logo

Astronomy Picture of the Day
Search Results for "m3"




Found 8 items.

Thumbnail image of picture found for this day. APOD: 2007 June 9 - Globular Star Cluster M3
Explanation: This immense ball of half a million stars older than the Sun lies over 30,000 light-years away. Cataloged as M3 (and NGC 5272), it is one of about 150 globular star clusters that roam the halo of our Milky Way Galaxy. Even in this impressively sharp image, individual stars are difficult to distinguished in the densely packed core, but colors are apparent for the bright stars on the cluster's outskirts. M3's many cool "red" giant stars take on a yellowish cast, while hotter giants and pulsating variable stars look light blue. A closer look at the deep telescopic view also reveals a host of background galaxies. Itself about 200 light-years across, the giant star cluster is a relatively bright, easy target for binoculars in the northern constellation Canes Venatici, The Hunting Dogs, and not far from Arcturus.

Thumbnail image of picture found for this day. APOD: 2007 April 15 - M3: Inconstant Star Cluster
Explanation: Star clusters appear constant because photographs of them are frozen in time. In reality, though, cluster stars swarm the center and frequently fluctuate in brightness. Although the time it takes for stars to cross a cluster is about 100,000 years, the time it takes for a star to fluctuate noticeably can be less than one night. In fact, the above time lapse movie of bright globular cluster M3 was taken over a single night. Most of the variable stars visible above are RR Lyrae stars, stars that can quickly double their brightness while becoming noticeably bluer. Furthermore, RR Lyrae stars vary their light in a distinctive pattern that allows unique identification. Lastly, since RR Lyrae stars all have the same intrinsic brightness, identifying them and measuring how dim they appear tells how far they are, since faintness means farness. These distances, in turn, help calibrate the scale of the entire universe.

Thumbnail image of picture found for this day. APOD: 2006 March 12 - Globular Cluster M3 from WIYN
Explanation: This huge ball of stars predates our Sun. Long before humankind evolved, before dinosaurs roamed, and even before our Earth existed, ancient globs of stars condensed and orbited a young Milky Way Galaxy. Of the 200 or so globular clusters that survive today, M3 is one of the largest and brightest, easily visible in the Northern hemisphere with binoculars. M3 contains about half a million stars, most of which are old and red. Light takes about 35,000 years to reach us from M3, which spans about 150 light years. The above picture is a composite of blue and red images.

Thumbnail image of picture found for this day. APOD: 2004 October 12 - M3: Inconstant Star Cluster
Explanation: Star clusters appear constant because photographs of them are frozen in time. In reality, though, cluster stars swarm the center and frequently fluctuate in brightness. Although the time it takes for stars to cross a cluster is about 100,000 years, the time it takes for a star to fluctuate noticeably can be less than one night. In fact, the above time lapse movie of bright globular cluster M3 was taken over a single night. Most of the variable stars visible above are RR Lyrae stars, stars that can quickly double their brightness while becoming noticeably bluer. Furthermore, RR Lyrae stars vary their light in a distinctive pattern that allows unique identification. Lastly, since RR Lyrae stars all have the same intrinsic brightness, identifying them and measuring how dim they appear tells how far they are, since faintness means farness. These distances, in turn, help calibrate the scale of the entire universe.

Thumbnail image of picture found for this day. APOD: 2003 September 15 - Globular Cluster M3
Explanation: This huge ball of stars predates our Sun. Long before humankind evolved, before dinosaurs roamed, and even before our Earth existed, ancient globs of stars condensed and orbited a young Milky Way Galaxy. Of the 200 or so globular clusters that survive today, M3 is one of the largest and brightest, easily visible in the Northern hemisphere with binoculars. M3 contains about half a million stars, most of which are old and red. Light takes about 100,000 years to reach us from M3, which spans about 150 light years. The above picture is a composite of blue and red images.

Thumbnail image of picture found for this day. APOD: September 17, 1999 - M3: Half A Million Stars
Explanation: This immense ball of half a million stars older than the sun lies 30,000 light-years above the plane of our Galaxy. Cataloged as M3 (and NGC 5272), it is one of about 250 globular star clusters which roam our galactic halo. Individual stars are difficult to distinguished in the densely packed core but colors are apparent for the bright stars on the cluster's outskirts. M3's many cool "red" giant stars take on a yellowish cast in this lovely composite image while hotter giants and pulsating variable stars look light blue.

Thumbnail image of picture found for this day. APOD: July 19, 1998 - Globular Cluster M3
Explanation: This huge ball of stars predates our Sun. Long before mankind evolved, before dinosaurs roamed, and even before our Earth existed, ancient globs of stars condensed and orbited a young Milky Way Galaxy. Of the 250 or so globular clusters that survive today, M3 is one of the largest and brightest, easily visible in the Northern hemisphere with binoculars. M3 contains about half a million stars, most of which are old and red. The existence of young blue stars in M3 once posed a mystery, but these blue stragglers are now thought to form via stellar interactions.

Thumbnail image of picture found for this day. APOD: December 6, 1996 - Globular Cluster M3
Explanation: This huge ball of stars predates our Sun. Long before mankind evolved, before dinosaurs roamed, and even before our Earth existed, ancient globs of stars condensed and orbited a young Milky Way Galaxy. Of the 250 or so globular clusters that survive today, M3 is one of the largest and brightest, easily visible in the Northern hemisphere with binoculars. M3 contains about half a million stars, most of which are old and red. The existence of young blue stars in M3 once posed a mystery, but these blue stragglers are now thought to form via stellar interactions.


Return to Search Page
Today's Astronomy Picture of the Day