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Tidal Stripping
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If the mass m is If the mass m is 
close enough to close enough to 
the particles in the particles in 
M then the particlesM then the particles
closest to M are closest to M are 
at risk of being at risk of being 
removed or strippedremoved or stripped
from the larger from the larger 
body. body. 
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Tidal Stripping cont.

If we select a frame of reference that rotates atIf we select a frame of reference that rotates at
the same rate as the satellite m (the same rate as the satellite m (=v/(2=v/(2DD)). We )). We 
do this so that we have a stationary problem. do this so that we have a stationary problem. 

Lets also look at this in Center of Mass coordinates.Lets also look at this in Center of Mass coordinates.
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We can write the effective potential in the formWe can write the effective potential in the form

Normal gravitational force and angular momentum

This potential will have 3 maxima and we can find
these by 
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But remember for a circular orbit

V 2=GM
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and the acceleration is 

a=V 2
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But since we are in the CM coordinate system
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Solving this for 2 
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Substituting this for 2 below

We get
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If m<<M then x <<D we can rewrite our equation as
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Expanding (1 + x/D)-2 in a Taylor series
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Solving for x we get



x is called the Jacobi limit or the Roche limit and is written
as r
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● This provides a crude estimate of the 
true tidal radius
– In general the system will not have a 

circular orbit
– We derived this for point masses and most 

systems are extended
– If done in 3-d (so we get a surface) this is 

not a spherical surface

– If r
J
 > x a particle will not necessarily 

escape. Numerical studies show that there 
are some stable orbits up to r = 2r

J
. 



Sgr dSph as know in 1996Sgr dSph as know in 1996
Wise, Gillmore, Franx 1997Wise, Gillmore, Franx 1997



Studies using the 2MASS survey showed that tidal streams
from the Sgr dwarf galaxy all around the sky (Majewski 2003)



SDSS data, 19<r<22, g-r<0.4
blue ~ 10 kpc, red & green ~30 kpc
Belokurov et al. 2006



ODENKIRCHEN et al. 2003 



Dust and Gas in External 
Galaxies



Galaxy Photometry

● Surface Photometry is 
often used to measure 
stellar distribution

● Measured in concentric 
radii (mag/sq arcsec)

● Use a fit function to 
measure SB

● Compare different 
anulii e.g. 
Concentration index, 
asymmetry



Spiral galaxy profiles

Two components 
Bulge           Disk



Elliptical galaxy profiles

Often well fit with an 
exponential profile

I r =I  r ee x p[−b  r
r e


1
n−1 ]

If n = 4 this is a 
de Vaucouleur's law for
general n Sersic's law.

Often flattens in the center

Fit spiral bulges as well



Measuring Galaxy 
Luminosities

Galaxy luminosities are much harder to 
measure than stellar luminosities 
because they are extended objects and 
have no well defined edges



We define the surface brightness of a galaxy to as the
amount of light per square arcsecond on the sky.

d

D

If we have a square patch with side length D, in a 
galaxy at a distance d from us we see that this 
subtends an angle  = D/d on the sky.



If we look at the luminosity of all the 
stars in this small patch L, then the 
total flux we see is 

F= L
4d2

And we can define surface brightness as 
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The units for surface brightness is mag arcsec-2.
So if a galaxy has a surface brightness of 20 mag
arcsec-2 then we receive as many photons from 
one square arcsecond of the galaxy that we 
would observing a 20 magnitude star. 

Typical surface brightness values for galaxies
are about 18 mag arcsec-2 in the center. 



To find the total brightness of a galaxy we need 
to integrate the light coming from all parts of 
the system. Since galaxies do not have sharp 
edges we typically measure the brightness out
to some brightness called the limiting isophote.

Measurements are typically integrated out to 
some limiting isophote and is called the isophotal
magnitude. A typical limit is 25 mag arcsec-2.
This is usually measured in the B band 
(

Central
= 4400Å.)



Properties of Bulges

Bulges are some of the densest 
stellar systems. They can be 
flattened, ellipsoidal or bar-like. 
The surface brightness of a bulge is 
often approximated by the Sersic 
law: 

I(R) = I(0) exp{-(R/R0)1/n}

Recall that n=1 corresponds to an 
exponential decline, and n=4 is the 
de Vaucouleurs law.

About half of all disk galaxies 
contain a central bar-like structure. 
The long to short axis ratio can be 
as large as 5:1.

When viewed edge-on, the When viewed edge-on, the 
presence of a bar can be noticed presence of a bar can be noticed 
from the boxy shape of the halo. In from the boxy shape of the halo. In 
some cases the isophotes are some cases the isophotes are 
squashed, and the bulge/bar has a squashed, and the bulge/bar has a 
peanut-like shape.peanut-like shape.



Colors of Disk Galaxies

M31 is the closest 
spiral galaxy (besides 
the MW)

●At r< 6 kpc the bulge 
dominates the light and 
the color is similar to an 
E galaxy

●Further out the young 
stars contribute more 
and more to the light



Population I & II



Stellar Populations I & II
● Population I

– Young 

– Metal rich

– Found in galaxy disks

– Closely associated with 
spiral arms

● Luminous hot young 
stars (O & B stars)

● Cepheid variables
● Dust Lanes
● HII regions
● Metal rich open 

clusters



Stellar Populations I & II
● Population II

– Old 

– Metal poor

– Found in Globular 
clusters, Spiral bulges 
and Ellipticals

● Red giants
● RR Lyrae stars
● Long period 

variables (Mira)
● Semi-regular 

variables -Herc



But remember there are several effects that can 
complicate the picture

1) Metallicity – metal poor stars are bluer than
                         metal rich stars

2) Age – younger stars are generally bluer

3) Dust – makes stars appear redder



Spirals are Complex

● As we've seen spirals are complex systems

– Wide range of morphologies

– Many fine scale details
● HII regions
● Structure in the arms
● bulge/disk ratio has a large range

– Wide range of stellar populations
● Young
● Old
● Intermediate



● Wide range of stellar dynamics

– “Cold” disk stars – young rotationally supported

– “Hot” halo stars – supported by velocity 
dispersion, includes the bulge stars

● Has a substantial ISM

– HI (atomic gas)

– H
2
 (molecular gas)

– HII (ionized Hydrogen)



Spiral Building Blocks
● Basic Components

– Disk, metal rich stars, ISM is metal rich, stars have 
orbits that are nearly circular, small random velocities 
in the z direction, spiral patterns

– Bulge, old metal poor stars, high densities, and 
motions are mostly random, like ellipticals

– Bars, seen in also 50% of all spirals, long lived 
features

– Nucleus, very high stellar densities, often has a 
supermassive black hole

– Halo, very diffuse, low density, metal poor old stars, 
GC's, Hot (106 K) gas very little of the total light 
contributing only few percent

– Dark Matter, most of the mass, composition ?



M81 seen in different bandpasses



Spiral galaxy profiles

● Luminosity 
– Disk follows an exponential model                

     

– The disk scale length (r
d
) is typically 2-6 

kpc

– Disk fades dramatically after 4-5 r
d

– Bulge follows r1/4 law (like many Ellipticals)

 r=0e−r /rd



Decomposition of spiral profiles
 We can fit the 1-D profiles with a bulge + disk model and
compute the bulge to disk ratio.

Boroson 1981

2 kpc

SA(r)b



Decomposition of spiral profiles
 We can fit the 1-D profiles with a bulge + disk model and
compute the bulge to disk ratio.

Boroson 1981

2 kpc

SA(s)c



Boroson 1981

(R)SA(rs)0/a SA(s)c



Freeman's Law
Freeman's law states thatFreeman's law states that
the central surface brightnessthe central surface brightness
of a spiral galaxy is about of a spiral galaxy is about 
21.7 mag arcsec21.7 mag arcsec22. . 
Yoshizawa and Wakamatsu (1975)Yoshizawa and Wakamatsu (1975)
  (24 galaxies) 21.28+/- 0.71(24 galaxies) 21.28+/- 0.71
Schweiezer (1976) (6 galaxies)Schweiezer (1976) (6 galaxies)
                                            21.67+/- 0.3521.67+/- 0.35

Disney (1976) showed that Disney (1976) showed that 
this is an observational effectthis is an observational effect
and led to the search for LSBand led to the search for LSB
galaxies.galaxies.

Boroson (1981) also showed Boroson (1981) also showed 
that there is a fairly large that there is a fairly large 
range of central SB. range of central SB. 



Low Surface Brightness Galaxies

Malin I



We now know that there are many LSB galaxies
like Malin I. 



Simien & de Vaucouleurs (1986) showed that the B/D 
decreases with T type



Modern data show this
same trend and that T
types > 7 this flattens
(Graham 2001)



Inclination Effects

● When we integrate the SB profile to derive the 
total magnitude we need to correct for effects of 
inclination

– We need to correct for 
● Dust

– Internal (MW) and in the galaxy
– Inclination (i=0 face on, i=90 edge on)

– We get total correct magnitude B
T

0

– Corrected colors are denoted by (b-V)0

– Assuming a thin disk, cos i = b/a, a = major 
axis and b = minor axis radius



The effects of dust attenuation
is clearly most severe for highly
inclined systems as Pierini et al.
(2004) show.

Giovanelli et al (1994) show that the
internal absorption can be modeled
by A

v
 =  1.12(+ / - 0.05) log(a/ b)
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