Iron cycle in an neutrophilic iron seep

Marco Blöthe

Department of Biological Sciences The University of Alabama, Tuscaloosa ALABAMA 35487, USA mblothe@bama.ua.edu

Eric E. Roden

Department of Biological Sciences The University of Alabama, Tuscaloosa ALABAMA 35487, USA eroden@biology.as.ua.edu

The Iron cycling in an ph-neutral groundwater iron seep in Alabama was investigated as a model for subsurface Fe redox cycling on Mars.

The precipitated iron minerals contained 82.4 mmol Fe(III)_{total} L⁻¹ with 90% of Fe(III)_{amorph}. The Fe(II)-content was low (200 μ mol/L). Culture-based enumeration studies revealed high MPN for aerobe (9.09E⁶ – 1.98E⁸) and anaerobe bacteria (4.94E⁷ – 1.08E⁹). Comparable numbers of Fe(III)-reducing (1,16E³ - 9,81E³) and Fe(II)-oxidizing (3,34E⁴ - 2,41E⁵) microorganisms were obtained. Significant higher MPN's for FeRB were obtained when iron seep Fe(III)-minerals (3,32E⁵ – 2,39E⁶) were used instead of synthetically ferrihydrite (7,37E³ – 5,32E⁴). Molecular investigations revealed a variety of heterotrophic and autotrophic phylotypes like ammonium (35%) and Fe(II)-oxidizers (13%) from the beta-proteobacteria. Phylotypes similar to *Geobacter* or *Shewanella* were not obtained.

Non-stimulated Incubation of seep material under anoxic conditions revealed a constantly Fe(III)reduction of 0,011 μ mol mL⁻¹ hr⁻¹ over 20 days. Approximated calculation of a Fe(II)-oxidation rate for the Fe(II)-oxidizing population in the seep material with an Fe(II)-oxidation rate of ~10⁻⁷ μ mol Fe(II) cell⁻¹ hr⁻¹ from strain TW2 (beta-proteobacterium isolate from a freshwater wetland) resulted in a rate of 0.01 μ mol mL⁻¹ hr⁻¹ similar to the observed Fe(III)-reduction rate in the iron seep.

Conceptually these results are consistent with those from experimental co-cultures, and suggest that a coupling of microbial Fe oxidation and reduction takes place in the iron seep materials. This iron seep systems provide a model for how microbially-catalyzed Fe redox cycling could take place in subsurface Martian environments where reduced fluids/solids contact oxygenbearing water or water vapor.