(650) 323-2955 FAX (650) 323-0206

DSP CHIPS AND SYSTEMS

2185 Park Blvd., Palo Alto, CA. 94306

DDCs and DUCs for Wireless Communications

1998 ISART SYMPOSIUM

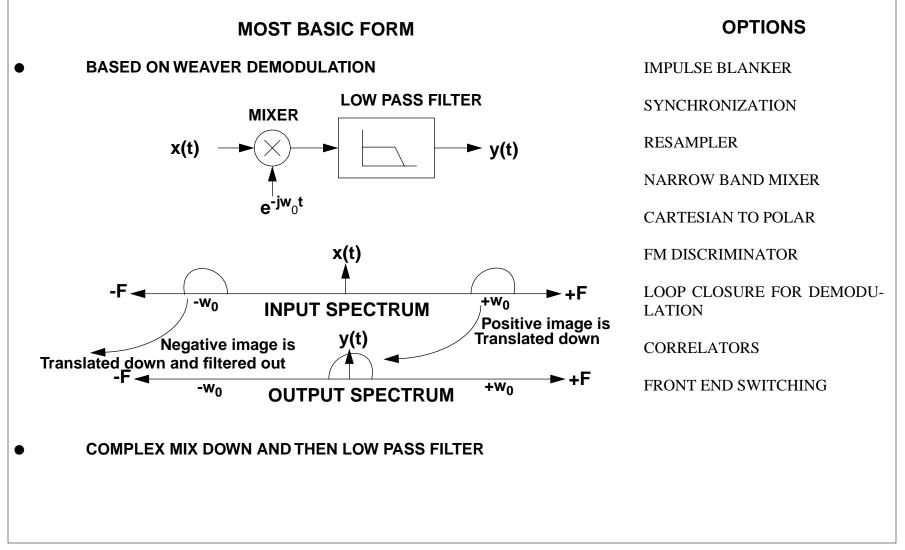
September 9, 1998

Lars Jorgensen

Vice-President, GRAYCHIP, Inc.

GRAYCHIP DIGITAL UP AND DOWN CONVERTERS

DSP CHIPS AND SYSTEMS


- WHY DIGITAL INSTEAD OF ANALOG?
 - **MOVES MANY TRADITIONALLY ANALOG FUNCTIONS INTO DIGITAL**
 - **EASIER MANUFACTURING AND MAINTENANCE (NO TRIMMING NEEDED)**
 - ♦ HIGHER PERFORMANCE
 - ✤ FOR NARROW CHANNELS, SMALLER, LOWER POWER and COST
 - (for this purpose "NARROW" gets wider as a function of time).

✤ FLEXIBILITY

HISTORY

- PRIOR to 1985 USED IN MILITARY/GOVERNMENT
 - multiple circuit boards, kWatts, <5MSPS, \$200k each
- 1985-1990 PROPRIETARY CHIP SETS
 - proprietary 2-3 chips per DDC, 2-6Watts, 10-50MSPS, \$500, \$1,000 each, military customers
- 1990-1995 COMMERCIAL CHIPS
 - Single chip, Graychip & Harris, 1Watt, 50-70 MSPS, \$100 each, commercial uses
- CURRENT (1996-1998)
 - 0.25Watt/channel, 50-70 MSPS, \$10/channel, commercial use dominates
- ✤ FUTURE (2000)
 - Wider bandwidths (support for WCDMA, LMDS, MCNS, etc.), better SFDR (for GSM)

DOWN CONVERTER OVERVIEW

DDC KEY SPECIFICATIONS

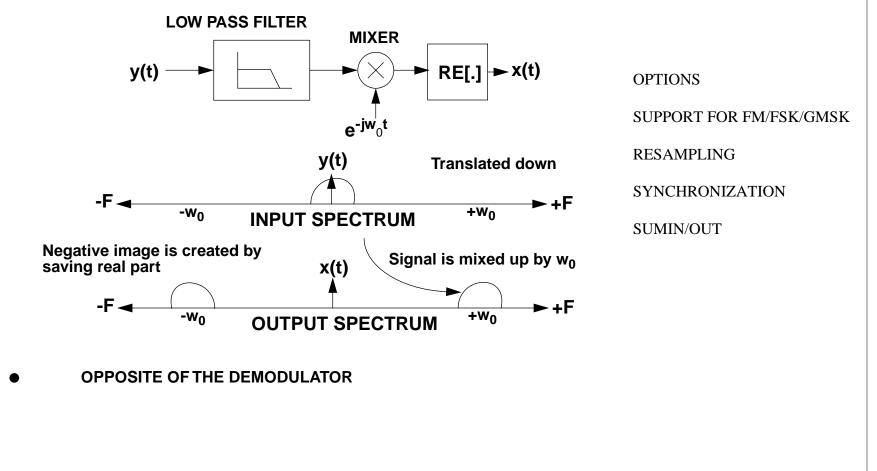
- NCO
 - ✤ TUNING RESOLUTION
 - SPUR FREE DYNAMIC RANGE some cellular systems want > 110 dB
 - **HASE OFFSETS AND SYNCHRONIZATION critical for beamforming**
- FILTERING AND DECIMATION
 - FILTERING STOPBAND
 - **DECIMATION RANGE**
 - ♦ FILTERING STAGES
 - **MAXIMUM OUTPUT BANDWIDTH**
- ADDITIONAL FUNCTIONS
 - RESAMPLING allows oversampled output, independence of input and output rates
 - **DEMODULATION SUPPORT rectangular to polar conversion, FM discrimination, etc.**
 - SYNCHRONIZATION especially for beamforming
 - FRONT-END SWITCHING to allow visibility to multiple ADC's
 - IMPULSE BLANKING especially for HF environment

GRAYCHIP A COMPARISON OF VARIOUS DDCs

DSP CHIPS AND SYSTEMS

	Fin Max	Max BW Out	SFDR	Dec Range	Comments
GC1011A	70	0.875	75	64-64k	Introduced 1989
GC1012A	70	28	75	2-64	Power of two decimation
HSP50214	65	0.657	98	4-16k	+ resampler, rectangular to polar conver- sion, FM discriminator
GC9001	5	0.25	100	16-16k	+ resampler, CORDIC, NB mix, transmitter
GC4014	62.5	1.563	95	32-64k	four channels
AD6620	65	~0.4	100	?-16k	can also do 2 channel diversity at 1/2 rate

Not released yet


GC1016	500	20	90	4-168	Coarse frequency resolution
GC4016	70	4.5	115	12-32k	Four channels + resampler
GC1116	300	30	90	4-512k	can do 2 channels at 1/2 rate

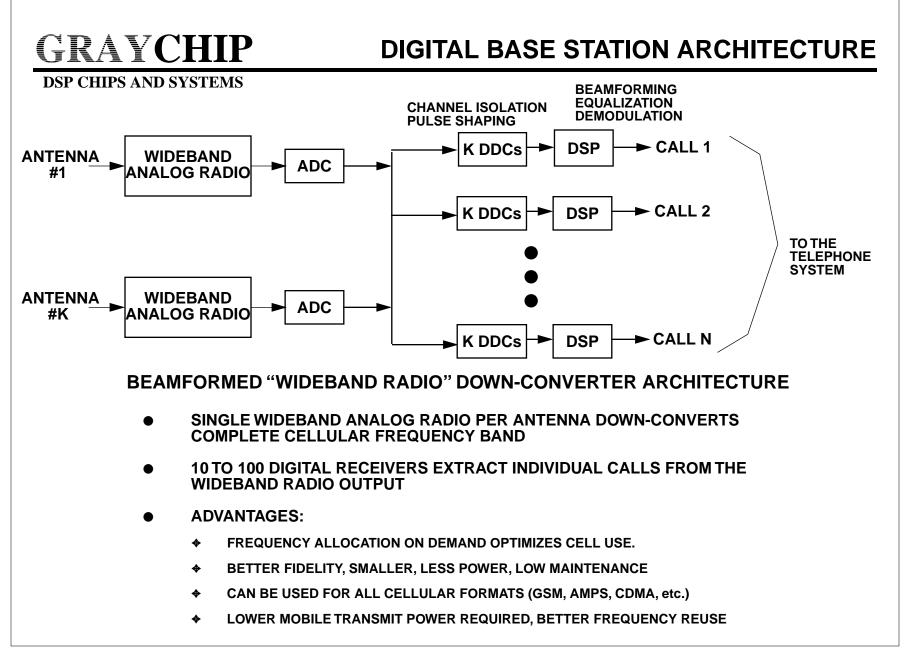
Many DDCs allow a trade-off between stopband and maxBWOut. Here maxBWOut is estimated for a 130 tap decimate by four final filter, bandwidth is 80% sample rate.

AD6620 is publicity shy. Information is based on preliminary datasheet.

UP CONVERTER OVERVIEW

GRAYCHIP A CO

A COMPARISON OF VARIOUS DUCs


DSP CHIPS AND SYSTEMS

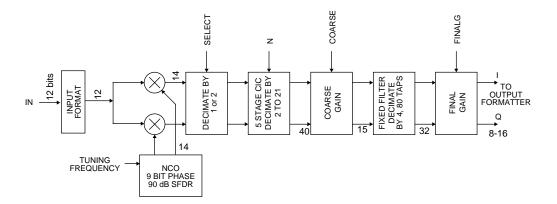
	Fout Max	Max BW In	SFDR	Int Range	Comments
GC9001	5	0.25	90	16-16k	+ receiver, NB mix, resampler
GC4114	62.5	1.56	85+	32-64k	Four channels. Two channels can be slaved for double bandwidth.
HSP50215	52	0.4	85+	4-?	Resampling architecture. Estimated 400 kHz at 80dBstop, 800kHz at 65dB stop.

Not released yet

GC1116	300	30	90	4-512k	can do 2 channels at 1/2 rate. Can do
					higher BW at a lower rate.

First filter data input span of 31 samples for GC9001, GC4114, and GC1116. The span is 16 for HSP50215.

HIGHER INTERMEDIATE FREQUENCIES

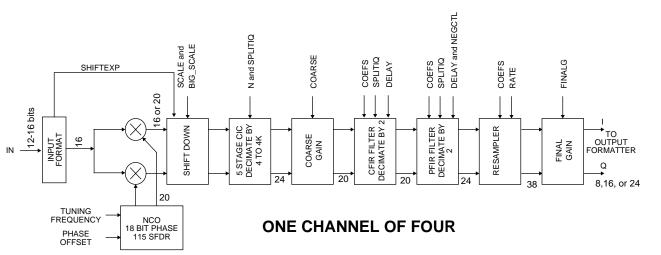

DSP CHIPS AND SYSTEMS

 HIGHER RECEIVER IF CAN BE PROCESSED USING UNDERSAMPLING IF THE A/ D FRONT-END IS WIDE ENOUGH W/O LOSING TOO MUCH PERFORMANCE

• HIGHER DUC SAMPLE RATE OUT IS DESIRED

- TRANSMITTER IF REQUIRES HIGHER DIGITAL SAMPLE RATE
- OVERSAMPLED DATA INTO D/A TO IMPROVE SPUR PERFORMANCE
- ♦ GC1116 WILL BE SUITABLE FOR THIS PURPOSE
 - TYPICALLY 1/2 GC1116 PER D/A.
 - MAY ALSO ALLOW PREDISTORTION FOR POWER AMP.

GRAYCHIP GC1016 WIDEBAND DDC



- UP TO 500 MSPS INPUT (ECL, PECL, LVECL, CMOS)
- UP TO 25 MSPS COMPLEX OUTPUT
- TARGETED FOR RADAR APPLICATIONS

GC4016 UPCOMING QUAD DDC

DSP CHIPS AND SYSTEMS

GRAYCHIP

- FOUR FULLY INDEPENDENT DDC's IN 100TQFP
- FOUR NARROW BAND OUTPUTS, TWO WIDER BAND OUTPUTS, OR ONE WIDE BAND OUTPUT
- RESAMPLING FOR ARBITRARY OUTPUT RATES AND OVERSAMPLING
- ~175 mW / CHANNEL for GSM @ 61.75 MSPS
- SUPPORTS GSM, IS136/TDMA, AMPS, NMT
- SUPPORTS FOUR IS95@2x, TWO IS95@4x OR ONE IS95@8x
- SUPPORTS WCDMA, MCNS
- OPTIONAL PARALLEL OUTPUT