
Page Segmentation Using Script Identification Vectors:
A First Look

Judith Hochberg, Michael Cannon, Patrick Kelly, and James White

Abstract
This paper explores the use of script identification

vectors in the analysis of multilingual document im-
ages. A script identification vector is calculated for
each connected component in a document. The vector
expresses the closest distance between the component
and templates developed for each of thirteen scripts,
including Arabic, Chinese, Cyrillic, and Roman. We
calculate the first three principal components within
the resulting thirteen-dimensional space for each im-
age. By mapping these components to red, green, and
blue, we can visualize the information contained in the
script identification vectors.

Our visualization of several multilingual images
suggests that the script identification vectors can be
used to segment images into script-specific regions as
large as several paragraphs or as small as a few char-
acters. The visualized vectors also reveal distinctions
within scripts, such as font in Roman documents, and
kanji vs. kana in Japanese.

Results are best for documents containing highly
dissimilar scripts such as Roman and Japanese.
Documents containing similar scripts, such as Roman
and Cyrillic, will require further investigation.

1 Introduction

Document images in which different scripts, such as
Chinese and Roman, appear on a single page pose a
problem for optical character recognition (OCR) sys-
tems. Existing OCR capabilities for multi-script
recognition are limited to identifying individual for-
eign characters, such as Roman characters within a
page of Chinese. This approach is inappropriate for
documents with larger numbers of possible foreign
characters, e.g., Roman documents that contain
Chinese characters. It also does not allow larger tex-
tual regions containing foreign scripts to be pro-
cessed by more powerful OCR algorithms which in-
corporate contextual and linguistic information.

One possible solution to this problem is to extend
the user-guided page segmentation approach cur-
rently used by OCR packages to process multilingual
documents printed in a single script. That is, the

user could make a separate scan of the document for
each script, each time manually selecting the re-
gion(s) to be recognized. It would be preferable to
develop an automatic means of segmenting multi-
script document images. This could be the first step
in a document processing stream for multi-script doc-
uments that includes language identification as well
as content-based steps, such as machine translation,
information retrieval, indexing, etc.

We hypothesized that a good starting point for
such an algorithm would be the script identification
vectors produced by our published algorithm for per-
forming script identification on single-script docu-
ments [1]. Our current implementation encompasses
thirteen scripts: Arabic, Armenian, Burmese,
Chinese, Cyrillic, Devanagari, Ethiopic, Greek,
Hebrew, Japanese, Korean, Roman, and Thai. It re-
quires minimal preprocessing of the document im-
age, and identifies the script in which a document is
printed with a high degree of accuracy.

The algorithm is based on cluster analysis.
Connected components from a training set of docu-
ments are clustered in order to determine the most
frequent character types in each script. A representa-
tive template is chosen for each cluster. New docu-
ments are classified by comparing a subset of their
connected components to the templates for each
script, and choosing the script whose templates pro-
vide the best match.

As part of this process, a thirteen-element script
identification vector is developed for each connected
component in the test document. The first element is
the Hamming distance between the component and
its most similar Arabic template, the second is the
distance between the component and its most similar
Armenian template, and so on for all thirteen scripts
currently in our system.

Each of these 'most similar' templates has an as-
sociated reliability statistic that was calculated in a
second pass through our training set, as part of the
training procedure described in [1]. As shown in
Figure 1, reliable templates are true hallmarks of a
script; unreliable templates tend to be blobs or other
uninformative shapes.

RomanKorean

JapaneseHebrew

GreekEthiopic

DevanagariCyrillic

ChineseBurmese

Arabic

Thai

Armenian

RomanKorean

JapaneseHebrew

GreekEthiopic

DevanagariCyrillic

ChineseBurmese

Arabic

Thai

Armenian

Fig. 1. Some frequent reliable (left) and unreliable (right) templates in thirteen scripts (from [1])

The script identification vectors were not intended
to be accurate on an individual component basis.
For example, a particular component from an Arabic
document might have a higher matching score for
Roman than for Arabic. Therefore, when using the
vectors to perform script identification on a docu-
ment as a whole, we considered several connected
components simultaneously; our best results were ob-
tained by examining more than 75 components per
image. Combining information across components
filtered out the noise and led to an accurate classifi-
cation for the image. The question remained whether
the information contained in the vectors was accu-
rate enough to perform reliable script identification
for textual units smaller than a page, such as a line
or paragraph, or even an individual word.

Before trying to develop an algorithm to perform
this task, we decided to use visualization as a tool to
unpack the information inside the vectors. If the vi-
sualization showed good separation between script
regions, this would be our go-ahead to develop script
segmentation algorithms based on the vectors.

An eventual algorithm would use all thirteen ele-
ments from the script identification vectors. For the
first look described in this paper, we reduced the
vectors to three elements, using principal compo-
nents analysis, so that we could easily visualize the
information they contained. This is a lossy approach,
yet, as it turns out, sufficient for most script combi-
nations we analyzed.

2 Method

We collected an initial corpus of seven multi-script
documents. Image sources were an airline magazine
(Fig. 2), a book about manual script identification
(Fig. 3, [2]), and bilingual dictionaries (e.g., Fig. 4).
Script regions in these images varied in size from in-
dividual characters to entire paragraphs. All images
were scanned as line art (black and white), with a
resolution of 200 dpi, using an Agfa scanner
equipped with StudioScan II software.

Fig. 2. Fragment of a multilingual image from an airline magazine

Fig. 3. Fragment of a multilingual image from a script identification manual [2]

Fig. 4. Fragment of a multilingual image from an English-Arabic dictionary

The scripts represented in each image are pre-
sented in Table 1. Most of the scripts in these doc-
uments were among the thirteen included in the
script identification templates. The exceptions were
all found in images 4-5, from the script identification
book [2].

Table 1: Sources and scripts in test images

Image # Source Scripts
1 dictionary Arabic, Roman
2 airline maga-

zine
Japanese, Roman

3 dictionary Korean, Roman
4 script identifi-

cation book
Roman, Coptic, Arabic,
Devanagari, Armenian,
Ethiopic, Bengali

5 script identifi-
cation book

Roman, Chinese, Nasi
pictorial script,
Hebrew, Javanese,
Avestan, Mayan hiero-
glyphics

6 dictionary Greek, Roman
7 dictionary Cyrillic, Roman

The first step in processing each image was to de-
velop a script identification vector, using the ap-
proach described in [1]. This involved the following
steps:

• identifying all connected components in the im-
age that contained more than ten pixels and
were less than 80 pixels in height;

• rescaling components to 30 x 30 pixels;
• comparing each component to the script identifi-

cation templates for the thirteen scripts in order
to find the template within each script that gave
the closest match (judged by Hamming dis-
tance). This step created a script identification
vector for each connected component consisting
of thirteen Hamming distances.

• Finally, looking up the associated reliability
statistic for each chosen template.

For each image, after creating the script ID vec-
tors as described above, we performed a principal
components analysis. This identified the main axes
in the thirteen-dimensional space defined by the im-
age's vectors. Reliability statistics were not taken
into account in this analysis, although we intend to
use them in the future.

We discarded all but the first three principal com-
ponents, and normalized the values on each of the
three to a range of 0 to 255. We then mapped the
normalized values onto the colors red, green, and
blue. Thus each connected component in the image
was assigned a color that symbolized its location in
a reduced, three-dimensional script identification
space.

This process is demonstrated in Figures 5a-c, for
the fragment of image 1 seen in Figure 4. The three
figures illustrate the first three principal components

in grayscale, with intensity indicating the value of
the component. The second principal component
(Fig. 5b) showed the sharpest separation between
Arabic and Roman, with Arabic characters generally
darker than Roman ones. The first and third compo-
nents also showed some separation. For the first
principal component (Fig. 5a), Arabic characters
tended to be lighter than Roman ones. For the third
principal component (Fig. 5c), most Roman charac-
ters had medium values, with Arabic characters
darker or lighter.

The color image produced by mapping Figs. 5a-c
to red, green, and blue, respectively, had Roman
characters in green, shading to green-blue, and
Arabic characters in red, purples, blues, and blacks.
The touching characters man in the word many in the
second row, which were unusually dark in the second
component and unusually light in the third compo-
nent, were bluer than the rest of the Roman in the
color image.

This image, and the other six images described in
this paper, can be viewed in color on the Internet at
[3].

3 Script segmentation

We evaluated each image according to the degree of
observed color separation between scripts. Images 1-
3 had the sharpest separation. These images each
contained Roman, plus a second script that was vi-
sually dissimilar to Roman: Arabic, Japanese, or

Korean. In these images, each script was mapped to
a distinct color or range of colors, indicating that the
script identification vectors held the information re-
quired for script segmentation. Image 1 was de-
scribed in the previous section. In image 2, Roman
characters were in shades of red, purple, and red-
blue, while Japanese characters were in greens and
blues. In image 3, Roman characters were in greens
and greenish browns, while Korean characters were
in purple and purplish browns (recall that color im-
ages are available at [3]).

Within this set, images 1 and 2 had the sharpest
script separation. In these images, individual words
and phrases in one script stood out against a back-
ground from a contrasting script. Good examples of
this were "SkyMiles® Medallion", near the top of the
second column of image 2 (Fig. 2), and "dead
march", near the bottom of the second column of im-
age 1.

In images 1 and 2, the visualization also revealed
differences within scripts. This happened most dra-
matically in image 2. In the Roman areas in this
image, italicized characters were bluer, and bold
characters pinker, than the other Roman characters.
In the Japanese areas, kanji (Chinese root charac-
ters) were blue or blue-green, while kana (phonetic
characters) were green or blue-green. In image 1,
italicized Roman tended to be bluer than non-itali-
cized Roman.

Figure 5a. First principal component for a fragment of image 1

Figure 5b. Second principal component for a fragment of image 1

Figure 5c. Third principal component for a fragment of image 1

Images 4-5, which contained several scripts each,
also showed clean script separation. The tendency in
these images was for familiar scripts to be mapped to
a single color, or narrow range of colors, while unfa-
miliar scripts were mapped to a mélange of colors.
Thus in image 4, Roman was mapped to green,
Arabic to blue/red, Armenian to brown, and
Devanagari to dark blue. In image 5, Roman was
mapped to dark reds and purples, Hebrew to green,
and Chinese to blue, shading to brownish green.
Coptic, Nasi, Javanese, Avestan, and Mayan, all un-
familiar scripts, were mapped to a mélange of colors.

Two scripts in images 4 and 5 differed from this
general pattern. In image 4, Bengali was mapped to
the same dark blue as Devanagari. This was a pleas-
ing result given the visual similarity of the two
scripts. Also in image 4, Ethiopic was mapped to a
mélange of colors. This was surprising because
Ethiopic was among our set of known scripts.

Images 6 and 7, which combined Roman with
Greek or Cyrillic (both of which share several letters
with Roman), showed the least script separation. In
image 7, bright greens were generally Roman, and
bright blues generally Greek; no other systematic dif-
ferences were observable, and the overall effect was
a mélange. In image 8, the only systematic separa-
tion was that bright greens were generally Roman.
Most observable patterning pertained to individual
characters: Cyrillic 'T' was always pale blue-green,
and Cyrillic and Roman 'o' always red. Again, the
overall effect was a mélange.

4 Conclusion

Our visualization efforts were encouraging. They
suggested that, for all but closely related scripts, the
script identification vectors, even as reduced by
principal components analysis, contained the infor-
mation needed to distinguish script regions on an in-
dividual page. For our best pairings, English/Arabic

and English/Japanese, the vectors apparently also
contained distinguishing font information.

Given this result, we expect that automatic seg-
mentation algorithms based on the vectors will be
fruitful in most cases. For more difficult script com-
binations, such as Roman/Greek and Roman/Cyrillic,
we have two possibilities in mind for improving our
current results. First, we plan to incorporate the reli-
ability scores described in sections 1 and 2. These
scores were crucial in making fine distinctions in our
earlier work, and should help in the segmentation
problem as well. The reliability scores could be used
in visualization, by reducing the visual intensity of
components whose best match overall was to a tem-
plate with low reliability. Alternatively, each
Hamming distance could be weighted by the reliabil-
ity of the relevant template prior to any vector analy-
sis. Second, in moving from visualization to an ac-
tual page segmentation algorithm, we plan to make
use of the original script identification vector instead
of the principal components. Perhaps the information
lost in the principal components analysis is neces-
sary for full-scale segmentation.

Acknowledgments

This work was performed under the auspices of the
United States Department of Energy, contract W-
7405-ENG-36.

References

[1] J. Hochberg, P. Kelly, T. Thomas, and L. Kerns,
Automatic script identification from document
images using cluster-based templates, I E E E
Trans. on Pattern Anal. and Mach. Intell. 1 9
(1997) 176-181.

[2] R.S. Gilyarevsky and V.S. Grivnin, Languages
Identification Guide (Nauka, Moscow, 1970).

[3] http://www.c3.lanl.gov/~judithh/LIFI/main.shtml

