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ABSTRACT 
 

Detecting mud hazards is a significant challenge to 
UGV autonomous off-road navigation.  A military UGV 
stuck in a mud body during a mission may need to be 
sacrificed or rescued, both unattractive options.  JPL is 
currently developing a daytime mud detection capability 
under the RCTA program using UGV mounted sensors.  
To perform robust mud detection under all conditions, we 
expect multiple sensors will be necessary.  A passive mud 
detection solution is desirable to meet the FCS-ANS 
requirements.  To characterize the advantages and 
disadvantages of candidate passive sensors, data 
collections have been performed on wet and dry soil using 
visible, multi-spectral (including near-infrared), short-
wave infrared, mid-wave infrared, long-wave infrared, 
polarization, and stereo sensors.  In this paper, we 
examine the cues for mud detection each of these sensors 
provide, along with their deficiencies, and we illustrate 
localizing detected mud in a world model that can used by 
a UGV to plan safe paths. 
 

1. INTRODUCTION 
 

There are many types of terrain (such as, pavement, 
gravel, firm dirt, mud, snow, ice, water, and vegetation of 
varying height and thickness) that an unmanned ground 
vehicle (UGV) can encounter during autonomous 
navigation over cross country terrain.  The ability to 
detect and avoid hazardous terrain poses a current 
challenge to the acceptance and proliferation of tactical 
UGVs (Mills, 2007).  Since water and mud are prevalent 
in many regions during the entire year, robust detection of 
those hazards is a critical perception requirement for 
UGV autonomous navigation.  

 
Water and mud bodies need to be detected at a 

sufficient distance (which is a function of the UGV’s 
current speed) that allows the UGV to evade it.  A UGV 
that becomes stuck in water or mud during an in-theater 
autonomous mission may require rescue, potentially 
drawing critical resources away from the primary mission 
and soldiers into harms way.  Under the Army Research 
Laboratory (ARL) Robotics Collaborative Technology 
Alliances (RCTA) program, the Jet Propulsion Laboratory 
(JPL) is developing a water and mud detection capability 
for UGVs.  At the last Army Science Conference, we 
reported our progress on detecting and localizing water 

bodies in a world model used to plan safe paths (Rankin 
and Matthies, 2006).  This year, we report our progress on 
evaluating sensors applicable to mud detection from an 
UGV. 

 
Figure 1 illustrates the class of UGV this work is 

being performed for and a severe mud hazard from a test 
site near General Dynamics Robotic Systems, 
Westminster, MD.  Although mud detection for UGV 
autonomous navigation is a relatively new research area, 
techniques to estimate soil moisture content have been 
studied for decades for agricultural applications (Hamrita 
et al., 2000).  Soil moisture content has been estimated 
using devices requiring contact with the ground and via 
remote sensing (Whalley and Stafford, 1992; Suddeth et 
al., 1997). 

 

 
Figure 1.  An experimental unmanned vehicle (XUV) 
navigating through a muddy grass field near General 
Dynamics Robotic Systems (Westminster, MD). 
 

Remote sensing of soil moisture has been performed 
with sensors mounted to satellites, aerial vehicles, and 
ground vehicles.  Satellite methods of soil moisture 
estimation use thermal infrared (Wetzel et al., 1984), 
passive and active microwave (Wigneron et al., 1998; 
Dubois and van Zyl Engman, 1995), and multi-spectral 
sensors (Zeng et al., 2004).  The satellite methods are 
useful in characterizing the soil moisture content of large 
fields, but lack the resolution necessary for detecting 
small but severe UGV mud hazards.   Aerial methods of 
soil moisture estimation use passive and active 
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microwave sensors (O’Neill et al., 1996; Archer et al., 
2004).  Unmanned aerial vehicles (UAVs) with 
microwave sensors have been used to estimate soil 
moisture through vegetation clutter (such as a corn field).  
However, they also lack the resolution for detecting small 
but severe UGV mud hazards. 

 
Ground vehicle methods of soil moisture estimation 

have also used passive microwave sensors (Archer et al., 
2006).  But the antennas tend to be bulky and have been 
mounted directly downwards, requiring a UGV to drive 
on potentially hazardous terrain to characterize it.  Dupont 
et al. (2008) classified terrain types, included mud, by 
using proprioceptive sensors that measure UGV vibration 
and estimate applied wheel torques.  Angelova et al. 
(2007) developed an algorithm to predict the amount of 
wheel slippage terrain in the distance will cause using 
stereo vision sensors.  However, these methods also 
require a UGV to drive on potentially hazardous terrain to 
characterize or learn about it. 

 
Alshikaili (2007) used a non-contact infrared 

thermocouple to predict soil moisture content based on 
soil temperature from a tripod.  But a fieldable weather 
station was required to determine some model parameters 
(air temperature, solar radiation, relative humidity, wind 
speed), soil emissivity needed to be manually selected on 
the thermocouple, and the level of soil compaction needed 
to be specified.  Powers (2008) is experimenting with a 
monostatic active polarimeter designed to classify solid 
ground and mud for UGVs.  But because there are 
military operations when it may be desirable for UGVs to 
operate without emitting strong, detectable electro-
magnetic signals, a passive perception solution to mud 
detection is also desirable. 

 
Under the RCTA program, JPL has performed 

daytime data collections on wet and dry soil using a 
variety of passive imaging sensors: color stereo, multi-
spectral including near-infrared (NIR), short-wave 
infrared (SWIR), mid-wave infrared (MWIR), long-wave 
infrared (LWIR), and polarization.  In this paper, we 
examine the cues for mud detection each of these sensors 
can provide, along with their deficiencies.  We started this 
work focusing primarily on detecting mud where it is 
most likely to be encountered by a UGV: on dirt trials or 
open dirt fields.  The example in Figure 1 illustrates 
probably the hardest UGV mud perception scenario; 
detecting mud when the entire ground is wet and the 
surface is not soil.  Difficult scenarios such as these will 
be addressed in future work.  Here, we mostly limit our 
examination to mud detection during the daytime under 
ideal conditions: isolated wet soil surrounded by dry soil 
during nominal weather, i.e., no precipitation, calm wind, 
and near average temperatures. 
 

 

2. MUD CUES FROM COLOR 
 
 It is commonly observed that wet soil is considerably 
darker than dry soil in visible imagery.  This is because 
changing the medium surrounding soil particles from air 
to water decreases the particle’s relative refractive index, 
increasing the average degree of forwardness of 
scattering.   As a result, incident photons have a higher 
probability of being absorbed (Twomey et al., 1986).  
Perrson (2005) found that soil gradually becomes darker 
as it is wet to a soil moisture level of 0.25m3m-3 (volume 
water per unit volume of soil).  Beyond that level, some 
soils start to become lighter again as water starts 
becoming visible on the surface, causing reflections.  As 
seen in Figure 1, small patches of sitting water tend to be 
visible when the ground is saturated.  These small patches 
of water are a cue for muddy terrain and can be detected 
from color analysis if the water is reflecting the sky 
(Rankin and Matthies, 2006). 
 

The example scenes in Figure 2 illustrate that ground 
regions significantly darker than surrounding terrain is 
also a cue for mud.  But shadows are also ground regions 
significantly darker than surrounding terrain.  To 
disambiguate mud from shadows, one can analyze the 
color content of the dark region.  Shadows inherently do 
not receive direct light from the primary light source.  As 
a result, blue light tends to scatter more relative to red and 
green light, giving shadows a higher blue saturation than 
neighboring regions (Wells, 2007).  This is illustrated in 
Figure 3.  In the left hue image, the soil in shadow is bluer 
than non-shadowed soil.  In the right image, the non-
shadowed mud has the same hue as the surrounding dry 
soil. 

 
In summary, isolated mud can be detected from color 

imagery by segmenting regions significantly darker than 
surrounding terrain (but with the same hue as the 
surrounding terrain).  Extremely muddy terrain can be 
detected by segmenting small water patches that reflect 
the sky.  Color can also be useful in disambiguating non-
shadowed mud from shadows.  However, color is 
probably not very useful in determining if the terrain in a 
shadow is mud, or in distinguishing the muddiest portion 
of terrain when the entire ground is wet (except where 
there are small patches of water reflecting the sky).  
 

 
Figure 2.  Mud tends to be darker than surrounding 
dry soil in color imagery. 

dry soil 
mud dry 

soil shadow 

mud
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Figure 3. Hue images for the color images in Figure 2.  
Soil in shadow tends to be bluer than non-shadowed 
wet or dry soil.  But non-shadowed wet soil tends to 
have the same hue as dry soil. 
 

3. MUD CUES FROM MULTI-SPECTRAL 
 

In the remote sensing community, it is well known 
that LandSat multi-spectral data on bare soil falls on a line 
(referred to as the soil line) when plotted in NIR vs. red 
reflectance space.  Bare soil pixel placement on the soil 
line depends on soil moisture content. Wet bare soil maps 
to one end of the line and dry bare soil maps to the 
opposite end.  To determine if this phenomenology is 
valid from a ground-based sensor, we performed data 
collections on wet and dry soil with a Duncan Tech 
MS2100 multi-spectral camera, having spectral sensitivity 
from 400-1000nm.  This camera is based on a color 
separating prism and three imaging channels that allow 
simultaneous image acquisition of four spectral bands 
(red, green, blue, and NIR) through a common aperture. 
 

 

 
Figure 4. In NIR vs. Red reflectance space, dry, wet, 
and shadowed soil lies on a line referred to as the soil 
line in remote sensing literature. 

 
Two data collections were performed with the multi-

spectral camera mounted to a tripod: one in an area that 
contained bare soil (both in and out of shadow) and 

vegetation, and the second looking down a long dirt road 
lined with vegetation.  Water was poured over a small 
portion of both scenes and allowed to soak in to the 
ground.  Figure 4 contains images of the red and NIR 
bands for the first scene.  It also contains a NIR vs. red 
reflectance plot of the pixels in the boxes overlaid on the 
NIR image.  The red box contains dry soil, the green box 
contains wet soil, and the blue box contains dry soil in 
shadow.  The yellow line is a least squares line fit of the 
data.  From this example, it appears that the soil line 
phenomenology is also valid from a ground-based sensor.  
Since dry soil in shadow plots to the left of wet soil on the 
soil line, it is more difficult to disambiguate shadows 
from wet soil than shadows from dry soil. 
 

 
(a) Red band     (b) NIR band 

 
 (c) NDVI image    (d) Brightness image wet soil 

 

Red band NIR band 

(e) Normal distance to soil line (f) Distance along soil line 

 
(g) Segmented soil  (h) Segmented wet soil 

Figure 5. NIR and red bands of a multi-spectral 
camera may be useful in separating vegetation from 
soil, and dry soil from wet soil. 
 

Figure 5 illustrates using multi-spectral bands to 
segment wet soil.  Red and NIR bands (Figures 5a and 5b) 
can be used to generate a Normalized Difference 
Vegetation Index (NDVI) image (Figure 5c).  If the slope 
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and y-intercept of the soil line is known, a normal 
distance to the soil line image (Figure 5e) and a distance 
along the soil line image (Figure 5f) can be generated.   
The NDVI and normal distance to the soil line images can 
be used to segment soil from vegetation (Figure 5g).  A 
brightness image (Figure 5d), which is derived from the 
visible bands, and the distance along the soil line image 
can be used to segment wet soil from dry soil (Figure 5h). 
 
 Water, snow, and ice all have larger red reflectance 
values than NIR, bare soil has a slightly larger NIR 
reflectance than red, and vegetation has a much larger 
NIR reflectance than red.  Some typical NDVI values 
(from overhead sensors) are 0.7 for dense vegetation, 0-
0.1 for bare soil, -0.046 for snow and ice, and -0.257 for 
water. (Holben, 1986).  NDVI is more useful than 
distance to the soil line in segmenting bare soil from 
vegetation, but distance along the soil line is more useful 
than NDVI in segmenting wet soil from dry soil.  
However, neither technique is likely to be effective in 
segmenting snow and ice from mud.  Distance along the 
soil line may be useful in segmenting wet soil from soil in 
shadow, but it is probably not very useful in determining 
if the soil in shadow is wet or dry. 
 

4. MUD CUES FROM SWIR 
 

Water strongly absorbs light in the NIR and SWIR 
wavelengths, suggesting that wet soil may also.  Lobell 
and Asner (2002) acquired measurements of reflected 
shortwave radiation (400-2500nm) of four different soils 
at varying moisture levels in a laboratory setting using a 
spectrometer and a calibrated light source.  They report 
that while reflectance for visible wavelength saturates at a 
soil moisture content of 20%, reflectance for SWIR 
saturates at a much higher soil moisture content (50%).  
They concluded that the SWIR region is more suitable for 
measuring soil moisture content than NIR.  The plot in 
Figure 6 (from Mouazen et al., 2006) illustrates that 
increasing the soil moisture content causes the largest 
change in reflectance in a narrow SWIR band near a 
wavelength of 1450nm.  This suggests that passive SWIR 
should be useful in detecting mud. 

 
We performed data collections on wet and dry soil 

with a Sensors Unlimited SU320M-1.7RT SWIR camera, 
to test its feasibility for detecting mud.  This camera 
contains a 320x240 InGasAS detector, spectrally sensitive 
from 900-1700nm.  After acquiring imagery of dry soil, a 
few buckets of water were poured on the soil.  Sample 
visible and SWIR images from the data collection are 
shown in Figure 7.  As expected, the wet soil is darker 
than the dry soil in visible and SWIR imagery.  We have 
not yet performed this experiment with varying soil 
moisture levels.  We would expect the wet soil to become 
progressively darker as the soil moisture content 
increases. 

 
Figure 6. Average spectra recorded for 46 soil samples 
from a single field (from Mouazen et al., 2006).  The 
curves correspond to soil moisture content, having 
units of kg kg-1 (water mass per unit dry soil mass). 
 

 

 
dry soil wet soil 

Figure 7. Visible and SWIR imagery of dry and wet 
soil, acquired from a UGV.  The SWIR sensor has a 
narrower field of view than the visible sensor. 

 
However, not all the dark regions in SWIR imagery 

are candidate mud.  Snow, ice, and water all cause dark 
regions in SWIR imagery (Matthies et al., 2003).  Snow 
and ice can be distinguished from mud since they are 
bright in color imagery and mud is not.  Water can be 
distinguished from mud by using color to detect sky 
reflections and stereo range data to detect terrain 
reflections (Rankin and Matthies, 2006).  Under 
conditions where the entire ground is wet, if the soil 
moisture content varies over the terrain, SWIR may be 
able indicate the muddiest terrain. 

 
5. MUD CUES FROM THERMAL INFRARED 

 
 Factors that influence soil temperature include the 
angle to the sun, the soil moisture content, if the soil is in 
shadow, and the time of day.  Soil color also influences 
temperature since darker colors tend to absorb and release 
energy more rapidly than lighter colors.  Wet soil tends to 
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be cooler than dry soil for a couple of reasons.  First,  
evaporation helps to cool moist soil by dissipating heat.  
Second, the high heat capacity of water reduces the 
temperature change from the heat that is absorbed by the 
soil. (Troeh et al., 2005) 
 

 

To test the feasibility of using a thermal infrared 
imaging sensor for mud detection, we performed an all 
day data collection (6:20am–7:30pm) on a mud body with 
a Thermoteknix Systems Miricle 110KB long-wave 
infrared (LWIR) camera, recording images every 20 
minutes.  This camera has a 384x288 Alpha Silicon 
micro-bolometer detector with a spectral sensitivity from 
7-14µm.  On the day of this data collection, there was a 
thick marine layer until 9:20am, it was partially overcast 
until about 10:00am, and then it was sunny for the 
remainder of the day.  

 

 

 

 
F wea a

Figure 8 shows a plot of the temperature of the dry 
soil

owever, not all the dark regions in thermal infrared 
ima

igure 8. Under nominal ther conditions, mud h s 
a strong signature in LWIR imagery throughout the 
entire day.  ∆T is the difference in temperature 
between the mud and the surrounding dry soil.  This is 
the same mud body in the right image of Figure 2. 
 

, mud, and air over the entire day, and sample LWIR 
images from 6:20am, 10:00am, 3:00pm, and 7:00pm.  In 
the temperature plot, the mud was cooler than the soil 

during the entire day, even when there was heavy 
overcast.  The temperature difference between the dry soil 
and mud started out low in the morning, rose to a peak in 
the mid afternoon, and started to decline through the 
evening.  The sample imagery confirms that under 
nominal weather conditions, wet soil is cooler than dry 
soil throughout the day in thermal infrared imagery.  Even 
at the lowest temperature difference (1.5°C), there was 
still significant thermal contrast between the dry soil and 
the mud in the LWIR imagery. 

 
H

gery are candidate mud.  Shadows, snow, ice, 
vegetation, and water can all cause dark regions in 
thermal infrared imagery.  Snow and ice can be 
distinguished from mud since they are bright in color 
imagery and mud is not.  Tall vegetation can be 
distinguished from mud by using stereo range data to 
separate ground clutter from the ground surface. Water 
can be distinguished from mud by using color to detect 
sky reflections and stereo range data to detect terrain 
reflections (Rankin and Matthies, 2006).  Figure 9 
illustrates that under nominal weather conditions, mud in 
shadow is cooler than mud out of shadow during the 
daytime.  As discussed in section 2, shadows can be 
distinguished from non-shadowed mud by analyzing the 
hue component of color. 

 

 
Figure 9. Under nominal weather conditions, mud is 
cooler than dry soil, and shadowed mud is cooler than 
non-shadowed mud during the daytime. 
 

 
Figure 10. When the entire ground is wet afte

Thermal infrared imagery can provide a strong cue 
for 

 

r 
raining, it would be difficult to use thermal infrared 
imagery to detect the muddiest portions of the terrain.  
This color and MWIR image is from Ft. Polk, LA. 
 

mud during nominal weather conditions when non-
mud dark regions are disambiguated with other sensors. 
But under off-nominal conditions, such as after 

6:20am, ∆T=1.5°C 

7:00pm, ∆T=4.0°C3:00pm, ∆T=10.7°C 

10:00am, ∆T=5.4°C

dry soil 
ud 

muddiest 
region 

shadowed 
m

mud 
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precipitation when the entire ground is damp, the 
usefulness of thermal infrared imagery for mud detection 
decreases.  As illustrated with the mid-wave infrared 
(MWIR) image in Figure 10, it is difficult to detect the 
muddiest portions of the road from the rest of the wet 
road in thermal infrared imagery.  If the soil moisture 
content varies over the terrain, SWIR may help in such 
situations. 
 

6. MUD CUES FROM POLARIZATION 
 

There are four fundamental properties of light: 
inte

lmost all naturally occurring outdoor light 
(sca

o calculate a simplified polarization measure called 
pola

egions of a natural terrain scene that have a 
sign

o determine if there is a polarization signature on 
wet 

 6:20am 1:40pm 

nsity, wavelength, coherence, and polarization.  In the 
past, vision-based terrain classification methods have 
focused primarily on intensity and wavelength (color) 
properties. But with the recent emergence of polarization 
cameras, the components of polarization from light 
reflected off surfaces can also be exploited to classify 
terrain types.  For example, Xie et al. (2007) and Pandian 
(2008) have recently experimented with using a 
polarization camera to detect water. 

 
A
ttered and reflected) is at least partially linearly 

polarized (Wolff, 2005).  At a pixel level, partial linear 
polarization is measured by the transmitted radiance 
through a polarization filter.  To determine the whole 
partial linear polarization state [orientation, intensity, and 
degree of linear polarization (DOLP)], three images of a 
scene needs to be acquired, each with the polarization 
filter at a different orientation.    The DOLP at each pixel 
is a value between 0 (completely unpolarized light) and 1 
(completely linear polarized light). 

 
T
rization contrast, only two images of a scene are 

required, as long as the polarization filter orientations 
differ by 90°.  If one of the filter orientations is aligned 
with the orientation of the linearly polarized component in 
the input light, then polarization contrast equals DOLP.  
Otherwise, polarization contrast provides a lower bound 
for DOLP (Pandian, 2008).  Since water and mud appear 
to be horizontally polarized,  if filter orientation angles of 
0° (crossed) and 90° (parallel) are chosen, polarization 
contrast can be used to estimate DOLP on water and mud.  
The polarization contrast at each pixel can be calculated 
by dividing the absolute value of the difference between 
the parallel and crossed intensity values by the sum of the 
parallel and crossed intensity values. 

 
R
ificantly higher DOLP than surrounding terrain can 

be a potential cue for water.  However, the DOLP of 
reflections from water bodies is a function of the 
incidence angle, hence lookahead distance. Moreover, it 
will also be affected by the polarization of the light 
incident on the water, which is dependent on sky 

conditions, sun position, and viewing geometry, as well as 
on the polarization of light upwelling from within the 
water body.  Therefore, there are conditions where the 
DOLP on water will not be significantly higher than 
surrounding terrain.  As an example, Xie et al. (2007) 
found that water reflecting nearby vegetation had a DOLP 
almost the same as the surrounding terrain.  

 
T
soil useful to detecting mud, several daytime data 

collections were performed with two Bossa Nova 
Technologies sensors: a SAMBA polarization camera and 
a SALSA linear stokes polarization camera.  The 
SAMBA camera provides a polarization contrast image 
and the SALSA camera provides DOLP, intensity, and 
orientation images. In the first data collection, SAMBA 
polarization imagery of a single mud body was acquired 
every 20 minutes for over seven hours from a stationary 
position with the sensor facing northeast.  The data 
collection started at 6:20am and ended at 1:40pm.  A full 
day data collection was planned, but a portable generator 
that provided power to the hardware failed near the half 
way point. 
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Figure 11. Segmenting mud using SAMBA 

 circular region of soil having a radius of 
appr

polarization imagery at different times of the day. 
 
A
oximately 2 meters was periodically watered for three 

days prior to the data collection to ensure a mud 
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consistency.  There was a thick marine layer at the 
beginning of the data collection, but by 9:20am, the sun 
started to peek through it, and by 10:00am, it had 
completely evaporated.  The polarization contrast on the 
mud was significantly higher than the surrounding dry 
soil in all the samples.  Figure 11 shows the parallel and 
crossed polarization images, the resultant polarization 
contrast images, and segmented mud images for the first 
and last images from the data collection.  The same 
parameters were used to segment the mud at both times. 
 

In a second data collection, a color camera and 
SAL

 RGB image Polarization 
i

DOLP 

SA polarization camera were mounted to the hood of 
a vehicle and a mud body was imaged from three different 
directions (facing West, South, and East).   This data 
collection took place at approximately 10:00am on an 
overcast day. Each image was taken minutes apart from 
the previous image.  As illustrated in Figure 12, in all 
three cases, the DOLP on the mud was consistently higher 
that the surrounding dry soil. 
 

ntensity image 
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Ea
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Figure 12. A ody (A) imaged o  an overcast day 

he DOLP on water can change based on the sky 
con

mud b n
from three directions with a color and SALSA 
polarization camera.  The images for each heading 
were acquired a few minutes apart.  The DOLP on 
mud is consistently high, independent of sensor 
orientation. 

 
T

ditions, the sun position, and the sensor orientation.  
But the DOLP on wet soil appears to be consistently high, 
regardless of those conditions.  This is illustrated in 
Figure 13, which contains a parallel polarization image 
(left) and the corresponding polarization contrast image 
(right).  The scene contains sitting water, wet soil, dry 
soil, and vegetation.  While the DOLP of the sitting water 
is much lower that the dry soil, the DOLP of the wet soil 
is much higher than the dry soil.  Even mud driven over 
by vehicles has a higher DOLP than surrounding dry soil 
(Figure 14). 

 

There is one case, however, where we have observed 
a weak polarization signature on wet soil.  As illustrated 
in Figure 15, the DOLP on wet soil in shadow is very 
similar to the DOLP of dry soil in shadow.  In addition, 
water and mud cannot be distinguished solely using 
DOLP.  Water can be distinguished from mud by using 
color to detect sky reflections and stereo range data to 
detect terrain reflections (Rankin and Matthies, 2006). 
 

 

vegetation 

Figure 13. A SAMBA parallel and polarization 
contrast image.  The DOLP on water can change 
based on if the sun is out, the sun position, and the 
sensor orientation.  But the DOLP on wet soil appears 
to be consistently high, regardless of those conditions. 

 

 
Figure 14. A SAMBA parallel and polarization 
contrast image.  Mud that has been driven over has a 
high DOLP. 
 

 
Figure 15. A SALSA intensity and DOLP image.  The 
DOLP of wet soil in shadow is similar to the DOLP of 
the dry soil in shadow.  
 

7. MUD LOCALIZATION IN A TERRAIN MAP 

Mud detected onboard a UGV should be placed 
within the world map the UGV uses to plan safe paths.  In 
this section, we illustrate the process with a multi-sensor 
based mud detection solution.  A SALSA polarization 
camera was used to detect mud and a stereo pair of 
Hitachi HV-F31 color cameras was used to localize 
detected mud and reject false alarms.  The first row of 
Figure 16 shows the sensors mounted to the hood of a 
High Mobility Multi-Wheeled Vehicle (HMMWV).    The 
stereo baseline was 50cm.  All three sensors were 

wet  
soil water dry soil 

A 

A 
A A 

A A A 

mud A A water on mud tire 
track 

wet soil 
in shadow
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calibrated within the vehicle frame.  The HMMWV was 
manually driven towards the mud body shown in the 
upper left image.  The images in rows 2-4 are from one 
frame of data during the drive, illustrating mud detection 
from a range of 27 meters. 

A mud detection algorithm was implemented which 
thresholds DOLP and back-projects polarization pixels 
that have a high DOLP into the left color image (which is 
registered with the stereo range image).  The last row of 
Figure 16 shows the mud detection results in the stereo 
point cloud.  As illustrated by the bird’s-eye view of the 
world map, mud detection and elevation data are 
accumulated over time in a north oriented grid map 
containing 40cm resolution cells.  Dark blue indicates the 
location of detected mud, cyan indicates the vehicle path, 
white indicates cells that have no data, and the gray level 
represents elevation (where black is high elevation).  As 
we only expect mud to occur on the ground, stereo vision 
can be used to isolate ground pixels from the other pixels 
corresponding to ground clutter.  For this particular scene, 
vegetation with a high DOLP was not placed within the 
world map since those pixels are above the ground.  We 
have not implanted color analysis yet, which will improve 
the robustness of this detector. 
 

CONCLUSIONS 
 
Robust mud detection is a critical perception 

requirement for UGV autonomous navigation.  There are 
several characteristics of mud that may be detectable with 
appropriate sensors.  For example, mud only occurs on 
the ground surface, mud is usually cooler than 
surrounding soil during the daytime, mud is generally 
darker than surrounding soil in visible imagery, and mud 
is highly polarized.  None of these cues, however, is 
definitive on its own.  Dry soil also occurs on the ground 
surface, shadows are also cooler than surrounding soil, 
shadows are also darker than surrounding soil in visible 
imagery, and cars, water, and some vegetation are also 
highly polarized.  Thus, a multi-sensor approach to mud 
detection is desired. 

 
A passive mud detection solution is desirable to meet 

the Future Combat System Autonomous Navigation 
System (FCS-ANS) requirements. Under the ARL RCTA 
program, JPL has performed daytime data collections on 
wet and dry soil using a variety of passive sensors 
including color stereo, multi-spectral (visible plus NIR), 
SWIR, MWIR, LWIR, and polarization.  In this paper, we 
have described the cues for mud detection that several of 
these passive sensors can provide under ideal daytime 
conditions (isolated wet soil surrounded by dry soil during 
nominal weather), and a method for localizing mud 
hazards in a world map using stereo vision.  

 
During FY09, we are planning on fusing cues from 

color into the current mud detector, and implementing a 

second mud detector that fuses cues from color, stereo, 
and thermal infrared.  More work is needed to 
characterize the usability of the sensors evaluated in this 
paper to detect mud under non-ideal conditions. 
 

 

 

 

Mud detection back- 
projected in left color image Stereo range image 

 
Figure 16. Localizing detected mud in a world model 
using a stereo pair of color cameras. 
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