

Fundamental Aeronautics Program

Supersonics Project

Entry, Descent, and Landing Overview

Principal Investigator: Project Scientist: Project Manager: Peter Coen Dr. Louis Povinelli Kestutis C. Civinskas

SUP.12.0 – Entry, Descent and Landing (EDL)

SUP.12.0 Entry, Descent and Landing – Major Technical Challenges Addressed					
Supersonic Cruise Efficiency		High Altitude Emissions Reduction			
Lightweight and Durability at High Temperature		Aero-Propulso-Servo-Elasticity (APSE)			
Airport Noise Reduction	Х	Supersonic Entry, Descent and Landing			
Sonic Boom Modeling		Multidisciplinary Design, Analysis & Optimization			

Problem Statement: Tools and technologies for designing and analyzing new classes of aerodynamic and propulsive decelerators for large, high-speed planetary entry vehicles need to be developed. These decelerators are needed to permit the safe entry and landing of substantially larger spacecraft on Mars than what has been done before with Viking-class parachute EDL systems. Potential applications include human-scale missions to Mars as well as robotic spacecraft to other planets and sample-return missions to Earth. Parachutes are generally regarded as being effective as decelerators for vehicle masses less than 3 metric tons, far short of the 60-80 MT vehicles expected to have to be placed on Mars for human missions. New decelerators capable of deployment or ignition at hypersonic or supersonic speeds and having excellent drag characteristics and stability throughout the operating speed range are required. The supersonic decelerator needs to be integrated into an optimized EDL system that also considers the Hypersonic (Entry) and Subsonic (Landing) elements of the flight profile.

Previous Related Research: Parachutes, inflatable decelerators, and propulsive decelerators have been studied in government, industry, and academic programs since the 1960's, and there is a vast amount of information from flight and ground-based tests, analytical studies and computational simulations available in the literature. The Viking landers launched in the 70's required an extensive development and qualification program for the disk-gap-band parachutes used to decelerate the landers from supersonic to subsonic speeds, and that parachute technology has been used in succeeding missions to Mars and other planets. The cost of such qualification testing is a significant driver of the need to develop new high fidelity analysis and design tools.

Research Approach: New computational tools will be developed for calculating the dynamics and aerodynamics of the deployment and inflation of decelerators, as well as the static and dynamic stability of the decelerators in their fully deployed state. These tools will be capable of assessing the interaction of the unsteady fluid flow and the dynamics of the structure, particularly in cases of highly deformable structures. Performance predictions of the vehicle/decelerator combination will be critical to ensuring mission success, and the calculated trajectory of the system during entry will be key to minimizing landing dispersion and increasing confidence in reaching the targeted landing area. High-speed, high-resolution experimental techniques for measuring the deployment and stability of the decelerators will be developed both for CFD validation and for supplementing the computational performance predictions. Investigations into novel approaches for using rocket propulsion for slowing an entry vehicle through the supersonic speed regime in a planetary atmosphere will be conducted.

The EDL discipline of the Supersonics Project is broken down into the following elements:

12.02. Static Aerodynamic Performance Prediction

Computationally simulate the fluid dynamics of entry vehicles, the interactions of these wakes with static parachutes or other decelerators, and the loads on and performance of the decelerator system.

12.03. Dynamic Performance Evaluation

Develop an integrated conceptual analysis capability for analyzing and comparing potential EDL systems for large payloads. Variable-fidelity discipline analyses, including aerodynamics, trajectory, structures, propulsion, mass estimation, and heat transfer, will be incorporated into the ModelCenter tool to allow assessment of various system architectures.

12.04. Computational Fluid-Structures Interaction Methods

Extend the static aerodynamic calculations of element 12.02 to calculations of the unsteady aerodynamics of a vehicle/decelerator system, and to develop tools for computing the interactions between the fluid mechanics and the structural response of flexible parachutes and other decelerators.

12.05. Decelerator Testing

Develop ground and flight test capabilities for evaluations of various supersonic aerodynamic decelerator concepts.

12.06. Propulsive Deceleration

Investigate novel experimental approaches for using rocket propulsion for decelerating an entry vehicle through the supersonic speed regime in a planetary atmosphere.

Technology Validation Strategy: Computational methods developed and applied in SUP elements 12.02, 12.03, and 12.04 will be validated through the use of past aerodynamic, aerothermal, and propulsive databases, new wind tunnel and subscale flight experiments, and the new test techniques to be developed in elements 12.05 and 12.06.

SUP.12.0 Entry, Descent and Landing – Key Deliverables	Date			
Inflatable Re-entry Vehicle Experiment (IRVE) aeroshell inflation and survivability demonstrated				
Report on wind-tunnel and ballistic range tests of candidate inflatable aerodynamic decelerator shapes	2007			
Creation of aerodynamic database on flow field about nozzles during entry conditions	2007			
Demonstration of test technique for synchronized photogrammetry, PIV and drag measurements of parachutes and inflatable decelerators	2008			
Generation of flow stability regimes for successful ignition of rocket nozzles during EDL conditions	2008			
Coupled aerodynamics and fluid-structure interaction NS code for supersonic parachutes and decelerators	2009			
Database of ignition limits for purged and unpurged engines and the need for engine covers to supplement purging	2009			
Development of database of aerodynamics and ignition transients for application to EDL requirements	2010			
Creation of heat transfer database for nozzles and chambers in EDL and landing site environments	2010			

The Supersonics Project technology level designation is included with each milestone. In NASA's Fundamental Aeronautics nomenclature, discipline-focused efforts are categorized as Level 1 (L1) for

foundational research and Level 2 (L2) for discipline research. Multi-disciplinary focused efforts are referred to as Level 3 (L3) for discipline integration and Level 4 (L4) for system-level integration.

	SUP.12.0 Entry, Descent and Landing – Milestones						
Number	Title	Year		Level			
SUP.	Report on evaluation of	4Q	Draft evaluation report prepared for either	L1			
12.02.01	predictions vs. experimental data	FY07	NASA TM or conference paper				
SUP.	Complete fully viscous	4Q	Demonstrate use of fully viscous supersonic	L2			
12.02.02	supersonic CFD code	FY07	CFD code on MSL geometry				
SUP.	Complete Conceptual Analysis	2Q	Demonstrate use of framework in evaluating	L2			
12.03.01	Framework	FY08	merits of various decelerator systems				
SUP.	Lower-order Performance	2Q	Write evaluation of lower-order performance	L1			
12.04.01	Predictions Evaluation Complete	FY08	prediction methods				
SUP.	Complete Generalized Unsteady	4Q	Demonstrate representative unsteady	L2			
12.04.02	Viscous Supersonic Code	FY08	supersonic flow simulation capability around				
			a flexible parachute and reentry vehicle				
SUP.	Fluid-Structure Interaction	4Q	Demonstrate the use of the FSI code on	L2			
12.04.03	Technology Development	FY09	flexible as well as rigid	6			
12.01.00	roomology Dovolopmont	1 100	parachutes/decelerators and compare with				
			experimental data				
SUP.	Integrated	2Q	Establish capability to analyze the	L3			
12.04.04	Aerodynamic/Structures	FY10	aerodynamic and structural performance of	LU			
12.04.04	Analysis for Flexible/Inflatable	1 1 10	supersonic EDL decelerator systems in				
	Supersonic EDL Deceleration		which highly unsteady flow interacts with				
	Systems		highly flexible thin wall structures				
SUP.	IRVE Flight Test Complete	4Q	Successful conclusion of IRVE flight	L2			
	IRVE Flight Test Complete			LZ			
12.05.01		FY07	operations	1.0			
SUP.	PAI-DAE Atmospheric	2Q	Publication of final Atmospheric Deployment	L2			
12.05.02.01	Deployment Test Report	FY08	Test Report including data reduction &				
			analysis	1.0			
SUP.	PAI-DAE Ballistic Range Test	2Q	Publication of final Ballistic Range Test	L2			
12.05.02.02	Report	FY08	Report including data reduction &				
			conclusions				
SUP.	Synchronized Photogrammetry,	4Q	Demonstration of optical measurements of	L1			
12.05.03	PIV and Drag Measurements	FY08	flexible decelerator deployment in				
			supersonic wind tunnel				
SUP.	Decelerator Experimental	4Q	Wind-tunnel test contributions to decelerator	L2			
12.05.04	Evaluations	FY09	design studies reduce uncertainty in				
			decelerator drag by 50%				
SUP.	Photogrammetric Shape	4Q	Demonstration of photogrammetric shape	L2			
12.05.05	Measurement Technique for	FY07	measurement technique showing				
	Flexible Canopies		deployment time history and inflation				
			dynamics for flexible canopies				
SUP.	Supersonic Decelerator	4Q	Complete Assessment of data from	L3			
12.05.06	Aerodynamic Performance	FY09	supersonic inflatable decelerator wind				
	Validation Data Set Complete		tunnel and ballistic range tests. Validation				
			data published for use in Supersonic EDL				
			tools validation. Assessment of supersonic				
			inflatable decelerator.				
SUP.	Nozzle Flow Field Database	4Q	Creation of aerodynamic database on flow	L2			
12.06.01	Development	FY07	field about nozzles during entry conditions				
SUP.	Flow Instabilities Database	4Q	Generation of flow stability regimes for	L2			
12.06.02	Development	FY08	successful ignition of rocket nozzles during				
			EDL conditions				

SUP.	Ignition Requirements for Rocket	4Q	Database of ignition limits for purged and	L2
12.06.03	Engines in a Vacuum	FY09	unpurged engines and the need for engine	
			covers to supplement purging	
SUP.	Aerodynamic Database for	4Q	Development of database of aerodynamics	L2
12.06.04	Large Expansion Ratio Nozzles	FY10	and ignition transients (shock structure in	
			nozzle) for application to EDL requirements	
SUP.	Heat Transfer Database for	4Q	Creation of heat transfer database for	L3
12.06.05	Rocket Nozzles and Chambers	FY11	nozzles and chambers in EDL and landing	
			site environments	
SUP.	Optimal Propellant and	4Q	Evaluate propellant selection effects,	L3
12.06.06	Propulsion Mode Selection for	FY11	including ISRU	
	Post-EDL and in situ resource		-	
	utilization (ISRU) Environments			

