSA for a DLET, Get, ISRT, or REPL call
for one of these reasons:

v DL/I could not find a segment in the DB PCB
specified in the call that has the segment name given
in the SSA.

v The segment name is in the DB PCB, but the SSA
specifying that segment name is not in its correct
hierarchic sequence.

v The call specifies two SSAs for the same hierarchic
level.

IMS also returns this status code when a STAT 5 call
has an invalid statistics function. After this status code is
returned, your position in the database is unchanged.

For command-level programs:

An error is in one of the WHERE or SEGMENT options
on a Get or ISRT command for one of these reasons:

v DL/I could not find a segment in the DB PCB
specified in the segment name given in the
SEGMENT option.

v The segment name is in the DB PCB, but the
qualification for the command does not specify it in its
correct hierarchic sequence.

v The command specifies two SEGMENT options for
the same hierarchic level.

Programmer Response: Correct the segment name
in the SSA or SEGMENT option or in the statistics
function of the STAT5 call.

AD

Explanation:

For call-level programs:

Either the function parameter on the call is invalid or the
function is not supported for the type of PCB specified
in the call. Only applies to full-function DEQ calls. Some
possible reasons are:

v The function parameter is invalid.

v A system service call used a PCB that is not the I/O
PCB.

v A call issued in a DCCTL environment referred to an
unsupported PCB or database.

v A message GU or GN call used an alternate PCB
instead of the I/O PCB.

v A database call used a PCB that is not a DB PCB.

v A message GU used the I/O PCB without specifying
IN=trancode in the BMP JCL.

v A SETS or ROLS call included the I/O area but omitted
the token.

v A CPI Communications driven program issued the
SETO call on the I/O PCB.

v A call was issued from an IFP region on an I/O PCB.

v Invalid subsystem level for spool API processing.

For command-level programs:

A command was issued that is not supported in the
environment. An example is a system service command
in an online program. If the command is correct, some
other possible causes are:

v Referencing a DB PCB on a system service
command. System service commands must reference
the I/O PCB.

v Referencing an I/O PCB for a database command, or
not defining an I/O PCB before issuing system
service commands.

v A command issued in a DCCTL environment referred
to an unsupported database or DB PCB.

Programmer Response: Be sure that the specified
function is valid for the PCB specified by the request.

AF

Explanation: GSAM detected a variable-length record
whose length is invalid on a GU, GHU, GN, or GHN call.

Programmer Response: Correct the program.

AG

Explanation: During INQY call processing, the I/O area
was not large enough to contain all the output data. The
I/O area was filled with partial data, as much as would
fit in the area provided. AIBOALEN contains the actual
length of the data returned to the application and
AIBOAUSE contains the output area length that is
required for the application program to receive all the
data.

Programmer Response: Correct the application
program by using a larger I/O area. The minimum size
of the I/O area is the value contained in the AIBOAUSE
field.

AH

Explanation: You get this status code if you:

1. Specify an options list parameter that was not
specified in the call list.

2. The program issued an ISRT call that did not include
any SSAs. The ISRT call requires an SSA.

3. If the program was issuing a GU call to a GSAM
database, the GU did not specify an RSA. RSAs are

5. STAT is a Product-sensitive programming interface.

Status Code Explanations

Chapter 15. DL/I Status Codes 453

required on GU calls to GSAM databases. After this
status code is returned, your position in the
database is unchanged.

Programmer Response: For cause 2, correct the
ISRT call by including a qualification; or for cause 3,
correct the GU call by adding an RSA to the call.

AI

Explanation: A data management open error
occurred. Some possible reasons are:

v An error is in the DD statements.

v Neither DD statements nor DFSMDA dynamic
allocation members were provided for this database.

v The data set OPEN request did not specify load
mode, but the data set was empty. An empty data set
requires the load option in the PCB.

v The buffer is too small to hold a record that was read
at open time.

v No DD statements or DFSMDA members were
supplied for logically related databases.

v For an OSAM data set, the DSORG field of the
OSAM DCB, DSCB, or JFCB does not specify PS or
DA.

v For an old OSAM data set, the BUFL or BLKSIZE
field in the DSCB is 0.

v The data set is being opened for load, and the
processing option for one or more segments is other
than L or LS.

v The allocation of the OSAM data set is invalid. The
allocation is probably (1,,1), rather than (1,1) and this
causes the DSORG to be P0.

v The processing option is L, the OSAM data set is old,
and the DSCB LRECL, BLKSIZE, or both, does not
match the DBD LRECL, BLKSIZE, or both.

v Incorrect or missing information prevented IMS from
determining the block size or the logical record
length.

v A catalog was not available for accessing a VSAM
database that was requested.

v OS could not perform an OPEN, but the I/O request
is valid. Either the data definition information is
incorrect, or information is missing.

v RACF was used to protect the OSAM data set, and
the control region has no update authorization.

If IMS returns message DFS0730I, you can determine
the cause of the OPEN failure from this message in the
job log. For more information, see the description of this
message in IMS/ESA Messages and Codes.

Programmer Response: These kinds of problems
often require the help of a system programmer or
system administrator. But before you go to one of these
specialists, some things you can do are:

v Check the DD statements. Make sure that the
ddname is the same as the name specified on the

DATASET statement of the DBD. The segment name
area in the DB PCB (call level), or in the DIB
(command level) has the ddname of the data set that
could not be opened.

v Check the PSB and make sure that the appropriate
processing options have been specified for each of
the DB PCBs that your program uses.

AJ

Explanation: For call-level programs:

For calls that provide parameters in the I/O area, such
as SETS, ROLS, and INIT, the format of the parameters
in the I/O area is invalid.

For database calls that include SSAs, such as Get,
DLET, REPL, and ISRT, the format of one of the SSAs is
invalid. The number in the segment level number field of
the DB PCB is the level number of the SSA that is
invalid. Some possible reasons for the invalid SSA
format are:

v The SSA contains a command code that is invalid for
that call.

v The relational operator in the qualification statement
is invalid.

v A qualification statement is missing a right
parenthesis or a Boolean connector.

v A DLET call has multiple or qualified SSAs.

v A REPL call has qualified SSAs.

v An ISRT call has the last qualified SSA.

v An ISRT call that inserts a logical child segment into
an existing database includes the D command code.
ISRT calls for logical child segments cannot be path
calls.

v The RSA parameter on a GSAM call is invalid.

v The SSA used an R, S, Z, W, or M command code
for a segment for which no subset pointers are
defined in the DBD.

v The subset command codes included in the SSA are
in conflict; for example, if one SSA contained an S
status code and a Z status code, Fast Path would
return an AJ status code. S means to set the pointer
to current position; Z means to set the pointer to 0.
You could not use these status codes in one SSA.

v The pointer number following a subset pointer
command code is invalid. Either you did not include a
number, or you included an invalid character. The
number following the command code must be
between 1 and 8, inclusive.

v The SSA included more than one R command code.
An SSA can include only one R command code.

v The specified size for the SSA is too small. After this
status code is returned, your position in the database
is unchanged.

v In response to a SETS or ROLS call, the length of the
I/O area is 0, the LL field is less than 4, or the ZZ
field is not 0.

Status Code Explanations

454 IMS/ESA V6 Appl Pgm: TM

v In response to an INIT call, the format of the I/O area
is incorrect.

v For calls that provide the length of the I/O area in the
AIB, such as INQY, the I/O area length is invalid.

v For SETO, I/O area length is less than 4096 or less
than the minimum.

v For the Q command code, the specified lock class is
not a letter (A-J).

For command-level programs:

An ISRT command attempted to insert a logical child
segment using a path command. ISRT commands for
logical child segments cannot be path commands.

Programmer Response:

If you receive this status code on a SETS, ROLS, or INIT
request, correct the parameters provided in the I/O
area.

If you receive this status code on a Get, DLET, REPL, or
ISRT request, correct the invalid portion of the SSA. If
you receive this status code on a GSAM call, correct
the RSA.

AK

Explanation: For call-level programs:

An SSA contains an invalid field name, or the field
name is not defined in the DBD. The number in the
segment level number field of the DB PCB is the level
number of the SSA that contains the invalid name.

You can also receive this status code if the program is
accessing a logical child through the logical parent. DL/I
returns AK if the field specified in the qualification has
been defined for the logical child segment, and it
includes (at least partially) the portion of the logical child
that contains the concatenated key of the logical parent.

When you are using field-level sensitivity, a field you
specified in the SSA has not been defined in the PSB.
After this status code is returned, your position in the
database is unchanged.

For command-level programs:

A WHERE option contains an invalid field name. (The
field name is not defined in the DBD.) The number in
the DIBSEGLV field of the DIB is the level number of
the WHERE option that contains the invalid name.

Programmer Response: Correct the SSA or WHERE
option.

AL

Explanation: You get this status code if you:

1. Issue a message call in a batch program.

2. Issue a ROLB, ROLS, or SETS call from a batch
program under one of the following conditions:

v The system log is not on DASD.

v The system log is on DASD, but dynamic backout
has not been specified using the BKO execution
parameter.

Programmer Response: For cause 1, correct the
program so that message calls in a batch program are
not issued. For cause 2, either change the program or
put the log on DASD with BKO specified on the
execution parameter.

AM

Explanation: For call-level programs:

The call function is not compatible with the processing
option in the PCB, the segment sensitivity, the
transaction-code definition, or the program type. The
level number in the PCB is the level number of the SSA
that is invalid. Some of the reasons you might get this
status code are:

v If you issue a retrieval call with the D command code
in a program that does not have the P processing
option specified in the DB PCB that was used for the
call.

v If you issue a DLET or ISRT call to a terminal-related
dynamic MSDB from a program with no input LTERM
present. An example is a batch-oriented BMP.

v If the subset pointer referenced in the SSA was not
defined in the program’s PSB. For example, if your
program’s PSB specifies that your program can use
subset pointers 1 and 4, and your SSA references
subset pointer 5, Fast Path returns an AM status
code to your program.

v If your program tried to use an S, Z, W, or M
command code for a subset pointer to which it was
not pointer update-sensitive, as defined in the
program’s PSB.

v If a BMP, a CICS online program, or an MPP issues
an ISRT call with the D command code when the
program does not have the P processing option
specified in the DB PCB that was referenced in the
call. Batch programs do not need the P processing
option to issue an ISRT call with the D command
code, unless the program uses field-level sensitivity.

v If the processing option is L and the program issued
a call other than an ISRT call. Load programs can
issue only ISRT calls.

v If a DLET, REPL, or ISRT call that references a DB
PCB does not have the necessary processing option
for that call. The minimum processing options for
these calls are D for DLET, R for REPL, and I for ISRT.

v If you issue a DLET, REPL, or ISRT call for a segment
to which the program is not sensitive.

v If you issue a CHKP call on a GSAM or VSAM data set
opened for output. This code is returned in the GSAM
PCB.

v If you issue a GSAM call with an invalid call function
code.

Status Code Explanations

Chapter 15. DL/I Status Codes 455

v If you issue an ISRT or DLET call for the index target
segment or a segment on which the index target is
dependent in the physical database while using an
alternate processing sequence.

v If you issue a path replace where the program does
not have replace sensitivity, command code N is not
specified, and the data for the segment is changed in
the I/O area.

v If GSAM could not obtain buffer space because the
region size is too small. This is shown by the value
X'1C' in the field GBCRTNCD.

v If you issue a DLET, ISRT, or REPL call from a
program where the TRANSACT macro that was used
at IMS system definition specified INQUIRY=YES for
the input message.

v If you issue a call from an ETO terminal to a
terminal-related MSDB or a non-terminal-related
MSDB with terminal-related keys. See IMS/ESA
Administration Guide: Transaction Manager for more
information on ETO.

v If you issue any type of call with update intent to a
MSDB from a dynamically defined device such as a
LU 6.2, ETO, or OTMA device.

After this status code is returned, your position in the
database is unchanged.

For command-level programs:

The command is not compatible with the processing
option in the PCB or segment sensitivity. The level
number in the DIB is the level number of the
qualification that is invalid. Some of the reasons you
might get this status code are:

v If you issue a path retrieval command in a program
that does not have the P processing option specified
in the DB PCB that was used for the call.

v If the processing option is L and the program issued
a command other than a LOAD command. Load
programs can issue only LOAD commands.

v If you issue a DLET, REPL, or ISRT command that
references a DB PCB that does not have the
necessary processing option for that command. The
minimum processing options for these calls are D for
DLET, R for REPL, and I for ISRT.

v If you issue a DLET, REPL, or ISRT command for a
segment to which the program is not sensitive.

v If you issue a CHKP command if a GSAM or VSAM
data set is open for output.

v If you issue a GSAM call with an invalid call function
code.

v If you issue an ISRT or DLET command for the index
target segment, or a segment in the physical
database on which the index target is dependent,
while using an alternate processing sequence.

v If you issue a path replace where the program does
not have replace sensitivity, command code N is not
specified, and the data for the segment is changed in
the I/O area.

v If you issue a call to a GSAM dummy data set. Any
call to a GSAM dummy data set is invalid.

Programmer Response: Correct the request, or make
the necessary changes in the PCB.

AO

Explanation: A BSAM, GSAM, VSAM, or OSAM
physical I/O error occurred. When issued from GSAM,
this status code means that the error occurred when:

v A data set was accessed.

v The CLOSE SYNAD routine was entered. The error
occurred when the last block of records was written
prior to the closing of the data set.

IMS does not return an AO status code for write errors
with BSAM, VSAM, and OSAM.

If your program receives this status code after issuing a
call, this call does not cause the database to be
stopped.

Programmer Response: Determine whether the error
occurred during input or output, and correct the
problem. These problems usually require the help of a
system programmer or system administrator.

AP

Explanation: A message or CHKP call is invalid
because more than four parameters (or five if a
parameter count is specified) are in a message call or a
CHKP call issued in a transaction-oriented BMP. The
following exceptions apply:

v A batch-oriented BMP can issue a CHKP call with
more than 4 (or 5) parameters.

v One parameter after the I/O area parameter is
allowed in order for the application program to specify
a MOD name in an ISRT call. It is counted towards
the maximum of four (or five) parameters.

Programmer Response: Correct the call.

AQ

Explanation: The AIB contains an invalid subfunction,
or the INQY call specifies an invalid function.

Programmer Response: Specify a valid subfunction.
Valid INQY call subfunctions are null, DBQUERY,
ENVIRON, FIND, or PROGRAM.

Status Code Explanations

456 IMS/ESA V6 Appl Pgm: TM

AR

Explanation: The options list contains an error that is
related to a keyword. The feedback area, if one is
provided, will contain additional error information.

Programmer Response: Correct the request.

AS

Explanation: An IAFP specific processing error has
occurred. The PRTO= option contained invalid data set
processing options. The feedback area, if provided, will
contain additional error information.

Programmer Response: Correct the request.

AT

Explanation: The length of the data in the program’s
I/O area is greater than the area reserved for it in the
control region. The length of the area reserved is
defined by the ACB utility program, DFSUACB0, and is
printed as part of its output.

Programmer Response: If the program is in error,
correct the program. If the program is correct, reserve a
larger control region by specifying parameters on the
PSBGEN statement of PSBGEN.

AU

Explanation: The total length of the SSAs in the
database call is greater than the area reserved for them
in the control region. The length of the area reserved is
defined by the ACB utility program, DFSUACB0, and
printed as part of its output. After this status code is
returned, your position in the database is unchanged.

Programmer Response: If the program is in error,
correct the program. If the program is correct, increase
the PSB SSA space defined in the PSBGEN.

AX

Explanation: A failure to get CSA storage, a failure of
the DFSLUMIF call, or a processing error with the IAFP
Spool API occurred. When this code is returned,
diagnostic information is written to the log in a '67D0'
log record. Spool API processing errors return a
DFS0013E message.

A RACROUTE REQUEST=VERIFY,EVIRON=CREATE
(RACF RACINIT) made during an AUTH call for LU 6.2
was unsuccessful.

An OTMA user exit returned invalid routing information.
See OTMA return codes in the IMS/ESA Open
Transaction Manager Access Guide.

Programmer Response: These problems usually
require the help of a system programmer or system
administrator.

AY

Explanation: IMS ignored a message ISRT call
because the logical terminal referenced by the alternate
response PCB currently has more than one physical
terminal assigned to it for input purposes.

Programmer Response: Ask the master terminal
operator to determine (using /DISPLAY ASSIGNMENT
LTERM x) which physical terminals (two or more) refer
to this logical terminal. Use the /ASSIGN command to
correct the problem.

AZ

Explanation: IMS ignored a PURG or ISRT call in a
conversational program. Some possible reasons are:

v Issuing a PURG call referencing the I/O PCB or an
alternate response PCB. Conversational programs
can issue PURG calls only when the PURG call
references an alternate PCB that is not an alternate
response PCB.

v Issuing a PURG call to send the SPA.

v Issuing an ISRT or a PURG call referencing an
alternate PCB that is set for an invalid destination or
for a destination that IMS cannot determine.

v Issuing an ISRT call referencing an alternate PCB
whose destination is a conversational transaction
code when the first segment inserted is not the SPA;
or when IMS cannot determine whether or not the
SPA was the first segment inserted.

Programmer Response: Correct the PURG or ISRT call.

A1

Explanation: You might get the A1 status for the
following reasons:

v AUTH call for LU 6.2 input did not find a PST LU 6.2
extension block or did not find a UTOKEN.

v CHNG call against alternate response PCB when the
application program has not yet issued a GU.

v The MSC program routing exit routine (DFSCMPR0)
was called while processing a CHNG call and one of
the following occurred:

– The exit routine rejected the call by returning with
return code 8 (A1 status code).

– The exit routine returned with a RC=4 to route the
message back to the originating system; however,
the originating system has not been determined
because the application program has not issued a
GU.

– The SYSID returned in R0 by the exit routine is
not a valid remote SYSID.

– The MSNAME pointed to by the address in R1,
set by the exit routine, is not a valid remote
MSNAME.

v The destination name supplied in the I/O area of a
CHNG call is invalid.

Status Code Explanations

Chapter 15. DL/I Status Codes 457

v The destination name supplied in the I/O area of a
CHNG call is valid (the destination is a program and
the PCB is not an alternate response PCB), but the
transaction is Fast Path exclusive.

v AUTH call parameter list contained an invalid generic
CLASS name. No access checking was done.

Programmer Response: Correct the CHNG or AUTH
call, MSC program routing exit (DFSCMPR0), or ensure
that the specified destination is valid.

A2

Explanation: The program issued a CHNG call
against an invalid PCB. The PCB was invalid for one of
these reasons:

v It was not an alternate PCB.

v It was an alternate PCB, but it was not modifiable.

v It was being used to process a message and had not
completed processing it.

Programmer Response: Check the PCB that was
used by the CHNG call and determine which PCB should
have been used for the call.

A3

Explanation: The program issued an ISRT or PURG call
that referenced a modifiable alternate PCB that did not
have its destination set. IMS returns this status code to
PURG calls only when the PURG call specified an I/O area
as one of the parameters.

Programmer Response: Issue a CHNG call to set the
destination of the modifiable alternate PCB, and then
reissue the ISRT or PURG call.

A4

Explanation: A security violation was detected during
processing of an AUTH, CHNG, or ISRT call of a SPA on a
conversational response. Some of the reasons for this
status code are:

v Transaction authorization is active and either RACF
or a transaction authorization exit routine returned a
nonzero return code.

v The user is not authorized for access to the
RESOURCE name in the class requested in the
AUTH call. No installation data is returned.

v No source CNT is available, which might be caused
by the application program not having issued a GU.

v A program-to-program message switch is being done.
In this case, the applicable authorization LTERM is
based on the original message, and this authorization
does not allow this function to be performed.

Programmer Response: Check the transaction code
to make sure it was entered correctly. If it was, check
with the person who handles security at your
installation.

A5

Explanation: An ISRT or PURG call supplied an invalid
parameter list. The call supplied the fourth parameter
(the MOD name), but the ISRT or PURG being issued was
not for the first segment of an output message.

Programmer Response: Correct the ISRT or PURG call.

A6

Explanation: For a message processing program
(MPP or BMP), IMS ignored a message ISRT call
because the length of the message segment being
inserted exceeds the size specified in the SEGSIZE
keyword of the TRANSACT macro. For a Fast Path
program (IFP), the length of the output message to a
Fast Path terminal exceeds the size specified in the
FPBUF parm of the TERMINAL macro.

Programmer Response: Correct the output message
segment.

A7

Explanation: IMS ignored a message ISRT call for one
of the following reasons:

v The number of message segments inserted exceeds
the number specified in the SEGNO keyword of the
TRANSACT macro.

v The IMS queue manager or user Queue Manager
Space Notification exit routine (DFSQSPC0)
prohibited the insert in order to prevent the message
queue data sets from overflowing.

v The IMS queue manager or user Queue Manager
Space Notification exit routine (DFSQSPC0)
prohibited the insert because the destination
TRANSACTION or LTERM was stopped.

Programmer Response: Check the output messages
and correct them. Use ROLB or another method to free
buffer space.

A8

Explanation: IMS ignored an ISRT call because:

v An ISRT call to an alternate response PCB must not
follow an ISRT call to the I/O PCB.

v An ISRT call to the I/O PCB must not follow an ISRT
call to an alternate response PCB.

Programmer Response: Correct the ISRT call.

A9

Explanation: IMS ignored the ISRT call because:

v The ISRT call referenced an alternate response PCB
defined as SAMETRM=YES, but the PCB
represented a logical terminal that is not part of the
originating physical terminal. An alternate response
PCB defined as SAMETRM=YES must represent the

Status Code Explanations

458 IMS/ESA V6 Appl Pgm: TM

same physical terminal as the physical terminal
associated with the originating logical terminal.

v The originating terminal is in response mode, and the
alternate response PCB is not associated with that
logical terminal.

IMS does not return this status code if the program
makes either of these errors while communicating with a
terminal in a remote IMS system through MSC.

Programmer Response: Determine whether the
application program is in error, the output logical
terminal has been incorrectly reassigned (using the
/ASSIGN command), or if SAMETRM=YES should not
have been specified for the alternate response PCB.

BA

Explanation: The request was not completed because
it required access to unavailable data.

Only the updates done for the current request, prior to
the time it encountered the unavailable data, are
backed out. The state of the database is as it was
before the failing request was issued. If the request was
REPL or DLET, the PCB position was unchanged. If the
request was a Get or ISRT request, the PCB position is
unpredictable.

For a DEDB, this status code might be returned if no
updates have been made by the last commit point. If
updates have been made by the current call since the
last commit point, a BB status code is returned instead.
If changes have been made by a previous call, the
application program must decide whether to commit
these changes.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: This is an information-only
status code.

BB

Explanation: The BB status code is the same as BA
except that all database updates that the program made
since the last commit point are backed out, and all
nonexpress messages sent since the last commit point
are canceled. The PCB position for all PCBs is at the
start of the database.

For a DEDB, this status code might be returned if
updates have been made by the current call.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: This is an information-only
status code.

BC

Explanation: The response from an INIT STATUS
GROUPB call was not completed because it required
access to unavailable data.

All database resources that were allotted up to the last
commit point are backed out, with the exception of
GSAM and DB2. All output messages are backed out to
the last commit point. Input messages are requeued.

Programmer Response: This is an information-only
status code.

BJ

Explanation: All of the databases in the PSB are
unavailable, or there are no database PCBs in the PSB.

Each PCB (excluding GSAM) received an NA status
code as the result of the INQY DBQUERY call.

Programmer Response: This is an information-only
status code.

BK

Explanation: At least one of the databases included in
the PSB is unavailable or has limited availability.

At least one PCB received an NA or NU status code as
the result of processing the INQY DBQUERY call.

Programmer Response: This is an information-only
status code.

CA

Explanation: The program issued a CMD call with an
invalid command verb, or the command verb does not
apply to the IMS system that the program is running in.
IMS does not return any command responses.

Programmer Response: Correct the command in the
CMD call.

CB

Explanation: The command entered in the CMD call is
not allowed from an AOI program. IMS does not return
any command responses.

Programmer Response: Correct the command. For a
list of the commands that an AOI program can issue,
see IMS/ESA Customization Guide.

CC

Explanation: IMS has executed the command and
returned one or more command responses.

Programmer Response: Your program should issue
GCMD calls as necessary to retrieve the responses.

Status Code Explanations

Chapter 15. DL/I Status Codes 459

CD

Explanation: The command that was entered on the
CMD call violates security, or the application program is
not authorized to issue CMD calls. IMS does not execute
the command or return any command responses.

Programmer Response: Correct the command. If
necessary, check with the person in charge of security
at your installation to find out why your program is
restricted from using that command.

CE

Explanation: IMS rescheduled the message that this
GU call retrieved since the last CMD call. The program
had not reached a commit point when the message was
rescheduled.

Programmer Response: This is an information-only
status code.

CF

Explanation: The message being returned on the GU
call was received by IMS before the start of this IMS
execution. CF can be received on a CHKP call when an
I/O area is specified for an MPP or message-oriented
BMP. This occurs when a CHKP call issues an internal GU
call.

Programmer Response: This is an information-only
status code.

CG

Explanation: The message retrieved by this GU
originated from an AOI exit routine.

Programmer Response: This is an information-only
status code.

CH

Explanation: IMS ignored the CMD call just issued
because the AOI command interface detected a system
error and was unable to process the command. IMS
processing continues.

Programmer Response: Reissue the command.

CI

Explanation: CI is a combination of CE and CF. The
message retrieved by this GU was scheduled for
transmission before IMS was last started. The message
was rescheduled, but the program had not reached a
commit point.

Programmer Response: This is an information-only
status code.

CJ

Explanation: CJ is a combination of CE and CG. The
message retrieved by this GU was scheduled for
transmission before IMS was last started. The message
originated from an AOI exit routine.

Programmer Response: This is an information-only
status code.

CK

Explanation: CK is a combination of CF and CG. The
message retrieved with this GU originated from an AOI
user exit. The message was scheduled for transmission
before IMS was last started.

Programmer Response: This is an information-only
status code.

CL

Explanation: CL is a combination of CE, CF, and CG.
Please see the explanations of those codes.

Programmer Response: This is an information-only
status code.

CM

Explanation: The command that was entered on the
CMD call has been executed and completed, but it
resulted in an exception response that could not be built
because of an insufficient amount of general work area
(WKAP).

Programmer Response: Increase WKAP if you want
retrieval of the response.

CN

Explanation: The IOASIZE= parameter that was
specified on the PSBGEN macro is defined for less than
the required minimum for CMD calls (132 bytes).

Programmer Response: Redefine IOASIZE=
parameter on the PSBGEN for a minimum of 132 bytes.

DA

Explanation: The program issued a DLET or REPL that
tried to modify the key field in the segment or, when
using field-level sensitivity, a REPL call tried to modify a
field that had REPL=NO specified on the SENFLD
STMT in the PSB. You cannot change a segment’s key
field.

Programmer Response: Correct the request.

Status Code Explanations

460 IMS/ESA V6 Appl Pgm: TM

DJ

Explanation: The program issued a DLET or REPL call
that was rejected because the segment was not
currently in hold status. Some possible reasons for this
status code are:

v The segment had not been previously retrieved with
a Get Hold call.

v The segment was already deleted using this PCB.
After one Get Hold call, multiple REPL calls or a DLET
call following a REPL call are valid, but multiple DLET
calls are not.

v The segment was obtained using a secondary index
as the processing sequence. A subsequent DLET or
REPL call using either this PCB or another PCB within
the PSB caused the current secondary index entry for
this PCB to be deleted.

v A checkpoint call was issued following the Get Hold
call and preceding the REPL or DLET call.

v A rollback call was issued following the get hold call
and preceding the REPL or DLET call.

Programmer Response: Correct the program so that
the segment is in hold status when a DLET or REPL is
issued.

DX

Explanation: The program issued a DLET that violates
the delete rule for that segment.

Programmer Response: Check the program to see
whether or not the program should delete that segment;
if it should, check with your DBA (or the equivalent
specialist at your installation) to find out what delete rule
has been specified for that segment.

EM

Explanation: The EM status (empty area) indicates
that there are no valid sequential dependent segments
in the area.

Programmer Response: Check to see that the correct
area is being processed by the utility and that
sequential dependent segments have been inserted.

FA

Explanation: IMS returns this status code when the
program reaches a commit point and an arithmetic
overflow occurs in an MSDB, DEDB, or VSO DEDB
during that commit interval since the last commit point
(or, if the program had not reached a commit point,
since the program began processing). You can receive
this status code on a SYNC call, a CHKP call, or a GU call
to the message queue, depending on your program.
The overflow occurred after the program issued a
FLD/CHANGE call, or a REPL call for the MSDB, DEDB, or
VSO DEDB. When this happens, IMS issues an internal
ROLB call to eliminate the changes that the program has

made since the last commit point. All database
positioning is lost.

Programmer Response: Reprocess the transaction.

FC

Explanation: The program issued a request that is not
valid for the segment type.

Programmer Response: Correct the request.

FD

Explanation: A nonmessage driven BMP reached a
deadlock when IMS tried to get DEDB or MSDB
resources (either DEDB UOWs or overflow latches) for
the program. Or, a mixed-mode BMP reached a
deadlock on any resource, either Fast Path or full
function. IMS eliminates all database updates that the
program has made since the last SYNC call, CHKP
request, or SYMCHKP command (or since the program
started processing, if the program has not issued a SYNC
call or CHKP request). All database positioning is lost,
unless you specified the P processing option in the
PCB. Messages to a non-express alternate TP PCB are
discarded.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: Start processing from the
last commit point. If you reach a deadlock again,
terminate the program.

FE

Explanation: IMS returns this status code any time a
program issues a FLD call that receives a nonblank
status code in the FSA.

Programmer Response: See “Fast Path Databases”
in IMS/ESA Application Programming: Database
Manager for an explanation of FSA status codes and
correct the FLD call.

FF

Explanation: A program issued an ISRT call against
an MSDB that has no free space. If IMS determines that
there is no free space when the program issues the
ISRT call, the program receives the FF status code for
that call. IMS might not determine this until the program
reaches the next commit point. In this case, IMS returns
FF when the program issues a GU call to the message
queue, a SYNC call, or a CHKP call, depending on which
call caused the commit point.

Programmer Response: To avoid this situation,
specify more space for the MSDB at the next system
start (cold start or normal restart).

Status Code Explanations

Chapter 15. DL/I Status Codes 461

FG

Explanation: FG is a combination of FE and FW. A
batch-oriented BMP issued a FLD call that received a
nonblank status code in the FSA, and the program has
depleted its normal buffer allocation.

Programmer Response: Check the FSA status code
and correct the FLD call, and then issue SYNC or CHKP
calls in the program more frequently. One way to handle
this status code is to branch to an error routine that
causes the program to issue SYNC or CHKP calls more
frequently when it receives this status code.

FH

Explanation: A DEDB area was inaccessible to the
requested service when the program issued a database
request or when the program reached a commit point.
The AREA was stopped or the DEDB randomizing
routine was not loaded into storage. A /START
DATABASE dedbname command will cause the DEDB
randomizing routine to be reloaded.

If IMS returns this status code on a call that caused a
commit point to occur (a SYNC call, a message GU, a
CHKP request, or a SYMCHKP command), IMS issues
an internal ROLB call to eliminate the program’s database
updates and message output created since the last
commit point.

If your program is accessing a DEDB in a data-sharing
environment, and if the authorization fails when your
program issues its first DL/I call to the DEDB, Fast Path
returned this status code. Fast Path also notified the
master terminal operator of the authorization failure.
Your position in the database is before the first root in
the next area. A GN will get the next available record
(unless that one is also inaccessible).

If a program has access to an area through a PCB with
PROCOPT=H and another PCB without PROCOPT=H,
it is possible that only calls to the PCB with
PROCOPT=H will receive the FH status code. This is
because the area is accessible to IMS, but the required
HSSP (high-speed sequential processing) setup could
not be established. Message DFS0533A explains the
reason for this occurrence and is sent to the job log.
This status code is also returned if the PROCOPT for
one PCB is more restrictive than the PROCOPT of a
different PCB in the same PSB. Position is set to the
beginning of the next accessible area.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: If the data in the area is
important, contact the DBA. If the data in the area is
unimportant, the program should roll back the changes.
Your program can continue processing with the next
available area.

If the status code is related to an HSSP setup problem,

fix the error as described in the message DFS0533A in
the job log.

FI

Explanation: The program’s I/O area is not at a
storage address that the program can access.

Programmer Response: Correct the program.

FM

Explanation: The application program issued a
request for which the randomizing routine returned a
return code of 4.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: The database position has
not changed. The application program must determine
subsequent processing.

FN

Explanation: The program issued a FLD call that
contains a field name in the FSA that is not defined in
the DBD. IMS does not continue processing the FLD call
or any of the FSAs in the FLD call. IMS returns an FN
status code in this situation even if an earlier FSA in the
same FLD call received an FE status code.

Programmer Response: Issue a ROLB call to remove
the effects of the incorrect FLD call and then correct the
FLD call.

FP

Explanation: The I/O area referenced by a REPL,
ISRT, or FLD/CHANGE call to an MSDB contains an
invalid packed-decimal or hexadecimal field.

Programmer Response: Correct the data in the I/O
area.

FR

Explanation: One of the following situations exists:

v A batch-oriented BMP issued a database request that
forced the system to go beyond the buffer limit
specified for the region.

v A batch-oriented BMP received a GC status code in a
PCB with PROCOPT=H. Another commit process
was required before using the PCB again.

IMS eliminates all database changes made by the
program since the last SYNC call, CHKP request, or
SYMCHKP command the program issued (or since the
program started processing if the program has not
issued any SYNC calls, CHKP requests, or SYMCHKP
commands). All database positions for PCBs not
referring to a DEDB with PROCOPT=P or H active are

Status Code Explanations

462 IMS/ESA V6 Appl Pgm: TM

lost. If the PCB referred to a DEDB with PROCOPT=P
or H active, the position is set to the valid position after
the last commit process, or the start of the valid range if
there was no commit process.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: Either terminate the program
and restart it with a larger buffer allocation, or provide a
routine that causes frequent commit points. If
PROCOPT=H is used, make sure that a commit point is
requested after a GC code has been returned.

FS

Explanation: For a root segment or direct dependent
segment, this status code is returned only to BMPs. For
a sequential dependent segment, this status code can
be returned to either a BMP or a message-driven
program:

v A BMP issued an ISRT request for a root segment, a
direct dependent segment, or a sequential dependent
segment, but IMS could not get enough space in
either the root-addressable or sequential dependent
part of the DEDB area to insert the new segment:

– If IMS returns this status code on an ISRT request
for a root segment, a direct dependent segment,
or a sequential dependent segment, the problem
is with the root-addressable portion of the area,
the independent overflow area, or the sequential
dependent area.

– If IMS returns this status code when the program
issues a SYNC call, CHKP request, or SYMCHKP
command, the problem is with the sequential
dependent part of the area.

In either case, IMS eliminates all of the database
changes the program has made since the last commit
point (or since the program started processing, if the
program has not reached a commit point).

v A message-driven program issued an ISRT request
for a sequential dependent segment, and the
sequential dependent part is full.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: Continue with other
processing, and report the problem to the system
programmer.

FT

Explanation: The Fast Path program issued a call to a
Fast Path database that included too many SSAs. A call
to a DEDB can include up to 15 SSAs. A call to an
MSDB can include only one SSA.

Programmer Response: Correct the call.

FV

Explanation: At least one of the verify operations in a
FLD call issued in a batch-oriented BMP failed when the
program reached a commit point. IMS eliminates the
database updates the program has made since it issued
the last SYNC or CHKP call (or if the program has not
issued a SYNC or CHKP call, since the program started
processing). All database positioning is lost.

Programmer Response: Reprocess the transaction or
terminate the program.

FW

Explanation: A BMP has used all buffers that are
allocated for normal use, or all buffers have been
modified. IMS returns this status code to warn you that
you might be running out of buffer space. An FR status
code might be imminent.

If you have been processing a DEDB, you get FW for
requests that change data.

If you have been processing an MSDB, you get FW for
all calls that change data and for GH calls.

With a DEQ call, you receive this code if no buffers can
be released.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: You can supply an
error-handling routine, triggered by the FW status code,
that will cause your program to issue SYNC calls, CHKP
requests, or SYMCHKP commands as soon as an FW
status code is returned to your program. This reduces
the total buffer requirement. To avoid receiving the FW
status code, issue SYNC or CHKP calls more frequently.

FY

Explanation: PROCOPT=H PCBs process segments
sequentially in the forward direction. Position is
established on a UOW and is moved forward only.
Attempts to retrieve segments prior to the current UOW
position are not allowed for HSSP application programs
and will not be processed; they receive this status code.

Programmer Response: Change the application
program to retrieve segments in a forward direction
only; use a PCB with a PROCOPT value other than H
to access the segments in the backward direction.

GA

Explanation: In trying to satisfy an unqualified GN or
GNP call, IMS crossed a hierarchic boundary into a
higher level.

Status Code Explanations

Chapter 15. DL/I Status Codes 463

If IMS returns GA after a STAT6 request, it means that
the request that was just issued retrieved the total
statistics for all the VSAM buffer subpools.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command. This call results in a
return code of 0.

Programmer Response: This status code is an
information-only status code.

GB

Explanation: In trying to satisfy a GN call, DL/I reached
the end of the database or, if you used a SETR
statement, the end of the current range. In this situation,
the SSA for the call or qualification for the command
specified data beyond the last occurrence, and the
search was not limited to the presence of a known or
expected segment occurrence.

For example, a GN call was specified for a key greater
than a particular value, rather than a GU call specifying a
key value beyond the highest value.

A GB status code can be returned for:

v An unqualified GN call

v A qualified GN call without a maximum key (if no data
is returned to the I/O area)

In contrast, a GE status code, instead of a GB status
code, can be returned for:

v A GU call

v A qualified GN call without a maximum key (if data is
returned to the I/O area)

v A qualified GN call with a maximum key

IMS also returns this status code when it has closed a
GSAM data set. The assumed position for a subsequent
request for a GSAM or full-function database is the
beginning of the database, or if a SETR statement was
used for a DEDB database, the beginning of the current
range.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: User determined.

GC

Explanation: An attempt was made to cross a
unit-of-work (UOW) boundary, or an area boundary in
the case of PROCOPT=H. For a batch-oriented BMP
PCB with PROCOPT=H or PROCOPT=P, at least one
call on the referenced PCB changed position in the
database since the last commit process or after the
program began executing. IMS did not retrieve or insert

a segment. Position is before the first segment of the
following UOW.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: User determined. However, if
the GC status code results from a call that referred to a
PCB with PROCOPT=H, the program must cause a
commit process before any other call can be issued for
that PCB. Failure to do so results in an FR status code.

GD

Explanation: The program issued an ISRT call that
was not qualified for all levels above the level of the
segment being inserted. For at least one of the levels
for which no qualification was specified, a prior request
using this PCB established valid position on a segment.
That position is no longer valid for one of these
reasons:

v The segment has been deleted by a DLET call using a
different DB PCB.

v The segment was retrieved using an alternate
processing sequence, and a REPL or DLET call for this
DB PCB caused the index for the existing position to
be deleted.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: User determined.

GE

Explanation:

For call-level programs:

IMS returns this status code when:

v DL/I is unable to find a segment that satisfies the
segment search argument described in a Get call.

v For an ISRT call, DL/I cannot find one of the parents
of the segment being inserted.

v For an ISRT call, DL/I was requested to insert a root
segment outside of the accessible range determined
by a SETR statement.

v The program issued a STAT7 call for OSAM buffer
pool statistics, but the buffer pool does not exist.

v The program issued a STAT7 call for VSAM buffer
subpool statistics, but the subpools do not exist.

v A nonmessage driven BMP issued a FLD call to an
MSDB segment. After the FLD call but before a
commit point, the MSDB segment was deleted. GE
can be returned for this reason after either a SYNC or
a CHKP call.

6. STAT is a Product-sensitive programming interface. 7. STAT is a Product-sensitive programming interface.

Status Code Explanations

464 IMS/ESA V6 Appl Pgm: TM

For command-level programs:

v DL/I is unable to find a segment that satisfies the
segment described in a Get command.

v For an ISRT command, DL/I cannot find one of the
parents of the segment you’re inserting.

v The program issued a STAT7 command for ISAM or
OSAM buffer pool statistics, but the buffer pool does
not exist.

v The program issued a STAT call for 7 VSAM buffer
subpool statistics, but the subpools do not exist.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: The action you take
depends on your program.

Note: When a GNP call for a DEDB sequential
dependent segment results in a GE status code,
the I/O area contains a length indication of 10
bytes and the original position of the deleted
portion of the sequential dependent part. Position
is at the end of the sequential dependent chain.

GG

Explanation: DL/I returns this status code if the
segment being retrieved contains an invalid pointer and
the application program has a processing option of GOT
or GON. (Processing options are explained under
PROCOPT in the discussion of program specification
block generation in IMS/ESA Utilities Reference:
System.) This can occur when update activity in the
database is going on concurrently with your program’s
processing.

For call-level programs:

The PCB key feedback length and area will be based
on the last segment that satisfied the call. Your position
is at the beginning of the database.

For command-level programs:

If your request specified KEYFEEDBACK, the DIBKFBL
will contain the length of the key of the last segment
that satisfied the command. Your position is at the
beginning of the database.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: Continue processing with
another segment or terminate the program. The request
that resulted in the GG status code might be successful
if you issue it again.

GK

Explanation: DL/I has returned a different segment
type at the same hierarchic level for an unqualified GN or
GNP call.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command. This call results in a
return and reason code of 0.

Programmer Response: This is an information-only
status code.

GL

Explanation: For either call-level or command-level
programs:

The program issued a LOG request that contained an
invalid log code for user log records. The log code in a
LOG request must be equal to or greater than X'A0'.

For call-level programs:

DL/I returns GL on a DEQ request when the first byte of
the I/O area referenced in the request did not contain a
valid DEQ class (B-J).

For command-level programs:

EXECDLI returns a GL status for either a GN, GNP, GU, or
DEQ command when the alphabetic character coded on
the LOCKCLASS option is not within the range of B to
J. An ABENDU1041 is then issued.

Programmer Response: Correct the log code, which
is the first byte of the log message.

For call-level programs:

If the program received this status code for a DEQ
request, check the DEQ class code in the I/O area.

For command-level programs:

Check the alphabetic character coded for class on the
LOCKCLASS option to ensure that it is in the range
from B to J.

GP

Explanation: The program issued a GNP when there is
no parentage established, or the segment level
specified in the GNP is not lower than the level of the
established parent.

Programmer Response: Make sure you have
established parentage before issuing GNP, and check
the segment level specified by the GNP.

HT

Explanation: The HT status indicates that the
High-Water-Mark time stamp (HWM TS) is less than the
Logical Begin time stamp (LB TS).

Status Code Explanations

Chapter 15. DL/I Status Codes 465

Programmer Response: The time stamp in the
High-Water-Mark segment was not updated on the area
data set during utility setup and partner notification.
Check whether the data-sharing partner is still running.
The RLM may have a lock for the sequential dependent
CI.

II

Explanation: The program issued an ISRT call that
tried to insert a segment that already exists in the
database. Current position after an II status code is just
before the duplicate of the segment you tried to insert.
Some of the reasons for receiving this status code are:

v A segment with an equal physical twin sequence field
already exists for the parent.

v A segment with an equal logical twin sequence
already exists for the parent.

v The logical parent has a logical child pointer, the
logical child does not have a logical twin pointer, and
the segment being inserted is the second logical child
for that logical parent.

v The segment type does not have physical twin
forward pointers and the segment being inserted is
the second segment of this type for that parent, or it
is the second HDAM root for one anchor point.

v The segment being inserted is in an inverted
structure. (The immediate parent of this segment in
the logical structure is actually its physical child in the
physical structure.)

v A physically paired logical child segment already
exists with a sequence field equal to that of the
segment you’re inserting. For example, the segment
could have been inserted with no duplication, but
when an attempt was made to position for the insert
of its physical pair, the segment had a duplicate key
to an existing twin segment.

v An application program inserted a key of X'X’FF...FF’'
into a HISAM or HIDAM database.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: User determined.

IX

Explanation: The program issued an ISRT call that
violated the insert rule for that segment. Some of the
reasons that IMS returns this status code are:

v The program tried to insert the logical child and
logical parent, and the insert rule for the logical
parent is physical and the logical parent does not
exist.

v The program tried to insert the logical child and the
logical parent, and the insert rule is logical or virtual
and the logical parent does not exist. In the I/O area,

the key of the logical parent does not match the
corresponding key in the concatenated key in the
logical child.

v The program tried to insert a logical child, and the
insert rule of the logical parent is virtual and the
logical parent exists. In the I/O area, the key in the
logical parent segment does not match the
corresponding key in the concatenated key in the
logical child.

v The program tried to insert a physically paired
segment, where both sides of the physical pair are
the same segment type and the physical and logical
parent are the same occurrence.

v The program issued an ISRT call to a GSAM
database after receiving an AI or AO status code.

Programmer Response: Correct the ISRT or the
program.

LB

Explanation: The segment that the program tried to
load already exists in the database. Other possible
causes are:

v A segment with an equal physical twin sequence field
already exists for the parent.

v A segment type does not have a physical twin
forward pointer, and the segment being inserted is
either the second segment of this segment type for
the parent or the second HDAM root for one anchor
point.

v An application program inserted a key of X'FF...FF'
into a HISAM or HIDAM database.

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

Programmer Response: Correct the ISRT call or
LOAD command, or find out if the load sequence is
incorrect. Check with the DBA or the equivalent
specialist at your installation.

LC

Explanation: The key field of the segment being
loaded is out of sequence.

Programmer Response: Check the segment and
determine where it should be loaded.

LD

Explanation: No parent has been loaded for the
segment being loaded.

Programmer Response: Check the sequence of
segments that have been loaded and determine where
the parent should have been loaded.

Status Code Explanations

466 IMS/ESA V6 Appl Pgm: TM

LE

Explanation: The sequence of sibling segments being
loaded is not the same as the sequence that is defined
in the DBD.

Programmer Response: Check and correct the
sequence of the segments that are being loaded.

LS

Explanation: The LS status means that an application
program needed to allocate SDEP CI RBAs to contain
the application programs’ insert activity for a particular
area in a Data Entry Database and the CIs could not be
locked by the RLM. The application work may be
committed, but some other application work may not
have enough CI space, depending on how much SDEP
insert work was done and the first committed
application.

Programmer Response: Do a commit and be careful
not to insert too many more SDEP segments.

MR

Explanation: Reserved.

NA

Explanation: The INIT call with DBQUERY in the I/O
area or the QUERY command was issued, and at least
one of the databases that could be accessed using this
PCB was not available.

A request made using this PCB will probably result in a
BA status code if the INIT STATUS GROUPA has been
issued or in a DFS3303I message and 3303 pseudo
abend if it has not. An exception is when the database
is not available because dynamic allocation failed. In
this case, a request results in an AI (unable to open)
status code.

Programmer Response: This is an information-only
status code.

NE

Explanation: Indexing maintenance issued a DL/I call,
and the segment has not been found. This status code
is included in message DFS0840I. The system console
receives message DFS0840I INDEX ERROR (dbdname) NE
(first 45 bytes of key). The application program receives
a blank status code.

An application program could have processed a
secondary index as a database and thus deleted some
of the secondary index entries. Subsequently, when a
source segment is deleted, the secondary index for the
source statement might not be present. For this reason,
when the application program deletes a source segment
and the index entry is not present, the DFS0840I
message is sent to the system console, but a blank

status code is returned to the application program.

Programmer Response: Determine whether the
secondary index has been processed as a database
and, as a result, the key included in the DFS0840I
message was deleted. If this is not the case, check the
cause for the index inconsistency with the database and
correct it.

NI

Explanation: There is a duplicate segment in a unique
secondary index. While IMS was inserting or replacing a
source segment for a secondary index defined with a
unique sequence field, the insertion of the secondary
index segment was attempted but was unsuccessful
because an index segment with the same key was
found. One possible cause for a duplicate segment in
the index is that the index DBD incorrectly specified a
unique key value—secondary index only.

In an online application program, the call is backed out
and the program receives an NI status code.

For a batch program that does not log to the IMS DASD
log, IMS abnormally terminates the program with a
U0828 abend. You should run batch backout.

Programmer Response: The response is determined
by the user. If duplicate secondary index entries occur,
specify the index as nonunique, and provide an
overflow entry-sequenced data set.

NL

Explanation: The application program issued an
extended checkpoint call. Checkpoint information is
written to the log data set, but there is no DD statement
in the batch step for the log, so no checkpoint was
written. The DD name for the log data set is IEFRDER.
Although no checkpoint information was written, normal
commit processing was performed.

Programmer Response: Provide an IEFRDER DD
statement. No status is returned for a DD DUMMY
statement.

NO

Explanation: A BSAM or VSAM physical I/O error
occurred during a database request that is issued by
the index maintenance function.

For an online program, all updates made for the call are
backed out and the application program receives the
NO status code. For a batch program that does not log
to the IMS DASD log, IMS abnormally terminates the
program with an 826 abend.

Programmer Response: See accompanying
messages giving details of the error. In a batch
environment, run batch backout.

Status Code Explanations

Chapter 15. DL/I Status Codes 467

NU

Explanation: An ISRT, DLET, or REPL request using
this PCB might result in a BA status code if the INIT
STATUS GROUPA call or QUERY command has been
issued or in a DFS3303I message or 3303 pseudo
abend if it has not. If the unavailable database is only
required for delete processing, it is possible that the
ISRT and REPL requests can be processed.

Programmer Response: This is an information-only
status code.

OS

Explanation: The OS status indicates that the
STOPRBA parameter value given for the DEDB
Sequential Dependent Scan Utility is too large for the
current sequential dependent CI set.

Programmer Response: Check the parameter value
for validity and use a correct value or use the utilities
default value for the scan end.

QC

Explanation: There are no more messages in the
queue for the program. The reasons that IMS returns
this status code are:

v An application program issued a successful CHKP call,
but the message GU call issued internally by the CHKP
call was unsuccessful (that is, it did not return a
message).

v An application program processing APPC
synchronous messages that does not set sync points
for each message GU call (that is, mode=MULT on the
TRANSACT macro) is returned a QC status code to
force a sync point after each GU call.

For more information regarding the TRANSACT
macro, refer to IMS/ESA Installation Volume 2:
System Definition and Tailoring.

v An MPP or transaction-oriented BMP issued a GU call
to retrieve another message, but either there are no
more messages or the processing limit (that is,
PROCLIM=parm on the TRANSACT macro) has
been reached.

v IMS is shutting down or:

– A /PSTOP REGION command has been issued for
the dependent region in which the application
program is processing.

– A database dump (/DBD) command has been
issued.

– A database recovery (/DBR) command is in
operation.

– A stop subsystem (/STOP SUBSYS) command
has been issued.

For more information regarding these commands,
refer to IMS/ESA Operator’s Reference.

v IMS wants to reschedule the region (quick
reschedule). For more information regarding quick
reschedule, refer to IMS/ESA Administration Guide:
System.

Programmer Response: This is an information-only
status code. The application program should terminate.

QD

Explanation: The program issued a message GN or
GCMD call, but there are no more segments for this
message.

Programmer Response: Process the message.

QE

Explanation: The program issued a message GN call
before issuing a GU call to the message queue. In
message-driven Fast Path programs, this code applies
to message calls only. The program issued a message
GN call before issuing a GU call to the message queue. In
message-driven Fast Path programs, this code applies
to message calls only. This code is also returned when
a program issues a ROLB call, specifying the I/O area
parameter, without having issued a successful message
GU call during that commit interval. A message-driven
Fast Path program issued a CHKP call to establish an
internal GU call but the CHKP call failed with a status QC
code. A successful GU call was never issued during the
commit interval for the failing CHKP call. Information only
status code for calls encountering SDEP full or FLD
verify failures which are reprocessed via ROLB.

Programmer Response: Correct the program by:

v Issuing a GU call before the GN call

v Issuing a CMD call before the GCMD call

v Issuing a GU call before the ROLB call

QF

Explanation: The length of the segment is less than
five characters. The minimum length allowed is the
length of the message text plus four control characters.

Programmer Response: Correct the segment.

QH

Explanation: There has been a terminal symbolic
error. The output logical terminal name or transaction
code is unknown to IMS. Some reasons for receiving
this status code are:

v The program tried to insert an alternate response
PCB receiving a QC status code for a GU call.

v The program tried to insert to an I/O PCB that has a
logical terminal name of blanks. This could occur
after the program issued a GU call for a message that
originated either from a batch-oriented BMP or a CPI
Communications driven program.

Status Code Explanations

468 IMS/ESA V6 Appl Pgm: TM

v SMB or CNT could not be found.

v The program deallocated a conversation with a SETO
call with the DEALLOCATE_ABEND option. Any
subsequent ISRT calls are rejected with this status
code.

v The program issued an ISRT call without first issuing
a GU call.

v The logical terminal name or transaction code
specified is Fast Path exclusive and is not available
to this program.

v The program issued an ISRT call for a segment
shorter than 5 bytes.

v The program issued an ISRT call for a SPA shorter
than 6 bytes.

v The logical terminal name or transaction code has
leading blanks, instead of being left-justified.

Programmer Response: Check the logical terminal
name or transaction code, and correct it.

RA

Explanation: The token does not match a token for
any outstanding SETS requests or the request was
issued for a database PCB that did not get a BA status
on the previous request.

Programmer Response: The outstanding SETS
request might have been canceled by a commit
process, or an error exists in the use of the token.

RC

Explanation: The ROLS call was issued with
unsupported PCBs in the PSB, or the program is using
an attached subsystem. If the ROLS call is in response to
a SETS call, the call is rejected. If the ROLS call is in
response to a SETU call, the call is processed, but
updates to unsupported PCBs or an attached
subsystem are not backed out. This status is only
returned for a ROLS call in response to a SETU call if an
attached subsystem is being used.

Programmer Response: User determined.

Explanation: The ROLS request was rejected because
the PSB contains access to a DEDB, MSDB, or GSAM
organization or has access to an attached subsystem.

Programmer Response: The ROLS request is invalid in
this environment. The program must either remove the
use of the database organization that is preventing the
use of the ROLS call or not use the ROLS call.

RX

Explanation: The program issued a REPL that violated
the replace rule for that segment.

Programmer Response: Correct the REPL call, or
check with the DBA or the equivalent specialist at your
installation.

SA

Explanation: On a SETS request, IMS was not able to
obtain the storage space for the data in the I/O area.

Programmer Response: Use a larger region size for
the job step.

SB

Explanation: The maximum number of levels, nine, of
SETS requests were already specified, and this request
is attempting to set the tenth.

Programmer Response: Correct the program.

SC

Explanation: A SETS or SETU call was issued with
unsupported PCBs (DEDB, MSDB, or GSAM) in the
PSB, or the program is using an attached subsystem.

Programmer Response: For a SETS call, the request
is rejected. Remove the unsupported PCBs or use the
SETU call. For a SETU call, the program can proceed with
the knowledge that a ROLS call will not back out changes
for the unsupported PCBs. The other option is to not
use the SETS or ROLS function.

TA

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a scheduling request. The PSB named in the
request is not in the PSB directory.

Programmer Response: Correct the name of the PSB
in the scheduling request, or add the PSB name to the
PSB directory.

TC

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a scheduling request. It means that you have
already scheduled a PSB.

Programmer Response: Correct your program so that
you terminate a PSB before scheduling another. If you
want to reschedule a PSB, you must have already
terminated the PSB.

TE

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a scheduling request. The PSB could not be
scheduled because an initialization error occurred.

Programmer Response: See your system
programmer or DBA. For information on possible
causes for the PSB initialization error, see IMS/ESA
Application Programming: Database Manager.

Status Code Explanations

Chapter 15. DL/I Status Codes 469

TG

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a terminate request. The program issued a
terminate request when there was no PSB scheduled.

Programmer Response: This is an information-only
status code. If you only wanted to terminate a PSB,
continue with processing. If you also wanted to cause a
sync point, issue a SYNCPOINT command. (No sync
point was caused by the unsuccessful terminate
request.)

Rather than having an abnormal termination occur, this
status code is returned to the application program that
issued the EXEC DLI command.

TH

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a database request or a statistics request. The
program attempted to access the database before
scheduling a PSB.

Programmer Response: Correct your program, and
schedule a PSB before accessing the database.

TI

Explanation: This status code applies to
command-level programs only, and it is returned after
an ISRT command. The ISRT command defined an
invalid path to the segment. Data must be transferred
for all segments between the first named segment and
the last named segment.

Programmer Response: Correct the ISRT command,
specifying a FROM option for each segment to be
transferred.

TJ

Explanation: This status code applies to CICS online
command-level programs only, and it can be returned
after any command that a CICS online program uses.
DL/I is not active.

Programmer Response: Contact your DBA. CICS
must be re-initialized with DL/I defined as active in the
SIT.

TL

Explanation: This status code applies to CICS online
command-level programs only, and it is returned after a
scheduling request. A conflict in scheduling intent
occurred. (This cannot occur if program isolation has
been specified.)

Programmer Response: Specify program isolation in
the SIT. If program isolation has not been specified, wait

until the PSB is no longer in use, and reschedule it.

TN

Explanation: This status code applies to
command-level programs only, and it can be returned
after any of the commands. An invalid SDIB exists. An
initialization call was not made, or the system’s DIB (not
the application program’s DIB) was overlaid.

Programmer Response: Check your program to
make sure that you did not use an entry statement, as
you would in a call-level batch program. Also make sure
that no addressing errors are in your program that
would cause an overlay.

TO

Explanation: This status code applies to
command-level programs only, and it is returned
following a REPL command. A path-replace error
occurred. The segments to be replaced are compared
to the previous Get command and one of the following
situations occurred:

v A segment is named to be replaced that was not
retrieved by the Get command.

v Data had not been transferred (no INTO option) for
this segment on the Get command.

v The attributes of the data to be transferred do not
match the data in the database.

Programmer Response: Correct the program.

TP

Explanation: This status code applies to
command-level programs only, and it is returned
following any of the database commands, a LOAD
command, or a statistics request. The number of the
PCB specified in the USING option is higher than the
number of PCBs in the PSB being used, or an invalid
processing option was specified. For example, the
program tried to issue a LOAD command without having
the L processing option specified in its PSB.

An EXEC DLI command is being attempted against a
GSAM PCB. This is invalid.

Programmer Response: Check the PSB and correct
your program.

TR

Explanation: This status code means that the CICS
XDLIPRE exit routine returned X'04' in register 15
because the routine determined that the immediately
preceding DL/I request should not be executed.

Programmer Response: Contact the CICS system
programmer.

Status Code Explanations

470 IMS/ESA V6 Appl Pgm: TM

TY

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a database or statistics request. The database
was not open when the request was issued.

Programmer Response: Contact your DBA or system
programmer. The database can be checked and opened
by using operator commands.

TZ

Explanation: This status code applies to CICS online
command-level programs only, and it is returned
following a database or statistics request. The length of
the retrieved segment is greater than 64 KB.

Programmer Response: Contact your DBA or system
programmer; the database definition might require
modification.

U1

Explanation: This status code is returned when the
area name specified is not valid.

Programmer Response: Correct the error and run the
utility job again.

U9

Explanation: This status code is returned when the
area access intent is read or read only. Access intent
must be UP or EX.

Programmer Response: Use the /STA DB ACCESS
command to set the access intent to UP or EX and run
the job again.

UB

Explanation: This status code is returned when IMS is
unable to obtain private buffer pool.

Programmer Response: No DFS0535I message is
issued if the High Speed Reorganized Utility (HSRE) is
being used when this status code is received. See the
DFS2712I messages issued at utility termination for the
name of the module, abend subcode, Utility High Speed
Workarea (UHSW) storage area dump, IOAR (DEDB
I/O), and register contents.

If the DBFPAPB0 return code is 08, storage is not
available for the private buffer pool.

If the DBFHUSS0 return code is 10, the request for
private buffers is for the initial buffer set and the private
pool anchor address already exists.

UC

Explanation: This status code is returned for the
following reasons:

v For batch programs in which a checkpoint record was
written to the UCF journal data set. For information
about the Utility Control Facility (UCF), see IMS/ESA
Administration Guide: Database Manager and
IMS/ESA Utilities Reference: Database Manager.

During the processing of an HD reorganization, a
reload, or an initial load program under the
supervision of the Utility Control Facility (UCF), a
checkpoint record was written to the UCF journal
data set. IMS returns this status code to indicate that
the last ISRT call was correct and the initial load
program might continue or it might perform a
checkpoint procedure before continuing.

v When a connect failed.

Programmer Response: This is an information-only
status code for the first status code reason above.

When this status code is issued for a connect failure,
see message DFS0535I for more information on how to
correct the error.

UP

Explanation: This status code is returned when the
UOW requested is greater than the UOW range.

Programmer Response: Correct the error and run the
job again.

UR

Explanation: This status code is returned for batch
programs only. Your initial load program is being
restarted under UCF. For information about the Utility
Control Facility (UCF), see IMS/ESA Administration
Guide: Database Manager and IMS/ESA Utilities
Reference: Database Manager. The program terminated
while executing under UCF. The job was resubmitted
with a restart request.

Programmer Response: Ensure that the program is
in proper sequence with database loading. The program
uses the I/O area and the DB PCB key feedback area
to do this.

US

Explanation: This status code is returned for batch
programs only. The initial load program is about to stop
processing. While processing an HD reorganization
reload or user initial load program under the supervision
of UCF, the operator replied to the WTOR from UCB
and requested the current function to terminate. For
information about the Utility Control Facility (UCF), see
IMS/ESA Administration Guide: Database Manager and
IMS/ESA Utilities Reference: Database Manager. The
last ISRT call was processed.

Status Code Explanations

Chapter 15. DL/I Status Codes 471

Programmer Response: Ensure that the initial load
program performs a checkpoint procedure of its data
sets and returns with a nonzero value in register 15.

UW

Explanation: This status code is returned when IMS is
unable to obtain a work area.

Programmer Response: Increase the REGION size
and run the job again.

UX

Explanation: This status code is returned for batch
programs only. A checkpoint record was written, and
processing stopped. This is a combination of UC and
US status codes.

Programmer Response: See the descriptions of UC
and US status codes.

V1

Explanation: The program tried to insert or replace a
variable-length segment that is too long. The length of
the segment must be equal to or less than the
maximum length specified in the DBD. IMS also returns
status code V1 when the specified minimum length
cannot hold the complete sequence field of the segment
type. In this situation, status code V1 results from one
of three instances: processing without an
edit/compression routine; processing with an
edit/compression routine, but not specifying the key
compression option; or coding a length field (LL) that is
less than the specified minimum length. The length
must be long enough to include the entire reference
field; if the segment is a logical child, it must include the
entire concatenated key of the logical parent and all
sequence fields for the paired segment. The program
tried to delete a variable-length segment. The copy of
this segment in the user’s I/O area contains an invalid
length field.

IMS also returns this status code when an invalid record
length is specified in a GSAM call.

Programmer Response: Correct the program.

V2

Explanation: This status code applies to
command-level programs only, and it is returned
following a database or LOAD command. The segment
length is missing or invalid. The segment length must
be a positive integer. For variable-length segments, it is
the maximum size acceptable to the program’s I/O area.

Programmer Response: Check that the program
translated and compiled correctly. The value of any
segment length in a path command should not exceed
32 KB, and the sum of the lengths should not exceed
64 KB.

V3

Explanation: This status code applies to
command-level programs only, and it is returned
following a Get or ISRT command. The field length is
missing or invalid. The field length must be a positive
integer, and it must be specified for each field in a
WHERE option.

Programmer Response: Correct the program.

V4

Explanation: This status code applies to
command-level programs only, and it is returned
following any of the database commands or a LOAD
command. The length of a variable-length segment is
invalid. The LL field as provided by the program on an
ISRT or REPL command, or as received in the I/O area
on a Get command, exceeds the value of
SEGLENGTH.

Programmer Response: Correct the program.

V5

Explanation: This status code applies to
command-level programs only, and is returned following
a Get, REPL, or ISRT command. The offset is invalid. The
offset must be a positive integer and not greater than
the segment length.

Programmer Response: Correct the program.

V6

Explanation: This status code applies to
command-level programs only, and it is returned
following a Get or ISRT command using the KEYS
option. The concatenated key length is missing or
invalid. The length of the concatenated key must be a
positive integer.

Programmer Response: Correct the program.

V7

Explanation: This status code applies to
command-level programs only, and is returned following
a STAT command. It means that the statistics area
length is either too small or invalid. The length must be
a positive integer, and it must be at least 72 bytes for
unformatted statistics, 120 bytes for summary statistics,
and 360 bytes for formatted statistics.

Programmer Response: Correct the program.

XA

Explanation: The program tried to continue
processing the conversation by passing the SPA to
another program through a program-to-program

Status Code Explanations

472 IMS/ESA V6 Appl Pgm: TM

message switch after already responding to the
terminal.

Programmer Response: If a response has been sent,
the SPA should be returned to IMS. Correct the
program.

XB

Explanation: The program has passed the SPA to
another program but is trying to respond to the
originating terminal.

Programmer Response: No response is allowed by a
program that is passed control of the program through a
program-to-program message switch.

XC

Explanation: The program inserted a message that
has some bits in the Z1 field set. The Z1 field is
reserved for IMS.

Programmer Response: Correct the program to
prevent it from setting those bits.

XD

Explanation: IMS is terminating by a CHECKPOINT
FREEZE or DUMPQ. IMS returns this code to a BMP
that has issued a CHKP or SYNC call. If it is a
transaction-oriented BMP, IMS does not return a
message.

IMS also returns XD when a batch program issues a
SYNC call.

Programmer Response: Terminate the program
immediately. IMS will terminate the program abnormally
if the program issues another call.

XE

Explanation: A program tried to insert a SPA to an
alternate express PCB.

Programmer Response: Regenerate the PSB and
remove the EXPRESS=YES option from the PCB, or
define another non-express PCB to be used in the ISRT
call.

XF

Explanation: IMS is ignoring the ISRT call for the SPA,
because the specified alternate PCB had its destination
set to a logical terminal but was not defined as
ALTRESP=YES during PSB generation.

MSC directed routing does not support a
program-to-program switch between conversational
transactions.

Programmer Response: Correct the application
program or change the PSB generation for that

alternate PCB to specify ALTRESP=YES.

XG

Explanation: IMS ignored the ISRT call because the
current conversation requires a fixed-length SPA, and
the ISRT call was to a program with a different length or
variable-length SPA, while the source IMS system was
earlier than IMS 6.1. If the SPA ISRT on a remote
system is not going back to the input terminal (IOPCB),
the SPA size must be the same as the size of the
current one, if the source IMS system is earlier than
IMS 6.1.

Programmer Response: Correct the program or the
SPA definitions.

XX

Explanation: An error occurred during GSAM
initialization or during GSAM call processing. If this
status code is in the GSAM PCB before the application
program issued the first call, the error was detected
during initialization. Possible causes are:

v Insufficient space

v Invalid DBD

v Invalid block size

v Invalid option

v Internal GSAM error

Programmer Response: A subsequent GSAM call will
result in an abnormal termination of the program. The
program should terminate.

X2

Explanation: The first ISRT call to an alternate PCB
whose destination is a conversational transaction code
is not for the SPA. The SPA must be inserted with the
first ISRT call.

Programmer Response: Insert the SPA, and then
reinsert the message segment.

X3

Explanation: The program modified the first 6 bytes of
the SPA; the SPA is now invalid.

Programmer Response: Correct the program and
restore the original bytes.

X4

Explanation: The program issued an ISRT call to pass
the SPA to a nonconversational transaction code. It did
this by referencing a PCB whose destination was set for
the nonconversational transaction code. You can send
the SPA only to transaction codes that are defined as
conversational.

Status Code Explanations

Chapter 15. DL/I Status Codes 473

Programmer Response: Correct the ISRT call. Send
only data segments.

X5

Explanation: The program issued more than one ISRT
call to send the SPA to a PCB whose destination is a
transaction code. Only one SPA is allowed per
message.

Programmer Response: Correct the program.

X6

Explanation: An invalid transaction code name was
inserted into the SPA. This will occur if the input is from
LU 6.2 (APPC) or OTMA and if a dynamic control block
was built for the transaction code.

Programmer Response: Correct the program to set
the proper transaction code name.

X7

Explanation: The length of the SPA is incorrect. The
program modified the first 6 bytes.

Programmer Response: Correct the SPA and the
program.

X8

Explanation: A system or I/O error occurred in a
queue attempt for the SPA on a transaction code PCB.

Programmer Response: Terminate the conversation.

blanks (��)

Explanation: The call was completed.

Programmer Response: Proceed with processing.

Status Code Explanations

474 IMS/ESA V6 Appl Pgm: TM

Chapter 16. DL/I Return and Reason Codes

This chapter contains reference information on the return and reason codes. These
codes are returned in the AIB when you use the AIB interface. The information is
divided into two parts:

v Return and reason code tables

– DL/I Return Codes

– Database Call Return Codes

– Message Call Return Codes

– System Service Call Return Codes

v Return and reason code explanations

Return and Reason Code Tables
The tables in this section briefly explain each return and reason code, and list the
calls for which these codes can be received.

If you receive the X'0900' return code, you must look at the status code in the PCB.
You may also want to look at the status code if you do not receive X'0900' but have
a PCB associated with the call. (For detailed explanations of the status codes, see
“Chapter 15. DL/I Status Codes” on page 443.) For DL/I return codes, see Table 55,
Table 56 on page 476, Table 57 on page 481, and Table 58 on page 485.

For expanded descriptions of the return and reason codes, see “DL/I Return and
Reason Code Explanations” on page 491.

Table 55. DL/I Return Codes

Return Code Hex Description

0000 Call was completed successfully.

0004 Call was completed with information.

0008 Call was completed with warning.

00F0 Reserved within IMS.

0100 Call was completed with exception.

0104 Call incomplete -- application error.

0108 Call incomplete -- system error.

010C Call incomplete -- unavailable data.

0110 Call incomplete -- authorization error.

0900 PCB status code analysis required.

© Copyright IBM Corp. 1974, 2000 475

Table 56. Database Calls

Return Code (Hex) Reason Code (Hex) Database Calls Description

0000 0000 CLSE (GSAM)
DEQ

GU, GHU
GN, GHN

GNP, GHNP
DLET, REPL
ISRT (LOAD)
ISRT (ADD)

FLD
POS

OPEN (GSAM)

Call was completed successfully.
Proceed.

0004 0004 Segment returned to I/O area.
This is the last segment.

0004 0014 No more messages are
available. No segment is
returned.

0004 0018 No more messages are
available. No segment is
returned.

0004 0048 AO application waiting for AOI
message was posted due to
IMS system shutdown. No
message segment returned.

0004 004C AO application waiting for AOI
message was posted due
to/PSTOP region command. No
message segment is returned.

0100 000C The output area was not large
enough to contain all the data.
Only partial data was returned.

0104 0204 CIMS TERM No value specified for IMS DB
ID in AIBRSNM2 field.

0104 0208 CLSE (GSAM)
DEQ
GU, GHU
GN, GHN
GNP, GHNP
DLET, REPL
ISRT (LOAD)
ISRT (ADD)
FLD
POS
OPEN (GSAM)

An invalid PCB name was
passed in the AIB.

Return and Reason Codes

476 IMS/ESA V6 Appl Pgm: TM

Table 56. Database Calls (continued)

Return Code (Hex) Reason Code (Hex) Database Calls Description

0104 020C CLSE (GSAM)
DEQ
GU, GHU
GN, GHN
GNP, GHNP
DLET, REPL
ISRT (LOAD)
ISRT (ADD)
FLD
POS
OPEN (GSAM)

No PSB scheduled. Call before
APSB.

0104 0210 The output area length in the
AIB was invalid. No data is
returned.

0104 0218 CIMS INIT
CIMS TERM

Invalid sub-function code.

0104 021C No AOI token specified in AIB
on initial GMSG call.

0104 0220 GMSG call with WAITAOI
specified did not specify an AOI
token.

0104 0224 AOI token specified on GMSG
call contained one or more
invalid characters. AOI token
may contain characters A-Z,
O-9, @, #, and $.

0104 0228 CIMS INIT
CIMS TERM
CIMS TALL

Invalid AIBLEN must be a
minimum of 264 bytes.

0104 0404 Invalid function code.

0104 0440 Invalid call from non-CPI-C
application.

0104 0444 Invalid from the specific
environment.

0104 0448 Invalid call from CPI-C
application.

0104 044C Invalid call from DEP region
type.

0104 0450 No messages to retrieve. AO
user exit DFSAOE00 does not
exist.

0104 048C APSB for PSB with no DPSB.

0104 0490 DPSB with no CPI-RR commit.

0104 0494 PSB not allocated.

0104 054C Invalid output destination.

0104 0550 DEALLOC_ABND issued for
destination.

0104 060C Invalid AUTH class name
specified.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 477

Table 56. Database Calls (continued)

Return Code (Hex) Reason Code (Hex) Database Calls Description

0104 0610 CLSE (GSAM)
DEQ

GU, GHU
GN, GHN

GNP, GHNP
DLET, REPL
ISRT (LOAD)
ISRT (ADD)

FLD
POS

OPEN (GSAM)

Required I/O area address
parameter missing. No data is
returned.

0104 0618 I/O area length is longer than
the PSB work area defined by
the IOASIZE parameter on
PSBGEN.

0104 0620 ZZ field of the I/O area is not
zero.

0104 0754 The segment length is less than
5.

0104 0810 Required option list parameter is
missing.

0104 0920 Queue Space Notification Exit
(DFSQSPC0) determined that
the application has reached its
limit of data that can be inserted
to the message queue.

0104 1004 Command as entered not
allowed from an application.

0104 1008 Invalid command verb specified
in I/O area.

0104 1010 ICMD call was not issued before
RCMD call.

0108 0004 Error encountered during PC
router processing.

0108 0010 CIMS INIT Unable to obtain private storage.
GETMAIN failure trying to obtain
required DRA storage.

0108 001C CIMS INIT ATTACH of the DRA TCB failed.

0108 0014 Unable to obtain global storage.

0108 0018 Internal latch error. For GMSG
call, no segment is returned.

0108 0020 CIMS INIT Load of required DRA module
failed. The name of the module
is returned in AIBSNM2.
Or:
Load of DRA startup table
(DFScccc0) failed. The table
name is returned in AIBRSNM2
(only when
AIBRSNM2=DBCTLID

0108 0024 CIMS INIT OPEN of DRA RELIB failed.

Return and Reason Codes

478 IMS/ESA V6 Appl Pgm: TM

Table 56. Database Calls (continued)

Return Code (Hex) Reason Code (Hex) Database Calls Description

0108 002C CIMS INIT MVS Name/Token service failed.

0108 0030 Spool API data set CLOSE
error.

0108 0034 Spool API data set deallocation
(DYNALLOC) error.

0108 0038 Spool API data set allocation
(DYNALLOC) error.

0108 003C Spool API data set OPEN error.

0108 0040 Spool API WRITE to data set
error.

0108 0044 Spool API create output
descriptor (OUTADD) error.

0108 0048 Spool API delete output
descriptor (OUTDEL) error.

0108 0060 DFSLUMIF failure.

0108 0064 DFSYFND failure.

0108 0068 DFSYLUM failure.

0108 0080 RACINIT failure - LU 6.2
originated transaction.

0108 0220 PST 62 extension was not
found.

0108 020C Invalid AWE encountered during
command processing.

0108 0214 CIMS INIT Required DFSPRP parameters
not specified correctly.

0108 0224 Security UTOKEN not found.

0108 0240 Internal error. PST posted with
invalid post code. No segment
returned.

0108 0244 PST posted during abnormal
terminate thread processing. No
segment returned.

0108 0304 PSB was not found.

0108 0308 PSB authorization failure.

0108 030C PSB permanently bad.

0108 0310 Fast Path DB stopped/locked.

0108 0314 PSB already scheduled.

0108 0318 PSB stopped/locked.

0108 031C I/O error reading PSB/DMB.

0108 0320 PSBW/DMB/PSB pool too small.

0108 0324 Invalid option ’L’ or ’LS’.

0108 0328 Fast Path buffer fix error.

0108 032C Invalid processing intent.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 479

Table 56. Database Calls (continued)

Return Code (Hex) Reason Code (Hex) Database Calls Description

0108 0540 CIMS INIT
CIMS TERM

No active communication with
IMS DB.

0108 0544 CIMS INIT RRS/MVS is not active. The
CIMS INIT c all cannot be
issued. This only applies when
AIBRSNM2=DBCTLID.

0110 000C Resource specified was not
authorized.

0110 0020 Program not authorized to
RACF.

0110 0024 Userid not authorized to RACF.

0110 0028 Program not authorized to issue
the command.

0110 002C Userid not authorized to issue
the command.

0110 0030 DFSCCMD0 indicated program
was not authorized to issue
command.

0110 0034 DFSCCMD0 indicated userid
was not authorized to issue
command.

0110 0038 ICMD call not authorized from
any program (AOIS=N).

0110 003C RACF not available for
authorization check (AOIS=A|R).

0110 0040 DFSCCMD0 not available for
authorization check (AOIS=A|C).

0110 0050 A CPI-C driven application
issued an APSB call and the
userid is not authorized to
RACF.

0110 0070 CIMS INIT The DRA RESLIB is not
authorized.

0900 CLSE (GSAM)
DEQ

GU, GHU
GN, GHN

GNP, GHNP
DLET, REPL
ISRT (LOAD)
ISRT (ADD)

FLD
POS

OPEN (GSAM)

Reason code unmodified on
0900. PCB status code analysis
required.

Return and Reason Codes

480 IMS/ESA V6 Appl Pgm: TM

Table 57. Message Calls

Return Code (Hex) Reason Code (Hex) Message Calls Description

0000 0000 AUTH
GU
GN

ISRT
CHNG
CMD

GCMD
PURG
SETO

Call was completed
successfully. Proceed.

0004 0004 Segment returned to I/O
area. This is the last
segment.

0004 0014 No more messages are
available. No segment is
returned.

0004 0018 No more messages are
available. No segment is
returned.

0004 0048 AO application waiting for
AOI message was posted
due to IMS system
shutdown. No message
segment returned.

0004 004C AO application waiting for
AOI message was posted
due to /PSTOP region
command. No message
segment is returned.

0100 000C The output area was not
large enough to contain all
the data. Only partial data
was returned.

0104 020C AUTH
GU
GN

ISRT
CHNG
CMD

GCMD
PURG
SETO

No PSB scheduled. Call
before APSB.

0104 0208 AUTH
GU
GN

ISRT
CHNG
CMD

GCMD
PURG
SETO

An invalid PCB name was
passed in the AIB.

0104 0210 AUTH The output area length in
the AIB was invalid. No
data is returned.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 481

Table 57. Message Calls (continued)

Return Code (Hex) Reason Code (Hex) Message Calls Description

0104 0218 Subfunction unknown or
invalid.

0104 021C No AOI token specified in
AIB on initial GMSG call.

0104 0220 GMSG call with WAITAOI
specified did not specify an
AOI token.

0104 0224 AOI token specified on
GMSG call contained one
or more invalid characters.
AOI token may contain
characters A-Z, O-9, @, #,
and $.

0104 0404 Invalid function code.

0104 0440 Invalid call.

0104 0444 Invalid from the specific
environment.

0104 0448 SETO Invalid call from CPI-C
application.

0104 044C SETO Invalid call from DEP region
type.

0104 0450 No messages to retrieve.
AO user exit DFSAOE00
does not exist.

0104 048C APSB for PSB with no
DPSB.

0104 0490 DPSB with no CPI-RR
commit.

0104 0494 PSB not allocated.

0104 054C SETO Invalid output destination.

0104 0550 ISRT
SETO

DEALLOC_ABND issued
for destination.

0104 060C AUTH Invalid AUTH class name
specified.

0104 0610 AUTH
GU
GN

ISRT
CHNG
CMD

GCMD
PURG
SETO

Required I/O area address
parameter missing. No data
is returned.

0104 0618 I/O area length is longer
than the PSB work area
defined by the IOASIZE
parameter on PSBGEN.

0104 0620 AUTH ZZ field of I/O area not
zero.

Return and Reason Codes

482 IMS/ESA V6 Appl Pgm: TM

Table 57. Message Calls (continued)

Return Code (Hex) Reason Code (Hex) Message Calls Description

0104 0754 ISRT
SETO

The segment length is less
than 5.

0104 0810 SETO Required option list
parameter is missing.

0104 0920 ISRT
SETO

Queue Space Notification
Exit (DFSQSPC0)
determined the application
has reached its limit of data
that can be inserted to the
message queue.

0104 1004 Command as entered not
allowed from an application.

0104 1008 Invalid command verb
specified in I/O area.

0104 1010 ICMD call was not issued
before RCMD call.

0108 0004 Error encountered during
PC router processing.

0108 0010 ISRT
CHNG
SETO

Unable to obtain private
storage.

0108 0014 GU
CHNG
SETO

Unable to obtain global
storage.

0108 0018 Internal latch error. For
GMSG call, no segment is
returned.

0108 0030 PURG Spool API data set CLOSE
error.

0108 0034 PURG Spool API data set
deallocation (DYNALLOC)
error.

0108 0038 ISRT Spool API data set
allocation (DYNALLOC)
error.

0108 003C ISRT Spool API data set OPEN
error.

0108 0040 ISRT Spool API WRITE to data
set error.

0108 0044 CHNG Spool API create output
descriptor (OUTADD) error.

0108 0048 CHNG Spool API delete output
descriptor (OUTDEL) error.

0108 0060 GU
ISRT

CHNG
SETO

DFSLUMIF failure.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 483

Table 57. Message Calls (continued)

Return Code (Hex) Reason Code (Hex) Message Calls Description

0108 0064 ISRT
CHNG
PURG

DFSYFND failure.

0108 0068 DFSYLUM failure.

0108 0080 AUTH RACINIT failure - LU 6.2
originated transaction.

0108 020C Invalid AWE encountered
during command
processing.

0108 0220 AUTH PST 62 extension was not
found.

0108 0224 AUTH Security UTOKEN not
found.

0108 0240 Internal error, PST posted
with invalid post code. No
segment returned.

0108 0244 PST posted during
abnormal terminate thread
processing. No segment
returned.

0108 0304 PSB was not found.

0108 0308 PSB authorization failure.

0108 030C PSB permanently bad.

0108 0310 Fast Path DB
stopped/locked.

0108 0314 PSB already scheduled.

0108 0318 PSB stopped/locked.

0108 031C I/O error reading PSB/DMB.

0108 0320 PSBW/DMB/PSB pool too
small.

0108 0324 Invalid option ’L’ or ’LS’.

0108 0328 Fast Path buffer fix error.

0108 032C Invalid processing intent.

0110 000C AUTH Resource specified was not
authorized.

0110 0020 Program not authorized to
RACF.

0110 0024 Userid not authorized to
RACF.

0110 0028 Program not authorized to
issue the program.

0110 002C Userid not authorized to
issue the program.

0110 0030 DFSCCMD0 indicated
program was not authorized
to issue command.

Return and Reason Codes

484 IMS/ESA V6 Appl Pgm: TM

Table 57. Message Calls (continued)

Return Code (Hex) Reason Code (Hex) Message Calls Description

0110 0034 DFSCCMD0 indicated
userid was not authorized
to issue command.

0110 0038 ICMD call not authorized
from any program
(AOIS=N).

0110 003C RACF not available for
authorization check
(AOIS=A|R).

0110 0040 DFSCCMD0 not available
for authorization check
(AOIS=A|C).

0110 0050 A CPI-C driven application
issued an APSB call and
the userid is not authorized
to RACF.

0900 AUTH
GU
GN

ISRT
CHNG
CMD

GCMD
PURG
SETO

Reason code unmodified on
0900. PCB status code
analysis required.

Table 58. System Service Calls

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0000 0000 APSB
CHKP
DPSB
GMSG
ICMD
INIT
INQY
LOG
RCMD
ROLB
ROLS
SETS
SETU
SNAP2

STAT3

SYNC
XRST

Call was completed
successfully. Proceed.

0004 0004 GMSG
ICMD
RCMD

Segment returned to I/O
area. This is the last
segment.

0004 0014 GMSG No more messages are
available. No segment is
returned.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 485

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0004 0018 GMSG
RCMD

No more segments are
available. No segment is
returned.

0004 0048 GMSG AO application waiting for
AOI message was posted
due to IMS system
shutdown. No message
segment returned.

0004 004C GMSG AO application waiting for
AOI message was posted
due to /PSTOP region
command. No message
segment is returned.

0100 000C GMSG
ICMD
INQY
RCMD

The output area was not
large enough to contain all
the data. Only partial data
was returned.

0104 020C CHKP
GMSG
ICMD
INIT
INQY
LOG
RCMD
ROLB
ROLS
SETS
SETU
SNAP2

STAT3

SYNC
XRST

No PSB scheduled. Call
before APSB.

0104 0204 APSB
DPSB

No value specified for IMS
DB ID in AIBRSNM2 field.

0104 0208 CHKP
INIT
INQY
LOG
ROLB
ROLS
SETS
SETU
SNAP2

STAT3

SYNC
XRST

An invalid PCB name was
passed in the AIB. (See
note 4 on page 491).

0104 0210 GMSG
ICMD
INQY
LOG
RCMD
SETS
SETU

The output area length in
the AIB was invalid. No
data is returned.

Return and Reason Codes

486 IMS/ESA V6 Appl Pgm: TM

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0104 0218 GMSG
INQY

Subfunction unknown or
invalid.

0104 021C GMSG No AOI token specified in
AIB on initial GMSG call.

0104 0220 GMSG GMSG call with WAITAOI
specified did not specify an
AOI token.

0104 0224 GMSG AOI token specified on
GMSG call contained one
or more invalid characters.
AOI token may contain
characters A-Z, O-9, @, #,
and $.

0104 0228 APSB
DPSB

Invalid AIBLEN must be a
minimum of 264 bytes.

0104 022C APSB MAXTHRD value
reached.Cannot allocate a
thread.

0104 0404 APSB
DPSB
GMSG
ICMD
RCMD

Invalid function code.

0104 0440 Invalid call.

0104 0444 Invalid call from the specific
environment.

0104 0448 INQY Invalid call from CPI-C
application.

0104 044C Invalid call from DEP region
type.

0104 0450 GMSG No messages to retrieve.
AO user exit DFSAOE00
does not exist.

0104 048C APSB APSB for PSB with no
DPSB.

0104 0490 APSB
DPSB

DPSB with no CPI-RR
commit.

0104 0494 DPSB PSB not allocated.

0104 054C Invalid output destination.

0104 0550 DEALLOC_ABND issued
for destination.

0104 060C Invalid AUTH class name
specified.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 487

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0104 0610 CHKP
GMSG
ICMD
INIT
INQY
LOG
RCMD
ROLB
ROLS
SETS
SETU
SNAP2

STAT3

SYNC
XRST

Required I/O area address
parameter missing. No data
is returned.

0104 0618 ICMD I/O area length is longer
than the PSB work area
defined by the IOASIZE
parameter on PSBGEN.

0104 0620 INQY
SETS
SETU

A ZZ field of I/O area not
zero.

0104 0754 The segment length is less
than 5.

0104 0810 Required option list
parameter is missing.

0104 0920 Queue Space Notification
exit (DFSQSPC0)
determined the application
reached the limit of data
that can be inserted to the
message queue.

0104 1004 ICMD Command as entered not
allowed from an application.

0104 1008 ICMD Invalid command verb
specified in I/O area.

0104 1010 RCMD ICMD call was not issued
before RCMD call.

0108 0004 GMSG
ICMD
RCMD

Error encountered during
PC router processing.

0108 0010 GMSG
ICMD
RCMD

Unable to obtain private
storage.

0108 0014 GMSG
ICMD
RCMD

Unable to obtain global
storage.

0108 0018 GMSG Internal latch error. For
GMSG call, no segment is
returned.

0108 001C APSB ATTACH of the DRA TCB
failed.

Return and Reason Codes

488 IMS/ESA V6 Appl Pgm: TM

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0108 0020 APSB The LOAD of the required
DRA module failed or
startup table failed.

0108 0024 APSB OPEN of the DRA RESLIB
failed.

0108 0028 APSB Dynamic allocation of the
DRA RESLIB failed.

0108 002C APSB MVS Name/Token service
failed.

0108 0030 Spool API data set CLOSE
error.

0108 0034 Spool API data set
deallocation (DYNALLOC)
error.

0108 0038 Spool API data set
allocation (DYNALLOC)
error.

0108 003C Spool API data set OPEN
error.

0108 0040 Spool API WRITE to data
set error.

0108 0044 Spool API create output
descriptor (OUTADD) error.

0108 0048 Spool API delete output
descriptor (OUTDEL) error.

0108 0060 INQY DFSLUMIF failure.

0108 0064 INQY DFSYFND failure.

0108 0068 INQY DFSYLUM failure.

0108 0080 RACINIT failure - LU 6.2
originated transaction.

0108 020C ICMD Invalid AWE encountered
during command
processing.

0108 0214 APSB The DRA startup table
(DFSccccc0) required
parameters not specified
correctly.

0108 0220 PST 62 extension was not
found.

0108 0224 Security UTOKEN not
found.

0108 0240 GMSG Internal error. PST posted
with invalid post code. No
segment returned.

0108 0244 GMSG PST posted during
abnormal terminate thread
processing. No segment
returned.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 489

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0108 0304 APSB PSB was not found.

0108 0308 APSB PSB authorization failure.

0108 030C APSB PSB permanently bad.

0108 0310 APSB Fast Path DB
stopped/locked.

0108 0314 APSB PSB already scheduled.

0108 0318 APSB PSB stopped/locked.

0108 031C APSB I/O error reading PSB/DMB.

0108 0320 APSB PSBW/DMB/PSB pool too
small.

0108 0324 APSB Invalid option ’L’ or ’LS’.

0108 0328 APSB Fast Path buffer fix error.

0108 032C APSB Invalid processing intent.

0108 0494 DPSB No PSB allocated because
no valid PSB name is in
AIBRSNM1 field.

0108 0540 APSB
DPSB

No active communication
with IMS DB.

0108 0544 APSB RRS/MVS is not active.
APSB call cannot be
issued.

0108 0548 APSB SWITCH_CONTEXT failed.

0108 054C APSB Database stopped for PSB.

0108 0550 APSB The recovery token is not
unique or the OS/390
application region ID is
invalid.

0108 0554 APSB
DPSB

Recovery token passed is
zeros.

0108 0558 APSB SCHED failed by a /STOP
REG command.

0108 0560 APSB SCHED failed by a /STOP
THREAD command.

0108 0564 APSB SIGNON token not found.

0108 0568 APSB Mismatch address space
connection.

0110 000C Resource specified was not
authorized.

0110 0020 ICMD Program not authorized to
RACF.

0110 0024 ICMD Userid not authorized to
RACF.

0110 0028 ICMD Program not authorized to
issue the command.

0110 002C ICMD Userid not authorized to
issue the command.

Return and Reason Codes

490 IMS/ESA V6 Appl Pgm: TM

Table 58. System Service Calls (continued)

Return Code (Hex) Reason Code (Hex) System Service Calls Description

0110 0030 ICMD DFSCCMD0 indicated
program was not authorized
to issue command.

0110 0034 ICMD DFSCCMD0 indicated
userid was not authorized
to issue command.

0110 0038 ICMD ICMD call not authorized
from any program
(AOIS=N).

0110 003C ICMD RACF not available for
authorization check
(AOIS=A|R).

0110 0040 ICMD DFSCCMD0 not available
for authorization check
(AOIS=A|C).

0110 0050 APSB A CPI-C driven application
issued an APSB call and
the userid is not authorized
to RACF.

0900 N/A CHKP
INIT
INQY
LOG
ROLB
ROLS
SETS
SETU
SNAP2

STAT3

SYNC
XRST

Reason code unmodified on
0900. PCB status code
analysis required.

Notes:

1. GSCD is a Product-sensitive programming interface.

2. SNAP is a Product-sensitive programming interface.

3. STAT is a Product-sensitive programming interface.

4. When using the AIBTDLI interface for functions that do not require a PCB (such as APSB or GMSG), you can
receive this return/reason code instead of X'0104'/X'0404'. You can also receive this return/reason code if the
function is invalid and no PCB name is passed in the AIB.

DL/I Return and Reason Code Explanations

0000/0000

Explanation: Call was completed successfully.

For GMSG calls, there is at least one more segment to
retrieve.

For ICMD calls, when the AIBOAUSE field is zero, no
segment was returned and there are no more segments
to retrieve. This can occur when the only response to
the command is a DFS058 message indicating either
COMMAND IN PROGRESS or COMMAND

COMPLETE. When the AIBOAUSE field is nonzero, a
segment was returned to the I/O area and there is at
least one more segment to retrieve.

For RCMD calls, there is at least one more segment to
retrieve.

Programmer Response: Proceed with processing.
For GMSG, ICMD, and RCMD calls, you may issue
another GMSG or RCMD call to retrieve the next
segment.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 491

0004/0004

Explanation: A message segment was returned to the
I/O area. This is the last segment for the message or
command response.

Programmer Response: Proceed with processing.

0004/0014

Explanation: No more messages are available for
processing at this time. No segment is returned.

Programmer Response: You may want the AO
application to terminate at this time.

0004/0018

Explanation: No more segments are available for this
message or command response. No segment is
returned.

Programmer Response: Process the message or
command response previously returned.

0004/0048

Explanation: The AO application issued a GMSG call
with the WAITAOI subfunction specified. While the AO
application was waiting for an AOI message, the region
was posted due to an IMS system shutdown. No
message segment is returned.

Programmer Response: The AO program should
terminate.

0004/004C

Explanation: The AO application issued a GMSG call
with the WAITAOI subfunction. While the AO application
was waiting for an AOI message, the region was posted
due to a /PSTOP region command. No message
segment is returned.

Programmer Response: The AO application should
terminate.

0100/000C

Explanation: The I/O area was too small to contain all
the data; partial data was returned. The AIBOAUSE field
contains the length required to receive all of the data.
The AIBOALEN field contains the actual length of the
data.

Programmer Response: For INQY calls, the call may
be reissued with a larger I/O area to retrieve all of the
output data. If the data being returned is a message
segment resulting from an ICMD or RCMD call, you
may reissue the ICMD call with a larger I/O area.

0104/020C

Explanation: A CPI-C driven application issued a DL/I
call before a PSB was scheduled. The APSB call must
be issued to schedule a PSB before issuing any other
DL/I call.

Programmer Response: Correct the CPI-C driven
application so that it issues an APSB call before issuing
any other DL/I call.

0104/0204

Explanation: AIBRSNM2 did not contain the
IMS/DBCTL DRA startup table suffix on an ODBA APSB
or CIMS subfunction INIT or TERM call.

Programmer Response: Set AIBRSNM2 to the
correct 1 to 4 character DRA startup table suffix before
issuing the call.

0104/0208

Explanation: One of the following application
programming errors occurred:

v An invalid PCB name was passed in the AIB for a
DL/I call requiring a PCB.

v An invalid DL/I call function was specified, and the
PCB name was either not specified or not found in
the scheduled PSB.

v The program issued a valid DL/I call that does not
use a PCB. However, the call is not supported in the
caller’s environment (for example, GMSG call in a
batch environment).

Programmer Response: Correct the DL/I call in the
program.

0104/0210

Explanation: The I/O area length in the AIB
(AIBOALEN field) is zero or negative. A negative field
may be caused by the application passing the length as
a character string instead of binary data. No data is
returned to the application.

Programmer Response: Correct the program to
specify the correct I/O area length in the AIB.

0104/0218

Explanation: The subfunction specified in the AIB for
the DL/I call was invalid.

Programmer Response: Correct the DL/I call in the
program. Not all DL/I calls support subfunctions. Refer
to the DL/I call documentation for a list of valid
subfunctions for the call.

Return and Reason Codes

492 IMS/ESA V6 Appl Pgm: TM

0104/021C

Explanation: The AOI token was not specified in the
AIB (AIBRSNM1 field) on the initial GMSG call for a
message. The first GMSG call issued by an AO
application must specify an AOI token. The AOI token
must contain blanks when the GMSG call is used to get
subsequent segments of the current message.

Programmer Response: Correct the AO application to
specify an AOI token on the initial GMSG call for a
message.

0104/0220

Explanation: GMSG call with WAITAOI subfunction
did not specify an AOI token. The WAITAOI subfunction
may only be specified when retrieving the first segment
of a message. The WAITAOI subfunction requires that
an AOI token be specified in the AIB (AIBRSNM1 field).

Programmer Response: Correct the program to
specify an AOI token on the initial GMSG call for a
message.

0104/0224

Explanation: The AOI token specified on a GMSG call
contained one or more invalid characters. An AOI token
may contain characters A-Z, 0-9, @, #, and $.

Programmer Response: Correct the program so the
AOI token uses only valid characters.

0104/0228

Explanation: The AIB length specified in AIBLEN is
less than the minimum required length.

Programmer Response: Response: Insure that the
AIB is >= 264 bytes and AIBLEN reflects the correct
length.

0104/022C

Explanation: A new ODBA thread request (APSB)
cannot be processed because the maximum number of
threads are currently allocated. The call is not
processed.

Programmer Response: Try your request again,
otherwise contact your IMS system programmer.

0104/0404

Explanation: The function code specified on the DL/I
call is unknown or invalid. The program may be coded
incorrectly, or the program may be executing on a level
of IMS that does not support the call.

Programmer Response: Make sure the call is coded
correctly and that the level of IMS in which the program
is executing supports the call function.

0104/0440

Explanation: A DL/I call that is only valid from a
CPI-C driven application was issued by a nonCPI-C
driven program.

Programmer Response: Correct the program so it
either does not issue the call or executes as a CPI-C
driven program.

0104/0440

Explanation: A DL/I call that is only valid from a
CPI-C driven application was issued by a nonCPI-C
driven program.

Programmer Response: Correct the program so it
either does not issue the call or executes as a CPI-C
driven program.

0104/0440

Explanation: A DL/I call that is only valid from a
CPI-C driven application was issued by a nonCPI-C
driven program.

Programmer Response: Correct the program so it
either does not issue the call or executes as a CPI-C
driven program.

0104/0440

Explanation: A DL/I call that is only valid from a
CPI-C driven application was issued by a nonCPI-C
driven program.

Programmer Response: Correct the program so it
either does not issue the call or executes as a CPI-C
driven program.

0104/0444

Explanation: A DL/I call was issued that is only valid
from the specific environment.

Programmer Response: Correct the program so it
either does not issue the call or executes as a CPI-C
driven program.

Correct the program so that it either doesn’t issue the
call or runs in the correct region type.

0104/0448

Explanation: A DL/I call that is only valid from a
nonCPI-C driven program was issued by a CPI-C driven
program. Some DL/I calls are allowed from CPI-C
driven programs as long as the call does not use the
I/O PCB.

Programmer Response: Correct the CPI-C driven
program so that it either doesn’t issue the call or uses
an alternate PCB instead of the I/O PCB.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 493

0104/044C

Explanation: A DL/I call was issued that is invalid
from a specific dependent region type.

Programmer Response: Correct the program so that
it either doesn’t issue the call or runs in the correct
region type.

0104/0450

Explanation: There are no messages to retrieve. The
AO exit routine DFSAOE00 does not exist in the IMS
system.

Programmer Response: The program should
terminate. Contact your IMS system programmer to
install DFSAOE00 in your system.

0104/048C

Explanation: The CPI-C driven program attempted to
allocate a PSB when one was already allocated. This
can be caused when a CPI-C driven program does not
issue a DPSB to deallocate the PSB allocated by a
previous APSB call.

Programmer Response: Correct the program to issue
a DPSB call.

0104/0490

Explanation: The CPI-C driven program tried to either
allocate or deallocate a PSB without committing
resources affected by a previous DL/I or SQL call.
When DL/I or SQL calls are issued from a CPI-C driven
program, a CPI-RR commit (SRRCMIT) call must be
issued to commit the resources before the PSB can be
deallocated.

Programmer Response: Correct the program to issue
either a CPI-RR commit or backout for the resources
before issuing the DPSB call.

0104/0494

Explanation: The CPI-C driven program or ODBA
application tried to deallocate a PSB, but the PSB was
not allocated. Either there was no PSB allocated or the
PSB that was allocated was not the same PSB
specified on the DPSB call. The error may be caused
by one of the following situations:

v Multiple DPSB calls are issued without intervening
APSB calls.

v DPSB call is issued after an APSB call fails.

v DPSB call is issued with an incorrect PSB name.

v AIBRSNM2 does not contain the PSB name.

Programmer Response: Correct the program to issue
one DPSB call for each APSB call, and ensure the PSB
names are the same on both calls.

0104/054C

Explanation: The DL/I call specified an invalid
message queue destination. The error may be caused
by one of the following situations:

v The destination is a dynamic terminal but ETO is not
activated.

v The program specified the wrong destination name
on a CHNG call.

v The LTERM name defined on an alternate PCB is
incorrect.

Programmer Response: Correct the program.

0104/0550

Explanation: The program attempted to insert data to
the message queue when a DEALLOCATE_ABEND call
was previously issued for the destination. Additional
ISRT or SETO calls for this destination are rejected until
an application sync point is processed.

The error can also be caused when a SETO
DEALLOCATE_ABEND call is issued but there were no
previous inserts for the destination.

Programmer Response: Analyze the program to
determine if the insert logic is in error. A GU or CHKP
call may be issued as appropriate to trigger an
application sync point and retrieve the next input
message; this will allow further inserts to the
destination. CPI-C driven programs may issue a CPI-RR
commit request to trigger sync point processing.

0104/0610

Explanation: The I/O area address was not specified
in the call list. No data is returned to the program.

Programmer Response: Correct the program to
specify the I/O area address in the call list.

0104/060C

Explanation: An invalid class name was specified in
the I/O area on the AUTH call. Refer to the AUTH call
documentation in the Application Programming
Transaction manager for a list of valid classes.

Programmer Response: Correct the program.

0104/0618

Explanation: The I/O area length is longer than the
PSB work area defined by the IOASIZE parameter on
PSBGEN. IMS is not able to copy the contents of the
I/O area to the PSB work area.

Programmer Response: Make sure that the I/O area
length specified in the AIB (AIBOALEN field) is correct
and is not larger than the size specified in the IOASIZE
parameter of the PSB.

Return and Reason Codes

494 IMS/ESA V6 Appl Pgm: TM

0104/0620

Explanation: The ZZ field of the I/O area is not zero.
The program must not use the ZZ field in the I/O area.

Programmer Response: Correct the program.

0104/0754

Explanation: The LL field of the I/O area is less than
5. The length of the segment, excluding the LLZZ field,
must be at least 1, and LL must be at least 5.

Programmer Response: Correct the program.

0104/0810

Explanation: The option list parameter was not
specified in the call list.

Programmer Response: Correct the program.

0104/0920

Explanation: The Queue Space Notification exit
(DFSQSPC0) determined that the program reached its
limit of data that can be inserted to the message queue.
The program may be in a loop inserting information to
the IMS message queues. Additional ISRT or SETO
calls for this destination are rejected until an application
sync point is processed.

Programmer Response: Analyze the program to
determine if the insert logic is in error. A GU or CHKP
call may be issued as appropriate to initiate an
application sync point and retrieve the next input
message; this will allow further inserts to the
destination. CPI-C driven programs may issue a CPI-RR
commit request to initiate sync point processing.

0104/1004

Explanation: A valid IMS command was specified in
the I/O area of an ICMD call; however, the command as
specified is not allowed from an application. For a list of
commands that may be specified from an AO
application, see IMS/ESA Operator’s Reference.

Programmer Response: Correct the AO application
so only valid automated operator commands are issued.

0104/1008

Explanation: An invalid command verb was specified
in the I/O area.

Programmer Response: Correct the AO application.

0104/1010

Explanation: The AO application issued an RCMD
call; however, there were no command response
segments to retrieve since the AO application had not
issued a prior ICMD call. The AO application must issue
an IMS command through the ICMD call before the
RCMD call is valid.

Programmer Response: Correct the AO application.

0108/0004

Explanation: An error was encountered during PC
router processing. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0010

Explanation: A storage allocation request failed to
obtain private storage. The call is not processed. This is
a system error.

0108/0014

Explanation: A storage allocation request failed to
obtain global storage. The call is not processed. This is
a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0018

Explanation: IMS encountered an internal latch error.
For GMSG calls, no segment is returned.

Programmer Response: Contact your IMS system
programmer.

0108/001C

Explanation: During the processing of an ODBA CIMS
AIBSFUNC=INIT or APSB call, the attach of an ODBA
TCB failed in the Application address space. The call is
not processed. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0020

Explanation: The load of a required DRA module or
load of the DRA startup table (DFScccc0) failed in the
Application address space. The name is returned to the
calling program in AIBRSNM2.

Programmer Response: Insure that the named
module is linked into the proper library.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 495

0108/0024

Explanation: The OPEN of the DRA library specified
in the DRA startup table failed.

Programmer Response: Insure the library specified in
the DRA startup table (DFScccc0) is correct and
accessible, otherwise contact your IMS system
programmer.

0108/0028

Explanation: Dynamic allocation of the DRA reslib
(DSNAME=DRA startup table) failed. The call is not
processed. This is a system error.

Programmer Response: If the DSNAME= library is
correct, contact your IMS system programmer.

0108/002C

Explanation: ODBA encountered an OS/390
Name/Token Service error in the Application address
space. The call is not processed. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0030

Explanation: During Spool API processing, a data set
CLOSE error was encountered. A X'67D0' log record
was written to indicate the cause of the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the CLOSE
error.

0108/0034

Explanation: During Spool API processing, a data set
deallocation (DYNALLOC) error was encountered. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the
DYNALLOC error.

0108/0038

Explanation: During Spool API processing, a data set
allocation (DYNALLOC) error was encountered. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the
DYNALLOC error.

0108/003C

Explanation: During Spool API processing, a data set
OPEN error was encountered. A X'67D0' log record was
written to indicate the cause of the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the OPEN
error.

0108/0040

Explanation: During Spool API processing, an error
was encountered while trying to write to the data set. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the write error.

0108/0044

Explanation: During Spool API processing, an error
was encountered while trying to create an output
descriptor (OUTADD). A X'67D0' log record was written
to indicate the cause of the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the OUTADD
error.

0108/0048

Explanation: During Spool API processing, an error
was encountered while trying to delete an output
descriptor (OUTDEL). A X'67D0' log record was written
to indicate the cause of the failure.

Programmer Response: Contact your IMS system
programmer to determine the reason for the OUTDEL
error.

0108/0060

Explanation: During call processing, IMS issued a
DFSLUMIF call which failed. This is a system error. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer.

0108/0064

Explanation: During call processing, IMS issued a
DFSYFND call which failed. This is a system error. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer.

Return and Reason Codes

496 IMS/ESA V6 Appl Pgm: TM

0108/0068

Explanation: During call processing, IMS issued a
DFSYLUM call which failed. This is a system error. A
X'67D0' log record was written to indicate the cause of
the failure.

Programmer Response: Contact your IMS system
programmer.

0108/0080

Explanation: A RACF RACINIT failure occurred for an
LU 6.2 originated transaction. An ACEE could not be
created for the authorization check for the AUTH call.

Programmer Response: Contact your IMS system
programmer.

0108/020C

Explanation: While processing the IMS command
issued by an AO application, the command processor
encountered an invalid AWE.

Programmer Response: Contact your IMS system
programmer.

0108/0214

Explanation: A DRA startup table parameter is
incorrectly specified. AIBERRXT contains information
regarding the error as follows:

v ’MnMx’ = MinThrd or MaxThrd is not between 1 and
255.

v ’FPB ’ = FPBUF or FPBOF is not between 0 and
999.

v ’CNBA’ = CNBA is less than FPBUF.

v The call is not processed

Programmer Response: Correct and rebuild the DRA
startup table.

0108/0220

Explanation: The PST LU 6.2 extension address is
zero. This address, obtained during message GU
processing, is required to obtain the user token for an
LU 6.2 originated transaction.

Programmer Response: Contact your IMS system
programmer.

0108/0224

Explanation: The user security token (UTOKEN) is
zero. The UTOKEN is obtained during the message GU
processing and is required to build the ACEE for the
authorization check for an LU 6.2 originated transaction.

Programmer Response: Contact your IMS system
programmer.

0108/0240

Explanation: The dependent region was posted with
an invalid post code. No segment is returned. This is a
system error.

Programmer Response: Contact your IMS system
programmer.

0108/0244

Explanation: The dependent region was posted
unexpectedly during abnormal terminate thread
processing. No segment is returned. This is a system
error.

Programmer Response: Contact your IMS system
programmer.

0108/0304

Explanation: The application attempted to allocate a
PSB that IMS could not find. The application program
may have specified an incorrect PSB name, or the PSB
may not have been generated in the IMS system.

Programmer Response: Analyze the application
program to determine if the cause of the error is the
PSB. If the PSB name is correct, make sure the PSB is
defined to the IMS system.

0108/0308

Explanation: IMS encountered a PSB authorization
failure while attempting to allocate the PSB. Security
checking used the application group name (AGN) table.
Either the AGN table did not exist or the PSB name was
not defined in the table.

Programmer Response: Contact your IMS system
programmer to determine if the AGN table exists in the
IMS system and to ensure the PSB is defined in it.

0108/030C

Explanation: The program attempted to allocate a
PSB that is marked permanently bad. IMS cannot
allocate the PSB.

Programmer Response: Contact your IMS system
programmer.

0108/0310

Explanation: The PSB cannot be allocated due to a
stopped or locked database.

Programmer Response: Determine why the database
is stopped or locked. If appropriate, the IMS commands
/START and /UNLOCK can be used to change the state
of the database.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 497

0108/0314

Explanation: The PSB could not be allocated since it
was already scheduled and it does not support parallel
scheduling.

Programmer Response: If the PSB should support
parallel scheduling, contact your IMS system
programmer to make sure the APPLCTN macro
specifies SCHDTYP=PARALLEL for the PSB.

0108/0318

Explanation: The PSB could not be allocated since it
is stopped or locked.

Programmer Response: Determine why the PSB is
stopped or locked. If appropriate, the IMS commands
/START and /UNLOCK can be used to change the state
of the PSB.

0108/031C

Explanation: An I/O error was encountered while
reading the PSB or DMB.

Programmer Response: Contact your IMS system
programmer.

0108/0320

Explanation: Either the PSBW pool is too small for
the PSB or the DLDP pool is too small for the DMB.

Programmer Response: Contact your IMS system
programmer.

0108/0324

Explanation: The PSB was generated with a
PROCOPT of L or LS in a nonHSAM PCB.

Programmer Response: Contact your IMS system
programmer.

0108/0328

Explanation: During PSB allocation, a Fast Path
buffer fix error was encountered.

Programmer Response: Contact your IMS system
programmer.

0108/032C

Explanation: During PSB allocation, an invalid
processing intent was encountered.

Programmer Response: Contact your IMS system
programmer.

0108/0540

Explanation: No active communications with IMS or
DBCTL. The call is not processed.

Programmer Response: Contact your IMS system
programmer.

0108/0544

Explanation: RRS/MVS is not active at the time that
ODBA attempts to establish a connection to IMS or
DBCTL. RRS/MVS is required for ODBA. The call is not
processed.

Programmer Response: Contact your IMS system
programmer.

0108/0548

Explanation: The SWITCH_CONTEXT call failed
during ODBA APSB call processing. The call is not
processed. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/054C

Explanation: A psuedoabend U0458 was returned on
an ODBA APSB call. One of the Fast Path databases
used by the PSB named in AIBRSNM1 was stopped or
locked by a prior program failure. The call is not
processed.

Programmer Response: Determine the reason for the
Fast Path database being stopped. After the problem
that caused the database to be stopped has been
corrected, resubmit the request.

0108/0550

Explanation: The recovery token is not unique or the
OS/390 Application address space ID is invalid. The call
is not processed. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0554

Explanation: The recovery token is zero. The call is
not processed. This is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0558

Explanation: An ODBA APSB schedule failed for a
/STOP REGION command. The call is not processed.

Programmer Response: None.

Return and Reason Codes

498 IMS/ESA V6 Appl Pgm: TM

0108/0560

Explanation: An ODBA APSB schedule failed for a
/STOP REGION ABDUMP command. The call is not
processed.

Programmer Response: None.

0108/0564

Explanation: A psuedo abend U0141 was received on
an ODBA APSB request. The call is not processed. This
is a system error.

Programmer Response: Contact your IMS system
programmer.

0108/0568

Explanation: A psuedo abend U0145 was received on
an ODBA APSB request. The call is not processed. This
is a system error.

Programmer Response: Contact your IMS system
programmer.

0110/000C

Explanation: The user is not authorized for access to
the resource name in the class requested in the AUTH
call. No 'installation data' is returned.

Programmer Response: Check the program to
ensure the authorization check was performed on the
correct resource. If it was, check with the person who
handles security in your installation to determine
whether RACF authorization is required for the
resource.

0110/0020

Explanation: An AO application tried to issue an IMS
command. Security checking determined that the AO
application is not authorized to RACF.

Programmer Response: Contact your RACF
administrator to authorize your AO application to RACF.

Programmer Response: Contact your IMS system
programmer to authorize your AO application to RACF.

0110/0024

Explanation: An AO application tried to issue an IMS
command. Security checking determined that the userid
is not authorized to RACF.

Programmer Response: Contact your RACF
administrator to authorize your userid to RACF.

0110/0028

Explanation: An AO application tried to issue an IMS
command. Security checking determined that the AO
application is not authorized to issue the command.

Programmer Response: Contact your IMS system
programmer.

0110/002C

Explanation: An AO application tried to issue an IMS
command. Security checking determined that the userid
is not authorized to issue the command.

Programmer Response: Contact your IMS system
programmer.

0110/0030

Explanation: An AO application tried to issue an IMS
command. The Command Authorization exit routine
(DFSCCMD0) indicated that the program was not
authorized to issue the command.

Programmer Response: Contact your IMS system
programmer to determine why DFSCCMD0 does not
recognize your AO application.

0110/0034

Explanation: An AO application tried to issue an IMS
command. The Command Authorization exit routine
(DFSCCMD0) indicated the userid was not authorized to
issue the command.

Programmer Response: Contact your IMS system
programmer to determine why DFSCCMD0 does not
recognize your userid.

0110/0038

Explanation: An AO application tried to issue an IMS
command. The ICMD call is not authorized from any
program because the IMS execution parameter AOIS=
was specified as N.

Programmer Response: Contact your IMS system
programmer to have the AOIS= execution parameter
changed to allow commands from an AO application.

0110/003C

Explanation: An AO application tried to issue an IMS
command. RACF is not available for the authorization
check. The IMS execution parameter AOIS= was
specified as either A or R.

Programmer Response: Contact your IMS system
programmer to determine why RACF is not available to
the IMS system.

Return and Reason Codes

Chapter 16. DL/I Return and Reason Codes 499

0110/0040

Explanation: An AO application tried to issue an IMS
command. The Command Authorization exit routine
(DFSCCMD0) is not available for the authorization
check. The IMS execution parameter AOIS= was
specified as either A or C.

Programmer Response: Contact your IMS system
programmer to determine why DFSCCMD0 was not
included in the IMS system.

0110/0050

Explanation: A CPI-C driven application issued an
APSB call. IMS determined that the userid is not
authorized by RACF (or equivalent) to use the PSB.
Field AIBERRXT of the AIB contains additional
information as follows (see the RACF manual, External
Security Interface (RACROUTE) Macro Reference for
MVS and VM for a description of the codes in
AIBERRXT, if you use RACF):

v Bytes 0 to 1 - SAF return code

v Byte 2 - RACF or installation exit return code

v Byte 3 - RACF or installation exit reason code

Programmer Response: Contact your Security
administrator to authorize your userid to use the PSB.

0108/0070

Explanation: The reslib specified in the DRA startup
table (DSNAME=) is not authorized.

Programmer Response: Contact your IMS system
programmer.

0900

Explanation: The DL/I call, which requires a PCB for
processing, encountered an error during processing.
The cause of this error does not currently have a unique
AIB return and reason code defined. The AIB (AIBRSA1
field) contains the PCB address. You must analyze the
status code in the PCB to determine the cause of the
error. The reason code is not modified when the return
code is 0900.

Programmer Response: IMS intends to define unique
AIB return and reason codes for most if not all DL/I call
processing errors. The error that causes a X'0900'
return code may become a unique return and reason
code in the future.

Return and Reason Codes

500 IMS/ESA V6 Appl Pgm: TM

Part 5. Appendixes

© Copyright IBM Corp. 1974, 2000 501

502 IMS/ESA V6 Appl Pgm: TM

Appendix A. Sample Applications

A description of the IVP Sample Application is in the IMS/ESA Installation
Volume 1: Installation and Verification. The source for the IVP Sample Application
is in the IMS.DFSISRC (SMP/E target) library. Two programs are provided in
several different languages. The two programs are:

DFSIVA3 A Conversational MPP that accesses an HDAM/VSAM database.
Transaction input and output is through MFS screens.

DFSIVA6 A Batch or BMP program that accesses a HIDAM/OSAM database.
The program uses GSAM to receive its transaction input and to
display its transaction output.

These programs both perform the same application function—a simple phone book
application. The programs are available in several language versions. Those
available in IMS are listed in Table 59.

Table 59. Program Languages Available for IVP Sample Program

Program Language PSB MFS Trancode Comp/Lked

DFSIVA3 Assembler DFSIVP3 DFSIVF3 IVTCV n/a

DFSIVA31 Pascal DFSIVP31 DFSIVF31 IVTCVP DFSIVJP3

DFSIVA32 C language DFSIVP32 DFSIVF32 IVTCVC DFSIVJC3

DFSIVA34 COBOL DFSIVP34 DFSIVF34 IVTCVB DFSIVJB3

DFSIVA35 REXX DFSIVP35 DFSIVF35 IVTCVX n/a

DFSIVA6 Assembler DFSIVP6 n/a n/a n/a

DFSIVA61 Pascal DFSIVP61 n/a n/a DFSIVJP6

DFSIVA62 C language DFSIVP62 n/a n/a DFSIVJC6

DFSIVA64 COBOL DFSIVP64 n/a n/a DFSIVJB6

DFSIVA65 REXX DFSIVP65 n/a n/a n/a

DFSIVG20 Assembler n/a n/a n/a DFSIVJG2

DFSIVG30 Assembler n/a n/a n/a DFSIVJG3

Programs DFSIVA3 and DFSIVA6 are fully installed and executed by the IVP.

The IVP System Definition includes APPLCTN and TRANSACT macros for all
language versions that are supported by the type of system being generated. The
IVP also performs PSBGEN, ACBGEN, and MFSUTL for the language versions.

Programs DFSIVA31/32/34 and DFSIVA61/62/64 must be compiled by the user.
Sample compile/link-edit JCL is provided in the IMS.DFSISRC library.

Programs DFSIVA35 and DFSIVA65 are fully installed by the IVP, but they are not
included in the IVP execution instructions. DFSIVA35 can be executed from any
24x80 (3270) MFS device. DFSIVA65 can be executed by modifying the IVP
execution JCL for DFSIVA6.

Once compiled and link-edited, programs DFSIVA31/32/34 are executable from any
24×80 (3270) MFS device.

Once compiled and link-edited, programs DFSIVA61/62/64 can be executed by
modifying the IVP execution JCL for DFSIVA6.

© Copyright IBM Corp. 1974, 2000 503

Programs DFSIVG20 and DFSIVG30 are WTOR subroutines for the Pascal and C
language programs, respectively.

The IMS EXEC library also includes the REXX exec named DFSSUT04 EXEC. Use
this exec to process any unexpected return codes or status codes.

Sample Applications

504 IMS/ESA V6 Appl Pgm: TM

Appendix B. MFS Definitions for Intersystem Communication

The following prototype MFS definitions can be used in an intersystem
communication (ISC) system between IMS and CICS. In this example:

v CICS can request MFS editing with either 8-byte or 4-byte names.

v Messages from CICS can be multiple-page input or single-page input.

v Output to CICS can be one message of one page or multiple pages with one or
more segments.

v Demand paged or autopaged output can be requested of IMS.

These formats can also be used by a 3270 terminal operator who wants to send a
message to CICS using an IMS message switch. Or, for example, an IMS message
switch can be invoked by a user at a 3270 terminal, the message can be switched
to CICS, and a reply is returned from CICS to IMS and then to the 3270 terminal.
The routing is handled by MFS.

FMTDIS FMT
DEV TYPE=3270-A2,FEAT=IGNORE
DIV TYPE=INOUT

DFLDIND1 DFLD LTH=5,POS=(1,2)
DFLDIND2 DFLD LTH=100,POS=(1,8)

FMTEND
FMTDP2 FMT

DEV TYPE=DPM-B1,FEAT=IGNORE,
MODE=RECORD,DSCA=X'00A0' X

DIV TYPE=OUTPUT,OPTIONS=(MSG,NODNM)
PPAGE1 PPAGE
DFLDOUT1 DFLD LTH=5
DFLDOUT2 DFLD LTH=100

FMTEND
FMTDPM FMT

DEV TYPE=DPM-B1,FEAT=IGNORE,MODE=RECORD
DIV TYPE=INPUT,OPTIONS=(DPAGE,NODNM), X

PRN=DFLDINP3, X
RDPN=DFLDINP4, X
RPRN=DFLDINP5

PPAGE2 PPAGE
DFLDINP1 DFLD LTH=5
DFLDINP2 DFLD LTH=100

DIV TYPE=OUTPUT,OPTIONS=(DPAGE,NODNM)
DPAGE2 DPAGE
DPAGE3 PPAGE
DFLDOUT3 DFLD LTH=5
DFLDOUT4 DFLD LTH=100

DFLD SCA,LTH=2
FMTEND

MFSMOD1 MSG TYPE=OUTPUT,SOR=(FMTDP2,IGNORE), X
NXT=MFSMID1

SEG
MFLD DFLDOUT1,LTH=5
MFLD DFLDOUT2,LTH=100
MSGEND

Figure 81. Sample 2—MFS Definition Format

© Copyright IBM Corp. 1974, 2000 505

MFSMODE2 MSG TYPE=OUTPUT,SOR=(FMTDPM,IGNORE), X
NXT=MFSMID1

SEG
MFLD DFLDOUT3,LTH=5
MFLD DFLDOUT4,LTH=100
MFLD (,SCA),LTH=2
MSGEND

MFSMID1 MSG TYPE=INPUT,SOR=(FMTDPM,IGNORE), X
NXT=MFSMODD

SEG
MFLD DFLDINP1,LTH=5
MFLD DFLDINP3,LTH=8
MFLD DFLDINP4,LTH=8
MFLD DFLDINP5,LTH=8
MFLD DFLDINP2,LTH=100
MSGEND

MFSMIDD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE), X
NXT=MFSMOD1

SEG
MFLD DFLDIND1,LTH=5
MFLD DFLDIND2,LTH=100
MSGEND

MFSMODD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE),
NXT=MFSMIDD

SEG
MFLD DFLDIND1,LTH=5
MFLD DFLDIND2,LTH=100
MSGEND
END

Figure 82. Sample 2—MFS Definition Format

506 IMS/ESA V6 Appl Pgm: TM

Appendix C. Device Compatibility with Previous Versions of
MFS

If you choose not to define 3270 devices during IMS system definition using the
device type symbolic name (option 1), no changes to device format definitions are
needed.

If you choose to define 3270 devices during IMS system definition using a device
type symbolic name (3270-An) (options 2, 3, and 4), in some cases you must make
changes in your 3270 device format definitions.

The examples in Table 60 include the recommended standard for relating the device
type symbolic name to the screen size:

Table 60. MFS Device Definition Compatibility for 3270 Devices

Device and Screen Size
Current IMS System
Definition1 New IMS System Definition1

3275 or 3277 (12X40) MFS: DEV TYPE= (3270,1)
Model 1

MFS: DEV TYPE= 3270-A5
24

3275, 3276, 3277, 3278
(24X80)

MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A2
24

3276, 3278 (12X80) MFS: DEV TYPE= (3270,1)
Model 1

MFS: DEV TYPE= 3270-A1
23

3276, 3278 (32X80) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A3
23

3276, 3278 (43X80) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A4
23

3278 (27X132) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A7
23

Notes:

1. For screen sizes specified in type or terminal macro.

2. If the format will be used on the new device and will not be used on the old device,
change TYPE= (3270,1) or (3270,2) to 3270-An with the corresponding screen size, and
recompile.

3. See option 3 in Table 61.

4. See option 4 in Table 61.

Table 61 lists the advantages and disadvantages of selecting a specific option for
the larger screen device and the required action if you choose to use existing
device formats.

Table 61. Advantages and Disadvantages of Larger Screen Device

Option Advantage Disadvantage Conversion Action
Required

1 You can use existing
MFS formats unchanged.

You cannot use full
screen.

No (Use current formats
as shown in Table 60.)

2 You can use full screen. You must design new
device formats.

No (Define new formats.)

© Copyright IBM Corp. 1974, 2000 507

Table 61. Advantages and Disadvantages of Larger Screen Device (continued)

Option Advantage Disadvantage Conversion Action
Required

3 You can use existing
formats as a migration
path on the new screen
device and you can
gradually replace them
with new device formats.

You must modify existing
device formats to use the
device symbolic name.

Yes (Refer to Table 60.)

4 Consistency in definition
for current and new
screen sizes.

You must modify all
formats.

Yes (Refer to Table 60.)

Using STACK/UNSTACK to Convert MFS Device Formats to Symbolic
Name Formats

The IMS MFS language utility’s compilation statements STACK and UNSTACK can
be used to convert existing MFS 3270 device formats to the user-defined device
type symbolic name formats. The STACK statement is used to delineate one or
more SYSIN or SYSLIB records, and to request that those records, once
processed, be kept in storage for use at a later time. The UNSTACK statement
requests retrieval of a previously processed stack of SYSIN/SYSLIB records.

Example: With the following existing 3270 format definition:

You can create a user-defined device type symbolic name (via TYPE=3270-An)
format for the large screened display devices by using the DEV statement and the
compilation statements STACK and UNSTACK as follows:

The UNSTACK statement causes the statements between STACK ON and STACK
OFF to be duplicated. In addition to the 3270 model 2 device format, a device
format is created for the 3270-A2, which has the same device layout as the 3270
model 2.

label FMT
DEV TYPE=(3270,2), ...
DIV TYPE=INOUT
DPAGE CURSOR=((2,3))

label DFLD
label DFLD
label DFLD

FMTEND

label FMT
DEV TYPE=3270,2,...
STACK ON
DIV TYPE=INOUT
DPAGE CURSOR=((1,2))

label DFLD
label DFLD
label DFLD

STACK OFF
DEV TYPE=3270-A2,...
UNSTACK
FMTEND

Device Compatibility

508 IMS/ESA V6 Appl Pgm: TM

3270 Device Format Conversion Example
The following example is provided to clarify Table 60 on page 507. Assume that the
installation has 3270 model 1 and model 2 display devices and has installed
additional display devices with 12×80, 24×80, 32×80, and 43×80 screen sizes. A
new IMS system definition was performed for the additional devices, and the 3270
model 1 and model 2 devices were redefined to specify the device symbolic name.

The IMS system definition specifications for these 3270 displays were as follows:

v TYPE=3270-A1, SIZE=(12x80) for the additional devices with 12x80 screen size.

v TYPE=3270-A2, SIZE=(24x80) for the 3270 model 2 and additional devices with
24x80 screen size.

v TYPE=3270-A3, SIZE=(32x80) for the additional devices with 32x80 screen size.

v TYPE=3270-A4, SIZE=(43x80) for the additional devices with 43x80 screen size.

v TYPE=3270-A5, SIZE=(12x40) for the 3270 model 1 device.

The following MFS changes were required to convert existing 3270 model 1 and 2
device format definitions for use on the 3270 model 1, model 2, and on the
additional devices:

Existing Definitions:

Changes Applied and Recompiled:

label FMT
DEV TYPE=(3270,1)
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

DEV TYPE=(3270,2)
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

FMTEND ...

Device Format Conversion

Appendix C. Device Compatibility with Previous Versions of MFS 509

After the changes are applied and recompiled, the new device formats are designed
to take advantage of each screen size, and the previous format definition can be
compiled again as follows:

label FMT
DEV TYPE=3270-A5 (changed from (3270,1) to 3270

display with 12x40 screen size)
STACK ON
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

STACK OFF
DEV TYPE=3270-A1 (3270 display with 12x80 screen

size)
UNSTACK
DEV TYPE-3270-A2 (changed from (3270,2) to 3270

display with 24x80 screen size)
STACK ON
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

STACK OFF
DEV TYPE=3270-A3(3270 display with 32x80 screen

size)
UNSTACK ,KEEP
DEV TYPE=3270-A4(3270 display with 43x80 screen

size)
UNSTACK
FMTEND

Device Format Conversion

510 IMS/ESA V6 Appl Pgm: TM

3270 Printer and SLU 1 Compatibility
To use the extended attributes of color, highlighting, and programmed symbols, or
to use the set vertical format or set line density data streams, you might need to
modify your application programs.

Additional 3270 printer devices attached to a non-SNA control unit compatible with
the currently installed 3270 printer devices use the existing 3270P model 1 or
model 2 device formats. For the printer buffer, they use the existing IMS system
definition with 480 characters (current model 1) or 1920 characters (current model
2).

MFS users choosing to change device attachment to SLU 1 must change their MFS
device format definitions as shown in Table 62.

Table 62. MFS Device Definition Compatibility for 3270 Printers and SLU 1 Devices

Current
Device

Current MFS
DEV TYPE

New Device or
Control Unit

New IMS
System

Definition
New MFS
DEV TYPE

MVS/ESA
Changes
Required

3284/3286 3270P 3827/3289 attached
to a 3274 or 3276
SNA control unit

SLUTYPE1 SCS1 See Note

label FMT
DEV TYPE=3270-A5
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...(existing device fields

using 12x40 screen size)
DEV TYPE=3270-A1
DPAGE ...

label DFLD ...(new device fields using
12x80 screen size)

.

.
label DFLD ...

DEV TYPE=3270-A2
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(existing device fields
using 24x80 screen size)

label DFLD ...
label DFLD ...

DEV TYPE=3270-A3
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(new device fields using
32x80 screen size)

.

.
label DFLD ...

DEV TYPE=3270-A4
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(new device fields using
43x80 screen size)

.

.
label DFLD ...

FMTEND

3270/SLU1 Compatibility

Appendix C. Device Compatibility with Previous Versions of MFS 511

Table 62. MFS Device Definition Compatibility for 3270 Printers and SLU 1
Devices (continued)

Current
Device

Current MFS
DEV TYPE

New Device or
Control Unit

New IMS
System

Definition
New MFS
DEV TYPE

MVS/ESA
Changes
Required

Note:

Change DEV TYPE=(3270P,n) to DEV TYPE=SCS1 and recompile. Or, if all printers are not
changed to the new device or control unit, add the following after DEV TYPE=3270P and
recompile:

STACK ON

(3270P DPAGE, DFLD statements)

STACK OFF

DEV TYPE=SCS1

UNSTACK

SLU P Compatibility
Application programs written for other MFS-supported devices can execute
unchanged with SLU P (DPM-An) devices once the DIFs and DOFs appropriate for
the DPM devices are defined. Changes might be required if the program depends
on unique device-dependent features such as premodified fields on a 3270 display.
The program would execute unchanged only if the premodified fields presented to
the remote program are returned in the input message. This requires that the
remote program properly interpret the attribute bytes of the output message field
and handle the indicated device function in a way that satisfies the requirements of
the IMS application program.

Existing IMS application programs that do not use MFS might have to be changed
to adjust to the appropriate 3600 or 3790 buffer size and to ensure that message
text is a compatible subset of the SCS character string.

IBM 3278-52/3283-52 and IBM 5550 Family (as 3270) Compatibility
The message format definitions for the IBM 3278-52/3283-52 are upwardly
compatible. However, message formats created with Kanji functions for the 5550
family of devices cannot be used on the IBM 3278-52/3283-52.

Existing 3270 and IBM 5550 Family (as 3270) Compatibility
Note the following when adding field outlining and input control specifications to
existing 3270 and 3278-52/3283-52 message formats:

v Field outlining

– For the 3270 display, left line, right line, overline, and underline do not take up
a position in the user field. The application program does not have to be
modified unless dynamic modification of extended attributes is performed.

– For the SCS1 printer, MFS reserves print positions for left and right lines. If a
field starts from the leftmost column or ends at the rightmost column, the left
or right line is not printed correctly because room is not available. To correct
this, modify the application program to truncate 1 byte. If two adjacent fields

3270/SLU1 Compatibility

512 IMS/ESA V6 Appl Pgm: TM

are logically one and the overline and underline should connect, the
application program does not have to be modified.

In either case, for dynamic modification, the application program must be
modified.

v DBCS/EBCDIC mixed fields

– For 3270 displays, the SO/SI control characters take up 1 byte on the screen.
This means that the length on the display is equal to the message format
length. Therefore, the existing application program does not have to be
changed.

When assigning DBCS/EBCDIC mixed data to an existing EBCDIC field, the
application program must check that the SO and SI are paired, that the EGCS
data is of even length, and that neither the SO nor SI is truncated when the
MFLD is mapped to the DFLD.

– For SCS1 printers, MIX/MIXS must be specified when using DBCS/EBCDIC
mixed data. In this case, the message length and the length of the output
differ and the application program must modify the MFLD according to each
field’s characteristics.

3270 and 5550 Family Compatibility

Appendix C. Device Compatibility with Previous Versions of MFS 513

3270 and 5550 Family Compatibility

514 IMS/ESA V6 Appl Pgm: TM

Appendix D. Spool API

The IMS Spool API support provides feedback to the application program when IMS
detects errors in the print data set options of the CHNG and SETO calls. For
convenience, your application program can display these errors by sending a
message to an IMS printer or by performing another action that lets you examine
the parameter lists and feedback area without looking at a dump listing.

This information applies only to the calls as they are used with Spool API support.

Related Reading: For more detailed information on Spool API, see IMS/ESA JES
Spool API User’s Guide.

Understanding Parsing Errors
When you are diagnosing multiple parsing error return codes, the first code returned
is usually the most informative.

Keywords
The CHNG and SETO calls have two types of keywords. The type of keyword
determines what type of keyword validation IMS should perform. The keyword types
are:

v Keywords valid for the calls (for example, IAFP, PRTO, TXTU, and OUTN)

v Keywords valid as operands of the PRTO keyword (for example CLASS and
FORMS).

Incorrectly specified length fields can cause errors when IMS checks for valid
keywords. When IMS is checking the validity of keywords on the CHNG and SETO
calls, one set of keywords is valid. When IMS is checking the validity of keywords
on the PRTO keyword, another set of keywords is valid. For this reason, incorrectly
specified length fields can cause a scan to terminate prematurely, and keywords
that appear to be valid are actually invalid because of where they occur in the call
list. IMS might report that a valid keyword is invalid if it detects a keyword with an
incorrect length field or a keyword that occurs in the wrong place in the call list.

Status Codes
The status code returned for the call can also suggest the location of the error.
Although exceptions exist, generally, an AR status code is returned when the
keyword is invalid for the call. An AS status code is returned when the keyword is
invalid as a PRTO option.

Error Codes
This section contains information on Spool API error codes that your application
program can receive. “Diagnosis Examples” on page 516 contain examples of errors
and the resulting error codes provided to the application program.

Error Code Reason

(0002) Unrecognized option keyword.

Possible reasons for this error are:

v The keyword is misspelled.

v The keyword is spelled correctly but is followed by an invalid
delimiter.

© Copyright IBM Corp. 1974, 2000 515

v The length specified field representing the PRTO is shorter than
the actual length of the options.

v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option
variable. An option variable following a keyword in the options list
for the call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be
contained in the options list. The options list length field (LL)
indicates that the options list ends before the end of the specified
option variable.

(0008) The option variable contains an invalid character or does not begin
with an alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:

v One or more additional keywords are required because one or
more keywords were specified in the options list.

v The specified length of the options list is more than zero but the
list does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible
causes for this error are:

v The keyword is not allowed because of other keywords specified
in the options list.

v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing
the print data set descriptors. IMS usually uses MVS/ESA services
(SJF) to validate the print descriptors (PRTO= option variable).
When IMS calls SJF, it requests the same validation as for the TSO
OUTDES command. Therefore, IMS is insensitive to changes in
output descriptors. Valid descriptors for your system are a function
of the MVS/ESA release level. For a list of valid descriptors and
proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a
format that allows the use of SJF services. If it is not, IMS returns
the status code AS, the error code (000E), and a descriptive error
message. If the error is detected during the SJF process, the error
message from SJF will include information of the form
(R.C.=xxxx,REAS.=yyyyyyyy), and an error message indicating the
error.

Related Reading: For more information on SJF return and reason
codes, see MVS/ESA Application Development Guide: Authorized
Assembler Language Programs.

The range of some variables is controlled by the initialization
parameters. Values for the maximum number of copies, allowable
remote destination, classes, and form names are examples of
variables influenced by the initialization parameters.

Diagnosis Examples
This section contains examples of mistakes that can generate the various Spool API
error codes, and diagnosis of the problems. Some length fields are omitted when

Parsing Errors

516 IMS/ESA V6 Appl Pgm: TM

they are not necessary to illustrate the example. The feedback and options lists that
are shown on multiple lines are contiguous.

Example 1: Error Code (0002)
CALL = SETO
OPTIONS LIST = PRTO=04DEST(018),CLASS(A),TXTU=SET1
FEEDBACK = TXTU(0002)
STATUS CODE = AR

Explanation: The options list contains both the keywords PRTO and TXTU. The
keyword, TXTU, is not valid for the SETO call.

Example 2: Error Code (0002)
CALL = CHNG
OPTIONS LIST = IAFP=N0M,PRTO=0FDEST(018),LINECT(200),CLASS(A),

COPIES(80),FORMS(ANS)
FEEDBACK = COPIES(0002),FORMS(0002)
STATUS CODE = AR

Explanation: The length field of the PRTO options is too short to contain all of the
options. This means that IMS finds the COPIES and FORMS keywords outside the
PRTO options list area and indicates that they are invalid on the CHNG call.

Example 3;: Error Code (0004)
CALL = CHNG
OPTIONS LIST = IAFP=N0M,OUTN=OUTPUTDD1
FEEDBACK = OUTN(0004)
STATUS CODE = AR

Explanation: The operand for the OUTN keyword is 9 bytes long and exceeds the
maximum value for the OUTPUT JCL statement.

Example 4;: Error Code (0006)
CALL = CHNG

0400 05
OPTIONS LIST = 0800IAFP=N0M,PRTO=0ADEST(018),LINECT(200),CLASS(A),

COPIES(3),FORMS(ANS)
FEEDBACK = PRTO(0006),LINECT(0002),CLASS(0002),COPIES(0002),

FORMS(0002)
STATUS CODE = AR

Explanation: The length of the options list for this call is too short to contain all of
the operands of the PRTO keyword.

This example shows an options list that is X'48' bytes long and is the correct length.
The length field of the PRTO keyword incorrectly indicates a length of X'5A'. The
length of the PRTO options exceeds the length of the entire options list so IMS
ignores the PRTO keyword and scans the rest of the options list for valid keywords.
The feedback area contains the PRTO(0006) code (indicating a length error) and
the (0002) code (indicating that the PRTO keywords are in error). This is because
the keywords beyond the first PRTO keyword, up to the length specified in the
options list length field, have been scanned in search of valid keywords for the call.
The status code of AR indicates that the keywords are considered invalid for the
call and not the PRTO keyword.

Parsing Errors

Appendix D. Spool API 517

Example 5;: Error Code (0008)
CALL = CHNG

00
OPTIONS LIST = IAFP=N0Z,PRTO=0BDEST(018)
FEEDBACK = IAFP(0008) INVALID VARIABLE
STATUS CODE = AR

Explanation: The message option of the IAFP keyword is incorrectly specified as
“Z”.

Example 6;: Error Code (000A)
CALL = CHNG
OPTIONS LIST = TXTU=SET1
FEEDBACK = TXTU(000A)
STATUS CODE = AR

Explanation: The valid keyword TXTU is specified but the call also requires that
the IAFP keyword be specified if the TXTU keyword is used.

Example 7;: Error Code (000C)
CALL = CHNG

00
OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES(3),TXTU=SET1
FEEDBACK = TXTU(000C)
STATUS CODE = AR

Explanation: The AR status code is returned with the (0002) error code. This
implies that the problem is with the call options and not with the PRTO options.

The call options list contains the PRTO and TXTU keywords. These options cannot
be used in the same options call list.

Example 8;: Error Code (000E)
CALL = CHNG

01
OPTIONS LIST = IAFP=A00,PRTO=0BCOPIES((3),(8,RG,18,80))
FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=00000204) COPIES/RG VALUE

MUST BE NUMERIC CHARACTERS
STATUS CODE = AS

Explanation: The COPIES parameter has the incorrect value “RG” specified as
one of its operands. The error message indicates that the values for these
operands must be numeric.

Example 9;: Error Code (000E)
CALL = CHNG

00
OPTIONS LIST = IAFP=A00,PRTO=0AXYZ(018)
FEEDBACK = PRTO(000E) (R.C.=0004,REAS.=000000D0) XYZ
STATUS CODE = AS

Explanation: This example includes an invalid PRTO operand. The resulting
reason code of X'000000D0' indicates that the XYZ operand is invalid.

Parsing Errors

518 IMS/ESA V6 Appl Pgm: TM

Understanding Allocation Errors
The IMS Spool API interface defers dynamic allocation of the print data set until
data is actually inserted into the data set. Incorrect data set print options on the
CHNG or SETO call can cause errors during dynamic allocation. The print data set
options can be parsed during the processing of the CHNG and SETO calls but some
things, for example the destination name parameter, can be validated only during
dynamic allocation.

If one of the print options is incorrect and dynamic allocation fails when the IMS
performs the first insert for the data set, IMS returns a AX status code to the ISRT
call. IMA also issues message DFS0013E and writes a diagnostic log record (67D0)
that you can use to evaluate the problem. The format of the error message
indicates the type of service that was invoked and the return and reason codes that
were responsible for the error. The error message can indicate these services:

DYN MVS/ESA dynamic allocation (SVC99)

OPN MVS/ESA data set open

OUT MVS/ESA dynamic output descriptors build (SVC109)

UNA MVS/ESA dynamic unallocation (SVC99)

WRT MVS/ESA BSAM write

If the DFS0013E message indicates an error return code from any of these
services, you should consult the corresponding MVS/ESA documentation for more
information on the error code. If the service is for dynamic allocation, dynamic
unallocation, or dynamic output descriptor build, see MVS/ESA Programming:
Authorized Assembler Services Guide for the appropriate return and reason codes.

One common mistake is the use of an invalid destination or selection of integrity
option 2 (non-selectable destination) when the destination of IMSTEMP has not
been defined to JES. If you specify an invalid destination in the destination name
parameter, the call will result in a dynamic unallocation error when IMS unallocates
the print data set.

Understanding Dynamic Output for Print Data Sets
IMS can use the MVS/ESA services for Dynamic Output (SVC109) for print data
sets. IMS uses this service to specify the attributes provided by the application for
the print data sets being created. The service can be used on the CHNG call with the
PRTO, TXTU, and OUTN options.

Related Reading: For more information, see MVS/ESA Programming: Authorized
Assembler Services Guide.

CHNG Call with PRTO Option
When you use the CHNG call and PRTO option, IMS activates SJF to verify the print
options to call MVS/ESA services for Dynamic Output. This creates the output
descriptors that are used when the print data set is allocated. This is the simplest
way for the application to provide print data set characteristics. However, it also
uses the most overhead because parsing must occur for each CHNG call. If your
application is WFI or creates multiple data sets with the same print options, use
another option to reduce the parsing impact.

Allocation Errors

Appendix D. Spool API 519

CHNG Call with TXTU Option
If your application can manage the text units necessary for Dynamic Output, then
you can avoid parsing for many of the print data sets. You can do this in one of two
ways:

v The application can build the text unit in the necessary format within the
application area and pass these text units to IMS with the CHNG call and TXTU
option.

v The application can provide the print options to IMS with a SETO call and provide
a work area for the construction of the text units. After MVS/ESA has finished
parsing and text construction, the work area passed will contain the text units
necessary for Dynamic Output after a successful SETO call. The application must
not relocate this work area because the work area contains address sensitive
information.

Regardless of the method the application uses to manage the text units,
applications that can reuse the text units can often achieve better performance by
using the TXTU option on the CHNG call.

CHNG Call with OUTN Option
The dependent region JCL can contain OUTPUT JCL statements. If your application
can use this method, you can use the CHNG call and OUTN option to reference
OUTPUT JCL statements. When you use the OUTN option, IMS will reference the
OUTPUT JCL statements at dynamic allocation. JES will obtain the print data set
characteristics from the OUTPUT JCL statement.

Sample Program Using the Spool API
The Spool API provides functions that allow an application program to write data to
the IMS Spool using the same techniques for sending data to native IMS printers.

The Spool API provides functions such as error checking for invalid OUTDES
parameters. Error checking makes application programs more complex. To simplify
these application programs, develop a common routine to manage error information,
then make the diagnostic information from the Spool API available for problem
determination.

The following sample programs show how DL/I calls can be coded to send data to
the IMS Spool. Only the parts of the application program necessary to understand
the DL/I call formats are included. The examples are in assembler language.

Application PCB Structure
The application PCBs are as follows:

I/O PCB

ALTPCB1

ALTPCB2

ALTPCB3

ALTPCB4

Dynamic Output for Print Data Sets

520 IMS/ESA V6 Appl Pgm: TM

GU Call to I/O PCB
IMS application programs begin with initialization and a call to the I/O PCB to obtain
the input message. The example in Figure 83 shows how to issue a GU call to the
I/O PCB:

After completing the GU call to the I/O PCB, the application program prepares output
data for the IMS Spool.

CHNG Call to Alternate PCB
In the same way that other programs specify the destination of the output using the
CHNG call, this program specifies the IMS Spool as the output destination. For a
native IMS printer, the DEST NAME parameter identifies the output LTERM name.
When a CHNG call is issued that contains the IAFP= keyword, the DEST NAME
parameter is used only if integrity option '2' is specified. If option '2' is not specified,
the DEST NAME parameter can be used by the application program to identify
something else, such as the routine producing the change call. The destination for
the print data set is established using a combination of initialization parameters or
OUTDES parameters.

The example in Figure 84 shows how to issue a CHNG call to the alternate modifiable
PCB.

* ISSUE GU ON IOPCB *

L 9,IOPCB I/O PCB ADDRESS
LA 9,0(9)
MVC FUNC,=CL4'GU' GU FUNCTION
CALL ASMTDLI,(FUNC,(9),IOA1),VL
BAL 10,STATUS CHECK STATUS

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
IOA1 DC AL2(IOA1LEN),AL2(0)
TRAN DS CL8 TRANSACTION CODE AREA
DATA DS CL5 DATA STARTS HERE

DC 20F'0'
IOA1LEN EQU *-IOA1

Figure 83. Issuing a GU Call to the I/O PCB

Spool API Sample Program

Appendix D. Spool API 521

After the CHNG call is issued, the application program creates the print data set by
issuing ISRT calls.

ISRT Call to Alternate PCB
Once the IMS Spool is specified as the destination of the PCB, ISRT calls can be
issued against the alternate PCB.

The example in Figure 85 shows how to issue the ISRT call to the alternate
modifiable PCB.

* ISSUE CHNG ON ALTPCB4 *

L 9,ALTPCB4 ALT MODIFIABLE PCB
LA 9,0(9) CLEAR HIGH BYTE/BIT
MVC FUNC,=CL4'CHNG' CHNG FUNCTION
CALL ASMTDLI,(FUNC,(9),DEST2,OPT1,FBA1),VL
BAL 10,STATUS CHECK STATUS OF CALL

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
DEST2 DC CL8'IAFP1' LTERM NAME
*

DC C'OPT1' OPTIONS LIST AREA
OPT1 DC AL2(OPT1LEN),AL2(0)

DC C'IAFP='
OCC DC C'M' DEFAULT TO MACHINE CHAR
OOPT DC C'1' DEFAULT TO HOLD
OMSG DC C'M' DEFAULT TO ISSUE MSG

DC C','
DC C'PRTO='

PRTO1 EQU *
DC AL2(PRTO1LEN)
DC C'COPIES(2),CLASS(T),DEST(RMT003)'

PRTO1LEN EQU *-PRTO1
DC C' '

OPT1LEN EQU *-OPT1
*
FBA1 DC AL2(FBA1LEN),AL2(0)

DC CL40' '
FBA1LEN EQU *-FBA1

Figure 84. Issuing a CHNG Call to the Alternate Modifiable PCB

* ISSUE ISRT TO ALTPCB4 *

L 9,ALTPCB4 ALT MODIFIABLE PCB
LA 9,0(9) CLEAR HIGH BYTE/BIT
MVC FUNC,=CL4'ISRT' ISRT FUNCTION
CALL ASMTDLI,(FUNC,(9),IOA2),VL
BAL 10,STATUS CHECK STATUS OF CALL

* ADDITIONAL PROGRAM LOGIC HERE
FUNC DC CL4' '
IOA2 DC AL2(IOA2LEN),AL2(0)
IOA21 DC AL2(MSG2LEN),AL2(0)

DC C' ' CONTROL CHARACTER
DC C'MESSAGE TO SEND TO IMS SPOOL'

MSG2LEN EQU *-IOA21
IOA2LEN EQU *-IOA2

Figure 85. Issuing an ISRT Call to the Alternate Modifiable PCB

Spool API Sample Program

522 IMS/ESA V6 Appl Pgm: TM

The print data streams can be stored in databases or generated by the application,
depending on the requirements of the application program and the type of data set
being created.

Program Termination
After the calls are issued, the program sends a message back to originating
terminal, issues a GU call to the I/O PCB, or terminates normally.

Spool API Sample Program

Appendix D. Spool API 523

524 IMS/ESA V6 Appl Pgm: TM

Appendix E. Using the DL/I Test Program (DFSDDLT0)

DFSDDLT0 is an IMS application program test tool that issues calls to IMS based
on control statement information. You can use it to verify and debug DL/I calls
independently of application programs. You can run DFSDDLT0 using any PSB,
including those that use an IMS-supported language. You can also use DFSDDLT0
as a general-purpose database utility program.

The functions that DFSDDLT0 provides include:

v Issuing any valid DL/I call against any database using:

– Any segment search argument (SSA) or PCB, or both

– Any SSA or AIB, or both

v Comparing the results of a call to expected results. This includes the contents of
selected PCB fields, the data returned in the I/O area, or both.

v Printing the control statements, the results of calls, and the results of
comparisons only when the output is useful, such as after an unequal compare.

v Dumping DL/I control blocks, the I/O buffer pool, or the entire batch region.

v Punching selected control statements into an output file to create new test data
sets. This simplifies the construction of new test cases.

v Merging multiple input data sets into a single input data set using a SYSIN2 DD
statement in the JCL. You can specify the final order of the merged statements in
columns 73 to 80 of the DFSDDLT0 control statements.

v Sending messages to the MVS system console (with or without a reply).

v Repeating each call up to 9,999 times.

Control Statements
DFSDDLT0 processes control statements to control the test environment.
DFSDDLT0 can issue calls to IMS full-function databases and Fast Path databases,
as well as DC calls. Table 63 gives an alphabetical summary of the types of control
statements DFSDDLT0 uses. A detailed description of each type of statement
follows.

Table 63. Summary of DFSDDLT0 Control Statements

Control
Statement

Code Description

ABEND1 ABEND Causes user abend 252.

CALL L v CALL FUNCTION identifies the type of IMS call
function to be made and supplies information to be
used by the call.

v CALL DATA provides IMS with additional information.

COMMENT There are two types of COMMENT statements:

T Conditional allows a limited number of comments that
are printed or not depending on how the STATUS
statement is coded and the results of the PCB or DATA
COMPARE.

U11 Unconditional allows an nlimited number of comments,
all of which are printed.

© Copyright IBM Corp. 1974, 2000 525

Table 63. Summary of DFSDDLT0 Control Statements (continued)

Control
Statement

Code Description

COMPARE

E

There are three types of COMPARE statements:

COMPARE DATA verifies that the correct segment
was retrieved by comparing the segment returned by
IMS with data in this statement.

COMPARE AIB compares values that IMS returns to
the AIB.

COMPARE PCB checks fields in the PCB and calls
for a snap dump of the DL/I blocks, the I/O buffer
pool, or the batch region if the compare is unequal.

IGNORE N or . The program ignores statements that contain N or .
(period) in column 1.

OPTION1 O Shows which control blocks are to be dumped, the
number of unequal comparisons allowed, whether
dumps are produced, number of lines printed per page,
and the SPA size.

PUNCH1 CTL PUNCH CTL produces an output data set consisting of
the COMPARE PCB statements, the COMPARE AIB
statements, the DATA statements, and all other control
statements read.

STATUS1 S Establishes print options and selects the PCB or AIB
against which subsequent calls are to be issued.

WTO1 WTO Sends a message to the MVS console without waiting
for reply.

WTOR1 WTOR Sends a message to the MVS console and waits for a
reply before proceeding.

Note:

1. These control statements are acted on immediately when encountered in an input
stream. Do not code them where they will interrupt call sequences. (See “Planning the
Control Statement Order” on page 527.)

The control statements are further described below:

v The CALL statement is the central DFSDDLT0 statement. The CALL statement
has two parts: CALL FUNCTION and CALL DATA. CALL FUNCTION identifies
the type of IMS call function and supplies information about segment search
arguments (SSAs). CALL DATA provides more information required for the type
of call identified by CALL FUNCTION.

v The STATUS statement controls the PCB, AIB, and handling of output.

v The three types of COMPARE statements, DATA, PCB, and AIB, compare
different values:

– If you want specific data from a call, use COMPARE DATA to check the
segment data for mismatches when the call is made.

– Use COMPARE PCB to check status codes, segment levels, and feedback
keys. It also indicates mismatches when you specify output.

– Use COMPARE AIB to compare values that IMS returns to the AIB.

v The two COMMENT statements, Conditional and Unconditional, allow you to set
limits on the number of comments on the DFSDDLT0 job stream and to specify
whether you want the comments printed.

Control Statements

526 IMS/ESA V6 Appl Pgm: TM

v The OPTION statement controls several overall functions such as the number of
unequal comparisons allowed and the number of lines printed per page.

v The remaining statements, ABEND, IGNORE, CTL, WTO and WTOR, are not as
important as the others at first. Read the sections describing these statements so
that you can become familiar with the functions they offer.

When you are coding the DFSDDLT0 control statements, keep the following items
in mind:

v If you need to temporarily override certain control statements in the DFSDDLT0
streams, read about SYSIN/SYSIN2 processing in the JCL requirements section
on page 565.

v You must fill in column 1 of each control statement. If column 1 is blank, the
statement type defaults to the prior statement type. DFSDDLT0 attempts to use
any remaining characters as it would for the prior statement type.

v Use of reserved fields can produce invalid output and unpredictable results.

v Statement continuations are important, especially for the CALL statement.

v Sequence numbers are not required, but they can be very useful for some
DFSDDLT0 functions. Read about the PUNCH CTL statement starting on page
557 and the SYSIN/SYSIN2 processing description in the JCL requirements
section on page 565 to understand how to use sequence numbers.

v All codes and fields in the DFSDDLTO statements must be left justified followed
by blanks, unless otherwise specified.

Planning the Control Statement Order
The order of control statements is critical in constructing a successful call. To avoid
unpredictable results, follow these guidelines:

1. If you are using STATUS and OPTION statements, place them somewhere
before the calls that are to use them.

2. Both types of COMMENT statements are optional but, if present, must appear
before the call they document.

3. You must code CALL FUNCTION statements and any required SSAs
consecutively without interruption.

4. CALL DATA statements must immediately follow the last continuation, if any, of
the CALL FUNCTION statements.

5. COMPARE statements are optional but must follow the last CALL (FUNCTION
or DATA) statement.

6. When CALL FUNCTION statements, CALL DATA statements, COMPARE DATA
statements, COMPARE PCB statements, and COMPARE AIB statements are
coded together, they form a call sequence. Do not interrupt call sequences with
other DFSDDLT0 control statements.

Exception: IGNORE statements are the only exception to this rule.

7. Use IGNORE statements (N or .) to override any statement, regardless of its
position in the input stream. You can use IGNORE statements in either SYSIN
or SYSIN2 input streams.

Control Statements

Appendix E. Using the DL/I Test Program (DFSDDLT0) 527

ABEND Statement
The ABEND statement causes IMS to issue an abend and terminate DFSDDLT0.
Table 64 shows the format of the ABEND statement.

Table 64. ABEND Statement

Column Function Code Description

1-5 Identifies control
statement

ABEND Issues abend U252. (No dump is
produced unless you code DUMP on the
OPTION statement.)

6-72 Reserved �

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

Examples of ABEND Statement
If you use ABEND in the input stream and want a dump, you must specify DUMP
on the OPTION statement. The default on the OPTION statement is NODUMP.

CALL Statement
The CALL control statement has two parts: CALL FUNCTION and CALL DATA.

v The CALL FUNCTION statement supplies the DL/I call function, the segment
search arguments (SSAs), and the number of times to repeat the call. SSAs are
coded according to IMS standards.

v With the CALL DATA statement you provide any data (database segments, MVS
commands, checkpoint IDs) required by the DL/I call specified in the CALL
FUNCTION statement. See “CALL DATA Statement” on page 531.

CALL FUNCTION Statement
Table 65 gives the format for CALL FUNCTION statements. This is the preferred
format when you are not working with column-specific SSAs.

Table 65. CALL FUNCTION Statement

Column Function Code Description

1 Identifies control statement L Issues an IMS call

2 Reserved �

3 SSA level � SSA level (optional)

n Range of hexademical
characters allowed is 1-F

4 Reserved �

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 22100010

Dump will be produced; OPTION statement provided requests dump.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O DUMP 22100010

No dump will be produced; OPTION statement provided requests NODUMP.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O NODUMP 22100010

ABEND Statement

528 IMS/ESA V6 Appl Pgm: TM

Table 65. CALL FUNCTION Statement (continued)

Column Function Code Description

5-8 Repeat count ���� If blank, repeat count
defaults to 1.

nnnn 'nnnn' is the number of
times to repeat this call.
Range is 1 to 9999,
right-justified, with or
without leading zeros.

9 Reserved � �

10-13 Identifies DL/I call function ���� If blank, use function from
previous CALL statement.

xxxx 'xxxx' is a DL/I call
function.

Continue SSA CONT Continuation indicator for
SSAs too long for a single
CALL FUNCTION
statement. Column 72 of
the preceding CALL
FUNCTION statement
must have an entry. The
next CALL statement
should have CONT in
columns 10 - 13 and the
SSA should continue in
column 16.

14-15 Reserved �

16-23

or

SSA name xxxxxxxx Must be left-justified.

16-23

or

Token xxxxxxxx Token name
(SETS/ROLS).

16-23

or

MOD name xxxxxxxx Modname (PURG+ISRT).

16-23

or

Subfunction xxxxxxxx nulls, DBQUERY, FIND,
ENVIRON, PROGRAM
(INQY).

16-19

and

Statistics type xxxx DBAS/DBES-OSAM or
VBAS/VBES-VSAM
(STAT).2

20

or

Statistics format x F - Formatted U-
Unformatted S -
Summary.

16–19 SETO ID1 SETx Where x is 1, 2, or 3.
Specified on SETO and
CHNG calls as defined in
Note.

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 529

Table 65. CALL FUNCTION Statement (continued)

Column Function Code Description

21-24 SETO IOAREA SIZE nnnn Value of 0000 to 8192.

If a value greater than
8192 is specified, it
defaults to 8192.

If no value is specified,
the call is made with no
SETO size specified.

24–71 Remainder of SSA Unqualified SSAs must be
blank. Qualified search
arguments should have
either an '*' or a '(' in
column 24 and follow IMS
SSA coding conventions.

72 Continuation column � No continuations for this
statement.

x Alone, it indicates multiple
SSAs each beginning in
column 16 of successive
statements. With CONT in
columns 10-13 of the next
statement, indicates a
single SSA that is
continued beginning in
column 16 of the following
statement.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement
override.

Note:

1. SETO CALL:

The SETO ID (SET1, SET2, or SET3) is required on the SETO call if DFSDDLT0 is to
keep track of the text unit address returned on the SETO call that would be passed on
the CHNG call for option parameter TXTU.

If the SETO ID is omitted on the SETO call, DFSDDLT0 does not keep track of the data
returned and is unable to reference it on a CHNG call.

CHNG CALL:

The SETO ID (SET1, SET2, or SET3) is required on the CHNG call if DFSDDLT0 is to
place the address of the SETO ID I/O area returned on the SETO call. This is the SETO
call of the text unit returned on the SETO call with a matching SETO ID for this CHNG
call into the “TXTU=ADDR” field of the option parameter in the CHNG call.

When the SETO ID is specified on the CHNG call, DFSDDLT0 moves the address of
that text unit returned on the SETO call using the same SETO ID.

Code the OPTION statement parameter TXTU as follows: TXTU=xxxx where xxxx is
any valid non-blank character. It cannot be a single quote character.

Suggested value for xxxx could be SET1, SET2, or SET3. This value is not used by
DFSDDLT0.

2. STAT is a Product-sensitive programming interface.

The following information applies to different types of continuations:

v Column 3, the SSA level, is usually blank. If it is blank, the first CALL FUNCTION
statement fills SSA 1, and each following CALL FUNCTION statement fills the

CALL Statement

530 IMS/ESA V6 Appl Pgm: TM

next lower SSA. If column 3 is not blank, the statement fills the SSA at that level,
and the following CALL FUNCTION statement fills the next lower one.

v Columns 5 through 8 are usually blank, but if used, must be right justified. The
same call is repeated as specified by the repeat call function.

v Columns 10 through 13 contain the DL/I call function. The call function is
required only for the first CALL FUNCTION statement when multiple SSAs are in
a call. If left blank, the call function from the previous CALL FUNCTION
statement is used.

v Columns 16 through 23 contain the segment name if the call uses an SSA.

v If the DL/I call contains multiple SSAs, the statement must have a nonblank
character in column 72, and the next SSA must start in column 16 of the next
statement. The data in columns 1 and 10 through 13 are blank for the second
through last SSAs.

Restriction: On ISRT calls, the last SSA can have only the segment name with
no qualification or continuation.

v If a field value extends past column 71, put a nonblank character in column 72.
(This character is not read as part of the field value, only as a continuation
character.) In the next statement insert the keyword CONT in columns 10 through
13 and continue the field value starting at column 16.

v Maximum length for the field value is 256 bytes, maximum size for an SSA is 290
bytes, and the maximum number of SSAs for this program is 15, which is the
same as the IMS limit.

v If columns 5 through 8 in the CALL FUNCTION statement contain a repeat count
for the call, the call will terminate when reaching that count, unless it first
encounters a GB status code.

Related Reading: See “CALL FUNCTION Statement with Column-Specific SSAs”
on page 546 for another format supported by DFSDDLT0.

CALL DATA Statement
CALL DATA statements provide IMS with information normally supplied in the I/O
area for that type of call function.

CALL DATA statements must follow the last CALL FUNCTION statement. You must
enter an L in column 1, the keyword DATA in columns 10 thru 13, and code the
necessary data in columns 16 thru 71. You can continue data by entering a
nonblank character in column 72. On the continuation statement, columns 1 thru 15
are blank and the data resumes in column 16. Table 66 shows the format for a
CALL DATA statement.

Table 66. CALL DATA Statement

Column Function Code Description

1 Identifies control
statement

L CALL DATA statement.

2 Increase segment length K Adds 2500 bytes to the length of data defined in columns 5
through 8.

3 Propagate remaining I/O
indicator

P Causes 50 bytes (columns 16 thru 65) to be propagated
through remaining I/O area.
Note: This must be the last data statement and cannot be
continued.

4 Format options � Not a variable-length segment.

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 531

Table 66. CALL DATA Statement (continued)

Column Function Code Description

V For the first statement describing the only variable-length
segment or the first variable-length segment of multiple
variable-length segments, LL field is added before the
segment data.

M For statements describing the second through the last
variable-length segments, LL field is added before the
segment data.

P For the first statement describing a fixed-length segment in a
path call.

Z For message segment, LLZZ field is added before the data.

U Undefined record format for GSAM records. The length of
segment for an ISRT is placed in the DB PCB key feedback
area.

5-8 Length of data in
segment

nnnn This value must be right justified but need not contain
leading zeros. If you do not specify a length, DFSDDLT0 will
use the number of DATA statements read multiplied by 56 to
derive the length.

9 Reserved �

10-13 Identifies CALL DATA
statement

DATA Identifies this as a DATA statement.

14-15 Reserved �

16-71

or

Data area xxxx Data that goes in the I/O area.

16-23

or

Checkpoint ID Checkpoint ID (SYNC).

16-23

or

Destination name Destination name (CHNG).

16 DEQ option DEQ options (A,B,C,D,E,F,G,H,I, or J).

72 Continuation column � If no more continuations for this segment.

x If more data for this segment or more segments.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

When inserting variable-length segments or including variable-length data for a
CHKP or LOG call:

v You must use a V or M in column 4 of the CALL DATA statement.

v Use V if only one variable-length segment is being processed.

v You must enter the length of the data with leading zeros, right justified, in
columns 5 through 8. The value is converted to binary and becomes the first 2
bytes of the segment data.

v You can continue a CALL DATA statement into the next CALL DATA statement by
entering a nonblank character in column 72. For subsequent statements, leave
columns 1 through 15 blank, and start the data in column 16.

CALL Statement

532 IMS/ESA V6 Appl Pgm: TM

If multiple variable-length segments are required (that is, concatenated logical
child/logical parent segments, both of which are variable-length) for the first
segment:

v You must enter a V in column 4.

v You must enter the length of the first segment in columns 5 through 8.

v If the first segment is longer than 56 bytes, continue the data as described for
inserting variable-length segments.

Exceptions:

– The last CALL DATA statement to contain data for this segment must have a
nonblank character in column 72.

– The next CALL DATA statement applies to the next variable-length statement
and must contain an M in column 4 and the length of the segment in columns
5 through 8.

You can concatenate any number of variable-length segments in this manner. Enter
M or V and the length (only in CALL DATA statements that begin data for a
variable-length segment).

When a program is inserting or replacing through path calls:

v Enter a P in column 4 to specify that the length field is to be used as the length
the segment will occupy in the user I/O area.

v You only need to use P in the first statement of fixed-length-segment CALL DATA
statements in path calls that contain both variable- and fixed-length segments.

v You can use V, M, and P in successive CALL DATA statements.

For INIT, SETS, ROLS, and LOG calls:

v The format of the I/O area is
LLZZuser-data

where LL is the length of the data in the I/O area, including the length of the
LLZZ portion.

v If you want the program to use this format for the I/O area, enter a Z in column 4
and the length of the data in columns 5 through 8. The length in columns 5
through 8 is the length of the data, not including the 4-byte length of LLZZ.

OPTION DATA Statement
The OPTION DATA statement contains options as required for SETO and CHNG
calls.

Table 67 shows the format for an OPTION DATA statement.

Table 67. OPTION DATA Statement

Column Function Code Description

1 Identifies control
statement

L OPTION statement.

2-9 Reserved �

10-13 Identifies OPT Identifies this as OPTION statement.

CONT Identifies this as a continuation of an option input.

14-15 Reserved �

16-71 Option area xxxx Options as defined for SETO and CHNG call.

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 533

Table 67. OPTION DATA Statement (continued)

Column Function Code Description

72 Continuation column � If no more continuations for options.

x If more option data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

FEEDBACK DATA Statement
The FEEDBACK DATA statement defines an area to contain feedback data.

The FEEDBACK DATA statement is optional. However, if the FEEDBACK DATA
statement is used, an OPTION DATA statement is required.

Table 68 shows the format for a FEEDBACK DATA statement.

Table 68. FEEDBACK DATA Statement

Column Function Code Description

1 Identifies control
statement

L FEEDBACK statement.

2-3 Reserved �

4 Format option � Feedback area contains LLZZ.

Z Length of feedback area will be computed and the LLZZ will
be added to the feedback area.

5-8 Length of feedback
area

nnnn This value must be right justified but need not contain
leading zeros. If you do not specify a length, DFSDDLT0
uses the number of FDBK inputs read multiplied by 56 to
derive the length.

2-9 Reserved �

10-13 Identifies FDBK Identifies this as feedback statement and continuation of
feedback statement.

14-15 Reserved �

16-71 Feedback area xxxx Contains user pre-defined initialized area.

72 Continuation
column

� If no more continuations for feedback.

x If more feedback data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

Call Functions

DL/I Call Functions
Table 69 shows the DL/I call functions supported in DFSDDLT0 and which ones
require data statements.

Table 69. DL/I Call Functions

Call
AIB
Support

PCB
Support Data Stmt1 Description

CHKP yes yes R Checkpoint.

CALL Statement

534 IMS/ESA V6 Appl Pgm: TM

Table 69. DL/I Call Functions (continued)

Call
AIB
Support

PCB
Support Data Stmt1 Description

CHNG yes yes R Change alternate PCB.

R Contains the alternate PCB name option statement and
feedback statement optional.

CMD yes yes R Issue IMS command. This call defaults to I/O PCB.

DEQ yes yes R Dequeue segments locked with the Q command code. For
full function, this call defaults to the I/O PCB, provided a
DATA statement containing the class to dequeue immediately
follows the call. For Fast Path, the call is issued against a
DEDB PCB. Do not include a DATA statement immediately
following the DEQ call.

DLET yes yes O Delete. If the data statement is present, it is used. If not, the
call uses the data from the previous Get Hold Unique (GHU).

FLD yes yes R Field—for Fast Path MSDB calls using FSAs. This call
references MSDBs only. If there is more than one FSA, put a
nonblank character in column 34, and put the next FSA in
columns 16-34 of the next statement. A DATA statement
containing FSA is required.

GCMD yes yes N Get command response. This call defaults to I/O PCB.

GHN yes yes O2 Get Hold Next.

GHNP yes yes O2 Get Hold Next in Parent.

GHU yes yes O2 Get Hold Unique.

GMSG3 yes no R Get Message is used in an automated operator (AO)
application program to retrieve a message from AO exit
routine DFSAOE00. The DATA statement is required to allow
for area in which to return data. The area must be large
enough to hold this returned data.

GN yes yes O2 Get Next segment.

GNP yes yes O2 Get Next in Parent.

GU yes yes O2 Get Unique segment.

ICMD3 yes no R Issue Command enables an automated operator (AO)
application program to issue an IMS command and retrieve
the first command response segment. The DATA statement is
required to contain the input command and to allow for area
in which to return data. The area must be large enough to
hold this returned data.

INIT yes yes R Initialization This call defaults to I/O PCB. A DATA statement
is required. Use the LLZZ format.

INQY3 yes no R Request environment information using the AIB and the
ENVIRON subfunction. The DATA statement is required to
allow for area in which to return data. The area must be large
enough to hold this returned data.

R Request database information using the AIB and the
DBQUERY subfunction, which is equivalent to the INIT
DBQUERY call. The DATA statement is required to allow for
area in which to return data. The area must be large enough
to hold this returned data.

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 535

Table 69. DL/I Call Functions (continued)

Call
AIB
Support

PCB
Support Data Stmt1 Description

ISRT yes yes Insert.

R DB PCB, DATA statement required.

O I/O PCB using I/O area with MOD name, if any, in columns
16-23.

R Alt PCB.

LOG yes yes R Log system request. This call defaults to I/O PCB. DATA
statement is required and can be specified in one of two
ways.

POS yes yes N Position - for DEDBs to determine a segment location. This
call references DEDBs only.

PURG yes yes Purge.

R This call defaults to use I/O PCB. If column 16 is not blank,
MOD (message output descriptor) name is used and a DATA
statement is required.

O If column 16 is blank, the DATA statement is optional.

RCMD3 yes no R Retrieve Command enables an automated operator (AO)
application program to retrieve the second and subsequent
command response segments after an ICMD call. The DATA
statement is required to allow for area in which to return data.
The area must be large enough to hold this returned data.

REPL yes yes R Replace—This call references DB PCBs only. The DATA
statement is required.

ROLB yes yes O Roll Back call.

ROLL no yes O Roll Back call and issue U778 abend.

ROLS yes yes O Back out updates and issue 3303 abend. Uses the I/O PCB.
Can be used with the SETS call function. To issue a ROLS
with an I/O area and token as the fourth parameter, specify
the 4-byte token in column 16 of the CALL statement.
Leaving columns 16-19 blank will cause the call to be made
without the I/O area and the token. (To issue a ROLS using
the current DB PCB, use ROLX.)

ROLX yes yes O Roll call against the DB PCB (DFSDDLT0 call function). This
call is used to request a Roll Back call to DB PCB, and is
changed to ROLS call when making the DL/I call.

SETO yes yes N Set options. OPTION statement required. FEEDBACK
statement optional.

SETS/SETU yes yes O Create or cancel intermediate backout points. Uses I/O PCB.
To issue a SETS with an I/O area and token as the fourth
parameter, specify the four-byte token in column 16 of the
CALL statement and include a DATA statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token.

CALL Statement

536 IMS/ESA V6 Appl Pgm: TM

Table 69. DL/I Call Functions (continued)

Call
AIB
Support

PCB
Support Data Stmt1 Description

SNAP4 yes yes O Sets the identification and destination for snap dumps. If a
SNAP call is issued without a CALL DATA statement, a snap
of the I/O buffer pools and control blocks will be taken and
sent to LOG if online and to PRINTDD DCB if batch. The
SNAP ID will default to SNAPxxxx where xxxx starts at 0000
and is incremented by 1 for every SNAP call without a DATA
statement. The SNAP options default to YYYN. If a CALL
DATA statement is used, columns 16-23 specify the SNAP
destination, columns 24-31 specify the SNAP identification,
and columns 32-35 specify the SNAP options. SNAP options
are coded using ‘Y’ to request a snap dump and ‘N’ to
prevent it. Column 32 snaps the I/O buffer pools, columns 33
and 34 snap the IMS control blocks and column 35 snaps the
entire region. The SNAP call function is only supported for
full-function database PCB.

STAT5 yes yes O The STAT call retrieves statistics on the IMS system. This call
must reference only full-function DB PCBs. See the examples
on 545. Statistics type is coded in columns 16-19 of the
CALL FUNCTION statement.

DBAS For OSAM database buffer pool statistics.

VBAS For VSAM database subpool statistics.
Statistics format is coded in column 20 of the CALL
FUNCTION statement.

F For the full statistics to be formatted if F is specified,
the I/O area must be at least 360 bytes.

U For the full statistics to be unformatted if U is
specified, the I/O area must be at least 72 bytes.

S For a summary of the statistics to be formatted if S
is specified, the I/O area must be at least 120 bytes.

SYNC yes yes R Synchronization.

XRST yes yes R Restart.

Notes:

1. R = required; O = optional; N = none

2. The data statement is required on the AIB interface.

3. Valid only on the AIB interface.

4. SNAP is a Product-sensitive programming interface.

5. STAT is a Product-sensitive programming interface.

Examples of DL/I Call Functions
Basic CHKP Call: Use a CALL FUNCTION statement to contain the CHKP function
and a CALL DATA statement to contain the checkpoint ID.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHKP 10101400
L DATA TESTCKPT

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 537

Symbolic CHKP Call with Two Data Areas to Checkpoint: Use a CALL
FUNCTION statement to contain the CHKP function, a CALL DATA statement to
contain the checkpoint ID data, and two CALL DATA statements to contain the data
that you want to checkpoint.

You also need to use an XRST call when you use the symbolic CHKP call. Prior
usage of an XRST call is required when using the symbolic CHKP call, as the
CHKP call keys on the XRST call for symbolic CHKP.

Recommendation: Issue an XRST call as the first call in the application program.

CHNG Call: Use a CALL FUNCTION statement to contain the CHNG function and
a CALL DATA statement to contain the new logical terminal name.

The following is an example of a CHNG statement using SETO ID SET2, OPTION
statement, DATA statement with MODNAME, and FDBK statement.

CMD Call: Use a CALL FUNCTION statement to contain the CMD function and a
CALL DATA statement to contain the Command data.

DEQ Call: For full function, use a CALL FUNCTION statement to contain the DEQ
function and a CALL DATA statement to contain the DEQ value (A,B,C,D,E,F,G,H,I
or J).

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST
L .
L .
L .
L CHKP
L DATA TSTCHKP2 X
L 8 DATA STRING2- X
L 16 DATA STRING2-STRING2-
U EIGHT BYTES OF DATA (STRING2-) IS CHECKPOINTED AND
U SIXTEEN BYTES OF DATA (STRING2-STRING2-) IS CHECKPOINTED ALSO

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET1
L OPT IAFP=A1M,PRTO=LLOPTION1,OPTION2,
L CONT OPTION4
L Z0023 DATA DESTNAME

LL is the hex value of the length of LLOPTION,.........OPTION4.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET2
L OPT IAFP=A1M,TXTU=SET2
L Z0023 DATA DESTNAME
L Z0095 FDBK FEEDBACK AREA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CMD
L ZXXXX DATA COMMAND DATA

WHERE XXXX = THE LENGTH OF THE COMMAND DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ
L DATA A

CALL Statement

538 IMS/ESA V6 Appl Pgm: TM

For Fast Path, use a CALL FUNCTION statement to contain the DEQ function.

DLET Call: Use a CALL FUNCTION statement to contain the DLET function. The
data statement is optional. If there are intervening calls to other PCBs between the
Get Hold call and the DLET call, you must use a data statement to refresh the I/O
area with the segment to be deleted.

FLD Call: Use a CALL FUNCTION statement to contain the FLD function and
ROOTSSA, and a CALL DATA statement to contain the FSAs.

GCMD Call: Use a CALL FUNCTION statement to contain the GCMD function; no
CALL DATA statement is required.

GHN Call: Use a CALL FUNCTION statement to contain the GHN function; no
CALL DATA statement is required.

GHNP Call: Use a CALL FUNCTION statement to contain the GHNP function; no
CALL DATA statement is required.

GHU Call with a Continued SSA:Use two CALL FUNCTION statements to contain
the single SSA.

GMSG Call: Use a CALL FUNCTION statement to contain the GMSG function. Use
a CALL DATA statement to retrieve messages from AO exit routine.

GN Call: Use a CALL FUNCTION statement to contain the GN function; no CALL
DATA statement is required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DLET

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L FLD ROOTA (KEYA =ROOTA)
L DATA ??????? X
L DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GCMD

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHN 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHNP 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHU SEGG (FILLRG = G131G131G131G131G131G131G131G131G131G*

CONT 131G131G131G131G131G131G131)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GMSG TOKEN111 WAITAOI
L Z0132 DATA
L GMSG
L Z0132 DATA

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 539

GNP Call: Use a CALL FUNCTION statement to contain the GNP function; no
CALL DATA statement is required.

GU Call with a Single SSA and a Relational Operator: Use a CALL FUNCTION
statement to contain the GU function; no CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses.

GU Call with a Single SSA and a Relational Operator Extended Across
Multiple Inputs with Boolean Operators: Use a CALL FUNCTION statement to
contain the GU function and three additional continuation of CALL FUNCTION input
to continue with Boolean operators. No CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses. This type of
SSA can continue over several statements.

GU Path Call: Use a CALL FUNCTION statement to contain the GU function and
three additional continuation of CALL function input to continue with two additional
SSAs. No CALL DATA statement is required. The call uses command codes in
columns 24 and 25 to construct the path call. This type of call cannot be made with
the column-specific SSA format.

ICMD Call: Use a CALL FUNCTION statement to contain the ICMD function. Use a
CALL DATA statement to contain the command.

INIT Call: Use a CALL FUNCTION statement to contain the INIT call and a CALL
DATA statement to contain the INIT function DBQUERY, STATUS GROUPA, or
STATUS GROUPB.

INQY Call: Use a CALL FUNCTION statement to contain the INQY call and either
the DBQUERY or ENVIRON subfunction. The subfunctions are in the call input
rather than the data input as in the INIT call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GN 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GNP 10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGF (KEYF > F131*KEYF < F400)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGG (FILLRG > G131G131G131G131G131G131G131G131G131G*

CONT 131G131G131G131G131G131G131 &FILLRG < G400G400G4*
CONT 00G400G400G400G400G400G400G400G400G400G400G400G400G400 *
CONT)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA *D(KEYA = A200) *

SEGF *D(KEYF = F250) *
SEGG *D(KEYG = G251)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ICMD
L Z0132 DATA /DIS ACTIVE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INIT 10103210
L Z0011 DATA DBQUERY

CALL Statement

540 IMS/ESA V6 Appl Pgm: TM

ISRT Call: Use two CALL FUNCTION statements to contain the multiple SSAs and
a CALL DATA statement to contain the segment data.

ISRT Containing Only One Fixed-Length Segment: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and two CALL DATA
statements to contain the fixed-length segment. When inserting only one
fixed-length segment, leave columns 4 thru 8 blank and put data in columns 16 thru
71. To continue data, put a nonblank character in column 72, and the continued
data in columns 16 thru 71 of the next statement.

ISRT Containing Only One Variable-Length Segment: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and two CALL DATA
statements to contain the variable-length segment. When only one segment of
variable-length is being processed, you must enter a V in column 4, and columns 5
thru 8 must contain the length of the segment data. The length in columns 5 thru 8
is converted to binary and becomes the first two bytes of the segment data. To
continue data, put a nonblank character in column 72, and the continued data in
columns 16 thru 71 of the next statement.

ISRT Containing Multiple Variable-Length Segments: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and four CALL DATA
statements to contain the variable-length segments. For the first segment, you must
enter a V in column 4 and the length of the segment data in columns 5 thru 8. If the
segment is longer than 56 bytes, put a nonblank character in column 72, and
continue data on the next statement as described above. The last statement to
contain data for this segment must have a nonblank character in column 72.

The next DATA statement applies to the next variable-length segment and it must
contain an M in column 4, the length of the new segment in columns 5 thru 8, and
data starting in column 16. Any number of variable-length segments can be
concatenated in this manner. If column 72 is blank, the next statement must have
the following:

v An L in column 1

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY ENVIRON 10103210
L V0256 DATA 10103211
L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY DBQUERY 10103210
L V0088 DATA 10103211
L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT STOCKSEG(NUMFIELD =20011) X10103210

ITEMSSEG 10103211
L V0018 DATA 3002222222222222 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR 10103212

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 541

v An M in column 4

v The length of the new segment in columns 5 thru 8

v The keyword DATA in columns 10 thru 13

v Data starting in column 16

ISRT Containing Multiple Segments in a PATH CALL: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and seven CALL DATA
statements to contain the multiple segments in the PATH CALL.

When DFSDDLT0 is inserting or replacing segments through path calls, you can
use V and P in successive statements. The same rules apply for coding multiple
variable-length segments, but fixed-length segments must have a P in column 4 of
the DATA statement. This causes the length field in columns 5 thru 8 to be used as
the length of the segment, and causes the data to be concatenated in the I/O area
without including the LL field.

Rules for continuing data in the same segment or starting a new segment in the
next statement are the same as those applied to the variable-length segment.

LOG Call Using an LLZZ Format: Use a CALL FUNCTION statement to contain
the LOG function and a CALL DATA statement to contain the LLZZ format of data to
be logged.

When you put a Z in column 4, the first word of the record is not coded in the DATA
statement. The length specified in columns 5 through 8 must include the 4 bytes for
the LLZZ field that is not in the DATA statement.

The A in column 16 becomes the log record ID.

POS Call: Use a CALL FUNCTION statement to contain the POS function and
SSA; CALL DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT AAAAASEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR *10103212
M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103214

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT LEV01SEG*D *10103210

LEV02SEG *10103211
LEV03SEG *10103212
LEV04SEG 10103213

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103214
XJUMPEDOVERTHELAZYDOGSIR *10103215

M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216
ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY *10103217

L P0039 DATA THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR *10103218
L M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103219

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103220

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L LOG 10103210
L Z0016 DATA ASEGMENT ONE 10103211

CALL Statement

542 IMS/ESA V6 Appl Pgm: TM

PURG Call with MODNAME and Data: Use a CALL FUNCTION statement to
contain the PURG function and MOD name. Use the CALL DATA statement to
contain the message data. If MOD name is provided, a DATA statement is required.

PURG Call with Data and no MODNAME: Use a CALL FUNCTION statement to
contain the PURG function; a DATA statement is optional.

PURG Call without MODNAME or Data: Use a CALL FUNCTION statement to
contain the PURG function; CALL DATA statement is optional.

RCMD Call: Use a CALL FUNCTION statement to contain the RCMD function. Use
a CALL DATA statement to retrieve second and subsequent command response
segments resulting from an ICMD call.

REPL Call: Use a CALL FUNCTION statement to contain the REPL function. Use a
CALL DATA statement to contain the replacement data.

ROLB Call Requesting Return of First Segment of Current Message: Use a
CALL FUNCTION statement to contain the ROLB function. Use the CALL DATA
statement to request first segment of current message.

ROLB Call Not Requesting Return of First Segment of Current Message: Use a
CALL FUNCTION statement to contain the ROLB function. The CALL DATA
statement is optional.

ROLL Call: Use a CALL FUNCTION statement to contain the ROLL function. The
CALL DATA statement is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L POS SEGA (KEYA =A300)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG MODNAME1
L DATA FIRST SEGMENT OF NEW MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG
L DATA FIRST SEGMENT OF NEW MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L RCMD
L Z0132 DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L REPL
L V0028 DATA THIS IS THE REPLACEMENT DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB
L DATA THIS WILL BE OVERLAID WITH FIRST SEGMENT OF MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 543

ROLS Call with a Token: Use a CALL FUNCTION statement to contain the ROLS
function and token, and the CALL DATA statement to provide the data area that will
be overlaid by the data from the SETS call.

ROLS Call without a Token: Use a CALL FUNCTION statement to contain the
ROLS function. The CALL DATA statement is optional.

ROLX Call: Use a CALL FUNCTION statement to contain the ROLX function. The
CALL DATA statement is optional. The ROLX function is treated as a ROLS call
with no token.

SETO Call: Use a CALL FUNCTION statement to contain the SETO function. The
DATA statement is optional; however, if an OPTION statement is passed on the call,
the DATA statement is required. Also, if a FEEDBACK statement is passed on the
call, then both the DATA and OPTION statements are required. The following is an
example of a SETO statement using the OPTION statement and SETO token of
SET1.

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement and
SETO token of SET1.

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement and
SETO token of SET2 and FDBK statement.

11 is the hex value of the length of 11OPTION,.........OPTION4.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS TOKEN1

L Z0046 DATA THIS WILL BE OVERLAID WITH DATA FROM SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLX

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 5000
L OPT PRTO=11OPTION1,OPTION2,
L CONT OPTION3,
L CONT OPTION4

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 7000
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET2 5500
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4
L Z0099 FDBK OPTION ERROR FEEDBACK AREA

CALL Statement

544 IMS/ESA V6 Appl Pgm: TM

SETS Call with a Token: Use a CALL FUNCTION statement to contain the SETS
function and token; use the CALL DATA statement to provide the data that is to be
returned to ROLS call.

SETS Call without a Token: Use a CALL FUNCTION statement to contain the
SETS function; CALL DATA statement is optional.

This section (SNAP call) contains product-sensitive programming interface
information.

SNAP Call: Use a CALL FUNCTION statement to contain the SNAP function and a
CALL DATA statement to contain the SNAP data.

This section (STAT call) contains product-sensitive programming interface
information.

STAT Call: OSAM statistics require only one STAT call. STAT calls for VSAM
statistics retrieve only one subpool at a time, starting with the smallest. See
IMS/ESA Application Programming: Design Guide for further information about the
statistics returned by STAT.

SYNC Call: Use a CALL FUNCTION statement to contain the SYNC function. The
CALL DATA statement is optional.

Initial XRST Call: Use a CALL FUNCTION statement to contain the XRST
FUNCTION and a CALL DATA statement that contains a checkpoint ID of blanks to
indicate that you are normally starting a program that uses symbolic checkpoints.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS TOKEN1

L Z0033 DATA RETURN THIS DATA ON THE ROLS CALL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SNAP 10103210
L V0022 DATA PRINTDD 22222222 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L STAT DBASF
L STAT VBASS
L STAT VBASS
L STAT VBASS
L STAT VBASS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SYNC

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA
L CKPT
L DATA YOURID01

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 545

Basic XRST Call: Use a CALL FUNCTION statement to contain the XRST function
and a CALL DATA statement to contain the checkpoint ID.

Symbolic XRST Call: Use a CALL FUNCTION statement to contain the XRST
function, a CALL DATA statement to contain the checkpoint ID data, and one or
more CALL DATA statements where the data is to be returned.

The XRST call is used with the symbolic CHKP call.

CALL FUNCTION Statement with Column-Specific SSAs
In this format, the SSA has intervening blanks between fields. Columns 24, 34, and
37 must contain blanks. Command codes are not permitted. Table 70 gives the
format for the CALL FUNCTION statement with column-specific SSAs.

Table 70. CALL FUNCTION Statement (Column-Specific SSAs)

Column Function Code and Description

1 Identifies control
statement

L Call statement (see columns 10-13).

2 Reserved �

3 Reserved �

4 Reserved �

5-8 Repeat Count � If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this call. Range 1 to
9999, right-justified but need not contain leading zeros.

10-13 Identifies DL/I call
function

� If blank, use function from previous CALL statement.

xxxx 'xxxx' is a DL/I call function.

CONT Continuation indicator for SSAs too long for a single CALL
FUNCTION statement. Column 72 of preceding CALL
FUNCTION statement must contain a nonblank character.
The next CALL statement should have CONT in columns 10
through 13 and the SSA should continue in column 16.

14-15 Reserved �

16-23 SSA name s-name Required if call contains SSA.

24 Reserved � Separator field.

25 Start character for SSA (Required if segment is qualified.

26-33 SSA field name f-name Required if segment is qualified.

34 Reserved � Separator field.

35-36 DL/I call operator(s) name Required if segment is qualified.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA TESTCKPT

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST
L DATA TSTCHKP2 X
L 8 DATA OVERLAY2 X
L 16 DATA OVERLAY2OVERLAY2
U EIGHT BYTES OF DATA (OVERLAY2) SHOULD BE OVERLAID WITH CHECKPOINTED DATA
U SIXTEEN BYTES OF DATA (OVERLAY2OVERLAY2) IS OVERLAID ALSO

CALL Statement

546 IMS/ESA V6 Appl Pgm: TM

Table 70. CALL FUNCTION Statement (Column-Specific SSAs) (continued)

Column Function Code and Description

37 Reserved � Separator field.

38-nn Field value nnnnn Required if segment is qualified.
Note: Do not use '5D' or ')' in field value.

nn+1 End character for SSA) Required if segment is qualified.

72 Continuation column � No continuations for this statement.

x Alone, it indicates multiple SSAs each beginning in column
16 of successive statements. With CONT in columns 10-13
of the next statement, indicates a single SSA that is
continued beginning in column 16 of the following statement

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If a CALL FUNCTION statement contains multiple SSAs, the statement must have a
nonblank character in column 72 and the next SSA must start in column 16 of the
next statement. If a field value extends past column 71, put a nonblank character in
column 72. In the next statement insert the keyword CONT in columns 10 through
13 and continue the field value starting at column 16. Maximum length for field
value is 256 bytes, maximum size for an SSA is 290 bytes, and the maximum
number of SSAs for this program is 15, which is the same as the IMS limit.

DFSDDLT0 Call Functions
The DFSDDLT0 call functions were created for DFSDDLT0. They do not represent
“valid” IMS calls and are not punched as output if DFSDDLT0 encounters them
while a CTL (PUNCH) statement is active. Table 71 shows the special call functions
of the CALL FUNCTION statement. Descriptions and examples of these special
functions follow.

Table 71. CALL FUNCTION Statement with DFSDDLT0 Call Functions

Column Function Code Description

1 Identifies control
statement

L Call statement.

2-4 Reserved �

5-8 Repeat count � If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this
call. Range is 1 to 9999, right-justified but
need not contain leading zeros.

9 Reserved �

10-15 Special call
function

STAK� Stack control statements for later execution.

END�� Stop stacking and begin execution.

SKIP� Skip statements until START function is
encountered.

START Start processing statements again.

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

v STAK/END(stacking control statements)

CALL Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 547

With the STAK statement, you repeat a series of statements that were read from
SYSIN and held in memory. All control statements between the STAK statement
and the END statement are read and saved. When DFSDDLT0 encounters the
END statement, it executes the series of calls as many times as specified in
columns 5 through 8 of the STAK statement. STAK calls imbedded within another
STAK cause the outer STAK call to be abnormally terminated.

v SKIP/START (skipping control statements)

With the SKIP and START statements, you identify groups of statements that you
do not want DFSDDLT0 to process. These functions are normally read from
SYSIN2 and provide a temporary override to an established SYSIN input stream.
DFSDDLT0 reads all control statements occurring between the SKIP and START
statements, but takes no action. When DFSDDLT0 encounters the START
statement, it reads and processes the next statement normally.

Examples of DFSDDLT0 Call Functions
STAK/END Call: The following example shows the STAK and END call functions.

SKIP/START Call: The following example demonstrates the use of the SKIP and
START call functions in SYSIN2 to override and stop the processing of the STAK
and END call functions in SYSIN. DFSDDLT0 executes the GU call function in
SYSIN, skips the processing of STACK, WTO, T comment, GN, and END in SYSIN,
and goes to the COMMENT.

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*
//BATCH.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SKIP 10001150
L START 10001450
U THIS COMMENT SHOULD REPLACE THE STAK COMMENT 10001500
U ********THIS COMMENT SHOULD GET PRINTED BECAUSE OF SYSIN2********* 10001650
/*

CALL Statement

548 IMS/ESA V6 Appl Pgm: TM

COMMENT Statement
Use the COMMENT statement to print comments in the output data. The two types
of COMMENT statements, conditional and unconditional, are described below.
Table 72 shows the format of the COMMENT statement.

Conditional COMMENT Statement
You can use up to five conditional COMMENT statements per call; no continuation
mark is required in column 72. Code the statements in the DFSDDLT0 stream
before the call they are to document. Conditional COMMENTS are read and held
until a CALL is read and executed. (If a COMPARE statement follows the CALL,
conditional COMMENTS are held until after the comparison is completed.) You
control whether the conditional comments are printed with column 3 of the STATUS
statement. DFSDDLT0 prints the statements according to the STATUS statement in
the following order: conditional COMMENTS, the CALL, and the COMPARE(s). The
time and date are also printed with each conditional COMMENT statement.

Unconditional COMMENT Statement
You can use any number of unconditional COMMENT statements. Code them in the
DFSDDLT0 stream before the call they are to document. The time and date are
printed with each unconditional COMMENT statement.

Table 72. COMMENT Statement

Column Function Code Description

1 Identifies control
statement

T Conditional comment statement.

U Unconditional comment statement.

2-72 Comment data Any relevant comment.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of COMMENT Statement
T/U Comment Calls: The following example shows the T and U comment calls.

COMPARE Statement
The COMPARE statement compares the actual results of a call with the expected
results. The three types of COMPARE statements are the COMPARE PCB,
COMPARE DATA, and COMPARE AIB.

When you use the COMPARE PCB, COMPARE DATA, and COMPARE AIB
statements you must:

//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGB (KEYA =A400) 10001100
T THIS COMMENT IS A CONDITIONAL COMMENT FOR THE FIRST GN 10001300
L GN 10001400
U THIS COMMENT IS AN UNCONDITIONAL COMMENT FOR THE SECOND GN 10001500
L 0020 GN 10001600
/*

COMMENT Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 549

v Code COMPARE statements in the DFSDDLT0 stream immediately after either
the last continuation, if any, of the CALL DATA statement or another COMPARE
statement.

v Specify the print option for the COMPARE statements in column 7 of the
STATUS statement.

For all three COMPARE statements:

v The condition code returned for a COMPARE gives the total number of unequal
comparisons.

v For single fixed-length segments, DFSDDLT0 uses the comparison length to
perform comparisons if you provide a length. The length comparison option
(column 3) is not applicable.

Product-sensitive programming interface

When you use the COMPARE PCB statement and you want a snap dump when
there is an unequal comparison, request it on the COMPARE PCB statement. A
snap dump to a log with SNAP ID COMPxxxx is issued along with the snap dump
options specified in column 3 of the COMPARE PCB statement.

The numeric part of the SNAP ID is initially set to 0000 and is incremented by 1 for
each SNAP resulting from an unequal comparison.

End of Product-sensitive programming interface

COMPARE DATA Statement
The COMPARE DATA statement is optional. It compares the segment returned by
IMS to the data in the statement to verify that the correct segment was retrieved.
Table 73 gives the format of the COMPARE DATA statement.

Table 73. COMPARE DATA Statement

Column Function Code Description

1 Identifies control
statement

E COMPARE statement.

2 Reserved �

3 Length comparison
option

� For fixed-length segments or if the LL
field of the segment is not included in
the comparison; only the data is
compared.

L The length in columns 5-8 is
converted to binary and compared
against the LL field of the segment.

4 Segment length option �

V For a variable-length segment only,
or for the first variable-length
segment of multiple variable-length
segments in a path call, or for a
concatenated logical child/logical
parent segment.

M For the second or subsequent
variable-length segment of a path
call, or for a concatenated logical
child/logical parent segment.

COMPARE Statement

550 IMS/ESA V6 Appl Pgm: TM

Table 73. COMPARE DATA Statement (continued)

Column Function Code Description

P For fixed-length segments in path
calls.

Z For message segment.

5-8 Comparison length nnnn Length to be used for comparison.
(Required for length options V, M,
and P if L is coded in column 3.)

9 Reserved �

10-13 Identifies type of
statement

DATA Required for the first I/O COMPARE
statement and the first statement of a
new segment if data from previous
I/O COMPARE statement is not
continued.

14-15 Reserved �

16-71 String of data Data against which the segment in
the I/O area is to be compared.

72 Continuation column � If blank, data is NOT continued.

x If not blank, data will be continued,
starting in columns 16-71 of the
subsequent statements for a
maximum of 3840 bytes.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Notes:

v If you code an L in column 3, the value in columns 5 through 8 is converted to binary and compared against the
LL field of the returned segment. If you leave column 3 blank and the segment is not in a path call, then the value
in columns 5 through 8 is used as the length of the comparison.

v If you code column 4 with a V, P, or M, you must enter a value in columns 5 through 8.

v If this is a path call comparison, code a P in column 4. The value in columns 5 through 8 must be the exact length
of the fixed segment used in the path call.

v If you specify the length of the segment, this length is used in the COMPARE and in the display. If you do not
specify a length, DFSDDLT0 uses the shorter of the following for the length of the comparison and display:

– The length of data supplied in the I/O area by IMS

– The number of DATA statements read times 56

COMPARE AIB Statement
The COMPARE AIB statement is optional. You can use it to compare values
returned to the AIB by IMS. Table 74 shows the format of the COMPARE AIB
statement.

Table 74. COMPARE AIB Statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Hold compare option H Hold COMPARE statement; see the
paragraph below for details.

� Reset hold condition for a single
COMPARE statement.

3 Reserved �

4-6 AIB compare AIB Identifies an AIB compare.

COMPARE Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 551

Table 74. COMPARE AIB Statement (continued)

Column Function Code Description

7 Reserved �

8-11 Return code xxxx Allow specified return code only.

12 Reserved

13-16 Reason code xxxx Allow specified reason code only.

17-72 Reserved � �

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

To execute the same COMPARE AIB after a series of calls, put an H in column 2.
When you specify an H, the COMPARE statement executes after each call. The H
COMPARE statement is particularly useful when comparing with the same status
code on repeated calls. The H COMPARE statement stays in effect until another
COMPARE AIB statement is read.

COMPARE PCB Statement
The COMPARE PCB statement is optional. You can use it to compare values
returned to the PCB by IMS or to print blocks or buffer pool. Table 75 shows the
format of the COMPARE PCB statement.

Table 75. COMPARE PCB Statement

Column Function Code Description

1 Identifies control
statement

E COMPARE statement.

2 Hold compare option H Hold compare statement.

� Reset hold condition for a single
COMPARE statement.

3 Snap dump options (if
compare was unequal)

� Use default value. (You can change
the default value or turn off the
option by coding the value in an
OPTION statement.)

1 The complete I/O buffer pool.

2 The entire region (batch regions
only).

4 The DL/I blocks.

8 Terminate the job step on
miscompare of DATA or PCB.

S To SNAP subpools 0 through 127.
Requests for multiple SNAP dump
options can be obtained by summing
their respective hexadecimal values.
If anything other than a blank, 1-9,
A-F, or S is coded in column 3, the
SNAP dump option is ignored.

4 Extended SNAP1 options � Ignore extended option.

P SNAP the complete buffer pool
(batch).

COMPARE Statement

552 IMS/ESA V6 Appl Pgm: TM

Table 75. COMPARE PCB Statement (continued)

Column Function Code Description

S SNAP subpools 0 through 127
(batch).

An area is never snapped twice. The
SNAP option is a combination of
columns 3 (SNAP dump option) and
4 (extended SNAP option).

5-6 Segment level nn 'nn' is the segment level for
COMPARE PCB. A leading zero is
required.

7 Reserved �

8-9 Status code � Allow blank status code only.

xx Allow specified status code only.

XX Do not check status code.

OK Allow the following: blank, GA, GC,
or GK.

10 Reserved �

11-18 Segment name
User Identification

xxxxxxxx Segment name for DB PCB
compare.

Logical terminal for I/O.

Destination for ALT PCB.

19 Reserved �

20-23 Length of key nnnn 'nnnn' is length of the feedback key.

24-71 or Concatenated key Concatenated key feedback for DB
PCB compare.

24-31 User ID User identification for TP PCB.

72 Continuation column � If blank, key feedback is not
continued.

x If not blank, key feedback is
continued, starting in columns 16-71
of subsequent statements.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive programming interface.

Blank fields are not compared to the corresponding field in the PCB, except for the
status code field. (Blanks represent a valid status code.) To accept the status codes
blank, GA, GC, or GK as a group, put OK in columns 8 and 9. To stop comparisons
of status codes, put XX in columns 8 and 9.

To execute the same compare after a series of calls, put an H in column 2. This
executes the COMPARE statement after each call. This is particularly useful to
compare to a blank status code only when loading a database. The H COMPARE
statement stays in effect until another COMPARE PCB statement is read.

COMPARE Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 553

Examples of COMPARE DATA and PCB Statements
COMPARE PCB Statement for Blank Status Code: The COMPARE PCB
statement is coded blank. It checks a blank status code for the GU.

COMPARE PCB Statement for SSA Level, Status Code, Segment Name,
Concatenated Key Length, and Concatenated Key: The COMPARE PCB
statement is a request to compare the SSA level, a status code of OK (which
includes blank, GA, GC, and GK), segment name of SEGA, concatenated key
length of 0004, and a concatenated key of A100.

COMPARE PCB Statement for SSA Level, Status Code, Segment Name,
Concatenated Key Length, and Concatenated Key: The COMPARE PCB
statement causes the job step to terminate based on the 8 in column 3 when any of
the fields in the COMPARE PCB statement are not equal to the corresponding field
in the PCB.

COMPARE PCB Statement for Status Code with Hold Compare: The COMPARE
PCB statement is a request to compare the status code of OK (which includes
blank, GA, GC, and GK) and hold that compare until the next COMPARE PCB
statement. The compare of OK is used on GN following GU and is also used on a
GN that has a request to be repeated six times.

COMPARE DATA Statement for Fixed-Length Segment: The COMPARE DATA
statement is a request to compare the data returned. 72 bytes of data are
compared.

COMPARE DATA Statement for Fixed-Length Data for 64 Bytes: The COMPARE
DATA statement is a request to compare 64 bytes of the data against the data
returned.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101100
E 10101200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E 01 OK SEGA 0004A100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10105100
E 8 01 OK SEGK 0004A100 10105200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA (KEYA = A300) 20201100
L GN 20201300
EH OK 20201400
L 0006 GN 20201500

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10102200
E A100A100A100A100 10102300

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101600
E 0064 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10101700
E A100A100B111B111 10101800

COMPARE Statement

554 IMS/ESA V6 Appl Pgm: TM

COMPARE DATA Statement for Fixed-Length Data for 72 Bytes: The COMPARE
DATA statement is a request to compare 72 bytes of the data against the data
returned.

COMPARE DATA Statement for Variable-Length Data of Multiple-Segments
Data and Length Fields: The COMPARE DATA statement is a request to compare
36 bytes of the data against the data returned for segment 1 and 16 bytes of data
for segment 2. It compares the length fields of both segments.

COMPARE DATA Statement for Variable-Length Data of Multiple Segments
with no Length Field COMPARE: The COMPARE DATA statement is a request to
compare 36 bytes of the data against the data returned for segment 1 and 16 bytes
of data for segment 2 with no length field compares of either segment.

COMPARE DATA Statement for Variable-Length Data of Multiple Segments and
One Length Field COMPARE: The COMPARE DATA statement is a request to
compare 36 bytes of the data against the data returned for segment 1 and 16 bytes
of data for segment 2. It compares the length field of segment 1 only.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10103900
E LP0072 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10104000
E A100A100A100A100 10104100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
E LM0016 DATA QAJSS01*2QAJ** 38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
M0016 DATA QAJSS01*2QAJ** 38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
M0016 DATA QAJSS01*2QAJ** 38006350

COMPARE Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 555

IGNORE Statement
DFSDDLT0 ignores any statement with an N or a period (.) in column 1. You can
use the N or . (period) to comment out a statement in either the SYSIN or SYSIN2
input streams. Using an N or . (period) in a SYSIN2 input stream causes the SYSIN
input stream to be ignored as well. See “SYSIN2 DD Statement” on page 565 for
information on how to override SYSIN input. Table 76 gives the format of the
IGNORE statement. An example of the statement follows.

Table 76. IGNORE Statement

Column Function Code Description

1 Identifies control
statement

N or . IGNORE statement.

2-72 Ignored

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of IGNORE (N or .)

OPTION Statement
Use the OPTION statement to override various default options. Use multiple
OPTION statements if you cannot fit all the options you want in one statement. No
continuation character is necessary. Once you set an option, it remains in effect
until you specify another OPTION statement to change the first parameter. Table 77
shows the format of the OPTION statement. An example follows.

Table 77. OPTION Statement

Column Function Code Description

1 Identifies control
statement

O OPTION statement (free-form parameter
fields).

2 Reserved � �

3-72 Keyword parameters:

ABORT= v 0

v 1 to 9999

v Turns the ABORT parameter off.

v Number of unequal compares before
aborting job. Initial default is 5.

LINECNT= 10 to 99 Number of lines printed per page. Must be
filled with zeros. Initial default 54.

SNAP1 x SNAP option default, when results of
compare are unequal. To turn the SNAP
option off, code 'SNAP='. See “COMPARE
PCB Statement” on page 552 for the
appropriate values for this parameter. (Initial
default is 5 if this option is not coded. This
causes the I/O buffer pool and the DL/I
blocks to be dumped with a SNAP call.)

DUMP/NODUMP Produce/do not produce dump if job abends.
Default is NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
. NOTHING IN THIS AREA WILL BE PROCESSED. ONLY THE SEQUENCE NUMBER 67101010
N WILL BE USED IF READ FROM SYSIN2 OR SYSIN. 67101020

IGNORE Statement

556 IMS/ESA V6 Appl Pgm: TM

Table 77. OPTION Statement (continued)

Column Function Code Description

LCASE= v H

v C

v Hexadecimal representation for lower
case characters. This is the initial default.

v Character representation for lower case
characters.

STATCD/NOSTATCD Issue/do not issue an error message for the
internal, end-of-job stat call that does not
receive a blank or GA status code.
NOSTATCD is the default.

ABU249/NOABU249 Issue/do not issue a DFSDDLT0
ABENDU0249 when an invalid status code is
returned for any of the internal end-of-job
stat calls in a batch environment.
NOABU249 is the default.

73 - 80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive programming interface.

OPTION statement parameters can be separated by commas.

Example of OPTION Control Statement

PUNCH Statement
The PUNCH CTL statement allows you to produce an output data set consisting of
COMPARE PCB statements, COMPARE DATA statements, COMPARE AIB
statements, other control statements (with the exceptions noted below), or
combinations of the above. Table 78 shows the format and keyword parameters for
the PUNCH CTL statement.

Table 78. PUNCH CTL Statement

Column Function Description Description

1-3 Identifies
control
statement

CTL PUNCH statement.

4-9 Reserved �

10-13 Punch
control

PUNC Begin punching (no default
values).

NPUN Stop punching (default value).

14-15 Reserved �

16-72 Keyword
parameters:

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5 67101010

OPTION Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 557

Table 78. PUNCH CTL Statement (continued)

Column Function Description Description

OTHER Reproduces all input control
statements except:

v CTL (PUNCH) statements.

v N or . (IGNORE) statements.

v COMPARE statements.

v CALL statements with
functions of SKIP and START.
Any control statements that
appear between SKIP and
START CALLs are not
punched. (See SKIP/START
548).

v CALL statements with
functions of STAK and END.
Control statements that
appear between STAK and
END CALLS are saved and
then punched the number of
times indicated in the STAK
CALL. (See STAK/END 547).

DATAL Create a full data COMPARE
using all of the data returned to
the I/O area. Multiple COMPARE
statements and continuations
are produced as needed.

DATAS Create a single data COMPARE
statement using only the first 56
bytes of data returned to the I/O
area.

PCBL Create a full PCB COMPARE
using the complete key feedback
area returned in the PCB.
Multiple COMPARE statements
and continuations are produced
as needed.

PCBS Create a single PCB COMPARE
statement using only the first 48
bytes of the key feedback area
returned in the PCB.

SYNC/NOSYNC If a GB status code is returned
on a Fast Path call while in
STAK, but prior to exiting STAK,
this function issues or does not
issue SYNC.

START= 00000001 to 99999999.

This is the starting sequence
number to be used for the
punched statements. Eight
numeric bytes must be coded.

PUNCH Statement

558 IMS/ESA V6 Appl Pgm: TM

Table 78. PUNCH CTL Statement (continued)

Column Function Description Description

INCR= 1 to 9999.

Increment the sequence number
of each punched statement by
this value. Leading zeros are not
required.

AIB Create an AIB COMPARE
statement.

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

To change the punch control options while processing a single DFSDDLT0 input
stream, always use PUNCH CTL statements in pairs of PUNC and NPUN.

One way to use the PUNCH CTL statement is as follows:

1. Code only the CALL statements for a new test. Do not code the COMPARE
statements.

2. Verify that each call was executed correctly.

3. Make another run using the PUNCH CTL statement to have DFSDDLT0merge
the proper COMPARE statements and produce a new output data set that can
be used as input for subsequent regression tests.

You can also use PUNCH CTL if segments in an existing database are changed.
The control statement causes DFSDDLT0 to produce a new test data set that has
the correct COMPARE statements rather than you having to manually change the
COMPARE statements.

Parameters in the CTL statement must be the same length as described in
Table 78, and they must be separated by commas.

Example of PUNCH CTL Statement

The DD statement for the output data set is labeled PUNCHDD. The data sets are
fixed block with LRECL=80. Block size as specified on the DD statement is used. If
not specified, the block size is set to 80. If the program is unable to open
PUNCHDD, DFSDDLT0 issues abend 251.

Example of PUNCH CTL Statement for All Parameters

STATUS Statement
With the STATUS statement, you establish print options and name the PCB that you
want subsequent calls to be issued against. Table 79 on page 560 shows the format
of the STATUS statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC PCBS,DATAS,OTHER,START=00000010,INCR=0010 33212010
CTL NPUN 33212020

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC OTHER,DATAL,PCBL,START=00000001,INCR=1000,AIB 33212010

PUNCH Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 559

Table 79. STATUS Statement

Column Function Code Description

1 Identifies
control
statement

S STATUS statement.

2 Output
device option

� Use PRINTDD when in a DL/I region; use I/O PCB in MPP region.

1 Use PRINTDD in MPP region if DD statement is provided; otherwise,
use I/O PCB.

A Same as if 1, and disregard all other fields in this STATUS statement.

3 Print
comment
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

4 Print AIB
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

5 Print call
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

6 Reserved �

7 Print
compare
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

8 Reserved �

9 Print PCB
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

10 Reserved �

11 Print
segment
option

� Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

12 Set task and
real time

� Do not time

1 Time each call.

2 Time each call if compare done and unequal.

13-14 Reserved �

STATUS Statement

560 IMS/ESA V6 Appl Pgm: TM

Table 79. STATUS Statement (continued)

Column Function Code Description

15 PCB
selection
option

1 PCB name passed in columns 16-23 (use option 1).

2 DBD name passed in columns 16-23 (use option 2).

3 Relative DB PCB passed in columns 16-23 (use option 3).

4 Relative PCB passed in columns 16-23 (use option 4).

5 $LISTALL passed in columns 16-23 (use option 5).

� If column 15 is blank, DFSDDLT0 selects options 2 through 5 based
on content of columns 16-23.

Opt. 1
16-23

PCB selection
PCB name

alpha These columns must contain the name of the label on the PCB at
PSBGEN, or the name specified on the PCBNAME= operand for the
PCB at PSBGEN time.

Opt. 2
16-23

PCB selection
DBD name

�

alpha The default PCB is the first database PCB in the PSB. If columns
16-23 are blank, current PCB is used. If DBD name is specified, this
must be the name of a database DBD in the PSB.

Opt. 3
16-18
19-23

PCB selection
Relative position
of PCB in PSB

�

numeric When columns 16 through 18 are blank, columns (19-23) of this field
are interpreted as the relative number of the DB PCB in the PSB. This
number must be right-justified to column 23, but need not contain
leading zeros.

Opt. 4
16-18
19-23

PCB selection
I/O PCB
Relative position
of PCB in PSB

TP�

numeric When columns 16 through 18 = 'TP�', columns (19-23) of this field are
interpreted as the relative number of the PCB from the start of the
PCB list. This number must be right-justified to column 23, but need
not contain leading zeros. I/O PCB is always the first PCB in the PCB
list in this program.

Opt. 5
16-23

List all PCBs
in the PSB

$LISTALL Prints out all PCBs in the PSB for test script.

24 Print status
option

� Use print options to print this STATUS statement.

1 Do not use print options in this statement; print this STATUS
statement.

2 Do not print this STATUS statement but use print options in this
statement.

3 Do not print this STATUS statement and do not use print options in this
statement.

25-28 PCB
processing
option

xxxx This is optional and is only used when two PCBs have the same name
but different processing options. If not blank, it is used in addition to
the PCB name in columns 16 through 23 to select which PCB in the
PSB to use.

29 Reserved �

STATUS Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 561

Table 79. STATUS Statement (continued)

Column Function Code Description

30-32 AIB interface AIB Indicates that the AIB interface is used and the AIB is passed rather
than passing the PCB. (Passing the PCB is the default.)
Note: When the AIB interface is used, the PCB must be defined at
PSBGEN with PCBNAME=name. IOPCB is the PCB name used for all
I/O PCBs. DFSDDLT0 recognizes that name when column 15 contains
a 1 and columns 16 through 23 contain IOPCB.

33 Reserved

37-72 Reserved

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

If DFSDDLT0 does not encounter a STATUS statement, all default print options
(columns 3 through 12) are 2 and the default output device option (column 2) is 1.
You can code a STATUS statement before any call sequence in the input stream,
changing either the PCB to be referenced or the print options.

The referenced PCB stays in effect until a subsequent STATUS statement selects
another PCB. However, a call that must be issued against an I/O PCB (such as
LOG) uses the I/O PCB for that call. After the call, the PCB changes back to the
original PCB.

Examples of STATUS Statement
To Print Each CALL Statement: The following STATUS statement tells DFSDDLT0
to print these options: COMMENTS, CALL, COMPARE, PCB, and SEGMENT DATA
for all calls.

To Print Each CALL Statement, Select a PCB: The following STATUS statements
tell DFSDDLT0 to print the COMMENTS, CALL, COMPARE, PCB, and SEGMENT
DATA options for all calls, and select a PCB.

The 1 in column 15 is required for PCBNAME. If omitted, the PCBNAME is treated
as a DBDNAME.

To print each CALL statement, select PCB based on a DBD name: The
following STATUS statements tell DFSDDLT0 to print the COMMENTS, CALL,
COMPARE, PCB, and SEGMENT DATA options for all calls, and select a PCB by a
DBD name.

The 2 in column 15 is optional.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME AIB�

STATUS Statement

562 IMS/ESA V6 Appl Pgm: TM

If you do not use the AIB interface, you do not need to change STATUS statement
input to existing streams; existing call functions will work just as they have in the
past. However, if you want to use the AIB interface, you must change the STATUS
statement input to existing streams to include AIB in columns 30 through 32. The
existing DBD name, Relative DB PCB, and Relative PCB will work if columns 30
through 32 contain AIB and the PCB has been defined at PSBGEN with
PCBNAME=name.

WTO Statement
The WTO (Write to Operator) statement sends a message to the MVS console
without waiting for a reply. Table 80 shows the format for the WTO statement.

Table 80. WTO Statement

Column Function Code Description

1-3 Identifies control
statement

WTO WTO statement.

4 Reserved �

5-72 Message to send Message to be written to the
system console.

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement
override.

Example of WTO Statement
This WTO statement sends a message to the MVS console and continues the test
stream.

WTOR Statement
The WTOR (Write to Operator with Reply) statement sends a message to the MVS
system console and waits for a reply. Table 81 shows the format of the WTO
statement.

Table 81. WTOR Statement

Column Function Code Description

1-4 Identifies control
statement

WTOR WTOR statement.

5 Reserved �

6-72 Message to send Message to be written to the
system console.

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement
override.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME AIB�

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTO AT A “WTO” WITHIN TEST STREAM --WTO NUMBER 1-- TEST STARTED

STATUS Statement

Appendix E. Using the DL/I Test Program (DFSDDLT0) 563

Example of WTOR Statement
This WTOR statement causes the test stream to hole until DFSDDLT0 receives a
response from the MVS console operator. Any response is valid.

JCL Requirements
This section defines the DD statements that DFSDDLT0 uses. Execution JCL
depends on the installation data set naming standards as well as the IMS
environment (batch or online). See Figure 86.

Figure 87 is an example of coding JCL for DFSDDLT0 in a BMP. Use of a
procedure is optional and is only shown here as an example.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTOR AT A “WTOR” WITHIN TEST STREAM - ANY RESPONSE WILL CONTINUE

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8 33001100
//GET EXEC PGM=DFSRRC00,PARM='DLI,DFSDDLT0,PSBNAME' 33001200
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR 33001300
//IMS DD DSN=IMS2.PSBLIB,DISP=(SHR,PASS) 33001400
// DD DSN=IMS2.DBDLIB,DISP=(SHR,PASS) 33001500
//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP) 33001600
//IEFRDER DD DUMMY 33001700
//PRINTDD DD SYSOUT=A 33001800
//SYSUDUMP DD SYSOUT=A 33001900
//SYSIN DD * 33002000
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
U THIS IS PART OF AN EXAMPLE 33002100
S 1 1 1 1 1 PCB-NAME 33002200
L GU 33002300
/*
//SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 33002300
/*

Figure 86. Example JCL Code for DD Statement Definition

//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A 00010047
//***
//* BATCH DL/I JOB TO RUN FOR RSR TESTING *
//***
//BMP EXEC IMSBATCH,MBR=DFSDDLT0,PSB=PSBNAME
//BMP.PRINTDD DD SYSOUT=A
//BMP.PUNCHDD DD SYSOUT=B
//BMP.SYSIN DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN DATA 00010000
S 1 1 1 1 1 1 00030000
L GU 00040000
L 0099 GN 00050000
/*
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
//BMP.SYSIN2 DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN2 DATA ******************* 00020000
ABEND 00050000
/*

Figure 87. Example JCL Code for DFSDDLT0 in a BMP

WTOR Statement

564 IMS/ESA V6 Appl Pgm: TM

SYSIN DD Statement
The data set specified by the SYSIN DD statement is the normal input data set for
DFSDDLT0. When processing input data that is on direct-access or tape, you may
want to override certain control statements in the SYSIN input stream or to add
other control statements to it. You do this with a SYSIN2 DD statement and the
control statement sequence numbers.

Sequence numbers in columns 73 to 80 for SYSIN data are optional unless a
SYSIN2 override is used. If a SYSIN2 override is used, follow the directions for
using sequence numbers as described in “SYSIN2 DD Statement”.

SYSIN2 DD Statement
DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the
JCL, DFSDDLT0 will read and process the specified data sets. When using
SYSIN2, the following items apply:

v The SYSIN DD data set is the primary input. DFSDDLT0 attempts to insert the
SYSIN2 control statements into the SYSIN DD data set.

v You must code the control groups and sequence numbers properly in columns 73
to 80 or the merging process will not work.

v Columns 73 and 74 indicate the control group of the statement.

v Columns 75 to 80 indicate the sequence number of the statement.

v Sequence numbers must be in numeric order within their control group.

v Control groups in SYSIN2 must match the SYSIN control groups, although
SYSIN2 does not have to use all the control groups used in SYSIN. DFSDDLT0
does not require that control groups be in numerical order, but the control groups
in SYSIN2 must be in the same order as those in SYSIN.

v When DFSDDLT0 matches a control group in SYSIN and SYSIN2, it processes
the statements by sequence number. SYSIN2 statements falling before or after a
SYSIN statement are merged accordingly.

v If the sequence number of a SYSIN2 statement matches the sequence number
of a SYSIN statement in its control group, the SYSIN2 overrides the SYSIN.

v If the program reaches the end of SYSIN before it reaches the end of SYSIN2, it
processes the records of SYSIN2 as if they were an extension of SYSIN.

v Replacement or merging occurs only during the current run. The original SYSIN
data is not changed.

v During merge, if one of the control statements contains blanks in columns 73
through 80, DFSDDLT0 discards the statement containing blanks, sends a
message to PRINTDD, and continues the merge until end-of-file is reached.

PRINTDD DD Statement
The PRINTDD DD statement defines output data set for DFSDDLT0, including
displays of control blocks using the SNAP call. It must conform to the MVS/ESA
SNAP data set requirements.

PUNCHDD DD Statement
The DD statement for the output data set is labeled PUNCHDD. The data sets are
fixed block with LRECL=80. Block size as specified on the DD statement is used; if
not specified, the block size is set to 80. If the program is unable to open
PUNCHDD, DFSDDLT0 issues abend 251. Here is an example of the PUNCHDD
DD statement.

JCL Requirements

Appendix E. Using the DL/I Test Program (DFSDDLT0) 565

Using the PREINIT Parameter for DFSDDLT0 Input Restart
You use the DFSDDLT0 restart function to restart a DFSDDLT0 input stream within
the same dependent region. The PREINIT parameter in the EXEC statement
invokes the restart function. Code the PREINIT parameter of DFSMPR as
PREINIT=xx, where xx is the two-character suffix of the DFSINTxx proclib member.
(PREINIT=DL refers to the default proclib member.)

The PREINIT process establishes a checkpoint field for each active IMS region.
This field is updated with the sequence number of each GU call to an I/O PCB as it
is processed. For this reason, sequence numbers are required for all such GU calls
that are used. On a restart, if the checkpoint field contains a sequence number, the
DFSDDLT0 stream starts at the next GU call to an I/O PCB following the sequence
number in the checkpoint field; otherwise the DFSDDLT0 stream starts from the
beginning.

The DFSDDLSI module and the default IMS.PROCLIB member, DFSINTDL, are
shipped with IMS and are installed as part of normal IMS installation.

The following code shows examples of SYSIN/SYSIN2 and PREINIT.
//TSTPGM JOB CARD
//DDLTTST EXEC DFSMPR,PREINIT=DL
//MPP.SYSIN DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S11 1 1 1 1 TP 1 01000000
OPTIONS SNAP= ,ABORT=9999 01000010
U** 01000040
S11 1 1 1 1 TP 1 01000050
L GU 01000060
E OK 01000070
S11 1 1 1 1 DBPCBXXX 01000080
L GU 01000090
E DATA A INIT-LOAD UOW 01000100
E 01 ROOTSEG1 0008A 0004D 01000110
S11 1 1 1 1 TP 1 01000120
L ISRT 01000130
L Z0080 DATA -SYNC INTERVAL 1 SEG 1 -MESSAGE 1 X01000140
L P DATA 111 01000150
L ISRT 01000160
L Z0080 DATA -SYNC INTERVAL 1 SEG 2 -END EOM 1 X01000170
L P DATA 111 01000180
U** 01000190
U* ENDING FIRST SYNC INTERVAL 01000200
U** 01000210
L GU 01000220
E QC 01000230
L GU 01000240
E OK 01000250
S11 1 1 1 1 DBPCBXXX 01000260
WTO GETTING DATA BASE SEGMENT 1 FROM DBPCBXXX 01000270
L U GHU 01000280
E DATA INIT-LOAD UOW. 1 A.P. 1 01000290
E OK 01000300
L U0003 GN 01000310
E OK 01000320
S11 1 1 1 1 TP 1 01000330
L ISRT 01000340
L Z0080 DATA -SYNC INTERVAL 2 SEG 1 -MESSAGE 1 X01000350
L P DATA 22211 01000360
L ISRT 01000370
L Z0080 DATA -SYNC INTERVAL 2 SEG 2 -END EOM 1 X01000380

//PUNCHDD DD SYSOUT=B

JCL Requirements

566 IMS/ESA V6 Appl Pgm: TM

L P DATA 22211 01000390
U** 01000400
U* ENDING SECOND SYNC INTERVAL 01000410
U** 01000420
L GU 01000430
E QC 01000440
L GU 01000450
E OK 01000460
S11 1 1 1 1 DBPCBXXX 01000470
S11 1 1 1 1 TP 1 01000480
L ISRT 01000490
L Z0080 DATA -SYNC INTERVAL 3 SEG 1 -MESSAGE 1 X01000500
L P DATA 33311 01000510
L ISRT 01000520
L Z0080 DATA -SYNC INTERVAL 3 SEG 2 -END EOM 1 X01000530
L P DATA 33311 01000580
U** 01000590
U* ENDING THIRD SYNC INTERVAL 01000600
U** 01000610
L GU 01000620
E QC 01000630
//MPP.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 01000430
/*

Notes for the SYSIN/SYSIN2 and PREINIT examples shown above:

1. The PREINIT= parameter coded in the EXEC statement invokes the restart
process.

2. When DFSDDLT0 starts processing, it substitutes the SYSIN2 ABEND
statement for the statement in SYSIN with the same sequence number. (It is the
GU call with sequence number 01000430.)

3. DFSDDLT0 begins with statement 01000000 and processes until it encounters
the ABEND statement (statement number 01000430). The GU calls to the I/O
PCB have already been tracked in the checkpoint field (statements 01000060,
01000220, and 01000240).

4. When DFSDDLT0 is rescheduled, it examines the checkpoint field and finds
01000240. DFSDDLT0 begins processing at the next GU call to the I/O PCB,
statement 01000450.

If the statement currently numbered 01000240 did not have a sequence
number, DFSDDLT0 would restart from statement 01000000 when it was
rescheduled.

Execution of DFSDDLT0 in IMS Regions
DFSDDLT0 is designed to operate in a DL/I or BMP region but can be executed in
an IFP or MPP region. In a BMP or DL/I region, the EXEC statement allows the
program name to be different from the PSB name. There is no problem executing
calls against any database in a BMP or DL/I region.

In an MPP region, the program name must be the same as the PSB name. To
execute a DFSDDLT0 program in an MPP region, you must give DFSDDLT0 the
PSB name or an alias of the PSB named in the IMS definition. You can use a
temporary step library.

In an MPP region or a BMP region with an input transaction code specified in the
EXEC statement, DFSDDLT0 normally gets input by issuing a GU and GNs to the
I/O PCB. DFSDDLT0 issues GU and GN calls until it receives the “No More
Messages” status code, QC. If there is a SYSIN DD statement and a PRINTDD DD

JCL Requirements

Appendix E. Using the DL/I Test Program (DFSDDLT0) 567

statement in the dependent region, DFSDDLT0 reads input from SYSIN and
SYSIN2, if present, and sends output to the PRINTDD. If the dependent region is
an MPP region and the input stream does not cause a GU to be issued to the I/O
PCB before encountering end-of-file from SYSIN, the program will implicitly do a
GU to the I/O PCB to get the message that caused the program to be scheduled. If
the input stream causes a GU to the I/O PCB and a “No More Messages” status
code is received, this is treated as the end of file. When input is from the I/O PCB,
you can send output to PRINTDD by coding a 1 or an A in column 2 of the STATUS
statement.

Because the input is in fixed form, it is difficult to key it from a terminal. To use
DFSDDLT0 to test DL/I in a message region, execute another message program
that reads control statements stored as a member of a partitioned set. Insert these
control statements to an input transaction queue. IMS then schedules the program
to process the transactions. This method allows you to use the same control
statements to execute in any region type.

Explanation of DFSDDLT0 Return Codes
A non-zero return code from DFSDDLT0 indicates the number of unequal
comparisons that occurred during that time.

A return code of 0 (zero) from DFSDDLTO does not necessarily mean that
DFSDDLT0 executed without errors. There are several messages issued by
DSFDDLT0 that do not change the return code, but do indicate some sort of error
condition. This preserves the return code field for the unequal comparison count.

If an error message was issued during the run, a message ERRORS WERE DETECTED
WITHIN THE INPUT STREAM. REVIEW OUTPUT TO DETERMINE ERRORS. appears at the
end of the DFSDDLT0 output. You must examine the output to ensure DFSDDLT0
executed as expected.

Hints on Using DFSDDLT0
This section describes loading a database, printing, retrieving, replacing, and
deleting segments, regression testing, using a debugging aid, and verifying how a
call is executed.

To Load a Database
Use DFSDDLT0 for loading only very small databases because you must to provide
all the calls and data rather than have them generated. The following example
shows CALL FUNCTION and CALL DATA statements that are used to load a
database.

Execution of DFSDDTLT0 in IMS Regions

568 IMS/ESA V6 Appl Pgm: TM

To Print the Segments in a Database
Use either of the following sequences of control statements to print the segments in
a database.

Both of the above examples request the GN to be repeated 9999 times. Note that
the first example uses a COMPARE PCB of EH8 while the second uses a
COMPARE PCB of EH.

The difference between these two examples is that the first halts the job step the
first time the status code is not blank, GA, GC, or GK. The second example halts
repeating the GN and goes on to process any remaining DFSDDLT0 control
statements when a GB status code is returned or the GN has been repeated 9999
times.

To Retrieve and Replace a Segment
Use the following sequence of control statements to retrieve and replace a
segment.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
O SNAP= ,ABORT=0
S 1 2 2 1 1
L ISRT COURSE
L DATA FRENCH
L ISRT COURSE
L DATA COBOL
L ISRT CLASS
L DATA 12
L ISRT CLASS
L DATA 27
L ISRT STUDENT
L DATA SMITH THERESE
L ISRT STUDENT
L DATA GRABOWSKY MARION

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
.* Use PRINTDD, print call, compare, and PCB if compare unequal
.* Do 1 Get Unique call
.* Hold PCB compare, End step if status code is not blank, GA, GC, GK
.* Do 9,999 Get Next calls
S 2 2 2 1 DBDNAME
L GU
EH8 OK
L 9999 GN

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
.* Use PRINTDD, print call, compare, and PCB if compare unequal
.* Do 1 Get Unique call
.* Hold PCB compare, Halt GN calls when status code is GB.
.* Do 9,999 Get Next calls
S 2 2 2 1 DBDNAME
L GU
EH OK
L 9999 GN

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
S 1 1 1 1 1 COURSEDB
L GHU COURSE (TYPE =FRENCH) X

CLASS (WEEK =27) X
STUDENT (NAME =SMITH)

L REPL
L DATA SMITH THERESE

Hints on Using DFSDDLT0

Appendix E. Using the DL/I Test Program (DFSDDLT0) 569

To Delete a Segment
Use the following sequence of control statements to delete a segment.

To Do Regression Testing
DFSDDLT0 is ideal for doing regression testing. By using a known database,
DFSDDLT0 can issue calls and then compare the results of the call to expected
results using COMPARE statements. The program then can determine if DL/I calls
are executed correctly. If you code all the print options as 2’s (print only if
comparisons done and unequal), only the calls not properly satisfied are displayed.

To Use as a Debugging Aid
When debugging a program, you usually need a print of the DL/I blocks. You can
snap the blocks to a log data set at appropriate times by using a COMPARE
statement that has an unequal compare in it. You can then print the blocks from the
log. If you need the blocks even though the call executed correctly, such as for the
call before the failing call, insert a SNAP function in the CALL statement in the input
stream.

To Verify How a Call Is Executed
Because it is very easy to execute a particular call, you can use DFSDDLT0 to
verify how a particular call is handled. This can be of value if you suspect DL/I is
not operating correctly in a specific situation. You can issue the calls suspected of
not executing properly and examine the results.

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
S 1 1 1 1 1 4
L GHU COURSE (TYPE =FRENCH) X

CLASS *L X
INSTRUC (NUMBER =444)

L DLET

Hints on Using DFSDDLT0

570 IMS/ESA V6 Appl Pgm: TM

Bibliography

This bibliography includes all the publications cited
in this book, including the publications in the IMS
library.

Common Programming Interface
Communications Reference, SC26-4399

IBM DATABASE 2 Application Programming
and SQL Guide, SC26-4377

Language Environment for MVS & VM
Installation and Customization, SC26-4817

Language Environment for MVS & VM
Programming Guide, SC26-4818

MVS/ESA Application Development Guide:
Authorized Assembler Programming,
GC28-1645

MVS/ESA JES3 Conversion Notebook,
GC23-0079

MVS/ESA System Programming Library:
Application Development Guide, GC28-1852

MVS/XA Data Administration Guide,
GC26-4140

OS PL/I Version 2 Programming Guide,
SC26-4307

System Application Architecture Common
Programming Interface: Resource Recovery
Reference, SC31-6821

TSO/E Version 2 Procedures Language
MVS/REXX Reference, SC28-1883

IMS/ESA Version 6 Library

SC26-8725 ADB Administration Guide: Database
Manager

SC26-8730 AS Administration Guide: System
SC26-8731 ATM Administration Guide:

Transaction Manager
SC26-8727 APDB Application Programming:

Database Manager
SC26-8728 APDG Application Programming:

Design Guide
SC26-8726 APCICS Application Programming:

EXEC DLI Commands for CICS
and IMS

SC26-8729 APTM Application Programming:
Transaction Manager

SC26-8732 CG Customization Guide
SC26-9517 CQS Common Queue Server

Reference
SC26-8733 DBRC Database Recovery Control

Guide and Reference

LY37-3731 DGR Diagnosis Guide and Reference
LY37-3732 FAST Failure Analysis Structure

Tables (FAST) for Dump
Analysis

GC26-8736 IIV Installation Volume 1:
Installation and Verification

GC26-8737 ISDT Installation Volume 2: System
Definition and Tailoring

SC26-8740 MIG Master Index and Glossary
GC26-8739 MC Messages and Codes
SC26-8743 OTMA Open Transaction Manager

Access Guide
SC26-8741 OG Operations Guide
SC26-8742 OR Operator’s Reference
GC26-8744 RPG Release Planning Guide
SC26-8767 SOP Sample Operating Procedures
SC26-8769 URDB Utilities Reference: Database

Manager
SC26-8770 URS Utilities Reference: System
SC26-8771 URTM Utilities Reference: Transaction

Manager

Supplementary Publications
GC26-8738 LPS Licensed Program

Specifications
SC26-8766 SOC Summary of Operator

Commmands

Online Softcopy Publications
LK3T-2326 CDROM IMS/ESA Version 6 Softcopy

Library
SK2T-0730 CDROM IBM Online Library: Transaction

Processing and Data
SK2T-0710 CDROM MVS Collection
SK2T-6700 CDROM OS/390 Collection

© Copyright IBM Corp. 1974, 2000 571

572 IMS/ESA V6 Appl Pgm: TM

Index

Special Characters
. (period) usage

null or void placeholder 409
parsing, transparent additions 409
REXX 407

$$IMSDIR
effect on performance 265
updating 316

/DISPLAY command 247
/DISPLAY POOL command 265
&DPN= operand (DIV statement), specifying 302
/FORMAT command 179, 246
*mapname 413
/RDISPLAY command 248
/RESET command 293
/SET command 185
/TEST MFS command 179
!token

IMSQUERY function 418
STORAGE command 416

Numerics
12-byte time stamp, field in I/O PCB 48
274X

defining to operate with MFS 180
entering and exiting formatted mode 183, 184
operating with MFS

FTABs 194
input modes 194

3180
in partitioned format mode

clearing the display 246
paging 246
restrictions 245
scrolling 246

3270 Information Display System
compatibility with 5550 512
copy function

bit 4 of SCA, byte 1 279
description 237
remote terminals 377

defining system message field 221
entering and exiting formatted mode 184
increasing performance 266
master terminal format

display area 248
literals defined for PF keys 248
warning message area 248
your input area 248

multiple physical page input 200
PA (program access) key, control functions 237
printed page format control 221
screen formatting 261
selector pen

effect on input fields 274
for control functions 237

3270 Information Display System (continued)
selector pen (continued)

pen detect byte 383
specifying 347, 377

specifying attributes 328
3270 operator identification card reader

application program device-dependent
information 275

CARD= operand (DEV statement) 345
CARD= operand (DIV statement) 347
system message field 221

3270P Printer
defining to operate with MFS 180
printed page format control 223

3275/3277 Display Station
physical paging 208
using default formats with 259

3276 Control Unit/Display Station
physical paging 208
using default formats with 259

3278 Display Station
compatibility with 5550 512
physical paging 208
using default formats with 259

3279 Display Station, default formats 259
3290 Display Panel 180

defining to operate with MFS 180
in partitioned format mode 220
in standard format mode 264
screen formatting 263

3601 workstation, defining to operate with MFS 180
3770 Data Communication System

defining to operate with MFS 180
entering and exiting formatted mode 183
printed page format control 222

3790 Communication System
defining to operate with MFS 180
operating with MFS

FTABs 194
input modes 194

5550 Family (as 3270) 214
compatibility with other devices 512
field outlining 382
using DBCS/EBCDIC fields 214
using DBCS fields 214

6670 Printer, defining to operate with MFS 180

A
abend statement 528
ACTVPID= operand (DPAGE statement)

cursor positioning (3290 only) 220
specifying 310, 366
use 244

addressing environments 400, 405
addressing mode (AMODE) 57
AIB (application interface block) 11

address return 54

© Copyright IBM Corp. 1974, 2000 573

AIB (application interface block) 11 (continued)
AIB identifier (AIBID) 49
AIBERRXT (reason code) 50
AIBOALEN (maximum output area length) 50
AIBOAUSE (used output area length) 50
AIBREASN (reason code) 50
AIBRSA1 (resource address) 50
AIBRSNM1 (resource name) 50
AIBSFUNC (subfunction code) 50
and program entry statement 54
defining storage 52
description 11, 51
DFSAIB allocated length (AIBLEN) 50
fields 49
interface, REXX 405
language interfaces, relationship with 12
mask 49, 50
return and reason codes 475
specifying 49
subfunction, setting 415

AIBERRXT (reason code) 50
AIBID (AIB identifier) field, AIB mask 49
AIBLEN (DFSAIB allocated length) field, AIB mask 50
AIBOALEN (maximum output area length) field, AIB

mask 50
AIBOAUSE (used output area length) field, AIB

mask 50
AIBREASN (reason code)

AIB mask, field 50
AIBREASN (reason code) field, AIB mask 50
AIBRSA1 (resource address) field, AIB mask 50
AIBRSNM1 (resource name) field, AIB mask 50
AIBSFUNC (subfunction code) field, AIB mask 50
AIBTDLI interface 51
allocate PSB call 90
alpha character generation 391
ALPHA statement (language utility) 311, 391
alternate destinations, sending messages to 124
alternate PCB

express 123
modifiable

changing the destination 125
description 123
use 124
using the CHNG call with 125

response 136
SAMETRM=YES 136
sending messages to other terminals 124
types and uses 48
use with program-to-program message

switching 126
using the PURG call with 124

alternate PCB mask
description 48
format 48

alternate terminals, responding to 124
AO (automated operator) application

after status codes
GCMD call 75

GCMD call
status codes 75

AO (automated operator) application (continued)
GMSG call 94
ICMD call 97
RCMD call 111

API (application programming interface)
description 7

APPC conversational program
CPI-C driven 143
ending the conversation 144
message switching 139
modified IMS application 142

APPC environment 400
application interface block 11
application interface block (AIB)

See AIB 475
application programs 32

assembler language 32
C language 34
COBOL 37
Pascal 39
PL/I 42
scheduling 10

application view (diagram) 9
applications, sample 503
APSB call 90

description 90
format 90
parameters 90
restrictions 91
summary 439
usage 90

assembler language
application programming for 32
DL/I call formats 34
MPP coding 153
program entry 52
register 1 at program entry 52
skeleton MPP 153

ATTACH FM header 228, 301, 358
ATTACH manager

blocking algorithms 229
deblocking algorithms 202

ATTR= operand (DFLD statement)
parameters

ALPHA|NUM 377
nn 379
NO 379
NODET/DET/IDET 377
NODISP|HI 377
NOMOD|MOD 377
NOPROT/PROT 377
STRIP|NOSTRIP 378
YES 378
YES, nn 379

specifying 376
with copy lock 376

ATTR= operand (MFLD statement)
example 287
specifying 328
use 211

574 IMS/ESA V6 Appl Pgm: TM

attribute data
defaults 376
input message fields

ATTR= operand (MFLD statement) 328
description 193

output device fields
ATTR= operand (MFLD statement) 328
description 210
dynamic modification 281
for cursor positioning 220, 280
specifying 376

attribute simulation
description 212
restrictions 281
specifying 376

AUTH call
description 59
format 59
I/O area format 60
parameters 60
restrictions 64
summary 439
usage 63

authorization call 59

B
backout point

description 145
intermediate (SETS/SETU) 149
ROLB, ROLL, ROLS 145

basic checkpoint call 91
Basic CHKP call 91

description 91
format 91
parameters 91
restrictions 92
summary 439
usage 92

Basic edit
IMS TM 169, 203

Basic Edit
input message 20
output message 21
translation to uppercase 20

batch programs
overview 10
structure 10

block error message format 247
BOUND= operand (DO statement), specifying 368
BSAM (basic sequential access method)

using with Spool API 79

C
C language

__pcblist 52
application programming 34
DL/I call formats 37
entry statement 52
exit 52
longjmp 52

C language (continued)
passing PCBs 52
return 52
skeleton MPP 153
system function 53

call functions, DL/I 537
CALL statement

CALL DATA 531
CALL FUNCTION 528

call summary, transaction management 439
CARD= operand (DEV statement)

specifying 347
CARD= operand (DEV statement), specifying 345
categories, status codes 443
CEETDLI

address return 54
program entry statement 54

CELLSIZE= operand (PD statement), specifying 388
change call 64, 125
checkpoint call 534
checkpoint call, basic 91
checkpoint call, symbolic 92
CHKP call function 534
CHNG call

and OTMA environment 67
description 64, 125
format 64
parameters 65
restrictions 72
summary 439
usage 66, 515
using PURG with 125
with directed routing 130

CHNG call function 535
CLEAR key 261
CLEAR PARTITION key 261
CMD call

description 72
examples 73
format 72
parameters 72
restrictions 73
summary 439
usage 73

CMD call function 535
COBOL

application programming 37
DL/I call formats 39
skeleton MPP 155

codes, return and reason
reference 475, 491

codes, status
explanations 452
tables 443

coding DC calls and data areas 152
in assembler language 153
in C Language 153
in COBOL 155
in Pascal 157
in PL/I 160
skeleton MPP 152, 153, 155, 157, 160

Index 575

Command (CMD) call
See CMD call 72

COMMENT statement
conditional (T) 549
unconditional (U) 549

commit point 145
communicating with other IMS TM systems 128
COMPARE statement

COMPARE AIB 551
COMPARE DATA 550
COMPARE PCB 552
introduction 549

compatibility
3270 printer and SLU 1 511
converting device definitions to SLU P 512
SLU P 512

compilation statements
ALPHA 311, 391
COPY 311, 391
EJECT 396
END 396
EQU 392
PRINT 395
RESCAN 393
SPACE 395
STACK 394
summary of statements 315
syntax 311
syntax errors 313
SYSIN 311
SYSLIB 311
SYSPRINT 311
TITLE 395
UNSTACK 394

COMPR= operand (DIV statement)
specifying 359

COMPR= operand (DIV statement), specifying 303
concatenated equates 393
COND= operand

DPAGE statement
specifying 363

COND= operand (DPAGE statement), specifying 307
COND= operand (LPAGE statement), specifying 319
control blocks, MFS 171

chained control blocks 251
summary 171
testing 179

conversational processing
coding necessary information 144
continuing the conversation 136
ending the conversation and passing control 139
example 131
for APPC/IMS 141
message formats 136
overview 131
passing control and continuing the

conversation 137
replying to the terminal 136
restrictions 135, 137
ROLB call 133
ROLL call 133

conversational processing (continued)
ROLS call 133
steps in a conversational program 134
structure 132

conversion
3270 device format, example 509
device formats 508

copy function
bit 4 of SCA, byte 1 279
description 237
remote terminals 377

COPY statement (language utility) 311, 391
CTL (PUNCH) statement 557
CURSOR= operand

DPAGE statement 364
CURSOR= operand (DPAGE statement),

specifying 308
cursor position input 191
cursor positioning

for input messages 220, 273
for output messages

CURSOR operand 308
dynamic 220
in DPAGE statement 364
specifying attributes 280

D
data capture 51
data mapping, define with MAXDEF command 410
database recovery

backing out 146
DB/DC environment

application view (diagram) 8
programming considerations 8

DB2 (DATABASE 2)
with IMS TM 28

DBCS (double byte character set)
definition 214
types of fields 214

DBCS/EBCDIC mixed fields
description 214
horizontal tab (SCS1 device) 218
input control 218
SO/SI control characters in 214

DBCS/EBCDIC mixed literals
description 216

DCCTL environment
programming considerations 8

deallocate PSB call 93
debugging, IMSRXTRC 410
default system control area 209
deferred program switch 133
define a data mapping with MAXDEF command 410
delete call 535
delete record 342
DEQ call function 535
design objectives, application 251
designator character 274
destination of modifiable alternate PCBs 125
DEV statement 195

576 IMS/ESA V6 Appl Pgm: TM

DEV statement 195 (continued)
CARD= operand 347
DSCA= operand 343
FEAT= operand 258, 345
FORMS= operand 348
FORS= operand 226
FTAB= operand 195, 341
HTAB= operand 222, 348
LDEL= operand 342
MODE= operand 341
PAGE= operand 221, 342
PDB= operand 351
PEN= operand 347
PFK= operand 346
SLDI= operand 350
SLDP= operand 350
SLDx= operand 223
specifying 330
SUB= operand 201, 351
SYSMSG= operand 348
TYPE= operand 258, 339
VERSID= operand 350
VT= operand 223, 349
VTAB= operand 223, 349
WIDTH= operand 222, 348

device characteristics table 339
device control characters 204
device feature selection 258
device format conversion 508
device formats, default 259
device input format 171, 250
device output format 171, 250
device page 191
devices supported by MFS 180
DFLD (device field statement) 324

iterative processing 324, 369
LTH= operand 375
OPCTL= operand 384
PASSWORD parameter 374
PEN= operand 383
POS= operand 375
printing generated DFLD statements 368
SCA parameter 375
SLDI= operand 384
SLDP= operand 384

DFS.EDT 292, 293
DFS.EDTN 292, 293
DFS057I block error message 247
DFSAPPC 139

format 140
message switching 139
option keywords 140

DFSDDLT0 (DL/I Test Program) 525
DFSDF1 246
DFSDF2 246
DFSDF4 246
DFSDSP01 247
DFSIGNI 246, 247
DFSIGNJ 246, 247
DFSIGNN 246, 247
DFSIGNP 246, 247

DFSM0 248
DFSM01 246
DFSM02 247
DFSM03 247
DFSM04 247
DFSM05 246
DFSMI1 246
DFSMI2 246
DFSMI4 247
DFSREXXU (Example User Exit Routine)

description 421
DFSSAM01 (Loads the Database) 431
DFSUDT0x (device characteristics table) 179

description 183
MFS Device Characteristics Table utility 249
specifying screen size 339

diagnosing multiple parsing error return codes 515
DIF (device input format) 171

definition 250
description 171
input formatting functions 186
language statements used to create 294

DEV 330
DFLD 370
DIV 294, 351
DO 367
DPAGE 304, 360
ENDDO 385
FMT 330
FMTEND 385
PPAGE 366
RCD 369
summary 314

relationship to other control blocks 251
selection 258

directed routing 128
distributed presentation management 182
DIV statement 196

&DPN= operand 302
COMPR= operand 303, 359
DPN= operand 358
HDRCTL= operand 225, 357
NOSPAN= operand 298
NULL= operand 196, 298, 355
OFTAB= operand 358

output mode 229
specifying 302
variable-length output data stream 230

OPTIONS= operand 224, 299, 355
PRN= operand 302, 358
RCDCTL= operand 224, 298, 354
RDPN= operand 301, 358
RPRN= operand 302, 358
SPAN= operand 298
TYPE= operand 297, 354

DL/I call functions 534, 537
special DFSDDLT0

END 547
SKIP 547
STAK 547
START 547

Index 577

DL/I call functions 534, 537 (continued)
supported

CHKP 534
CHNG 535
CMD 535
DEQ 535
DLET 535
FLD 535
GCMD 535
GHN 535
GHNP 535
GHU 535
GMSG 535
GN 535
GNP 535
GU 535
ICMD 535
INIT 535
INQY 535
ISRT 536
LOG 536
POS 536
PURG 536
RCMD 536
REPL 536
ROLB 536
ROLL 536
ROLS 536
ROLX 536
SETO 536
SETS 536
SNAP 537
STAT 537
SYNC 537
XRST 537

DL/I calls 34
relationships to PCB types

ALT PCBs 44
I/O PCBs 44

sample call formats 34
assembler language 34
C language 37
COBOL 39
Pascal 42
PL/I 44

usage 12
DL/I calls (general information)

REXXTDLI 404
DL/I calls for transaction management

AUTH call 59
call summary 439
CHNG call 64
CMD call 72
GCMD call 74
general description 12
GN call 75
GU call 76
ISRT call 78
PURG call 80
SETO call 82
summary 12

DL/I language interfaces 31
overview 31
supported interfaces 31

DL/I program structure 10
DL/I return codes (REXX) 405
DL/I system service calls 89

APSB call 90, 91
Basic CHKP call 91, 92
call summary 440
DPSB call 93, 94
GSCD Call 96, 97
INIT call 99, 101
INQY call 102, 109
LOG call 109, 111
ROLB call 112, 113
ROLL Call 114
ROLS call 114, 116
SETS call 116, 117
SETU call 116, 117
Symbolic CHKP call 92, 93
SYNC call 118
XRST call 118

DL/I Test Program (DFSDDLT0)
control statements 525, 564
execution in IMS regions 567, 568
explanation of return codes 568
hints on usage 568, 570
JCL requirements 564, 567
overview 525
restarting input stream 566

DLET call function 535
DLIINFO

. (period) usage 409
REXX extended command 408, 409

DLITCBL 53
DLITPLI 53
DO statement

BOUND= operand 368
SUF= operand 323, 368

DOCMD exec 432
DOF (device output format) 171

associated MFS functions 204
definition 250
description 171
language statements used to create 294

DEV 330
DFLD 370
DIV 294, 351
DO 367
DPAGE 304, 360
ENDDO 385
FMT 330
FMTEND 385
PPAGE 366
RCD 369
summary 314

relationship to other control blocks 251
selection 258

double byte character set 214
DPAGE 191

ACTVPID= operand 244, 310, 366

578 IMS/ESA V6 Appl Pgm: TM

DPAGE 191 (continued)
COND= operand 307, 363
CURSOR= operand 308, 364
FILL= operand 307, 363
input 191
MULT= operand 308, 364
OFTAB= operand 365

output mode 229
specifying 309
variable-length output data stream 230

ORIGIN= operand 309, 365
output 206
PD= operand 310, 366
SELECT= operand 310, 366
selection, with conditional data 201

DPM (distributed presentation management)
control character translation 205, 278
deleting nulls on input 196
increasing performance 267
naming conventions 227
output message header examples 225
using 182
version identification 250
with ISC 182

DPN= operand (DIV statement)
specifying 358

DPN field
control block linkages 258
DIV statement 302
literal specification 358
MFS formatting 185

DPSB call 93
description 93
format 93
parameters 94
restrictions 94
summary 439
usage 94

DSCA (default system control area) 209
autopaged output 228
description 209
destroying screen format 221
ERASE/DO NOT ERASE option 279
use 242

DSCA= operand (DEV statement), specifying 343
DSN (data structure name) 235
dynamic attribute modification, output message formats

default attributes 211
specifying attributes 280
specifying extended field attributes 282

dynamic modification of EGCS data 289

E
E (COMPARE) statement 549
EATTR= operand (DFLD statement)

example 287
specifying 379
use 211

edit routines
Basic Edit 20
ISC 20

edit routines (continued)
MFS 20

edit routines, IMS-supplied
field edit routine 192
segment edit routine 192

EGCS (extended graphic character set) 212
/EBCDIC data, dynamic modification 289
description 212
SO/SI framing characters 213
specifying 381
use with selector pen 275

EJECT statement (language utility) 396
END call function 547
end multiple page input request 237
END statement (language utility) 396
ENDDO statement

specifying to terminate DFLD statements 385
specifying to terminate MFLD statements 329

ending a conversation and passing control to another
program 139

ENDMPPI request 237
specifying 384
specifying PF key function 347

entry point
assembler language 52
C language 52
COBOL 53
overview 52
Pascal 53
PL/I 53

environment (REXX)
address 400, 405
determining 408
extended 405

EQU statement (language utility statement) 392
equate processing 392
erase all unprotected option (SCA/DSCA) 262
ERROR key 201
error routines

I/O errors 14
programming errors 14
system errors 14
types of errors 14

examples
conversational processing 131
DFSDDLT0 statements

COMMENT 549
DATA/PCB COMPARE 554
DD 565
DL/I call functions 537
IGNORE 556
OPTION 557
PUNCH 559
STATUS 562
SYSIN, SYSIN2, and PREINIT 566
WTO 563
WTOR 564

exceptional conditions 14
EXEC statement, compilation control 312
EXEC statement, operands

DEVCHAR= 249, 317

Index 579

EXEC statement, operands (continued)
DIRUPDT= 316
LINECNT= 316
STOPRC= 316

EXEC statement, parameters
COMP/NOCOMP 316
COMPRESS/NOCOMPRESS 316
DIAG/NODIAG 316
SUBS/NOSUBS 316
XREF/NOXREF 316

EXECIO
example 431
managing resources 400

exit routines, specifying IMS-provided field edit 329
express alternate PCB 123
extended attribute data 193

input message fields 193
output devices, dynamic modification 211

extended commands 408
extended environment 405
extended functions 418
extended graphic character set 212
extended recovery facility 221

F
Fast Path, with MFS 185
FEAT= operand (DEV statement), specifying 258, 345
field edit exit routine

specifying 329
use 192

field format
input message 273
output message 277

field tab 341
example 195
forced FTABs, FORCE parameter (FTAB=

operand) 341
mixed FTABs 342
specifying 341

file I/O 431
FILL= operand

DPAGE statement
specifying 363

DPAGE statement, specifying 307
MFLD statement, specifying 329
MSG statement, specifying 318

fill characters
input message fields

MFS treatment 194
specifying 329

output device fields
MFS treatment 208
specifying 307, 318, 363

Fill=NULL 191
FIN (Finance Communication System)

defining to operate with MFS 180
workstation

entering and exiting formatted mode 184
FTABs 194
input modes 194
operating with MFS 194

FIN (Finance Communication System) (continued)
workstation (continued)

physical page positioning 309, 365
Finance Communication System 184
FLD call function 535
FMT statement, specifying 330
FMTEND statement, specifying 385
force format write option (SCA/DSCA) 262
format, message 183

input 183
device-dependent considerations 273, 278

output 265
output device-dependent considerations 275, 278

format library member selection 258
format set

IMS-provided format sets 246
testing

/FORMAT command 179
/TEST MFS command 179

FORMS= operand (DEV statement), specifying 348
forms control (FIJP, FIPB, FIFP, SCS1) 342
FORS= operand (DEV statement), use for DPM 226
framing characters (SO/SI) 213
FTAB= operand (DEV statement)

ALL parameter 196
description 194
forced FTABs, FORCE parameter 195
mixed FTABs, MIX parameter 195
specifying 341

full format write 261

G
GCMD call

description 74
format 74
parameters 74
restrictions 75
status codes 75
summary 439
usage 74

GCMD call function 535
Get calls

function 535
Get Command (GCMD) call

See GCMD call 74
Get Message (GMSG) call

See GMSG call 94
get next call 75
get system contents directory call 96
get unique call 76
GMSG call 96

description 94
format 94
parameters 94
restrictions 96
use 95

GN call
description 75
format 75
parameters 75
restrictions 76

580 IMS/ESA V6 Appl Pgm: TM

GN call (continued)
summary 439
usage 76

GPSB (generated program specification block),
format 54

GRAPHIC= operand (SEG statement)
specifying 322
use 205, 278

group name, field in I/O PCB 47
GSCD call

description 96
format 96
parameters 96
restrictions 97
summary 439
usage 97

GU call
description 76
format 76
parameters 76
restrictions 78
summary 439
usage 77

H
HDRCTL= operand

DIV statement
specifying 357

HDRCTL= operand (DIV statement), use 225
HTAB= operand (DEV statement)

specifying 348
use 222

I
I/O area

for XRST 120
in C language 36
specifying 51

I/O area format, AUTH call 60
I/O PCB mask

12-byte time stamp 48
description 11
general description 45
group name field 47
input message sequence number 47
logical terminal name field 46
message output descriptor name 47
specifying 45
status code field 46
userid field 47

ICMD call 99
commands that can be issued 99
description 97
format 97
parameters 97
restrictions 99
use 99

IF statement
parameters

DATA 390
ENDMPPI 390
LENGTH 390
NEXTLP 390
NEXTMSG 390
NEXTMSGP 390
NEXTPP 390
NOFUNC 390
PAGREQ 390

specifying 389
IGNORE (N or .) statement 556
immediate program switch 134
IMS application programs, standard 142
IMS.FORMAT 179

compression 178
member selection 258
use 179

IMS password
PASSWORD statement 320
specifying 374

IMS-provided formats
/DISPLAY command format 247
DFS057I block error message format 247
multisegment format 247
multisegment system message format 246
output message default format 246
system message format 246

IMS.REFERAL 179
compression 178
handling of ITBs 179

IMS.RESLIB 249
IMS.TFORMAT, use 178
IMS TM

DB2 considerations 28
password 193

IMSQUERY extended function
arguments 419
usage 418

IMSRXTRC command 408, 410
INDEX function (service utility), overview 179
infinite loop, stopping 404
INIT call

description 99
determining data availability 100
format 100
parameters 100
performance considerations 101
summary 439
usage 100

INIT call function 535
initialize call 99
input message 186

field attribute data 193
field tab (FTAB) 194
fill characters 194
format 15
formatting options 186
IMS TM password 193
input modes 194

Index 581

input message 186 (continued)
input substitution character 201
literal fields 192
MFS 22
with multiple physical pages 200, 237

input message format
device-dependent information 273, 278
field and segment format 273
formatting options, examples 187

input message sequence number, field in I/O PCB 47
input modes

record mode
description 194
treatment of nulls 197
with ISC 202

specifying 341
stream mode

description 194
treatment of nulls 197
with ISC 202

inquiry call 102
INQY call

description 102
format 102
parameters 102
querying

data availability 106
environment 107
PCB, using null subfunction 103
PCB address 108

restrictions 109
return and reason codes 109
summary 439
usage 103

INQY call function 535
insert call 78
intersystem communication 185
ISC (intersystem communication)

ATTACH FM header 228, 301
blocking algorithms 229
defining to operate with MFS 182
editing input messages 21
editing output messages 21
entering and exiting formatted modes 185
increasing performance 267
input format control

input modes 201
paging requests 201

message waiting system literal 327
MFS definitions 505
output format control

data structure name 235
for paging messages 228
trailing blank compression 232
variable length output 230

output modes 229
subsystem definition 185
use of DPN field 185, 258
use of RDPN field 185, 258

ISC (Intersystem Communication)
ATTACH FM header 358

ISRT call
description 78
format 78
message call

in conversational programs 136
use with SPAs 136

parameters 78
restrictions 80
Spool API functions 79
summary 439
usage 79

ISRT call function 536
Issue Command (ICMD) call

See ICMD call 97
ITB (intermediate text block), relationship between ITBs

and control blocks 178
iterative processing (MFLD/DFLD)

DO statement 324, 367
ENDDO statement 329, 385
PRINT GEN effects 395
RCD statement with DFLD 369
restrictions 368

IVPREXX exec 436
IVPREXX sample application 403

J
JCL (job control language), requirements 564, 567
JUST= operand (MFLD statement), specifying 328
justification

of input messages 186
specifying 328

L
L (CALL) statement 528
LANG= Option on PSBGEN for PL/I Compatibility with

Language Environment 56
Language Environment

characteristics of CEETDLI 55
LANG = option for PL/I compatibility 56
supported languages 55

Language Environment for MVS & VM, with IMS 55
language independent interfaces 12
language unique interfaces 12
language utility 178
LDEL= operand (DEV statement), specifying 342
length field 189
line width 348
literal fields

input message, default literals 192
output message

length, padding to maximum 325
length, password parameter 374
specifying length 327
system literals 210
truncating literals 369
with ISC 327

LL field 134
in input message 15
in output message 16

LOG call 109

582 IMS/ESA V6 Appl Pgm: TM

LOG call 109 (continued)
description 109
examples 111
format 109
on LOG I/O area 111
parameters 109
restrictions 111
restrictions on I/O area 111
summary 439
usage 111

LOG call function 536
logical page 191

selection
conditional 360

logical page advance request 237
logical page request 236
logical terminal name field, I/O PCB 46
LPAGE 191

input 191
input, conditional LPAGE selection 304
operands 319

COND= 319
NXT= 320
PROMPT= 320
SOR= 319

output 205
conditional selection 319
format 275

LTH= operand (DFLD statement), specifying 375
LTH= operand (MFLD statement), specifying 327
LU 6.2

application programs 9
conversations 141

LU 6.2 User Edit Exit 28
LUDEFN= operand (PDB statement), specifying 387
LUSIZE= operand (PDB statement), specifying 386

M
MAP definition (MAPDEF) 408, 410
map name 413
MAP reading (MAPGET) 408, 413
MAP writing (MAPPUT) 408, 413
mapping

MAPDEF 410
MAPGET 413
MAPPUT 413

MDT (modified data tag) 221
message

editing
description 19
input message 20
LU 6.2 devices 28
output 21
skipping line 20
using MFS 22

from terminals 14
I/O PCB 19
in conversations 136
input 15, 22
LU 6.2 devices 28
output 16, 27

message (continued)
printing 20
processing 17
receiving by program 14
result 19
sending to other application programs 126
using LU 6.2 User Edit Exit 28

message advance protect 237
message advance request 237
message calls

call summary 439
summary 12

message-driven BMP
retrieving messages from host 77

message editor 179
message format service 169
message formatting options

input
description 186
examples 187
performance factors 265

output
description 204
effects on segments 277
performance factors 265
specifying 318

message formatting service 20
message input descriptor 171
message output descriptor 171
message output header 357
message processing program 153
MFLD (message field statement) 186

ATTR= operand 328
FILL= operand 329
function 186
iterative processing 322, 324
JUST= operand 328
LTH= operand 327
printing generated MFLD statements 323

MFS (message format service)
components 177
editing message 20
editing output messages 21
example 174
input message 22
introduction 169
message editor 177
online performance 170
option 1 format 24
option 2 format 25
option 3 format 26
output message 27
pool manager 178
remote programs 181
supported devices 180

MFS bypass
printer byte restriction 292
protected and unprotected messages 243
specifying for 3270 or SLU 2 292
specifying for 3290 with partitioning 294

Index 583

MFS Device Characteristics table (DFSUDT0x),
description 249

MFS language utility 178
compilation statements 311

ALPHA 311, 391
COPY 311, 391
EJECT 396
END 396
EQU 392
invalid statement sequence 313
PRINT 395
RESCAN 393
SPACE 395
STACK 394
summary 315
syntax 311
syntax errors 313
SYSIN 311
SYSLIB 311
SYSPRINT 311
TITLE 395
UNSTACK 394

construction of member names 258
functions 178
modes 178
statistics maintained 178
treatment of EGCS input/output 213
use of MFS libraries 178

MFS libraries 178
IMS.TFORMAT 178
online change 178

MFS message editor 179
MFS pool manager

storage management 179
MFS service utility, INDEX function 179
MFSTEST procedure (language utility)

pool manager 178, 180
use of IMS.TFORMAT library 178

MID (message input descriptor) 171
description 171
input formatting functions 186
language statements used to create 314

DO 322
ENDDO 329
LPAGE 319
MFLD 323
MSG 317
MSGEND 330
PASSWORD 320
SEG 321
summary 314

relationship to other control blocks 251
MIDs and MODs, chaining with NXT= operand (MSG

statement) 318
mixed FTABs, MIX parameter (FTAB= operand) 342
mixed-language programming 57
MOD (message output descriptor) 171

associated MFS functions 204
description 171
language statements used to create 314

DO 322

MOD (message output descriptor) 171 (continued)
language statements used to create 314

(continued)
ENDDO 329
LPAGE 319
MFLD 323
MSG 317
MSGEND 330
PASSWORD 320
SEG 321
summary 314

name specification 291
relationship to other control blocks 251

MODE= operand (DEV statement), specifying 341
modifiable alternate PCBs

changing the destination 125
CHNG call 125
description 124

modified application program
MSC 143
remote execution, MSC 143

modified data tag (MDT) 221, 377
MPP (message processing program)

coding in assembler language 153
coding in C language 153
coding in COBOL 155
coding in Pascal 157
coding in PL/I 160
coding necessary information 152
input 152
skeleton MPP 152

MSC (multiple systems coupling)
conversational programming 138
description 128
directed routing 128
receiving messages from other IMS TM

systems 129
sending messages to other IMS TM systems 130

MSG statement
FILL= operand 318
NXT= operand 318
OPT= operand 318
PAGE= operand 318
SOR= operand 318
TYPE= operand 317

MSGEND statement
specifying 330

MULT= operand (DPAGE statement)
specifying 364

MULT= operand (DPAGE statement), specifying 308
multiple physical pages

input messages
specifying 364

multiple physical pages, input messages
description 200
specifying 308
terminating (ENDMPPI request) 237

multiple systems coupling 128
multisegment format 247
MVS environment 400

584 IMS/ESA V6 Appl Pgm: TM

MVS/ESA, extended addressing capabilities
addressing mode (AMODE) 57
DCCTL environment 57
preloaded program 57
residency mode (RMODE) 57

N
NEXTLP request

description 237
operator control table function 236
specifying 384
specifying PF key function 347

NEXTMSG request
description 237
specifying 384
specifying PF key function 347

NEXTMSGP request
description 237
specifying 384
specifying PF key function 347

NEXTPP request 237
specifying 384
specifying PF key function 347
use 237

nonstandard character 312, 391
NTO (Network Terminal Operations) 180
null

coding in COBOL 277
compression

example 189
prevention 322
specifying 303, 359

deleting on input (DPM) 196
fill character

input message fields 186, 329
output device fields 209, 318

segment, output 276
NULL= operand (DIV statement)

example 196
options 196
specifying 298, 355

NXT= operand (LPAGE statement), specifying 320
NXT= operand (MSG statement), specifying 318

O
O (OPTION) Statement 556
OFTAB= operand

DIV statement
specifying 358

DPAGE statement
specifying 365

OFTAB= operand (DIV statement), specifying 230, 302
OFTAB= operand (DPAGE statement), specifying 230,

309
OID 221
online change (utility), description 178
online performance 170, 265
OPCTL= operand (DFLD statement), specifying 384
Open Transaction Manager Access

CHNG call 67

Open Transaction Manager Access (continued)
PURG call 81
SETO call 85

operator control of MFS 235
operator control tables

functions
ENDMPPI request 237
NEXTLP request 237
NEXTMSG request 237
NEXTMSGP request 237
NEXTPP request 237
PAGEREQ request 237

language statements used to create
IF 389
TABLE 389
TABLEEND 391

OPCTL= operand (DFLD statement) 384
operator logical paging

description 207, 236
format design considerations 236
in partitioned format mode, 3180 245
in partitioned format mode, 3290 244
specifying 318
transaction codes and page requests 236

OPT= operand (MSG statement), specifying 318
OPTION statement 556
OPTIONS= operand

DIV statement
specifying 355

OPTIONS= operand (DIV statement)
effects on performance 267
specifying 299
use 224
use with ISC 228

options list parameter 67
CHNG call 67

advanced print function 67
APPC 69

SETO call 85
advanced print function 85
APPC 85

ORIGIN= operand
DPAGE statement

specifying 365
ORIGIN= operand (DPAGE statement), specifying 309
OTMA, processing conversations with 145
outlining values

overline 382
underline 382
vertical line 382

output field tab separator, rules for inserting 230
output message 185

cursor positioning 220
default system control area 209
device field attributes 210
extended field attributes for devices 211
extended graphic character set (EGCS) 212
fill characters for device fields 208
format 16
formatting options 204

description 204

Index 585

output message 185 (continued)
specifying 318

header 185
length 354
structure and content 357

how MFS formats messages 204
how MFS is selected 203
literal fields 210
logical paging 205
mixed DBCS/EBCDIC fields 214
operator logical paging 207
physical paging 207
printing 20
prompt facility 221
sending 127
sequence number 325
system control area (SCA) 209
to other application programs 126
to other IMS TM systems 130
truncation 204
using Basic Edit 21
using MFS 27
with directed routing 130

output message format
default 246
device-dependent information 275, 278

overline, on fields 382

P
PAGE= operand (DEV statement)

specifying 342
use 221

PAGE= operand (MSG statement), specifying 318
page advance request 237
page bit 206
PAGEREQ function 236
paging, operator logical

description 236
format design considerations 236
in partitioned format mode, 3180 245
in partitioned format mode, 3290 244
specifying 318
transaction codes and page requests 236

PAGINGOP= operand (PDB statement), use 244
parmcount 161
parsing error return codes 515
PART exec 429
partition

activating 220
considerations for defining 263
defining 257
descriptor (PD) 257
descriptor block (PDB) 257
initialization options

for the 3180 245
for the 3290 244

uses 263
partition set, description 257
partition set, language statements used to create

PD 387
PDB 386

partition set, language statements used to create
(continued)

PDBEND 389
PARTNAME exec 431
PARTNUM exec 430
Pascal

application programming 39
DL/I call formats 42
entry statement 53
passing PCBs 53
skeleton MPP 157

passing a conversation to another IMS TM system 138
passing control

restrictions 137
to a conversational program 137
to another program in a conversation 137

password, IMS
description 193
specifying 374

PASSWORD parameter (DFLD statement),
specifying 374

PASSWORD statement, specifying 320
PCB, express alternate 123
PCB (program communication block)

DLIINFO call 409
language interfaces, relationship with 12
mask 11
masks

I/O PCB 45
types 55

PCB lists 54
PCB parameter list in assembler language MPPs 153
PCBINFO exec 426
PCBs, alternate 125
PCBs, modifiable 125
PD= operand

DPAGE statement
specifying 366

PD= operand (DPAGE statement), specifying 310
PD statement (partition definition)

CELLSIZE= operand 388
PID= operand 387
PRESPACE= operand 388
SCROLLI= operand 388
specifying 387
use 257
VIEWLOC= operand 388
VIEWPORT= operand 387
WINDOWOF= operand 388

PDB= operand (DEV statement), specifying 351
PDB (partition descriptor block)

function 257
language statements used to create

PD 257
PDBEND 315
summary 315

LUDEFN= operand 387
LUSIZE= operand 386
PAGINGOP= operand 244

PDB (partition descriptor block),
SYSMSG= operand 386

586 IMS/ESA V6 Appl Pgm: TM

PDBEND statement, specifying 389
PEN= operand (DEV statement), specifying 347
PEN= operand (DFLD statement), specifying 383
performance factors

3270 or SLU 2 266
all devices 265
large screen 3270 or SLU 2 devices 267

period usage 407
PFK= operand (DEV statement), specifying 346
physical page positioning (FIN) 309, 365
physical paging

description 207
POS= operand (DFLD statement) 376
specifying multiple input pages 308, 364

PID= operand (PD statement), specifying 387
PL/I

application programming 42
DL/I call formats 44
entry statement restrictions 160
MPP coding notes 160
optimizing compiler 160
passing PCBs 53
pointers in entry statement 53
skeleton MPP 160

pool manager 178
MFS 178

buffer pool 179
control block management 179
description 178

MFSTEST, description 178, 180
POS= operand (DFLD statement), specifying 375
POS call function 536
PPAGE statement, specifying 366
PREINIT parameter, input restart 564
preset destination mode 185
PRESPACE= operand (PD statement), specifying 388
print mode 222
PRINT statement (language utility) 395
printed page format control

bottom margin 223, 349
horizontal tabbing 222
left margin position 222, 349
line density 223, 350
line width 222
number of lines per page 342
page depth 222
top margin 223, 349
vertical tabbing 223

PRN= operand
DIV statement

specifying 358
PRN= operand (DIV statement), specifying 302
processing a message 17
program communication block 11, 45
program function keys (3270)

literals for master terminal format 248
specifying 346

program structure
batch 10
conversational 132

program tab function
3270 or SLU 2 209
fill character 262, 318

program-to-program message switching
conversational 137
nonconversational 126
restrictions 126
security checks 126

programmed symbol
buffers 268
feature 211
solving problems 269
specifying local ID 380

PROMPT= operand (LPAGE statement),
specifying 320

prompt facility for output messages 221
protecting the screen

PROTECT option 243
specifying parameter on DLFD statement 377

PSB (program specification block), format 54
PT (program tab) function

3270 or SLU 2 209
fill character 262, 318

PUNCH statement 557
PURG call

and OTMA environment 81
description 80, 124
parameters 80
restrictions 82
Spool API 82
summary 440
usage 81
using CHNG with 125

PURG call function 536
purge call 80

Q
queues 327

R
RACF signon security 47
RACROUTE SAF 48
randomizing routine, FM status code 462
RCD statement, specifying 369
RCDCTL= operand

DIV statement
specifying 354

RCDCTL= operand (DIV statement)
specifying 298
use 224

RCMD call 112
description 111
format 111
parameters 111
restrictions 112
use 112

RDPN= operand
DIV statement

specifying 358
RDPN= operand (DIV statement), specifying 301

Index 587

RDPN (return destination process name)
in input message MFLD 358
specifying in MFLD statement 301
use on Finance or SLU P workstations 258
use with ISC subsystem communication 185

reason code, checking 13
reason codes, AIB 475
receiving messages, from other IMS TM systems 129
record mode

description 194
input example 198
specifying 341
treatment of nulls 197
with ISC 202

remote programs, defining 181
REPL call function 536
replying to one alternate terminal 124
replying to the terminal in a conversation 136
RESCAN statement (language utility) 393
residency mode (RMODE) 57
restart call 118
restarting your program

XRST call 120
retrieval call, status code 14
Retrieve Command (RCMD) call

See RCMD call 111
return and reason codes

quick reference tables 475
return code, checking 13
return codes

AIB 475
REXX

. (period) usage 407
calls

return codes 405
summary 405
syntax 405

commands
DL/I calls 404
summary 404

DL/I calls, example 407
execs

DFSSAM01 431
DOCMD 432
IVPREXX 436
PART 429
PARTNAME 431
PARTNUM 430
PCBINFO 426
SAY 425

IMSRXTRC, trace output 410
REXX, IMS adapter

. (period) usage 409
address environment 400
description 399
DFSREXX0 program 399, 403
DFSREXX1 399
DFSREXXU user exit 399
DFSRRC00 403
diagram 402
DL/I parameters 406

REXX, IMS adapter (continued)
entry parameters 421
environment 408, 421
example execs 425
exec name, choosing 421
feedback processing 406
I/O area 406
installation 399, 421
IVPREXX exec 403
IVPREXX PSB 400
IVPREXX setup 400
LLZZ processing 406
LNKED requirements 399
non-TSO/E 399
programs 399
PSB requirements 399
sample generation 400
sample JCL 400
SPA processing 406
SRRBACK 399
SRRCMIT 399
SYSEXEC DD 399, 400
system environment 399, 400
SYSTSIN DD 400
SYSTSPRT DD 399, 400
TSO/E restrictions 399
TSO environment 399
user exit routine (DFSREXXU) 421
ZZ processing 406

REXXIMS commands 410, 413, 418
DLIINFO 408, 409
IMSRXTRC 408, 410
MAPDEF 408
MAPGET 408
MAPPUT 408, 413
SET 408, 414
SRRBACK 408, 415
SRRCMIT 408, 415
STORAGE 408, 416
WTL 408, 417
WTO 408, 417
WTOR 408, 418
WTP 408, 417

REXXTDLI commands 404
RMODE 24, AMODE 31, running user modules in 192
ROLB call 112

comparison to ROLL and ROLS call 145
description 112, 146
format 112
parameters 112
restrictions 113
summary 439
usage 113
use in conversations 133

ROLB call function 536
roll back point 145
roll back to SETS/SETU call 114
ROLL call 114

comparison to ROLB and ROLS call 145
description 114, 146
format 114

588 IMS/ESA V6 Appl Pgm: TM

ROLL call 114 (continued)
parameters 114
restrictions 114
summary 439
usage 114
use in conversations 133

ROLL call function 536
rollback call 112
ROLS call 114

comparison to ROLL and ROLB call 145
description 114
format 115
parameters 115
restrictions 116
Spool API functions 116
summary 439
usage 115
use in conversations 133
with LU 6.2 148
with TOKEN 148
without TOKEN 148

ROLS call function 536
ROLX call function 536
routine, error 14
RPRN= operand (DIV statement)

specifying 358
RPRN= operand (DIV statement), specifying 302
RPRN (return primary resource name) 302, 358

S
S (STATUS) statement 559
SAMETRM=YES 136
sample JCL 564
SAY exec 425
SCA (system control area) 209

description 209
device-dependent information 278
specifying 278, 327
use 242

SCA parameter (DFLD statement), specifying 375
screen formatting

3270 or SLU 2
erase all unprotected option 262

3290
logical units 263

specifying screen size 339
SCROLLI= operand (PD statement), specifying 388
SCS1 devices

CARD= operand (DIV statement) 347
DEV statement 297
DEV statement keywords 354
meaning of designation 181

SCS2 devices
DEV statement keywords 354
meaning of designation 181
specifying line width 348

secondary logical unit 180
security checks in program-to-program switching 126
SEG statement

EXIT= operand 321
GRAPHIC= operand 321

segment edit routine
specifying 321
use 192

segment format, output message 276
SELECT= operand (DPAGE statement)

specifying 366
SELECT= operand (DPAGE statement),

specifying 310
selector pen, 3270

application program device-dependent
information 274

effect on input fields 274
PEN= operand (DFLD statement) 383
specifying 347
specifying field detectability 377

sending messages
overview 14
to alternate destinations 124
to other application programs 126
to other IMS TM systems 128, 130
to several alternate destinations 124
using alternate PCBs 124
using the PURG call 124

sequence, indication for statements 564
service utility 179
set backout point call 116
set backout point unconditional call 116
SET command (REXX) 408, 414, 415
set options call 82
SET SUBFUNC command (REXX) 415
SET ZZ 415
SETO, DFSDDLT0

description 528
SETO call

and OTMA environment 85
description 82
format 82
parameters 82
restrictions 87
summary 439
usage 84, 515

SETO call function 536
SETS call 116

description 116, 149
format 116
parameters 116
restrictions 117
Spool API functions 117
summary 439
usage 117

SETS call function 536
SETU call 116

description 116
restrictions 117
Spool API functions 117
summary 439

shift in (SI) control character 214
shift in (SI) framing character 213
shift out (SO) control character 214
shift out (SO) framing character 213
signon security, RACF 47

Index 589

skeleton programs 160
assembler language 153
C language 153
COBOL 155
Pascal 157
PL/I 160

SKIP call function 547
SLDI= operand (DEV statement), specifying 350
SLDI= operand (DFLD statement), specifying 384
SLDP= operand (DEV statement), specifying 350
SLDP= operand (DFLD statement), specifying 384
SLDx= operand (DEV statement), use 223
SLU 180

type 1, defining to operate with MFS 180
type 2, defining to operate with MFS 180

copy function 377
type 4, defining to operate with MFS 180
type 6.1, defining to operate with MFS 180
type P, defining to operate with MFS 180

SNAP call function 537
SO/SI control characters

blank suppress option 215
hex representation 215
pair verification 217
processing by MFS 215
use in mixed data field 214

SO/SI framing characters 213
SOR= operand (LPAGE statement), specifying 319
SOR= operand (MSG statement), specifying 318
SPA (scratchpad area) 134, 136

and program-to-program switches 137
contents 134
format 134
inserting 136
restrictions on using 135
saving information 136

SPACE statement (language utility) 395
Spool API

CHNG call, keywords 515
error codes

description 515
diagnosis, examples 516

functions 79
ISRT call 79
parsing errors

diagnosis, examples 516
error codes 515
status codes 515

print data set characteristics 515
SETO call, keywords 515
status codes 515
STORAGE command example 417

SRRBACK command (REXX)
description 408
format, usage 415

SRRCMIT command (REXX)
description 408
format, usage 415

STACK statement (language utility) 394, 508
staging library 179
STAK call function 547

standard application programs and MSC 142
standard character 391
START call function 547
STAT call function 537
status codes

blank 13
categories 443
checking 13
database calls 452
error routine 14
exception conditions 14
field in I/O PCB 46
message calls, table 452
retrieval call 14
system service calls, table 452

STATUS statement 559
storage

!token 416
STORAGE command 416

STORAGE command (REXX)
description 408
format, usage 416

stream mode
description 194
input example 199
repetitive DFLD generation 370
specifying 341
treatment of nulls 197
with ISC 202

SUB= operand (DEV statement)
specifying 351
use 201

substitution character 201
SUF= operand (DO statement), specifying 323, 368
summary of return codes

explanations 475
symbolic checkpoint call 92
Symbolic CHKP call

description 92
format 92
parameters 92
restrictions 93
summary 439
usage 93

SYNC call
description 118
format 118
parameters 118
restrictions 118
summary 439
usage 118

SYNC call function 537
synchronization call 118
synchronization point 145
syntax

control statements 311
errors 313

SYSIN input 564
SYSIN/SYSLIB record stacking and unstacking

description 311
STACK 394

590 IMS/ESA V6 Appl Pgm: TM

SYSIN/SYSLIB record stacking and unstacking
(continued)

UNSTACK 394
SYSIN2 input processing 564
SYSMSG= operand (DEV statement), specifying 348
SYSMSG= operand (PDB statement), specifying 386
SYSPRINT listing control

compilation statements 311
EJECT statement 396
PRINT statement 395
SPACE statement 395
TITLE statement 395

system contents directory 96
system control area 209
system definition

3270 master terminal format support 247
considerations, with MFS 224

system literals
date formats 325
description 210
other formats, CA parameter (MFLD statement) 327
time formats 325

system message field, specifying 348
system message format, IMS-provided 246
system message partition, specifying 386
system service calls

general description 13
ROLB call 133, 146
ROLL call 133, 146
ROLS call 133
summary 13

T
T (Comment) statement 549
tabbing

control characters 223
field tabs 194, 341
horizontal 222, 348
vertical 223, 349

TABLE statement, specifying 389
TABLEEND statement, specifying 391
test program 525
TITLE statement (language utility) 395
TM Batch, programming considerations 9
trailing blank compression 232
transaction code 236
translation, character

alpha character generation 391
for input messages

specifying 351
using XX'3F' 201

for output messages
device control characters 204
for DPM 204
nongraphic characters 204

GRAPHIC= operand (SEG statement) 322
SUB= operand (DEV statement) 201

transmission chains 202, 228
truncation

literal fields 325

truncation (continued)
of input messages 186
of output fields 204

TSO/E REXX 399
TYPE= operand

DIV statement
specifying 354

TYPE= operand (DEV statement), specifying 258, 339
TYPE= operand (DIV statement)

specifying 297
TYPE= operand (MSG statement), specifying 317

U
U (Comment) statement 549
underline, on fields 382
unprotecting the screen

specifying parameter on DLFD statement 377
UNPROTECT option 243

UNSTACK statement (language utility) 394, 508
uppercase, using Basic Edit 20
userid, field in I/O PCB 47
Utility Control Facility (UCF) 471
utility control statements 311

V
variable length output data stream 230
VERSID= operand (DEV statement), specifying 350
version identification

description 235
for DPM formats 250
for SLU P 184
specifying 350

vertical line, on fields 382
VIEWLOC= operand (PD statement), specifying 388
VIEWPORT= operand (PD statement), specifying 387
VT= operand (DEV statement)

specifying 349
use 223

VTAB= operand (DEV statement)
specifying 349
use 223

W
WIDTH= operand (DEV statement)

specifying 348
use 222

WINDOWOF= operand (PD statement), specifying 388
writing application programs, environmental

summary 7
WTL command (REXX)

description 408
format, usage 417

WTO command (REXX)
description 408
format, usage 417

WTO statement 563
WTOR command (REXX)

description 408

Index 591

WTOR command (REXX) (continued)
format, usage 418

WTOR statement 563

WTP command (REXX)

description 408
format, usage 417

X
XRF (extended recovery facility), message format after

takeover 221

XRST call 118

description 118
format 119
parameters 119
restrictions 121
summary 439
usage 120

XRST call function 537

Z
Z1 field 16

Z2 field 16

ZZ field

in input message 15
in output message 16

592 IMS/ESA V6 Appl Pgm: TM

Readers’ Comments — We’d Like to Hear from You

IMS/ESA
Application Programming:Transaction Manager
Version 6

Publication No. SC26-8729-05

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-8729-05

SC26-8729-05

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International
Business Machines Corporation
Department BWE/H3
P.O. Box 49023
San Jose, CA
95161-9945

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-158

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-8729-05

	Contents
	Notices
	Programming Interface Information
	Trademarks
	Product Names

	Preface
	Summary of Contents
	Prerequisite Knowledge
	Terminology
	Change Indicators
	Syntax Diagrams

	Summary of Changes
	Changes to the Current Edition of the Book for Version 6
	Changes to This Book for Version 6
	Library Changes for Version 6

	Part 1. Writing Application Programs
	Chapter 1. How Application Programs Work with the IMSTransaction Manager
	Application Program Environments
	The Application Programming Interface
	Your Application in the System
	The DB/DC Environment
	The DCCTL Environment
	The TM Batch Environment

	Using LU 6.2 Devices
	How IMS TM Schedules Application Programs

	Getting Started with DL/I
	Relationship of AIB and PCB with Language Interfaces
	Language Unique Interfaces
	Language Independent Interfaces
	AIBTDLI
	CEETDLI

	Using DL/I Calls
	Message Call Functions
	System Service Call Functions
	Status Codes, Return Codes, and Reason Codes
	Exceptional Conditions
	Error Routines

	How Your Program Processes Messages
	Message Types
	What Input Messages Look Like
	What Output Messages Look Like

	What Happens When a Message is Processed
	Results of a Message: I/O PCB

	How IMS TM Edits Messages
	Printing Output Messages
	Using Basic Edit
	Editing Input Messages
	Editing Output Messages

	Using Intersystem Communication Edit
	Editing Input Messages
	Editing Output Messages

	Using Message Format Service
	Terminals and MFS
	MFS Input Message Formats
	MFS Output Message Formats

	Using LU 6.2 User Edit Exit (Optional)

	DB2 Considerations

	Chapter 2. Defining Application Program Elements
	Formatting DL/I Calls for Language Interfaces
	Application Programming for Assembler Language
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for C Language
	Format
	Parameters
	I/O Area
	Example DL/I Call Formats

	Application Programming for COBOL
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for Pascal
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for PL/I
	Format
	Parameters
	Example DL/I Call Formats

	Relationship of Calls to PCB Types
	Specifying the I/O PCB Mask
	Specifying the Alternate PCB Mask
	Specifying the AIB Mask
	Specifying the I/O Areas
	Using the AIBTDLI Interface
	Overview
	Defining Storage for the AIB

	Specifying the Language-Specific Entry Point
	Assembler Language
	C Language
	COBOL
	Pascal
	PL/I
	Interface Considerations
	CEETDLI
	AIBTDLI

	PCB Lists
	Format of a PCB List
	Format of a GPSB PCB List
	PCB Summary

	Using Language Environment
	The CEETDLI interface to IMS
	LANG= Option on PSBGEN for PL/I Compatibility with LanguageEnvironment

	Special DL/I Situations
	Mixed-Language Programming
	Using Language Environment Routine Retention
	Using the Extended Addressing Capabilities of MVS/ESA
	Preloaded Programs
	DCCTL

	Chapter 3. Writing DL/I Calls for Transaction Management
	AUTH Call
	Format
	Parameters
	I/O Area
	I/O area before the AUTH call
	I/O area after the AUTH call

	Usage
	Restrictions

	CHNG Call
	Format
	Parameters
	Usage
	In the OTMA environment
	Advanced Print Function Options
	APPC Options
	Options List Feedback Area

	Error Codes
	Restrictions

	CMD Call
	Format
	Parameters
	Usage
	Restrictions

	GCMD Call
	Format
	Parameters
	Usage
	Restrictions

	GN Call
	Format
	Parameters
	Usage
	Restrictions

	GU Call
	Format
	Parameters
	Usage
	Restrictions

	ISRT Call
	Format
	Parameters
	Usage
	Spool API Functions

	Restrictions

	PURG Call
	Parameters
	Usage
	In the OTMA environment
	Spool API Functions

	Restrictions

	SETO Call
	Format
	Parameters
	Usage
	In the OTMA environment
	Advanced Print Function Options
	APPC Options
	Options List Feedback Area

	Error Codes
	Restrictions

	Chapter 4. Writing DL/I Calls for System Services
	APSB Call
	Format
	Parameters
	Usage
	Restrictions

	CHKP (Basic) Call
	Format
	Parameters
	Usage
	Restrictions

	CHKP (Symbolic) Call
	Format
	Parameters
	Usage
	Restrictions

	DPSB Call
	Format
	Parameters
	Usage
	Restrictions

	GMSG Call
	Format
	Parameters
	Usage
	Restrictions

	GSCD Call
	Format
	Parameters
	Usage
	Restrictions

	ICMD Call
	Format
	Parameters
	Usage
	Restrictions

	INIT Call
	Format
	Parameters
	Usage
	Determining Database Availability: INIT DBQUERY
	Automatic INIT DBQUERY
	Performance Considerations for the INIT Call (IMS Online Only)

	INQY Call
	Format
	Parameters
	Usage
	Querying Information from the PCB: INQY Null
	Querying Data Availability: INQY DBQUERY
	Querying the Environment: INQY ENVIRON
	Querying the PCB Address: INQY FIND
	Querying the Program Name: INQY PROGRAM
	INQY Return Codes and Reason Codes
	Map of INQY Subfunction to PCB Type

	Restrictions

	LOG Call
	Format
	Parameters
	Usage
	Restrictions

	RCMD Call
	Format
	Parameters
	Usage
	Restrictions

	ROLB Call
	Format
	Parameters
	Usage
	Restrictions

	ROLL Call
	Format
	Parameters
	Usage
	Restrictions

	ROLS Call
	Format
	Parameters
	Usage
	Restrictions

	SETS/SETU Call
	Format
	Parameters
	Usage
	Restrictions

	SYNC Call
	Format
	Parameters
	Usage
	Restrictions

	XRST Call
	Format
	Parameters
	Usage
	Starting Your Program Normally
	Restarting Your Program

	Restrictions

	Chapter 5. More about Message Processing
	Sending Messages to Other Terminals and Programs
	Sending Messages to Other Terminals
	To One Alternate Terminal
	To Several Alternate Terminals

	Sending Messages to Other Application Programs
	How the VTAM I/O Facility Affects Your VTAM Terminal

	Communicating with Other IMS TM Systems Using MSC
	Implications of MSC for Program Coding
	Receiving Messages from Other IMS TM Systems
	Sending Messages to Alternate Destinations in Other IMS TM Systems

	IMS Conversations
	A Conversational Example
	Conversational Structure
	What the SPA Contains
	What Messages Look Like in a Conversation
	Saving Information in the SPA

	Replying to the Terminal
	Using ROLB, ROLL, and ROLS in Conversations
	Passing the Conversation to another Conversational Program
	Restrictions on Passing the Conversation
	Defining the SPA Size
	Conversational Processing and MSC
	Ending the Conversation

	Message Switching in APPC Conversations
	DFSAPPC Format
	Option Keywords

	Processing Conversations with APPC
	Standard IMS Application Programs
	Standard IMS Application Programs and MSC

	Modified IMS Application Programs
	Modified IMS Application Programs and MSC

	CPI-C Driven Application Programs
	Ending the APPC Conversation
	Coding a Conversational Program

	Processing Conversations with OTMA
	Backing out to a Prior Commit Point: ROLL, ROLB, and ROLS Calls
	Using ROLL
	Using ROLB
	In MPPs and Transaction-Oriented BMPs
	In Batch Programs

	Using ROLS

	Backing out to an Intermediate Backout Point: SETS/SETU and ROLS
	Using SETS/SETU
	Using ROLS

	Writing a Message-Driven Program
	Coding DC Calls and Data Areas
	Your Input
	Skeleton MPP
	Coding Your Program in Assembler Language
	Coding Your Program in C Language
	Coding Your Program in COBOL
	Coding Your Program in Pascal
	Coding Your Program in PL/I

	Part 2. Message Format Service
	Chapter 6. Introduction to MFS
	Advantages of Using MFS
	Simplify Development and Maintenance
	Improve Online Performance of a Terminal

	MFS Control Blocks
	MFS Examples
	Looking at Payroll Records
	Listing a Subset of Employees

	Relationship Between MFS Control Blocks and Screen Format

	Overview of MFS Components and Operation
	MFS Language Utility
	MFS Service Utility
	MFS Device Characteristics Table Utility
	MFS Message Editor
	MFS Pool Manager
	MFSTEST Pool Manager

	Devices and Logical Units That Operate with MFS
	Using Distributed Presentation Management (DPM)

	Chapter 7. Message Formatting Functions
	Input Message Formatting
	How MFS Is Selected
	274X, 3770, SLU 1, NTO, and SLU 4
	3270 and SLU 2
	Finance and SLU P Workstations
	Intersystem Communication (ISC) Subsystems
	Formatting Messages from Terminals in Preset Destination Mode
	Formatting of Messages Using Fast Path

	How MFS Formats Input Messages
	Input Message Formatting Options
	Examples
	Cursor Position Input and FILL=NULL
	Input Logical Page Selection
	Input Message Field and Segment Edit Routines
	Input Message Literal Fields
	Input Message Field Attribute Data
	IMS TM Password
	Fill Characters for Input Message Fields
	Input Modes (Devices Other Than 3270, SLU 2, or ISCSubsystems)
	Input Field Tabs (Devices Other Than 3270 or SLU 2)
	Optional Deletion of Null Characters for DPM-An
	Examples of Optional Null Character Deletion for DPM-An
	Multiple Physical Page Input Messages (3270 and SLU 2 DisplayDevices)

	General Rules for Multiple DPAGE Input
	3270 and SLU 2 Input Substitution Character
	Input Format Control for ISC (DPM-Bn) Subsystems
	Input Message Formatting
	Input DPAGE Selection
	Single Transmission Chain
	Multiple Transmission Chains

	Input Modes
	Record Mode
	Stream Mode

	Paging Requests

	Output Message Formatting
	How MFS Is Selected
	How MFS Formats Output Messages
	Output Message Formatting Options
	Logical Paging of Output Messages
	Operator Logical Paging of Output Messages
	Physical Paging of Output Messages
	Fill Characters for Output Device Fields
	System Control Area (SCA) and Default SCA (DSCA)
	Output Message Literal Fields
	Output Device Field Attributes
	Extended Field Attributes for Output Devices
	Extended Graphic Character Set (EGCS)
	Mixed DBCS/EBCDIC Fields
	Cursor Positioning
	Prompt Facility
	System Message Field (3270 or SLU 2 Display Devices)
	Printed Page Format Control
	Format Control for 3770, SLU 1, and SLU 4 Printers
	Output Format Control for 3270P Printers
	Output Format Control for SLU P DPM-An

	Output Format Control for ISC (DPM-Bn) Subsystems
	Format Control
	Function Management (FM) Headers
	Paged Output Messages
	Demand Paging
	Autopaged Output

	Output Modes
	Variable-Length Output Data Stream
	Output Field Tab Separator Character

	FILL=NULL Specification
	Trailing Blank Compression
	Specifying COMPR
	Saving Line Transmission Time
	Blank Compression on Variable-Length Output

	Data Structure Name
	Version Identification

	Your Control of MFS
	Operator Logical Paging
	Functions Provided
	Format Design Considerations
	Transaction Codes and Logical Page Requests

	Operator Control Tables
	3270 or SLU 2-Only Feature Definitions
	Paging Action at the Device
	Unprotected Screen Option
	The 3290 in Partitioned Format Mode
	Partition Initialization Options and Paging
	Clearing the Display
	The JUMP PARTITION Key
	Scrolling Operations

	The 3180 in Partitioned Format Mode
	Partition Option and Paging

	MFS Format Sets Supplied by IMS
	System Message Format
	Multisegment System Message Format
	Output Message Default Format
	Block Error Message Format
	/DISPLAY Command Format
	Multisegment Format
	MFS 3270 or SLU 2 Master Terminal Format
	MFS Sign-On Device Formats

	MFS Formatting for the 3270 or SLU 2 Master Terminal
	MFS Device Characteristics Table
	Version Identification Function for DPM Formats

	Chapter 8. MFS Application Program Design
	Relationships Between MFS Control Blocks
	Device Considerations Relative to Control Block Linkages
	3270 or SLU 2 Display Devices
	3290 Information Panel in Partitioned Format Mode
	274X, Finance, 3770, SLU 1, NTO, SLU 4, or SLU P
	Finance or SLU P Workstations
	ISC Subsystem (DPM-Bn)

	Format Library Member Selection
	3270 or SLU 2 Screen Formatting
	3290 Screen Formatting
	Screen Division
	Terminal States and Modes
	Partition Set Initialization, Paging, and Activation

	3180 Screen Formatting

	Performance Factors
	All MFS-Supported Devices
	3270 or SLU 2 Display Devices
	3270 or SLU 2 Devices with Large Screens
	SLU P and ISC Subsystems with DPM
	Loading Programmed Symbol Buffers
	Using an Application Program to Determine WhetherProgrammed Symbol Buffers Are Loaded
	How to Load the Programmed Symbol Buffers
	Solving Programmed Symbol Load Problems

	Chapter 9. Application Programming Using MFS
	Input Message Formats
	Logical Pages
	Device-Dependent Input Information (3270 or SLU 2)
	Cursor Location
	Selector Pen
	Magnetic Stripe Reading Devices
	Program Function Keys
	Program Access Keys

	Output Message Formats
	Logical Pages
	Segment Format
	Example

	Field Format (Options 1 and 2)
	Field Format (Option 3)
	Device-Dependent Output Information
	System Control Area (SCA)
	Cursor Location

	Dynamic Attribute Modification
	Dynamic Modification of Extended Field Attributes
	Types
	Values

	Dynamic Modification of EGCS Data
	Dynamic Modification of DBCS/EBCDIC Mixed Data
	Specification of Message Output Descriptor Name
	MFS Bypass for the 3270 or SLU 2
	Specifying Input Forms for MFS Bypass
	MFS Bypass for the SLU 2 (3290) with Partitioning
	DIV Statement
	DPAGE Statement

	Chapter 10. MFS Language Utility
	Utility Control Statements
	Control Statement Syntax
	Five Special Rules
	Syntax Errors
	Invalid Sequence of Statements

	Summary of Control Statements
	EXEC Statement Parameters
	Message Definition Statements
	MSG Statement
	LPAGE Statement
	PASSWORD Statement
	SEG Statement
	DO Statement
	Printing Generated MFLD Statements
	MFLD Statement
	ENDDO Statement
	MSGEND Statement

	Format Definition Statements
	FMT Statement
	DEV Statement
	DIV Statement
	DPAGE Statement
	PPAGE Statement
	DO Statement
	RCD Statement
	DFLD Statement
	ENDDO Statement
	FMTEND Statement

	Partition Set Definition Statements
	PDB Statement
	PD Statement
	PDBEND Statement

	Table Definition Statements
	TABLE Statement
	IF Statement
	TABLEEND Statement

	Compilation Statements
	ALPHA Statement
	COPY Statement
	EQU Statement
	Concatenated EQU Statements
	RESCAN Statement
	STACK Statement
	UNSTACK Statement
	TITLE Statement
	PRINT Statement
	SPACE Statement
	EJECT Statement
	END Statement

	Part 3. IMS Adapter for REXX
	Chapter 11. IMS Adapter for REXX
	Addressing Other Environments
	REXX Transaction Programs
	IMS Adapter for REXX Overview Diagram
	IVPREXX Sample Application
	IVPREXX Example 1
	IVPREXX Example 2
	IVPREXX Example 3
	IVPREXX Example 4

	REXXTDLI Commands
	Addressable Environments

	REXXTDLI Calls
	Return Codes
	Parameter Handling
	Example DL/I Calls
	Environment Determination

	REXXIMS Extended Commands
	DLIINFO
	Format
	Usage
	Example

	IMSRXTRC
	Format
	Usage
	Example

	MAPDEF
	Format
	Usage
	Example

	MAPGET
	Format
	Usage
	Examples

	MAPPUT
	Format
	Usage
	Examples

	SET
	Format
	Usage
	Examples

	SRRBACK and SRRCMIT
	Format
	Usage

	STORAGE
	Format
	Usage
	Example

	WTO, WTP, and WTL
	Format
	Usage
	Example

	WTOR
	Format
	Usage
	Example

	IMSQUERY Extended Functions
	Format
	Usage
	Example

	Chapter 12. IMS Adapter for REXX Exit Routine
	Environment
	Parameters

	Chapter 13. Sample Execs Using REXXTDLI
	SAY Exec: For Expression Evaluation
	PCBINFO Exec: Display PCBs Available in Current PSB
	PART Execs: Database Access Example
	PARTNUM Exec: Show Set of Parts Near a Specified Number
	PARTNAME Exec: Show a Set of Parts with a Similar Name
	DFSSAM01 Exec: Load the Parts Database

	DOCMD: IMS Commands Front End
	IVPREXX: MPP/IFP Front End for General Exec Execution

	Part 4. For Your Reference
	Chapter 14. Summary of TM Message and System ServiceCalls
	Transaction Management Call Summary
	System Service Call Summary

	Chapter 15. DL/I Status Codes
	Status Code Tables
	Categories of DL/I Status Codes

	Status Code Explanations

	Chapter 16. DL/I Return and Reason Codes
	Return and Reason Code Tables
	DL/I Return and Reason Code Explanations

	Part 5. Appendixes
	Appendix A. Sample Applications
	Appendix B. MFS Definitions for Intersystem Communication
	Appendix C. Device Compatibility with Previous Versions ofMFS
	Using STACK/UNSTACK to Convert MFS Device Formats to SymbolicName Formats
	3270 Device Format Conversion Example
	3270 Printer and SLU 1 Compatibility
	SLU P Compatibility
	IBM 3278-52/3283-52 and IBM 5550 Family (as 3270) Compatibility
	Existing 3270 and IBM 5550 Family (as 3270) Compatibility

	Appendix D. Spool API
	Understanding Parsing Errors
	Keywords
	Status Codes
	Error Codes
	Diagnosis Examples
	Example 1: Error Code (0002)
	Example 2: Error Code (0002)
	Example 3;: Error Code (0004)
	Example 4;: Error Code (0006)
	Example 5;: Error Code (0008)
	Example 6;: Error Code (000A)
	Example 7;: Error Code (000C)
	Example 8;: Error Code (000E)
	Example 9;: Error Code (000E)

	Understanding Allocation Errors
	Understanding Dynamic Output for Print Data Sets
	CHNG Call with PRTO Option
	CHNG Call with TXTU Option
	CHNG Call with OUTN Option

	Sample Program Using the Spool API
	Application PCB Structure
	GU Call to I/O PCB
	CHNG Call to Alternate PCB
	ISRT Call to Alternate PCB
	Program Termination

	Appendix E. Using the DL/I Test Program (DFSDDLT0)
	Control Statements
	Planning the Control Statement Order
	ABEND Statement
	Examples of ABEND Statement

	CALL Statement
	CALL FUNCTION Statement
	CALL DATA Statement
	OPTION DATA Statement
	FEEDBACK DATA Statement
	Call Functions
	DL/I Call Functions

	Examples of DL/I Call Functions
	CALL FUNCTION Statement with Column-Specific SSAs
	DFSDDLT0 Call Functions
	Examples of DFSDDLT0 Call Functions

	COMMENT Statement
	Conditional COMMENT Statement
	Unconditional COMMENT Statement
	Example of COMMENT Statement

	COMPARE Statement
	COMPARE DATA Statement
	COMPARE AIB Statement
	COMPARE PCB Statement
	Examples of COMPARE DATA and PCB Statements

	IGNORE Statement
	Example of IGNORE (N or .)

	OPTION Statement
	Example of OPTION Control Statement

	PUNCH Statement
	Example of PUNCH CTL Statement
	Example of PUNCH CTL Statement for All Parameters

	STATUS Statement
	Examples of STATUS Statement

	WTO Statement
	Example of WTO Statement

	WTOR Statement
	Example of WTOR Statement

	JCL Requirements
	SYSIN DD Statement
	SYSIN2 DD Statement
	PRINTDD DD Statement
	PUNCHDD DD Statement
	Using the PREINIT Parameter for DFSDDLT0 Input Restart

	Execution of DFSDDLT0 in IMS Regions
	Explanation of DFSDDLT0 Return Codes
	Hints on Using DFSDDLT0
	To Load a Database
	To Print the Segments in a Database
	To Retrieve and Replace a Segment
	To Delete a Segment
	To Do Regression Testing
	To Use as a Debugging Aid
	To Verify How a Call Is Executed

	Bibliography
	IMS/ESA Version 6 Library

	Index
	Readers’ Comments — We'd Like to Hear from You

